HTTP Transport Authentication
draft-schinazi-httpbis-transport-auth-00

Abstract

The most common existing authentication mechanisms for HTTP are sent with each HTTP request, and authenticate that request instead of the underlying HTTP connection, or transport. While these mechanisms work well for existing uses of HTTP, they are not suitable for emerging applications that multiplex non-HTTP traffic inside an HTTP connection. This document describes the HTTP Transport Authentication Framework, a method of authenticating not only an HTTP request, but also its underlying transport.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 9, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents
1. Introduction .. 2
 1.1. Conventions and Definitions 3
2. Computing the Authentication Proof 3
3. Header Field Definition 4
 3.1. The u Directive .. 4
 3.2. The p Directive .. 4
 3.3. The a Directive .. 4
4. Transport Authentication Schemes 4
 4.1. Signature .. 4
 4.2. HMAC ... 5
5. Proxy Considerations .. 5
6. Security Considerations 5
7. IANA Considerations .. 6
 7.1. Transport-Authentication Header Field 6
 7.2. Transport Authentication Schemes Registry 6
 7.3. TLS Keying Material Exporter Labels 6
8. References .. 7
 8.1. Normative References 7
 8.2. Informative References 8
 8.3. URIs .. 9
Acknowledgments .. 9

1. Introduction

The most common existing authentication mechanisms for HTTP are sent
with each HTTP request, and authenticate that request instead of the
underlying HTTP connection, or transport. While these mechanisms
work well for existing uses of HTTP, they are not suitable for
emerging applications that multiplex non-HTTP traffic inside an HTTP
connection. This document describes the HTTP Transport
Authentication Framework, a method of authenticating not only an HTTP
request, but also its underlying transport.

Traditional HTTP semantics specify that HTTP is a stateless protocol
where each request can be understood in isolation [RFC7230].
However, the emergence of QUIC [I-D.ietf-quic-transport] as a new
transport protocol that can carry HTTP [I-D.ietf-quic-http] and the
existence of QUIC extensions such as the DATAGRAM frame
[I-D.pauly-quic-datagram] enable new uses of HTTP such as
[I-D.vvv-webtransport-http3] and [I-D.schinazi-masque] where some
traffic is exchanged that is distinct from HTTP requests and
responses. In order to authenticate this traffic, it is necessary to authenticate the underlying transport (e.g., QUIC or TLS [RFC8446]) instead of authenticate each request individually. This mechanism aims to supplement the HTTP Authentication Framework [RFC7235], not replace it.

Note that there is currently no mechanism for origin servers to request that user agents authenticate themselves using Transport Authentication, this is left as future work.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

This document uses the Augmented BNF defined in [RFC5234] and updated by [RFC7405] along with the "#rule" extension defined in Section 7 of [RFC7230]. The rules below are defined in [RFC3061], [RFC5234], [RFC7230], and [RFC7235]:

\[
\begin{align*}
\text{OWS} & = \text{<OWS, see {{RFC7230}}, Section 3.2.3>}
\text{quoted-string} & = \text{<quoted-string, see {{RFC7230}}, Section 3.2.6>}
\text{token} & = \text{<token, see {{RFC7230}}, Section 3.2.6>}
\text{token68} & = \text{<token, see {{RFC7235}}, Section 2.1>}
\text{oid} & = \text{<oid, see {{RFC3061}}, Section 2>}
\end{align*}
\]

2. Computing the Authentication Proof

This document only defines Transport Authentication for uses of HTTP with TLS. This includes any use of HTTP over TLS as typically used for HTTP/2, or HTTP/3 where the transport protocol uses TLS as its authentication and key exchange mechanism [I-D.ietf-quic-tls].

The user agent leverages a TLS keying material exporter [RFC5705] to generate a nonce which can be signed using the user-id’s key. The keying material exporter uses a label that starts with the characters "EXPORTER-HTTP-Transport-Authentication-" (see Section 4 for the labels and contexts used by each scheme). The TLS keying material exporter is used to generate a 32-byte key which is then used as a nonce.
3. Header Field Definition

The "Transport-Authentication" header allows a user agent to authenticate its transport connection with an origin server.

\[
\text{Transport-Authentication} = \text{transp-auth-scheme} *(\text{OWS }";" \text{ OWS parameter})
\]

\[
\text{transp-auth-scheme} = \text{token}
\]

\[
\text{parameter} = \text{token }"=\text{" (text / quoted-string)}
\]

3.1. The u Directive

The OPTIONAL "u" (user-id) directive specifies the user-id that the user agent wishes to authenticate. It is encoded using Base64 (Section 4 of [RFC4648]).

\[
u = \text{token68}
\]

3.2. The p Directive

The OPTIONAL "p" (proof) directive specifies the proof that the user agent provides to attest to possessing the credential that matches its user-id. It is encoded using Base64 (Section 4 of [RFC4648]).

\[
p = \text{token68}
\]

3.3. The a Directive

The OPTIONAL "a" (algorithm) directive specifies the algorithm used to compute the proof transmitted in the "p" directive.

\[
a = \text{oid}
\]

4. Transport Authentication Schemes

The Transport Authentication Framework allows defining Transport Authentication Schemes, which specify how to authenticate user-ids. This documents defined the "Signature" and "HMAC" schemes.

4.1. Signature

The "Signature" Transport Authentication Scheme uses asymmetric cryptography. User agents possess a user-id and a public/private key pair, and origin servers maintain a mapping of authorized user-ids to their associated public keys. When using this scheme, the "u", "p", and "a" directives are REQUIRED. The TLS keying material export label for this scheme is "EXPORTER-HTTP-Transport-Authentication-Signature" and the associated context is empty. The nonce is then
signed using the selected asymmetric signature algorithm and
transmitted as the proof directive.

For example, the user-id "john.doe" authenticating using Ed25519
[RFC8410] could produce the following header (lines are folded to fit):

Transport-Authentication: Signature u="am9obi5kb2U=";a=1.3.101.112;
p="SW5zZXJ0IHNpZ25hdHVyZSBvZiBub25jZSB0aWNoIHRha2VzIDUxMiBiaXRzIGZvcnIBZDI1NTE5IQ=="

4.2. HMAC

The "HMAC" Transport Authentication Scheme uses symmetric
cryptography. User agents possess a user-id and a secret key, and
origin servers maintain a mapping of authorized user-ids to their
associated secret key. When using this scheme, the "u", "p", and "a"
directives are REQUIRED. The TLS keying material export label for
this scheme is "EXPORTER-HTTP-Transport-Authentication-HMAC" and the
associated context is empty. The nonce is then HMACed using the
selected HMAC algorithm and transmitted as the proof directive.

For example, the user-id "john.doe" authenticating using HMAC-SHA-512
[RFC6234] could produce the following header (lines are folded to fit):

Transport-Authentication: HMAC u="am9obi5kb2U=";a=2.16.840.1.101.3.4.2.3;
p="SW5zZXJ0IEdHNQUWhmb2Ygbm9uY2UgaGVyZSB3aGljaCB0YWtlcyA1MTIgYml0cyBmb3IgU0hBLTUxMiEhISEhIQ=="

5. Proxy Considerations

Since Transport Authentication authenticates the underlying transport
by leveraging TLS keying material exporters, it cannot be
transparently forwarded by proxies that terminate TLS. However it
can be sent over proxied connections when TLS is performed end-to-end
(e.g., when using HTTP CONNECT proxies).

6. Security Considerations

Transport Authentication allows a user-agent to authenticate to an
origin server while guaranteeing freshness and without the need for
the server to transmit a nonce to the user agent. This allows the
server to accept authenticated clients without revealing that it
supports or expects authentication for some resources. It also
allows authentication without the user agent leaking the presence of
authentication to observers due to clear-text TLS Client Hello
extensions.
7. IANA Considerations

7.1. Transport-Authentication Header Field

This document, if approved, requests IANA to register the "Transport-Authentication" header in the "Permanent Message Header Field Names" registry maintained at https://www.iana.org/assignments/message-headers/ [1].

+--------------------------+----------+--------------+---------------+
| Header Field Name | Protocol | Status | Reference |
+--------------------------+----------+--------------+---------------+
| Transport-Authentication | http | experimental | This document |
+--------------------------+----------+--------------+---------------+

7.2. Transport Authentication Schemes Registry

This document, if approved, requests IANA to create a new HTTP Transport Authentication Schemes Registry with the following entries:

+---------------------------------+---------------+
| Transport Authentication Scheme | Reference |
+---------------------------------+---------------+
| Signature | This document |
+---------------------------------+---------------+
| HMAC | This document |
+---------------------------------+---------------+

7.3. TLS Keying Material Exporter Labels

This document, if approved, requests IANA to register the following entries in the "TLS Exporter Labels" registry maintained at https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#exporter-labels [2]

+--+
| Value |
+--+
| EXPORTER-HTTP-Transport-Authentication-Signature |
+--+
| EXPORTER-HTTP-Transport-Authentication-HMAC |
+--+

Both of these entries are listed with the following qualifiers:
8. References

8.1. Normative References

8.2. Informative References

[I-D.ietf-quic-http]
Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/3)",

[I-D.ietf-quic-tls]

[I-D.ietf-quic-transport]
Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
and Secure Transport", draft-ietf-quic-transport-20 (work
in progress), April 2019.

[I-D.pauly-quic-datagram]
Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
Datagram Extension to QUIC", draft-pauly-quic-datagram-03
(work in progress), July 2019.

[I-D.schinazi-masque]
Schinazi, D., "The MASQUE Protocol",
draft-schinazi-masque-00 (work in progress), February 2019.

[I-D.vvv-webtransport-http3]
Vasiliev, V., "WebTransport over HTTP/3",
draft-vvv-webtransport-http3-00 (work in progress), May 2019.

[RFC6234]
(SHA and SHA-based HMAC and HKDF)",
RFC 6234,
DOI 10.17487/RFC6234, May 2011,
<https://www.rfc-editor.org/info/rfc6234>.

[RFC7427]
kivinen, T. and J. Snyder, "Signature Authentication in
the Internet Key Exchange Version 2 (IKEv2)",
RFC 7427,
DOI 10.17487/RFC7427, January 2015,

8.3. URIs

[1] https://www.iana.org/assignments/message-headers/

Acknowledgments

The authors would like to thank many members of the IETF community, as this document is the fruit of many hallway conversations. Using the OID for the signature and HMAC algorithms was inspired by Signature Authentication in IKEv2 [RFC7427].

Author’s Address

David Schinazi
Google LLC
1600 Amphitheatre Parkway
Mountain View, California 94043
United States of America

Email: dschinazi.ietf@gmail.com