A Network Virtualization Overlay Solution using E-VPN
draft-sd-l2vpn-evpn-overlay-01

Abstract

This document describes how E-VPN can be used as an NVO solution and explores the various tunnel encapsulation options over IP and their impact on the E-VPN control-plane and procedures. In particular, the following encapsulation options are analyzed: MPLS over GRE, VXLAN, and NVGRE.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Copyright and License Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1 Introduction ... 4
1.1 Terminology .. 5
2 E-VPN Features ... 5
3 Encapsulation Options for E-VPN Overlays 6
3.1 VXLAN/NVGRE Encapsulation 6
3.1.1 Virtual Identifiers Scope 7
3.1.1.1 Data Center Interconnect with Gateway 7
3.1.1.2 Data Center Interconnect without Gateway 8
3.1.2 Virtual Identifiers to EVI Mapping 8
3.1.3 Constructing E-VPN BGP Routes 9
3.2 MPLS over GRE .. 10
4 E-VPN with Multiple Data Plane Encapsulations 10
5 NVE Residing in Hypervisor 11
5.1 Impact on E-VPN BGP Routes & Attributes for VXLAN/NVGRE Encapsulation .. 11
5.2 Impact on E-VPN Procedures for VXLAN/NVGRE Encapsulation .. 12
6 NVE Residing in ToR Switch 12
6.1 E-VPN Multi-Homing Features 13
6.1.1 Multi-homed Ethernet Segment Auto-Discovery 13
6.1.2 Fast Convergence and Mass Withdraw 13
6.1.3 Split-Horizon 13
6.1.4 Aliasing and Backup-Path 13
6.1.5 DF Election ... 14
6.2 Impact on E-VPN BGP Routes & Attributes 15
6.3 Impact on E-VPN Procedures 15
 6.3.1 Split Horizon .. 16
6.3.2 Aliasing and Backup-Path 16
7 Support for Multicast ... 17
8 Inter-AS ... 17
10 Acknowledgement ... 18
11 Security Considerations 18
12 IANA Considerations ... 19
13 References ... 19
 11.1 Normative References 19
 11.2 Informative References 20
Authors’ Addresses .. 20
1 Introduction

In the context of this document, a Network Virtualization Overlay (NVO) is a solution to address the requirements of a multi-tenant data center, especially one with virtualized hosts, e.g., Virtual Machines (VMs). The key requirements of such a solution, as described in [Problem-Statement], are:

- Isolation of network traffic per tenant
- Support for a large number of tenants (tens or hundreds of thousands)
- Extending L2 connectivity among different VMs belonging to a given tenant segment (subnet) across different PODs within a data center or between different data centers
- Allowing a given VM to move between different physical points of attachment within a given L2 segment

The underlay network for NVO solutions is assumed to provide IP connectivity between NVO endpoints (NVEs).

This document describes how E-VPN can be used as an NVO solution and explores applicability of E-VPN functions and procedures. In particular, it describes the various tunnel encapsulation options for E-VPN over IP, and their impact on the E-VPN control-plane and procedures for two main scenarios:

a) when the NVE resides in the hypervisor, and
b) when the NVE resides in a ToR device

Note that the use of E-VPN as an NVO solution does not necessarily mandate that the BGP control-plane be running on the NVE. For such scenarios, it is still possible to leverage the E-VPN solution by using XMPP, or alternative mechanisms, to extend the control-plane to the NVE as discussed in [L3VPN-ENDSYSTEMS].

The possible encapsulation options for E-VPN overlays that are analyzed in this document are:

- VXLAN and NVGRE
- MPLS over GRE

Before getting into the description of the different encapsulation options for E-VPN over IP, it is important to highlight the E-VPN solution’s main features, how those features are currently supported,
and any impact that the encapsulation has on those features.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [KEYWORDS].

NVE: Network Virtualization Endpoint

Virtual Identifier: refers to a VXLAN VNI or NVGRE VSID

2 E-VPN Features

E-VPN was originally designed to support the requirements detailed in [EVPN-REQ] and therefore has the following attributes which directly address control plane scaling and ease of deployment issues.

1) Control plane traffic is distributed with BGP and Broadcast and Multicast traffic is sent using a shared multicast tree or with ingress replication.

2) Control plane learning is used for MAC (and IP) addresses instead of data plane learning. The latter requires the flooding of unknown unicast and ARP frames; whereas, the former does not require any flooding.

3) Route Reflector is used to reduce a full mesh of BGP sessions among PE devices to a single BGP session between a PE and the RR. Furthermore, RR hierarchy can be leveraged to scale the number BGP routes on the RR.

4) Auto-discovery via BGP is used to discover PE devices participating in a given VPN, PE devices participating in a given redundancy group, tunnel encapsulation types, multicast tunnel type, multicast members, etc.

5) Active-active multi-homing is used. This allows a given customer device (CE) to have multiple links to multiple PEs, and traffic to/from that CE fully utilizes all of these links. This set of links is termed an Ethernet Segment (ES).

6) Mass withdraw is used. When a link between a CE and a PE fails, the PEs in all E-VPNs configured on that failed link are notified via the withdrawal of a single E-VPN route regardless of how many MAC addresses are located at the CE.

7) Route filtering and constrained route distribution are used to
ensure that the control plane traffic for a given E-VPN is only
distributed to the PEs in that E-VPN.

8) The internal identifier of a broadcast domain, the Ethernet Tag,
is a 32 bit number, which is mapped into whatever broadcast domain
identifier, e.g., VLAN ID, is understood by the attaching CE device.
This means that when 802.1q interfaces are used, there are up to 4096
distinct VLAN IDs for each attaching CE device in a given E-VPN.

9) VM Mobility mechanisms ensure that all PEs in a given E-VPN know
the ES with which a given VM, as identified by its MAC and IP
addresses, is currently associated.

10) Route Targets are used to allow the operator (or customer) to
define a spectrum of logical network topologies including mesh, hub &
spoke, and extranets (e.g., a VPN whose sites are owned by different
enterprises), without the need for proprietary software or the aid of
other virtual or physical devices.

11) Because the design goal for NVO is millions of instances per
common physical infrastructure, the scaling properties of the control
plane for NVO are extremely important. E-VPN and the extensions
described herein, are designed with this level of scalability in
mind.

3 Encapsulation Options for E-VPN Overlays

3.1 VXLAN/NVGRE Encapsulation

Both VXLAN and NVGRE are examples of technologies that provide a data
plane encapsulation which is used to transport a packet over the
common physical infrastructure between NVEs, VXLAN Tunnel End Point
(VTEPs) in VXLAN and Network Virtualization Endpoint (NVEs) in NVGRE.
Both of these technologies include the identifier of the specific NVO
instance, Virtual Network Identifier (VNI) in VXLAN and Virtual
Subnet Identifier (VSID), NVGRE, in each packet.

Note that a Provider Edge (PE) is equivalent to a VTEP/NVE.

[VXLAN] encapsulation is based on UDP, with an 8-byte header
following the UDP header. VXLAN provides a 24-bit VNI, which
typically provides a one-to-one mapping to the tenant VLAN ID, as
described in [VXLAN]. In this scenario, the VTEP does not include an
inner VLAN tag on frame encapsulation, and discards decapsulated
frames with an inner VLAN tag. This mode of operation in [VXLAN] maps
to VLAN Based Service in [E-VPN], where a tenant VLAN ID gets mapped
to an Ethernet VPN instance (EVI).
[VXLAN] also provides an option of including an inner VLAN tag in the encapsulated frame, if explicitly configured at the VTEP. This mode of operation maps to VLAN Bundle Service in [E-VPN], where the VLANs of a given tenant get mapped to an EVI.

[NVGRE] encapsulation is based on [GRE] and it mandates the inclusion of the optional GRE Key field which carries the VSID. There is a one-to-one mapping between the VSID and the tenant VLAN ID, as described in [NVGRE] and the inclusion of an inner VLAN tag is prohibited. This mode of operation in [NVGRE] maps to VLAN Based Service in [E-VPN]. In other words, [NVGRE] prohibits the application of VLAN Bundle Service in [E-VPN] and it only requires VLAN Based Service in [E-VPN].

As described in the next section there is no change to the encoding of E-VPN routes to support VXLAN or NVGRE encapsulation except for the use of BGP Encapsulation extended community. However, there is potential impact to the E-VPN procedures depending on where the NVE is located (i.e., in hypervisor or TOR) and whether multi-homing capabilities are required.

3.1.1 Virtual Identifiers Scope

Although VNI or VSID are defined as 24-bit globally unique values, there are scenarios in which it is desirable to use a locally significant value for VNI or VSID, especially in the context of data center interconnect:

3.1.1.1 Data Center Interconnect with Gateway

In the case where NVEs in different data centers need to be interconnected, and a Gateway is employed at the edge of the data center network, the NVEs may treat the VNI or VSID as a globally unique identifier. This is because the Gateway will provide the functionality of translating the VNI or VSID when crossing network boundaries, which may align with operator span of control boundaries. As an example, consider the network of Figure 1 below. Assume there are three network operators: one for each of the DC1, DC2 and WAN networks. The Gateways at the edge of the data centers are responsible for translating the VNIs / VSIDs between the values used in each of the data center networks and the values used in the WAN.
In the case where NVEs in different data centers need to be interconnected, and Gateways are not employed at the edge of the data center network, it is useful to treat the VNIs or VSIDs as locally significant identifiers (e.g., as an MPLS label). More specifically, the VNI or VSID value that is used by the transmitting NVE is allocated by the NVE that is receiving the traffic (in other words, this is a "downstream assigned" model). This allows the VNI or VSID space to be decoupled between different data center networks without the need for a dedicated Gateway at the edge of the data centers.

3.1.1.2 Data Center Interconnect without Gateway

![Diagram](image)

Figure 1: Data Center Interconnect with Gateway

3.1.2 Virtual Identifiers to EVI Mapping

When the E-VPN control plane is used in conjunction with VXLAN or NVGRE, two options for mapping the VXLAN VNI or NVGRE VSID to an E-VPN Instance (EVI) are possible:

![Diagram](image)

Figure 2: Data Center Interconnect without Gateway
1. Option 1: Single Virtual Identifier per EVI

In this option, every VNI or VSID is mapped to a unique EVI. As such, a BGP RD and RT needs to be configured per VNI / VSID on every VTEP. The advantage of this model is that it allows the BGP RT constraint mechanisms to be used in order to limit the propagation and import of routes to only the VTEPs that are interested in a given VNI or VSID. The disadvantage of this model is the provisioning overhead.

2. Option 2: Multiple Virtual Identifiers per EVI

In this option, multiple VNIs or VSIDs are mapped to a unique EVI. For example, if a tenant has multiple segments/subnets each represented by a VNI or VSID, then all the VNIs (or VSIDs) for that tenant are mapped to a single EVI. In this latter case, an EVI is equivalent to an NVO instance. The advantage of this model is that it doesn’t require the provisioning of RD/RT per VNI or VSID. The disadvantage of this model is that routes would be advertised and imported by VTEPs that are not interested in a given VNI or VSID.

3.1.3 Constructing E-VPN BGP Routes

In E-VPN an MPLS label distributed by the egress PE via the E-VPN control plane and placed in the MPLS header of a given packet by the ingress PE is used upon receipt of that packet by the egress PE to disposition that packet. This is very similar to the use of the VNI or VSID by the egress VTEP or NVE, respectively, with the difference being that an MPLS label has local significance and is distributed by the E-VPN control plane, while a VNI or VSID typically has global significance.

As discussed in Section 3.1.1 above, there are scenarios in which it is desirable to use a locally significant value for VNI or VSID and in such such scenarios, MPLS label is advertised in E-VPN BGP routes and it is used in VXLAN or NVGRE encapsulation as a 20-bit value for VNI or VSID.

This memo specifies that when E-VPN is to be used with a VXLAN or NVGRE data plane and when a globally significant VNI or VSID is desirable, then Ethernet Tag field of E-VPN BGP routes (which is a 4-octet field) MUST be used and MPLS label field MUST be set to zero; however, when a locally significant VNI or VSID is desirable, then MPLS field of E-VPN BGP routes (which is a 3-octet field) MUST be used and Ethernet Tag field MUST be set to zero.

In order to indicate that a VXLAN or NVGRE data plane encapsulation rather than MPLS label stack encapsulation is to be used, the BGP Encapsulation extended community defined in [RFC5512] is included.
with E-VPN MAC Advertisement or Per EVI Ethernet AD routes advertised by an egress PE. Two new values, one for VXLAN and one for NVGRE, will be defined.

3.2 MPLS over GRE

The E-VPN data-plane is modeled as an E-VPN MPLS client layer sitting over an MPLS PSN tunnel. Some of the E-VPN functions (split-horizon, aliasing and repair-path) are tied to the MPLS client layer. If MPLS over GRE encapsulation is used, then the E-VPN MPLS client layer can be carried over an IP PSN tunnel transparently. Therefore, there is no impact to the E-VPN procedures and associated data-plane operation.

The existing standards for MPLS over GRE encapsulation as defined by [RFC4023] can be used for this purpose; however, when it is used in conjunction with E-VPN the key field MUST be present, and SHOULD be used to provide a 32-bit entropy field. The Checksum and Sequence Number fields are not needed and their corresponding C and S bits MUST be set to zero.

4 E-VPN with Multiple Data Plane Encapsulations

The use of the BGP Encapsulation extended community allows each PE in a given E-VPN to know whether the other PEs in that E-VPN support MPLS label stack, VXLAN, and/or NVGRE data plane encapsulations. I.e., PEs in a given E-VPN may support multiple data plane encapsulations.

If BGP Encapsulation Extended community is not present, then the default MPLS encapsulation (or statically configured encapsulation) is used. However, if this attribute is present, then an ingress PE can send a frame to an egress PE only if the set of encapsulations advertised by the egress PE in the subject MAC Advertisement or Per EVI Ethernet AD route, forms a non-empty intersection with the set of encapsulations supported by the ingress PE, and it is at the discretion of the ingress PE which encapsulation to choose from this intersection.

An ingress node that uses shared multicast trees for sending broadcast or multicast frames MUST maintain distinct trees for each different encapsulation type.

It is the responsibility of the operator of a given E-VPN to ensure that all of the PEs in that E-VPN support at least one common encapsulation. If this condition is violated, it could result in service disruption or failure. The use of the BGP Encapsulation
extended community provides a method to detect when this condition is violated but the actions to be taken are at the discretion of the operator and are outside the scope of this document.

5 NVE Residing in Hypervisor

When a PE and its CEs are co-located in the same physical device, e.g., when the PE resides in a server and the CEs are its VMs, the links between them are virtual and they typically share fate; i.e., the subject CEs are typically not multi-homed or if they are multi-homed, the multi-homing is a purely local matter to the server hosting the VM, and need not be "visible" to any other PEs, and thus does not require any specific protocol mechanisms. The most common case of this is when the NVE resides in the hypervisor.

In the sub-sections that follow, we will discuss the impact on E-VPN procedures for the case when the NVE resides on the hypervisor and the VXLAN or NVGRE encapsulation is used.

5.1 Impact on E-VPN BGP Routes & Attributes for VXLAN/NVGRE Encapsulation

As discussed above, both [NVGRE] and [VXLAN] do not require the tenant VLAN tag to be sent in BGP routes. Therefore, the 4-octet Ethernet Tag field in the E-VPN BGP routes can be used to represent the globally significant value for VXLAN VNI or NVGRE VSID and MPLS field can be used to represent the locally significant value for VNI or VSID.

When the VXLAN VNI or NVGRE VSID is assumed to be a global value, one might question the need for the Route Distinguisher (RD) in the E-VPN routes. In the scenario where all data centers are under a single administrative domain, and there is a single global VNI/VSID space, the RD MAY be set to zero in the E-VPN routes. However, in the scenario where different groups of data centers are under different administrative domains, and these data centers are connected via one or more backbone core providers as described in [NOV3-Framework], the RD must be a unique value per EVI or per NVE as described in [E-VPN]. In other words, whenever there is more than one administrative domain for global VNI or VSID, then a non-zero RD MUST be used, or whenever the VNI or VSID value have local significance, then a non-zero RD MUST be used. It is recommend to use a non-zero RD at all time.

When the NVEs reside on the hypervisor, the E-VPN BGP routes and attributes associated with multi-homing are no longer required. This reduces the required routes and attributes to the following subset of five out of the set of eight:
As mentioned in section 3.1.1, BGP Encapsulation Extended Community attribute as defined in [RFC5512] SHOULD be used along with MAC Advertisement Route or Ethernet AD Route to indicate the supported encapsulations.

5.2 Impact on E-VPN Procedures for VXLAN/NVGRE Encapsulation

When the NVEs reside on the hypervisors, the E-VPN procedures associated with multi-homing are no longer required. This limits the procedures on the NVE to the following subset of the E-VPN procedures:

1. Local learning of MAC addresses received from the VMs per section 10.1 of [E-VPN].

2. Advertising locally learned MAC addresses in BGP using the MAC Advertisement routes.

3. Performing remote learning using BGP per Section 10.2 of [E-VPN].

4. Discovering other NVEs and constructing the multicast tunnels using the Inclusive Multicast Ethernet Tag routes.

5. Handling MAC address mobility events per the procedures of Section 16 in [E-VPN].

6 NVE Residing in ToR Switch

In this section, we discuss the scenario where the NVEs reside in the Top of Rack (ToR) switches AND the servers (where VMs are residing) are multi-homed to these ToR switches. The multi-homing may operate in All-Active or Active/Standby redundancy mode. If the servers are single-homed to the ToR switches, then the scenario becomes similar to that where the NVE resides in the hypervisor, as discussed in Section 5, as far as the required E-VPN functionality.

[E-VPN] defines a set of BGP routes, attributes and procedures to support multi-homing. We first describe these functions and procedures, then discuss which of these are impacted by the encapsulation (such as VXLAN or NVGRE) and what modifications are required.
6.1 E-VPN Multi-Homing Features

In this section, we will recap the multi-homing features of E-VPN to highlight the encapsulation dependencies. The section only describes the features and functions at a high-level. For more details, the reader is to refer to [E-VPN].

6.1.1 Multi-homed Ethernet Segment Auto-Discovery

E-VPN NVEs (or PEs) connected to the same Ethernet Segment (e.g. the same server via LAG) can automatically discover each other with minimal to no configuration through the exchange of BGP routes.

6.1.2 Fast Convergence and Mass Withdraw

E-VPN defines a mechanism to efficiently and quickly signal, to remote NVEs, the need to update their forwarding tables upon the occurrence of a failure in connectivity to an Ethernet segment (e.g., a link or a port failure). This is done by having each NVE advertise an Ethernet A-D Route per Ethernet segment for each locally attached segment. Upon a failure in connectivity to the attached segment, the NVE withdraws the corresponding Ethernet A-D route. This triggers all NVEs that receive the withdrawal to update their next-hop adjacencies for all MAC addresses associated with the Ethernet segment in question. If no other NVE had advertised an Ethernet A-D route for the same segment, then the NVE that received the withdrawal simply invalidates the MAC entries for that segment. Otherwise, the NVE updates the next-hop adjacencies to point to the backup NVE(s).

6.1.3 Split-Horizon

Consider a station that is multi-homed to two or more NVEs on an Ethernet segment ES1, with all-active redundancy. If the station sends a multicast, broadcast or unknown unicast packet to a particular NVE, say NE1, then NE1 will forward that packet to all or subset of the other NVEs in the E-VPN instance. In this case the NVEs, other than NE1, that the station is multi-homed to MUST drop the packet and not forward back to the station. This is referred to as "split horizon" filtering.

6.1.4 Aliasing and Backup-Path

In the case where a station is multi-homed to multiple NVEs, it is possible that only a single NVE learns a set of the MAC addresses associated with traffic transmitted by the station. This leads to a situation where remote NVEs receive MAC advertisement routes, for these addresses, from a single NVE even though multiple NVEs are connected to the multi-homed station. As a result, the remote NVEs
are not able to effectively load-balance traffic among the NVEs connected to the multi-homed Ethernet segment. This could be the case, for e.g. when the NVEs perform data-path learning on the access, and the load-balancing function on the station hashes traffic from a given source MAC address to a single NVE. Another scenario where this occurs is when the NVEs rely on control plane learning on the access (e.g. using ARP), since ARP traffic will be hashed to a single link in the LAG.

To alleviate this issue, E-VPN introduces the concept of Aliasing. This refers to the ability of an NVE to signal that it has reachability to a given locally attached Ethernet segment, even when it has learnt no MAC addresses from that segment. The Ethernet A-D route per EVI is used to that end. Remote NVEs which receive MAC advertisement routes with non-zero ESI SHOULD consider the MAC address as reachable via all NVEs that advertise reachability to the relevant Segment using Ethernet A-D routes with the same ESI and with the Active-Standby flag reset.

Backup-Path is a closely related function, albeit it applies to the case where the redundancy mode is Active/Standby. In this case, the NVE signals that it has reachability to a given locally attached Ethernet Segment using the Ethernet A-D route as well. Remote NVEs which receive the MAC advertisement routes, with non-zero ESI, SHOULD consider the MAC address as reachable via the advertising NVE. Furthermore, the remote NVEs SHOULD install a Backup-Path, for said MAC, to the NVE which had advertised reachability to the relevant Segment using an Ethernet A-D route with the same ESI and with the Active-Standby flag set.

6.1.5 DF Election

Consider a station that is a host or a VM that is multi-homed directly to more than one NVE in an E-VPN on a given Ethernet segment. One or more Ethernet Tags may be configured on the Ethernet segment. In this scenario only one of the PEs, referred to as the Designated Forwarder (DF), is responsible for certain actions:

- Sending multicast and broadcast traffic, on a given Ethernet Tag on a particular Ethernet segment, to the station.

- Flooding unknown unicast traffic (i.e. traffic for which an NVE does not know the destination MAC address), on a given Ethernet Tag on a particular Ethernet segment to the station, if the environment requires flooding of unknown unicast traffic.

This is required in order to prevent duplicate delivery of multi-
destination frames to a multi-homed host or VM, in case of all-active redundancy.

6.2 Impact on E-VPN BGP Routes & Attributes

Since multi-homing is supported in this scenario, then the entire set of BGP routes and attributes defined in [E-VPN] are used. As discussed in Section 3.1, the VSID or VNI is encoded in the Ethernet Tag field of the routes if globally significant or in the MPLS label field if locally significant.

As mentioned in section 3.1.1, BGP Encapsulation Extended Community attribute as defined in [RFC5512] SHOULD be used along with MAC Advertisement Route or Ethernet AD Route to indicate the supported encapsulations.

6.3 Impact on E-VPN Procedures

Two cases need to be examined here, depending on whether the NVEs are operating in Active/Standby or in All-Active redundancy.

First, let’s consider the case of Active/Standby redundancy, where the hosts are multi-homed to a set of NVEs, however, only a single NVE is active at a given point of time for a given VNI or VSID. In this case, the Split-Horizon and Aliasing functions are not required but other functions such as multi-homed Ethernet segment auto-discovery, fast convergence and mass withdraw, repair path, and DF election are required. In this case, the impact of the use of the VXLAN/NVGRE encapsulation on the E-VPN procedures is when the Backup-Path function is supported, as discussed next:

In E-VPN, the NVEs connected to a multi-homed site using Active/Standby redundancy optionally advertise a VPN label, in the Ethernet A-D Route per EVI, used to send traffic to the backup NVE in the case where the primary NVE fails. In the case where VXLAN or NVGRE encapsulation is used, some alternative means that does not rely on MPLS labels is required to support Backup-Path. This is discussed in Section 4.3.2 below. If the Backup-Path function is not used, then the VXLAN/NVGRE encapsulation would have no impact on the E-VPN procedures.

Second, let’s consider the case of All-Active redundancy. In this case, out of the E-VPN multi-homing features listed in section 4.1, the use of the VXLAN or NVGRE encapsulation impacts the Split-Horizon and Aliasing features, since those two rely on the MPLS client layer. Given that this MPLS client layer is absent with these types of encapsulations, alternative procedures and mechanisms are needed to
provide the required functions. Those are discussed in detail next.

6.3.1 Split Horizon

In E-VPN, an MPLS label is used for split-horizon filtering to support active/active multi-homing where an ingress ToR switch adds a label corresponding to the site of origin (aka ESI MPLS Label) when encapsulating the packet. The egress ToR switch checks the ESI MPLS label when attempting to forward a multi-destination frame out an interface, and if the label corresponds to the same site identifier (ESI) associated with that interface, the packet gets dropped. This prevents the occurrence of forwarding loops.

Since the VXLAN or NVGRE encapsulation does not include this ESI MPLS label, other means of performing the split-horizon filtering function MUST be devised. The following approach is recommended for split-horizon filtering when VXLAN or NVGRE encapsulation is used.

Every NVE track the IP address(es) associated with the other NVE(s) with which it has shared multi-homed Ethernet Segments. When the NVE receives a multi-destination frame from the overlay network, it examines the source IP address in the tunnel header (which corresponds to the ingress NVE) and filters out the frame on all local interfaces connected to Ethernet Segments that are shared with the ingress NVE. With this approach, it is required that the ingress NVE performs replication locally to all directly attached Ethernet Segments (regardless of the DF Election state) for all flooded traffic ingress from the access interfaces (i.e. from the hosts). This approach is referred to as "Local Bias", and has the advantage that only a single IP address needs to be used per NVE for split-horizon filtering, as opposed to requiring an IP address per Ethernet Segment per NVE.

In order to prevent unhealthy interactions between the split horizon procedures defined in [E-VPN] and the local bias procedures described in this memo, a mix of MPLS over GRE encapsulations on the one hand and VXLAN/NVGRE encapsulations on the other on a given Ethernet Segment is prohibited. The use of the BGP Encapsulation extended community provides a method to detect when this condition is violated but the actions to be taken are at the discretion of the operator and are outside the scope of this document.

6.3.2 Aliasing and Backup-Path

The Aliasing and the Backup-Path procedures for VXLAN/NVGRE encapsulation is very similar to the ones for MPLS. In case of MPLS, two different Ethernet AD routes are used for this purpose. The one used for Aliasing has a VPN scope and carries a VPN label but the one
used for Backup-Path has Ethernet segment scope and doesn’t carry any VPN specific info (e.g., Ethernet Tag and MPLS label are set to zero). The same two routes are used when VXLAN or NVGRE encapsulation is used with the difference that when Ethernet AD route is used for Aliasing with VPN scope, the Ethernet Tag field is set to VNI or VSID to indicate VPN scope (and MPLS field may be set to a VPN label if needed).

7 Support for Multicast

The E-VPN Inclusive Multicast BGP route is used to discover the multicast tunnels among the endpoints associated with a given VXLAN VNI or NVGRE VSID. The Ethernet Tag field of this route is used to encode the VNI or VSID. This route is tagged with the PMSI Tunnel attribute, which is used to encode the type of multicast tunnel to be used as well as the multicast tunnel identifier. The following tunnel types can be used for VXLAN/NVGRE:

- PIM-SSM Tree
- PIM-SM Tree
- BIDIR-PIM Tree
- Ingress Replication

Except for Ingress Replication, this multicast tunnel is used by the PE originating the route for sending multicast traffic to other PEs, and is used by PEs that receive this route for receiving the traffic originated by CEs connected to the PE that originated the route.

In the scenario where the multicast tunnel is a tree, both the Inclusive as well as the Aggregate Inclusive variants may be used. In the former case, a multicast tree is dedicated to a VNI or VSID. Whereas, in the latter, a multicast tree is shared among multiple VNIs or VSIDs. This is done by having the NVEs advertise multiple Inclusive Multicast routes with different VNI or VSID encoded in the Ethernet Tag field, but with the same tunnel identifier encoded in the PMSI Tunnel attribute.

8 Inter-AS

For inter-AS operation, two scenarios must be considered:

- Scenario 1: The tunnel endpoint IP addresses are public
- Scenario 2: The tunnel endpoint IP addresses are private

In the first scenario, inter-AS operation is straight-forward and follows existing BGP inter-AS procedures. However, in the first scenario where the tunnel endpoint IP addresses are public, there may
be security concern regarding the distribution of these addresses among different ASes. This security concern is one of the main reasons for having the so called inter-AS "option-B" in MPLS VPN solutions such as E-VPN.

The second scenario is more challenging, because the absence of the MPLS client layer from the VXLAN encapsulation creates a situation where the ASBR has no fully qualified indication within the tunnel header as to where the tunnel endpoint resides. To elaborate on this, recall that with MPLS, the client layer labels (i.e. the VPN labels) are downstream assigned. As such, this label implicitly has a connotation of the tunnel endpoint, and it is sufficient for the ASBR to look up the client layer label in order to identify the label translation required as well as the tunnel endpoint to which a given packet is being destined. With the VXLAN encapsulation, the VNI is globally assigned and hence is shared among all endpoints. The destination IP address is the only field which identifies the tunnel endpoint in the tunnel header, and this address is privately managed by every data center network. Since the tunnel address is allocated out of a private address pool, then we either need to do a lookup based on VTEP IP address in context of a VRF (e.g., use IP-VPN) or terminate the VXLAN tunnel and do a lookup based on the tenant’s MAC address to identify the egress tunnel on the ASBR. This effectively mandates that the ASBR to either run another overlay solution such as IP-VPN over MPLS/IP core network or to be aware of the MAC addresses of all VMs in its local AS, at the very least.

If VNIs/VSIDs have local significance, then the inter-AS operation can be simplified to that of MPLS and thus MPLS inter-AS option B and C can be leveraged in here. That’s why the use of local significance VNIs/VSIDs (e.g., MPLS labels) are recommended for inter-AS operation of DC networks without gateways.

10 Acknowledgement

The authors would like to thank David Smith, John Mullooly, Thomas Nadeau for their valuable comments and feedback.

11 Security Considerations

This document uses IP-based tunnel technologies to support data plane transport. Consequently, the security considerations of those tunnel technologies apply. This document defines support for [VXLAN] and [NVGRE]. The security considerations from those documents as well
as [RFC4301] apply to the data plane aspects of this document.

As with [RFC5512], any modification of the information that is used to form encapsulation headers, to choose a tunnel type, or to choose a particular tunnel for a particular payload type may lead to user data packets getting misrouted, misdelivered, and/or dropped.

More broadly, the security considerations for the transport of IP reachability information using BGP are discussed in [RFC4271] and [RFC4272], and are equally applicable for the extensions described in this document.

If the integrity of the BGP session is not itself protected, then an imposter could mount a denial-of-service attack by establishing numerous BGP sessions and forcing an IPsec SA to be created for each one. However, as such an imposter could wreak havoc on the entire routing system, this particular sort of attack is probably not of any special importance.

It should be noted that a BGP session may itself be transported over an IPsec tunnel. Such IPsec tunnels can provide additional security to a BGP session. The management of such IPsec tunnels is outside the scope of this document.

12 IANA Considerations

13 References

11.1 Normative References

11.2 Informative References

Authors’ Addresses

Ali Sajassi
Cisco
Email: sajassi@cisco.com

John Drake
Juniper Networks
Email: jdrake@juniper.net

Nabil Bitar
Verizon Communications
Email : nabil.n.bitar@verizon.com

Aldrin Isaac
Bloomberg
Email: aisaac71@bloomberg.net