Extensible MANET Auto-configuration Protocol (EMAP)
draft-ros-autoconf-emap-00.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 20, 2006.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

Mobile Ad Hoc Networks need an auto-configuration protocol being able
to satisfy their self-deployment requirements while remaining flexible enough to accommodate special features for different devices.

EMAP protocol tries to fulfill these requirements both for IPv4 and IPv6 mobile ad hoc networks. It provides auto-configuration mechanisms for isolated as well as hybrid MANETs, and is envisioned to be integrated within unicast routing protocols (like DYMO or OLSRv2).

EMAP allows nodes to create a (highly likely) unique IP address which can be used locally inside the MANET. In a similar way, nodes can auto-configure globally routable IP addresses when one (or more) gateways to the Internet are present in the network. The general framework provided by the protocol may be used as a service discovery protocol for MANETs. In fact, this document also specifies an optional feature which consists on the discovery of DNS servers reachable from the MANET, what could be useful when a high degree of auto-configuration is desired. Therefore, EMAP has been designed taking into consideration the possibility of extending it later on with new features, uses, and optimizations.
Table of Contents

1. Introduction ... 4
2. Terminology .. 6
3. Protocol Overview ... 7
 3.1. General EMAP message format 7
4. Local Configuration ... 9
 4.1. Overview .. 9
 4.2. Messages Format .. 9
 4.2.1. LC_REQ (Local Configuration Request) 9
 4.2.2. LC_REP (Local Configuration Reply) 9
 4.3. Protocol operation 9
5. Global Configuration .. 12
 5.1. Overview .. 12
 5.2. Messages Format .. 12
 5.2.1. GC_REQ (Global Configuration Request) 12
 5.2.2. GC_REP (Global Configuration Reply) 12
 5.3. Protocol operation 13
 5.3.1. IGW operation 13
 5.3.2. MANET nodes operation 14
 5.4. Comments about proxying in Global Configuration 15
6. DNS Server Configuration 17
 6.1. Overview .. 17
 6.2. Messages Format .. 17
 6.2.1. DS_REQ (DNS Server Request) 17
 6.2.2. DS_REP (DNS Server Reply) 17
 6.3. Protocol operation 17
7. Security Considerations 19
8. Constants Values .. 20
9. References ... 20
Appendix A. Layout of EMAP messages for DYMO 22
Appendix B. Layout of EMAP messages for OLSRv2 23
Authors’ Addresses .. 24
Intellectual Property and Copyright Statements 26
1. Introduction

Due to the spontaneous nature of Mobile Ad Hoc Networks (MANET), a mechanism is required to automatically provide some basic configuration information to MANET nodes, allowing them to establish communications.

First of all, a MANET node needs an IP address that can be used locally for intra-MANET connectivity. One of the most important features of a MANET is that it does not need any pre-existing infrastructure, but MANET routing protocols suppose unique addressability of all nodes. Currently there is no widely accepted mechanism to provide every node with a unique IP address (other than manual configuration, which is, indeed, a pre-existing infrastructure). This document tries to fill this gap.

Besides, MANETs may be permanently or temporarily attached to the Internet through one or more Internet Gateways. Every node needs a unique global address and a route to the Internet if it wants to communicate with external nodes.

In addition, there are other network parameters such as addresses of DNS servers which can be self-configured by a MANET node.

This document describes an auto-configuration protocol called EMAP which is able to provide all above mentioned services. It has been designed taking into consideration its extensibility as one of its most important features, so that it can be extended with additional functionality in the future. EMAP should be implemented within a routing protocol for MANETs because it needs to create routes to other nodes, what is a routing protocol task. Moreover, this approach allows a more optimal solution with respect to the number of bytes that are put on the network, if we compare this with a completely independent protocol. This is due to the fact that routing protocols include in their own messages some information which is also used by EMAP, hence, it is not needed to replicate this information.

Furthermore, EMAP is a flexible protocol designed to accommodate requirements for several devices. The current specification considers local and global auto-configuration as mandatory features, but DNS servers discovery is optional. Future extensions may include the discovery of new optional services.

Previous solutions have primarily focused on either local [1] [2] or global auto-configuration [3] [4]. Besides, some are only related to IPv6 [3][4]. EMAP gathers ideas of the previous proposals in order to design a new protocol which deals both with local and global
configuration and with IPv4 and IPv6.

The framework defined by this protocol can be used as a service
discovery mechanism. Those elements which provide a service (i.e.,
servers) can periodically advertise their presence to the network, or
may be silently waiting for the clients of the service to initiate a
request-reply procedure. EMAP allows proxies (i.e., intermediate
nodes) to reply to requests for which they know the suitable
information. The latter is actually similar to the way AODV [5]
behaves when a node want to discover a route to another.

Local configuration is achieved by allowing a MANET node to choose an
IP address and to ask the network if it is already being used (in
order to avoid address duplication). If not, then it can begin to
use that address. On the other hand, global configuration needs the
presence of an element called an Internet Gateway which is
responsible for providing suitable information to MANET nodes. This
information is used to configure a unique global address and a route
towards the Internet. In the last (but optional) service described
within this document, a MANET node may issue a query to find DNS
Server Advertisers, which provide IP addresses of available DNS
servers.
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [6].

All terminology defined in [7] also applies. Here are some additional terms used within this document.

DNS Server Advertiser

A device which knows the addresses of DNS servers and is responsible for providing that information to every MANET node which requests it.

Proxy

A MANET node which is not providing a concrete service but has enough information to answer requests for that service.

Temporary address

IP address used by a node for certain protocol operations before it acquires a unique IP address for intra-MANET or global communications.

Tentative address

Selected IP address for intra-MANET or global communications before the uniqueness check is performed.

MANET-local address

IP address to be used for intra-MANET communications. The scope and format of this sort of addresses is still an open issue.
3. Protocol Overview

EMAP defines a simple mechanism to request network configuration parameters in an efficient way, based on the use of Request and Reply messages.

When a node wants to auto-configure some sort of information it floods a request and wait for the network to reply. In the case that a response arrives, the next time that the node needs that same information it MAY send in unicast a request to the node(s) which previously replied. In a similar way, a node MAY flood (periodically or not) a reply throughout the network if it wants to announce the existence of some type of information to the whole MANET, or it MAY wait for requests and then reply in unicast to only those requesting nodes.

Sometimes a node receives a request for some information which is not being provided by itself, but it knows the requested information and the node which provides it. In those cases the node MAY act as a proxy and reply to the originator. Then the request is not forwarded any more and the protocol overhead may be reduced.

Every time a node floods an EMAP message, it SHOULD use whatever optimized mechanism which is available (e.g. using a forwarding algorithm based on Connected Dominating Sets). This draft could have delegated the forwarding responsibility to SMF [8], but this presents a problem with the use of proxies because there is no such concept in that specification.

In order to avoid the re-processing and re-forwarding of duplicated messages, this protocol caches some information of the received messages. Then when a new message arrives a node can check if it is a duplicate and then discard it. An alternative option could be the use of the Duplicate Packet Detection (DPD) mechanism described in SMF spec [8], and maybe future versions of this draft will use it.

3.1. General EMAP message format

Every EMAP message MUST conform with the following format:

```
message = <Type><Code><Length><TTL><Originator Address><P>
    {<specific message fields>}*
```

Type

Type of the message. Currently this protocol only specifies EMAP_REQUEST and EMAP_REPLY messages.
Code

Indicates the configuration which is being performed (currently local, global and DNS servers auto-configuration).

Length

Size (in bytes) of the whole message.

TTL

Number of hops this packet can still take.

Originator Address

IP(v4/v6) address of the node that originated the information contained in this packet. In the case of replies which have been proxied (P bit set to 1), this field contains the address of the node which originally provided the information (i.e., not the proxy). The receiver can gather the address of the proxy from the source field of the IP Datagram.

P

Proxy bit. If set in a request, this flag indicates that receivers SHOULD act as proxies. If not set they MUST NOT act as proxies. If set in a reply, it means that this message has been generated by a proxy.

Specific message fields

Remaining fields corresponding to an specific EMAP message.

Flooded EMAP packets are sent to the neighboring nodes. They will decide if an EMAP packet is going to be forwarded or not (what is called "application flooding" [9]). The transmission range of a flooded EMAP packet is controlled by the TTL field in the EMAP message.

Every time a node forwards an EMAP message, it MUST decrease its TTL field by one unit. When TTL reaches 0, the packet MUST NOT be forwarded any more.

The following sections describe how to perform local and global address auto-configuration, as well as a mechanism to discover available DNS servers.
4. Local Configuration

4.1. Overview

Local Configuration allows a MANET node to communicate with other nodes in the same MANET. To achieve this, the node MUST allocate an unicast IP address which is unique in the connected part of the MANET. Due to the decentralized nature of MANETs, that address will be auto-configured in a stateless fashion.

A MANET node which wants to auto-configure an address for local use, picks an IP address and asks for it to the rest of the network (sending an LC_REQ message). If that IP address is already in use by another node, then the network replies with an LC_REP message indicating that the node cannot auto-assign that address itself. If the IP address is not being used by any node, the network does not answer and the node can use it.

The latter mechanism is actually a DAD (Duplicate Address Detection) procedure used to guarantee the uniqueness of self-configured IP addresses. The main idea has been taken from [1], and proxy capability has been added to the nodes’ functionality in order to lower the control overhead when the IP address being requested is already assigned to other node.

Subsequent sections give more insight on the protocol for Local Configuration and explain it in detail.

4.2. Messages Format

4.2.1. LC_REQ (Local Configuration Request)

An LC_REQ message MUST set the Type field to EMAP_REQUEST and the Code field to LC_CODE. It also has one specific field:

Requested Address. IP(v4/v6) address which the node is requesting. This MUST be the selected "tentative address".

4.2.2. LC_REP (Local Configuration Reply)

An LC_REP message MUST set the Type field to EMAP_REPLY and the Code field to LC_CODE. It has no specific message fields.

4.3. Protocol operation

Every EMAP-compliant implementation MUST implement Local Configuration.
When a node wants to join a MANET it needs a valid and locally unique IP address for (at least) one of its interfaces. The following procedure MUST be applied on each interface interested in participating in intra-MANET communications when there is no suitable address which could be used (e.g. a Mobile IP Home Address). If such an address exists, the node MAY optionally execute the procedure.

A node generates a pair of MANET-local addresses, namely the temporary and the tentative ones. The temporary address is used as the Originator Address, and it can be a Mobile IP Home Address or other sort of (highly likely) unique address. If there is no such address available then the temporary address is automatically created. On the other hand, the tentative address is the one which is being requested and is used as the Requested Address field in LC_REQ and Originator Address field in LC_REP messages.

In the case of IPv4, the node creates a temporary and a tentative address from the 169.254/16 subnet. For the temporary address, the 16 low-order bits are generated by randomly choosing a number in the range 1 - 2047. Later on the node randomly picks a number from the range 2048 - 65534 which is used in the 16 low-order bits to create the tentative address. This mechanism may require more discussion within the IETF and it can therefore be changed in future versions of this draft.

Similarly, in the case of IPv6 there is no consensus yet. A suitable solution is to use Unique Local Addresses with an special Global ID field reserved for MANET use. Subnet ID is randomly chosen in the range 1 - 2047 for the temporary address, and in the range 2048 - 65534 for the tentative address. Interface ID is set to the EUI of the interface which is requesting the tentative address.

A requesting node issues an LC_REQ message, where the Originator Address is the temporary address and the Requested Address is the tentative address. It then waits LC_REQ_TIMEOUT seconds for an LC_REP message. If this timer expires without receiving any answer the requesting node assumes the uniqueness of the tentative address, deallocates the temporary address and assigns the tentative address to the corresponding interface. On the other hand if the node receives a LC_REP destined to its temporary address where the Originator Address is the tentative address, then the latter is being used by another node in the MANET and cannot be auto-assigned. In this case the requesting node MUST re-run the whole process until it succeeds or LC_MAX_RETRIES retries are reached.

Before sending the LC_REQ message, the node MAY set the P bit to indicate that intermediate nodes SHOULD answer with an LC_REP message if they do not own the Requested Address but they do know that it is
being used by another node. For instance, if the MANET is running a proactive routing protocol then every node should have a route to every other node. In that case a node can easily check if it knows about another node using a given address. On the other hand, if a reactive protocol is being run then a node could know if an address is already assigned if that node is part of the path of an active communication in which that address is the source or destination.

When a node receives an LC_REQ message it MUST check whether there exists an entry in the LC_REQ_CACHE with the Originator Address and the Requested Address of this message. If that is the case, then the message has been already processed and MUST be discarded. In any other case, a new entry which expires after LC_REQ_CACHE_TIMEOUT seconds is created in the LC_REQ_CACHE. The routing protocol being run (reactive or proactive) MUST create a reverse route entry in its routing table where the destination address is the Originator Address and the next hop is the node from which it received the LC_REQ message. This is needed to forward the eventual LC_REP message.

After that, the node checks if the Requested Address is owned by one of its interfaces. In that case, a new LC_REP message is issued in unicast directed to the Originator Address. In other case if the P bit is active and the Requested Address is not owned by the node but it knows the address is already being used, then a new LC_REP with the P flag activated SHOULD be sent in unicast to the Originator Address. If the P bit is not active in the request, then the node MUST NOT act as a proxy and therefore MUST NOT reply with an LC_REP message. In other case, (i.e., if the Requested Address does not belong to the receiving node and it cannot act as a proxy) then the node MUST forwards the LC_REQ message if the TTL field is bigger than zero.
5. Global Configuration

5.1. Overview

Global Configuration allows MANET nodes to communicate with others in the Internet. For this purpose a MANET node needs at least one globally valid IP address. Due to the hierarchical structure of the Internet that address must be globally routable.

To reach the Internet at least one element must act as a gateway between the MANET and the fixed network. This is called an Internet-Gateway (IGW). An IGW may be a fixed element belonging to each network, or a mobile one which detects the presence of an attachment point to Internet (e.g. a wireless router).

IGWs are responsible for announcing suitable network parameters which will be used by MANET nodes in order to:

1. Auto-configure in a stateless fashion a globally routable and unique IP address.
2. Discover a path to route packets destined to the nodes located in the Internet.

Information supplied to MANET nodes by IGWs is detailed in the following sections. This information MAY be delivered proactively, reactively, with a hybrid scheme or MAY be even dynamically changed depending on the implementation and network operator preferences.

There are several different ways to route traffic to the Internet, once IGWs are known. E.g. the routing protocol could tunnel the traffic to the IGW, use IPv6 Routing Headers, create default routes, etc. These options will not be discussed within this document.

The main idea of the protocol operation has been taken from [3], and proxying capability has been added.

5.2. Messages Format

5.2.1. GC_REQ (Global Configuration Request)

A GC_REQ message MUST set the Type field to EMAP_REQUEST and the Code field to GC_CODE. It has no additional fields.

5.2.2. GC_REP (Global Configuration Reply)

A GC_REP message MUST set the Type field to EMAP_REPLY and the Code field to GC_CODE. It also has the following specific fields:
Lifetime. Indicates the time in seconds the information contained in this message is considered valid. Its format is explained in Section 5.3.1.

Distance. Distance in number of hops from the IGW which sent this message or which is being proxied.

Sequence Number. Sequence number of the GC_REPs sent by an IGW.

Prefix Length. Length (in bits) of the prefix being advertised by the IGW.

S bit. Selected bit, if set the IGW announced in this message has been selected by the previous hop in order to auto-configure its own global address.

5.3. Protocol operation

5.3.1. IGW operation

Every EMAP-compliant implementation MUST implement Global Configuration.

Concrete behaviour of IGWs depends on their particular implementation and configuration. They MAY proactively flood GC_REP messages. Or they MAY answer in unicast to every GC_REQ message they receive. Another option is to flood periodically GC_REP messages to the nearer MANET nodes, and let the farthest ones operate in an on-demand basis. It is even possible to dynamically adapt the reactiveness/proactiveness behaviour of the IGWs as in [11]. In the case that EMAP is integrated within a proactive routing protocol, IGWs SHOULD also operate in a proactive way.

In all cases an IGW MUST send a GC_REP message when it receives a GC_REQ message. This is sent in unicast to the Originator Address of the GC_REQ message.

Every IGW MUST set the S bit in each GC_REP it generates, and MUST NOT set the P bit unless it is proxying another IGW. Besides, each IGW maintains an internal sequence number counter which is incremented every time a new GC_REP is sent. This counter is used to fill the Sequence Number field of the GC_REP message. This field is expressed in a mantissa/exponent format like it is defined in the OLSR protocol specification [12]. Originator Address field is set to the IGW IP address, Distance field to 0, and Lifetime and TTL fields are set according to implementation preferences.
5.3.2. MANET nodes operation

There are two ways a MANET node may acquire global connectivity. If the IGW is proactively sending GC_REP messages, the node MUST process those messages. On the other hand, if the node needs global auto-configuration at a certain time and it has not received any GC_REP, then it MUST flood a GC_REQ message.

If the node previously performed local configuration, then the acquired MANET-local address SHOULD be used as the Originator Address. Otherwise, the node MAY use some available address such as a Mobile IP Home Address. If there is no such available address then the node MUST use a temporary address obtained in the same way as in Local Configuration. In fact, if the node is requesting both local and global auto-configuration at the same time then the same temporary address SHOULD be used.

When a MANET node receives a GC_REQ message it MUST check whether there exists an entry in the GC_REQ_CACHE with the Originator Address of this message. If that is the case, then the message has been already processed and MUST be discarded. In other case, a new entry which expires after GC_REQ_CACHE_TIMEOUT seconds is created in the GC_REQ_CACHE.

Similarly, when a MANET node receives a GC_REP message it MUST check if this is an old message looking into GC_REP_CACHE. If there exists an entry with the IGW address given in the GC_REP and with a higher or equal Sequence Number then the message is discarded (and the processing ends here). Else the entry is updated or newly created.

If the node does not have an auto-configured global address yet, then the node creates its new address with the information contained in the GC_REP message.

In the case of IPv4, the node creates a tentative address by appending a random number to the network subnet obtained from the Originator Address and the Prefix Length fields. In order to guarantee the uniqueness of the tentative address a DAD procedure SHOULD be performed before allocating that address to an interface.

In the case of IPv6, if the length of the prefix advertised by the IGW is lower than 64 bits then a random number is generated in order to complete the 64 high-order bits, and the EUI of the interface is added to get the entire address. When the tentative address is auto-configured on this way the node MAY perform a DAD procedure to assure the uniqueness of the tentative address. Otherwise the address is completed by adding a random number to the prefix advertised by the IGW. In this latter case the node SHOULD perform the DAD procedure.
because of the higher likelihood of address collision.

The DAD procedure mentioned in the two paragraphs above is performed in the same way as in Local Configuration. Now we introduce two new messages, GD_REQ and GD_REP, which have exactly the same format than LC_REQ and GC_REP respectively but Code field that this time is set to GD_REQ_CODE and GD_REP_CODE respectively.

Every time a GC_REP is received from the same IGW the auto-configured address with its information is refreshed. That is, its lifetime is reset to the value inside Lifetime field. If this timer expires and the node is communicating with nodes outside the MANET, then a new GC_REQ is issued in unicast to the corresponding IGW. Else if it is not being used, then no GC_REQ is sent. In the first case, if the node sent a GC_REQ in unicast but no response was received, then it MUST flood again the GC_REQ.

When there are multiple IGWs announcing their own information, the MANET node MUST select one in order to configure its global address. Besides the node MUST route Internet traffic to this selected IGW to avoid ingress filtering. Which rules are followed to select an IGW are implementation-dependent, but they will likely involve Distance field of the GC_REP message. Future extensions to this protocol may define new fields with information which can be used to select the appropriate IGW.

When a MANET node receives a GC_REP which is being flooded or sent in unicast to another node, then it MUST forward a new version of the message. This new message is as the original GC_REP but with the following changes:

1. New Distance := Old Distance + 1
2. S := 1 if this message has been used to create/refresh the auto-configured global address. S := 0 otherwise.

5.4. Comments about proxying in Global Configuration

There are several issues arising when we allow a MANET node to reply instead of the IGW.

First of all, information provided by the proxy may be not fully fresh compared to the one provided by the IGW. This may cause a bigger latency since a node starts using a global IP address and a route towards Internet to the time it discovers the IGW is no longer available (e.g. if the IGW has been shut down).

In addition, a node may only get partial information about the IGWs
present in the network. Some of them could not be visible to the MANET node because proxies only announce information of the IGW they selected to route traffic to Internet.

In spite of these troubles, proxies may be useful in some scenarios. As an example, think of a large MANET running a reactive routing protocol and an IGW attached on an edge. The IGW could proactively send GC_REPs messages to the nearest nodes in order to provide them with fast and updated IGW information. Then a node located further away could send a GC_REQ with the P bit active, trying to minimize the protocol overhead because that message will not need to be flooded throughout the whole network.

However, it is recommended that implementations do not abuse from the use of the P bit in the Global Configuration service.
6. DNS Server Configuration

6.1. Overview

DNS Server Configuration allows MANET nodes to discover DNS servers which are available to the network. An special node called DNS Servers Advertiser (DSA) will provide the IP addresses of a primary and perhaps a secondary DNS server. With this information every MANET node can configure itself to issue DNS requests towards those DNS servers. This feature may be quite useful in situations where it is desired a high degree of auto-configuration.

DSAs are not necessarily independent devices but they may be integrated within IGWs.

6.2. Messages Format

6.2.1. DS_REQ (DNS Server Request)

A DS_REQ message MUST set the Type field to EMAP_REQUEST and the Code field to DS_CODE. It has no additional fields.

6.2.2. DS_REP (DNS Server Reply)

A DS_REP message MUST set the Type field to EMAP_REPLY and the Code field to DS_CODE. It carries the following additional information:

- Primary DNS Server Address. IP(v4/v6) address of the advertised primary DNS server.
- Secondary DNS Server Address. IP(v4/v6) address of the advertised secondary DNS server.

6.3. Protocol operation

An EMAP-compliant implementation MAY implement DNS Server Configuration.

When a MANET node wants to discover DNS servers which are near the ad hoc network, then it floods a DS_REQ message trying to find a DSA. A DSA MAY also flood DS_REP messages regularly. In fact, it SHOULD operate proactively if EMAP is integrated within a proactive routing protocol.

If a MANET node receives a DS_REQ message it MUST check whether there exists an entry in the DS_REQ_CACHE with the Originator Address of this message. If that is the case, then the message has been already processed and MUST be discarded. In other case, a new entry is
created in the DS_REQ_CACHE. This entry will expire after DS_REQ_CACHE_TIMEOUT seconds.

As the Originator Address the node can use any of the addresses we have talked before in this document: MANET-local address, stateless global address, any fixed global address such as the Mobile IP Home Address, or a temporary address computed in the same way than in previous services. It MAY activate the P bit if it allows proxies to reply in the name of a DSA.

When a DSA receives a DS_REQ then it MUST reply in unicast to the Originator Address with the IP addresses of a primary and secondary DNS servers. If the DS_REQ had the P bit active, then a MANET node which is acting as a DSA proxy SHOULD also answer with a DS_REP directed in unicast to the Originator Address. In this latter case, the Originator Address field is set to the DSA actual IP address.

At the time a MANET node receives the DS_REP message that it was waiting for, then it can start using the DNS servers which have been advertised.
7. Security Considerations

This document does not define any method for secure operation of the protocol. They will be addressed in future versions.
8. Constants Values

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMAP_REQUEST</td>
<td>0x00</td>
</tr>
<tr>
<td>EMAP_REPLY</td>
<td>0x01</td>
</tr>
<tr>
<td>LC_CODE</td>
<td>0x00</td>
</tr>
<tr>
<td>GC_CODE</td>
<td>0x01</td>
</tr>
<tr>
<td>GD_CODE</td>
<td>0x02</td>
</tr>
<tr>
<td>DS_CODE</td>
<td>0x03</td>
</tr>
<tr>
<td>LC_REQ_TIMEOUT</td>
<td>TBD</td>
</tr>
<tr>
<td>LC_REQ_CACHE_TIMEOUT</td>
<td>TBD</td>
</tr>
<tr>
<td>LC_MAX_RETRIES</td>
<td>5</td>
</tr>
<tr>
<td>GC_REQ_CACHE_TIMEOUT</td>
<td>TBD</td>
</tr>
<tr>
<td>GD_REQ_CACHE_TIMEOUT</td>
<td>TBD</td>
</tr>
<tr>
<td>DS_REQ_CACHE_TIMEOUT</td>
<td>TBD</td>
</tr>
</tbody>
</table>

9. References

Appendix A. Layout of EMAP messages for DYMO

Future versions of this draft will provide detailed format of every EMAP message using DYMO message format.
Appendix B. Layout of EMAP messages for OLSRv2

Future versions of this draft will provide detailed format of every EMAP message using OLSRv2 message format.
Authors’ Addresses

Francisco J. Ros
University of Murcia
Facultad de Informatica
Campus de Espinardo
Espinardo, Murcia E-30100
Spain

Phone: +34 968 367938
Email: fjrm@dif.um.es

Pedro M. Ruiz
University of Murcia
Facultad de Informatica
Campus de Espinardo
Espinardo, Murcia E-30100
Spain

Phone: +34 968 367646
Email: pedrom@dif.um.es

Charles E. Perkins
Nokia Research Center
Communications Systems Laboratory
313 Fairchild Drive
Mountain View, CA 94303
USA

Phone: +1 650 625 2986
Email: Charles.Perkins@nokia.com

Thomas H. Clausen
Ecole Polytechnique, Laboratoire d’Informatique
F-91128 Palaiseau
France

Phone: +33 1 3963 5133
Email: T.Clausen@computer.org
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The Internet Society (2005). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.