Unicode in ABNF

draft-seantek-unicode-in-abnf-00

Abstract

This experimental document adds support for Unicode strings in ABNF (Augmented Backus-Naur Form), and provides certain symbols related to Unicode code point ranges.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft is a fork of draft-seantek-abnf-more-core-rules-05.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

Augmented Backus-Naur Form (ABNF) [RFC5234] is a formal syntax that is popular among many Internet specifications. Many Internet documents employ this syntax along with the Core Rules defined in Appendix B.1 of [RFC5234]. ABNF is defined in terms of ASCII [ASCII86, RFC0020]; however, Unicode [UNICODE] has become increasingly popular—even required—as the Internet has evolved over the last two decades. Unicode (as UTF-8) will be permitted in the RFC series [IABNA], while [RFC5198] established Net-Unicode as the standard form for the use of Unicode as "network text''. Protocols that originally were ASCII-based have been, or are being, extended to support Unicode. However, protocols that use Unicode in some way (e.g., permit UTF-8 content in a production) use different ABNF expressions, some of which do not conform to the modern Unicode Standard 9.0.0, and therefore could introduce interoperability or security problems.

Many parties have expressed interest in incorporating [UNICODE] into ABNF, yet the questions remain: "How?" and "To what extent?"

This document proposes standardized techniques for expressing Unicode code points using ABNF. This document intends to be very conservative in its approach: a conforming implementation only needs to know how to map between the Unicode scalar values and any Unicode encoding form. The Unicode Character Database (UCD, Section 4.1 of [UNICODE]) is intentionally not necessary. ABNF text that uses the syntax in this document needs to be in a Unicode encoding form (Conformance Clause D89 of [UNICODE]), but ABNF text that just uses the rules or terminal values can be expressed in ASCII [RFC0020].

2. Unicode Code Points in ABNF

(Consult Section 2.3 of [RFC5234] in relation to this paragraph.) Unicode has been expressed in several different ways in RFCs to-date. This document establishes that in contexts where Unicode is specified as the character set, the terminal values \%x00-10FFFF are to be used to represent the Unicode code points. Only the Unicode scalar values are to be used in specifications that follow this document; surrogate code points (\%xD800-DFFF) are not to be used. This technique aligns ABNF with W3C EBNF [XMLEBNF] and Unicode EBNF [UNICODE].

(Consult Section 2.4 and Appendix B.2 of [RFC5234] in relation to this paragraph.) In contexts where Unicode is specified as the character set, the ABNF-based grammar may have multiple external encodings. This document does not fix the encoding scheme. The obvious external encoding is UTF-8 (see Net-Unicode [RFC5198]), but other encodings
are possible. This document neither restricts productions to NFC, nor provides a syntax for normalization to NFC.

3. Unicode Core Rule Update

Appendix A furnishes Unicode Core Rules that include comprehensive support for certain Unicode ranges and characters. These Unicode Core Rules supplement the Core Rules of [RFC5234] and [ABNFMORE]; they are intended to be available whenever this document is invoked.

The rules reflect broad categories of allowable and disallowable characters in protocols for interchange between systems, as the Internet community has evolved, and as of Unicode 9.0.0 in August 2016 [UNICODE]. It is a design goal that a general-purpose ABNF grammar should not need to delve into the minutiae of Unicode character properties, which can be tailorable (i.e., language-specific), overridable, and unstable (between Unicode versions). It is a further design goal that a general-purpose ABNF grammar should not need to rely on sizeable external sources, namely the Unicode Character Database (Section 4.1 of [UNICODE]). If more sophisticated parsing based on character properties is needed, the generic ABNF in this document will not meet that need.

According to a survey of all RFCs published through August 2016, many widely used Internet protocols rely on horizontal whitespace (HT and SP, or occasionally SP alone) and line breaks (usually CRLF, sometimes LF) as delimiters. Therefore, the rules specifically address horizontal whitespace and line breaks.

Rules that both include and exclude the private-use characters (Section 23.5 of [UNICODE]) are provided. Private-use characters "are intended for open interchange, subject to interpretation by private agreement" (Section 23.7 of [UNICODE]). Therefore, there is no way within [UNICODE] itself to provide for a common interpretation of these code points. See also Section 4 of [RFC5198]. A protocol designer needs to establish that common interpretation in prose, provide for protocol elements that establish the common interpretation, or (explicitly) accept that a common interpretation is done outside of the designer’s protocol. One strategy within a plain text protocol element might be to use tag characters (Section 23.9 of [UNICODE]), whose semantics are defined via other standards, such as [BCP47] (although language tagging is currently deprecated by [UNICODE]).

4. Case-Sensitive Unicode String Syntax

This document extends ABNF with a new case-sensitive Unicode string literal. The type is denoted using a type prefix similar to the type
prefixes used with numeric values and case-sensitive ASCII string literals. No syntax is provided for a case-insensitive Unicode string literal because doing so would require implementing Unicode caseless matching [UNICODE], which is language-dependent, Unicode version-dependent, and very complicated overall. Caseless matching also requires the UCD.

Add the contents of Section 4.1 to [RFC5234].

4.1. Terminal Values - Literal Text Strings

Literal case sensitive text strings in ABNF may be in the Unicode character set [UNICODE]. The following prefix is used:

%su = case-sensitive, Unicode

To be consistent with prior implementations of ABNF, having no prefix means that the string is case insensitive and in ASCII.

The case-sensitive Unicode string can be comprised of any Graphic, Format, or Reserved code point. Control, Private-Use, Surrogate, and Noncharacter code points are excluded. Newline (line breaking) characters are also omitted. (See Table 2-3 of [UNICODE].)

An example:

\[\text{rulename} = \%su"!100Q$"\]

where the character ! is actually the Unicode code point U+00A5 YEN SIGN, and the character $ is actually the Unicode code point U+1F39F ADMISSION TICKETS, is equivalent to the rule:

\[\text{rulename} = \%xA5.31.30.30.51.1F39F\]

4.2. ABNF Definition of ABNF - char-val

\[\text{char-val} /= \text{case-sensitive-Unicode-string}\]

\[\text{case-sensitive-Unicode-string} = \"%su\" \text{quoted-Unicode-string}\]

\[\text{quoted-Unicode-string} = \text{DQUOTE} *((\%x20-21 / \%x23-7E / UVCHARBEYONDASCII) \text{DQUOTE}}\]

; quoted string of SP and VCHAR

; without DQUOTE, and UVCHAR

; beyond the ASCII range
5. Comment Syntax

This document extends ABNF to have Unicode comments. Comments are
treated as specification prose, so they may be normative depending on
the context. Comment text allows for the same repertoire of
characters as RFC text. The RFC Editors can regulate comments to the
same extent as specification prose, including disallowing certain
characters or code points.

5.1. Comment: \; Comment

(No changes to the text of Section 3.9 of [RFC5234] are needed.)

5.2. ABNF Definition of ABNF - comment

; given:
comment = \";\" *(WSP / VCHAR) CRLF

; increment (unambiguous grammar):
comment =/ \";\" *(UWSP / UVCHAR / PUACHAR)
(UWSPBEYONDASCII / UVCHARBEYONDASCII / PUACHAR)
*(UWSP / UVCHAR / PUACHAR) CRLF

; or redefine:
comment = \";\" *(UWSP / UVCHAR / PUACHAR) CRLF

6. Notational Conventions

For readability it is advisable to express a Unicode code point as
the character itself, the numeric terminal value, and the name or a
name alias. Only one expression is used for the formal ABNF notation:
either the character itself (Section 4) or the numeric terminal value
(Section 2). The other expressions can be incorporated into an
adjacent comment.

The suggested notational convention for the adjacent comment follows
Appendix A of [UNICODE]. The comment text is comprised of one or more
WSP characters, optionally either the character itself or "U+" syntax
followed by exactly one SP, and the name or a name alias in ALL-CAPS
ASCII. Multiple characters can be notated in sequence on multiple
comment lines or on a single comment line. It is neither advisable
nor necessary to notate characters in the ASCII range. Examples of
the notation include:
change-in-temp = %su"$" 3DIGIT %su"%"

"; # EURO SIGN ZWJ / VULGAR FRACTION ONE HALF
euros = %x20AC 3DIGIT [%x200D.BD]

where the characters $, %, #, and / are actually the respective Unicode characters mentioned in the comments.

7. Effects on RFC 5234

Formally, this document updates [RFC5234] but does not modify it in situ. Authors need to reference this document if they want to include these enhancements; bare references to [RFC5234] do not include this specification (or, for that matter, [RFC7405]). This directive follows a model whereby document authors can choose whether to invoke particular enhancements to ABNF. As time goes on, the IETF can determine how often these enhancements are invoked, and can decide whether to include them as part of a revision to the base [RFC5234].

A bare reference to this document invokes the case-sensitive Unicode literal string syntax enhancement, the Unicode comment syntax enhancement, and the Unicode Core Rules of Appendix A (i.e., the Core Rules do not have to be further referenced). Nevertheless, document authors are free to qualify a reference to this document to invoke each feature selectively.

Appendix A of this document is meant to supplement Appendix B.1 of [RFC5234] and Appendix A of [ABNFMORE]; therefore, concurrently referencing those documents is a good idea. Document authors who reference this document should use the rules of Appendix A, and should not attempt to redefine or provide incremental alternatives to them (except for backwards compatibility with prior documents).

8. IANA Considerations

This document implies no IANA considerations.

9. Security Considerations

While the Unicode Core Rules themselves may not be security-relevant, the use of C1 control characters could very well be security-relevant, because they may trigger special functions on various devices, while being invisible in other contexts. Similarly, case-sensitive Unicode string syntax allows for a broad range of codepoints, many of which represent characters that are confusable with other characters, or can only be inferred by visible yet subtle
changes in the surrounding graphemes (or worse, semantic changes that
do not have visual representations).

Otherwise, security is truly believed to be irrelevant to this
document.

8. References

8.1. Normative References

[ASCII86] American National Standards Institute, "Coded Character
Set -- 7-bit American Standard Code for Information

[RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
October 1969.

9.0.0", The Unicode Consortium, August 2016.

8.2. Informative References

[IABNA] Flanagan, H., "The Use of Non-ASCII Characters in RFCs",
draft-iab-rfc-nonascii-02 (work in progress), April 2016.

[RFC1345] Simonsen, K., "Character Mnemonics and Character Sets",

[XMLEBNF] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
Edition)", Section 6, W3C Recommendation REC-xml-20081126,
November 2008, <http://www.w3.org/TR/2008/REC-xml-
20081126>.

Appendix A. Comprehensive Unicode Core Rules

Certain basic rules are in uppercase, such as SP, HTAB, CRLF, DIGIT,
ALPHA, etc.

; D76 Unicode scalar value

UNICODE <U+0000-U+D7FF / U+E000-U+10FFFF>
BEYONDASCII <U+0080-U+D7FF / U+E000-U+10FFFF>
BEYONDG0 <U+0080-U+D7FF / U+E000-U+10FFFF>

[[DISCUSS: these definitions are limited to the Unicode scalar values.]]

C1 <U+0080-U+009F>
BEYONDC1 <U+00A0-U+D7FF / U+E000-U+10FFFF>
G1 <U+00A0-U+00FF> ; 96-set
BEYONDG1 <U+0100-U+D7FF / U+E000-U+10FFFF>
LATIN1 <U+0000-U+00FF>
BEYONDLATIN1 <U+0100-U+D7FF / U+E000-U+10FFFF>

; C2 D14 noncharacter (sentinel)
; Section 23.7 Noncharacters, see also NUL

NONUCHAR <U+FDD0-U+FDEF / U+FFFE-U+FFFF /
U+1FFFE-U+1FFFF / U+2FFFE-U+2FFFF /
U+3FFFE-U+1FFFF / U+4FFFE-U+4FFFF /
U+5FFFE-U+1FFFF / U+6FFFE-U+6FFFF /
U+7FFFE-U+1FFFF / U+8FFFE-U+8FFFF /
U+9FFFE-U+1FFFF / U+AFFFE-U+AFFFD /
U+BFFFE-U+1FFFF / U+CFFFE-U+CFFFD /
U+DFFFE-U+1FFFF / U+EFFFE-U+EFFFF /
U+FFFFE-U+FFFFF / U+10FFFE-U+10FFFF>

UCHARBEYONDBMP <U+10000-U+1FFFD / U+20000-U+2FFFD /
U+30000-U+3FFFD / U+40000-U+4FFFD /
U+50000-U+5FFFD / U+60000-U+6FFFD /
U+70000-U+7FFFD / U+80000-U+8FFFD /
U+90000-U+9FFFD / U+A0000-U+AFFFD /
U+B0000-U+BFFFD / U+C0000-U+CFFFD /
U+D0000-U+DFFFD / U+E0000-U+EFFFD /
U+F0000-U+FFFFD / U+100000-U+10FFFD>

UCHARBEYONDLATIN1 = <U+0100-U+D7FF / U+E000-U+FDCC /
U+FD0-U+FFFFF> / UCHARBEYONDBMP

UCHARBEYONDC1 = <U+00A0-U+D7FF / U+E000-U+FDCC /
U+FD0-U+FFFFF> / UCHARBEYONDBMP

UCHARBEYONDASCII = C1 / UCHARBEYONDC1

UCHAR <U+0001-U+D7FF / U+E000-U+FDCC /
U+FD0-U+FFFFF> / UCHARBEYONDBMP

[[DISCUSS: analogous to CHAR, not VCHAR; an equivalent "UVCHAR" would be way too complicated without introducing character classes and properties.]]
; D49 private-use
; Section 23.5 Private-Use Characters

; Primary Private Use Area (in BMP)
PPUACHAR <U+E000-U+F8FF>
; Supplementary Private Use Area-A
SPUAACHAR <U+F0000-U+FFFFF>
; Supplementary Private Use Area-B
SPUABCHAR <U+100000-U+10FFFF>

; TODO: possible alternates: PUCHAR, PUA
PUACHAR = PPUACHAR / SPUAACHAR / SPUABCHAR

; Unicode-y VCHAR: like VCHAR, attempts to capture
; "all standardized graphic and formatting
; characters/code points for open interchange,
; excluding white space and controls"
; EXCLUDES: Noncharacters (some Cn), Cs, Co, Cc, Z (Zs, Zl, Zp)

UVCHARBEYOND.bmp <U+10000-U+1FFFFD / U+20000-U+2FFFFD /
U+30000-U+3FFFFD / U+40000-U+4FFFFD /
U+50000-U+5FFFFD / U+60000-U+6FFFFD /
U+70000-U+7FFFFD / U+80000-U+8FFFFD /
U+90000-U+9FFFFD / U+A0000-U+AFFFFD /
U+B0000-U+BFFFFD / U+C0000-U+CFFFFD /
U+D0000-U+DFFFFD / U+E0000-U+EFFFFD>

UVCHARBEYOND.Latin-1 = <U+0100-U+167F / U+1681-U+1FFFF /
U+200B-U+2027 / U+202A-U+202E /
U+2030-U+205E / U+2060-U+2FFFF /
U+3001-U+D7FF /
U+F900-U+FDCF / U+FDF0-U+FFFFD> /
UVCHABYOND.BMP

UVCHARBEYOND.ASCII = <U+00A1-U+167F / U+1681-U+1FFFF /
U+200B-U+2027 / U+202A-U+202E /
U+2030-U+205E / U+2060-U+2FFFF /
U+3001-U+D7FF /
U+F900-U+FDCF / U+FDF0-U+FFFFD> /
UVCHABYOND.BMP

UVCHARBEYOND.C1 = UVCHARBEYOND.ASCII

UVCHAR = VCHAR / UVCHARBEYOND.ASCII

; horizontal white space only (Zs beyond ASCII),
; NO line breaks (Cc, Zl, Zp)
; cf Section 5.8 Newline Guidelines with RFC 5198
; see also SP
UWSPBEYONDASCII = \U+00A0 / \U+1680 / \U+2000-\U+200A /
\U+202F / \U+205F / \U+3000>

; includes HT
UWSP = WSP / UWSPBEYONDASCII

; C1 Controls
PAD <\U+0080> ; gov’t health warning: figment
HOP <\U+0081> ; gov’t health warning: figment
BPH <\U+0082>
NBH <\U+0083>
IND <\U+0084>
NEL <\U+0085>
; NLF CR, LF, NEL (not LS or PS)
; --probably unnecessary for Internet usage:
; CRLF is already the standard
SSA <\U+0086>
ESA <\U+0087>
HTS <\U+0088>
HTJ <\U+0089>
VTS <\U+008A>
PLD <\U+008B>
PLU <\U+008C>
RI <\U+008D>
SS2 <\U+008E>
SS3 <\U+008F>
DCS <\U+0090>
PU1 <\U+0091>
PU2 <\U+0092>
STS <\U+0093>
CCH <\U+0094>
MW <\U+0095>
SPA <\U+0096>
EPA <\U+0097>
SOS <\U+0098>
SGCI <\U+0099> ; or SGC, gov’t health warning: figment
SCI <\U+009A>
CSI <\U+009B>
ST <\U+009C>
OSC <\U+009D>
PM <\U+009E>
APC <\U+009F>

; Latin1
NBSP <\U+00A0>
SHY <\U+00AD>
; Zl, Zp
; NB: These are excluded from both UVCHAR and UWSP
LS <U+2028>
PS <U+2029>

Authors’ Addresses

Sean Leonard
Penango, Inc.
5900 Wilshire Boulevard
21st Floor
Los Angeles, CA 90036
USA
EMail: dev+ietf@seantek.com
URI: http://www.penango.com/

Paul Kyzivat
Massachusetts
USA
EMail: pkyzivat@alum.mit.edu