Dynamic DNS Update Leases
draft-sekar-dns-ul-02

Abstract

This document proposes a method of extending Dynamic DNS Update to contain an update lease lifetime, allowing a server to garbage collect stale resource records.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 2, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

Dynamic DNS Update [RFC2136] allows for a mapping from a persistent hostname to a dynamic IP address. This capability is particularly beneficial to mobile hosts, whose IP address may frequently change with location. However, the mobile nature of such hosts often means that dynamically updated resource records are not properly deleted. Consider, for instance, a mobile user who publishes address records via dynamic update. If this user moves their laptop out of range of the Wi-Fi access point, the address record containing stale information may remain on the server indefinitely. An extension to Dynamic Update is thus required to tell the server to automatically delete resource records if they are not refreshed after a period of time.

Note that overloading the resource record TTL [RFC1035] is not appropriate for purposes of garbage collection. Data that is susceptible to frequent change or invalidation, thus requiring a garbage collection mechanism, needs a relatively short resource record TTL to avoid polluting intermediate DNS caches with stale data. Using this TTL, short enough to minimize stale cached data, as a garbage collection lease lifetime would result in an unacceptable amount of network traffic due to refreshes (see Section 5 "Refresh Messages").

2. Conventions and Terminology Used in this Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in "Key words for use in RFCs to Indicate Requirement Levels", when, and only when, they appear in all capitals, as shown here [RFC2119] [RFC8174].

3. Mechanisms

Dynamic DNS Update Leases is implemented using the standard Dynamic Update message format [RFC2136] in conjunction with an EDNS(0) OPT pseudo-RR [RFC6891] with a new OPT and RDATA format proposed here. Encoding the Update Lease Lifetime in an OPT RR requires minimal modification to a name server’s front-end, and will cause servers that do not implement this extension to automatically return a descriptive error (NOTIMPL).
4. Update Message Format

Dynamic DNS Update Leases Requests and Responses are formatted as standard DNS Dynamic Update messages [RFC2136], with the addition of a single OPT RR in the Additional section. Note that if a TSIG resource record is to be added to authenticate the update [RFC2845], the TSIG RR should appear *after* the OPT RR, allowing the message digest in the TSIG to cover the OPT RR.

The OPT RR is formatted as follows:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>domain name</td>
<td>empty (root domain)</td>
</tr>
<tr>
<td>TYPE</td>
<td>u_int16_t</td>
<td>OPT</td>
</tr>
<tr>
<td>CLASS</td>
<td>u_int16_t</td>
<td>0</td>
</tr>
<tr>
<td>TTL</td>
<td>u_int32_t</td>
<td>0</td>
</tr>
<tr>
<td>RDLEN</td>
<td>u_int16_t</td>
<td>describes RDATA</td>
</tr>
<tr>
<td>RDATA</td>
<td>byte stream</td>
<td>(see below)</td>
</tr>
</tbody>
</table>

RDATA Format:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION-CODE</td>
<td>u_int16_t</td>
<td>UPDATE-LEASE (2)</td>
</tr>
<tr>
<td>OPTION-LENGTH</td>
<td>u_int16_t</td>
<td>4 or 8</td>
</tr>
<tr>
<td>LEASE</td>
<td>u_int32_t</td>
<td>desired lease (request) or granted lease (response), in seconds</td>
</tr>
<tr>
<td>KEY-LEASE</td>
<td>u_int32_t</td>
<td>optional desired (or granted) lease for KEY records, in seconds</td>
</tr>
</tbody>
</table>

Update Requests contain, in the LEASE field of the OPT RDATA, an unsigned 32-bit integer indicating the lease lifetime, in seconds, desired by the client, represented in network (big-endian) byte order. In Update Responses, this field contains the actual lease granted by the server. The lease granted by the server may be less than, greater than, or equal to the value requested by the client. To reduce network and server load, a minimum lease of 30 minutes (1800 seconds) is RECOMMENDED. Leases are expected to be sufficiently long as to make timer discrepancies (due to transmission latency, etc.) between a client and server negligible. Clients that expect the updated records to be relatively static MAY request appropriately longer leases. Servers MAY grant relatively longer or shorter leases to reduce network traffic due to refreshes, or reduce stale data, respectively.

There are two variants of the EDNS(0) UPDATE-LEASE option, the basic (4-byte) variant and the extended (8-byte) variant.
In the basic (4-byte) variant, the LEASE indicated in the OPT RR applies to all resource records in the Update section.

In the extended (8-byte) variant, the Update Lease communicates two lease lifetimes. The LEASE indicated in the OPT RR applies to all resource records in the Update section *except* for KEY records. The KEY-LEASE indicated in the OPT RR applies to KEY records in the Update section. This variant is used specifically for supporting the DNS-SD Service Registration Protocol [I-D.sctl-service-registration].
5. Refresh Messages

Resource records not to be deleted by the server MUST be refreshed by
the client before the lease elapses. Clients SHOULD refresh resource
records after 75% of the original lease has elapsed. If the client
uses UDP and does not receive a response from the server, the client
SHOULD re-try after 2 seconds. The client SHOULD continue to re-try,
doubling the length of time between each re-try, or re-try using TCP.

5.1. Coalescing Refresh Messages

If the client has sent multiple updates to a single server, the
client MAY include refreshes for all valid updates to that server in
a single message. This effectively places all records for a client
on the same expiration schedule, reducing network traffic due to
refreshes. In doing so, the client includes in the refresh message
all existing updates to the server, including those not yet close to
expiration, so long as at least one resource record in the message
has elapsed at least 75% of its original lease. If the client uses
UDP, the client MUST NOT coalesce refresh messages if doing so would
cause truncation of the message; in this case, multiple messages or
TCP should be used.

5.2. Refresh Message Format

Refresh messages are formatted like Dynamic Update Leases Requests
and Responses (see Section 4 "Update Message Format"). The resource
records to be refreshed are contained in the Update section. These
same resource records are repeated in the Prerequisite section, as an
"RRSet exists (value dependent)" prerequisite [RFC2136]. An OPT RR
is the last resource record in the Additional section (except for a
TSIG record, which, if required, follows the OPT RR). The OPT RR
contains the desired new lease on Requests, and the actual granted
lease on Responses. The Update Lease indicated in the OPT RR applies
to all resource records in the Update section.

5.3. Server Behavior

Upon receiving a valid Refresh Request, the server MUST send an
acknowledgment. This acknowledgment is identical to the Update
Response format described in Section 4 "Update Message Format", and
contains the new lease of the resource records being refreshed. If
no records in the Refresh Request have completed 50% of their leases,
the server SHOULD NOT refresh the records; the response should
contain the smallest remaining (unrefreshed) lease of all records in
the refresh message. The server MUST NOT increment the SOA serial
number of a zone as the result of a refresh.
6. Garbage Collection

If the Update Lease of a resource record elapses without being refreshed, the server MUST NOT return the expired record in answers to queries. The server MAY delete the record from its database.

7. Security Considerations

When Dynamic DNS Update is enabled on an authoritative server, the Security Considerations of that specification [RFC2136] should be considered.

The addition of a record lifetime to facilitate automated garbage collection does not itself add any significant new security concerns.

8. IANA Considerations

The EDNS(0) OPTION CODE 2 has already been assigned for this DNS extension. No additional IANA services are required by this document.

9. Acknowledgments

Thanks to Marc Krochmal and Kiren Sekar to their work in 2006 on the precursor to this document. Thanks also to Roger Pantos and Chris Sharp for their contributions.
10. References

10.1. Normative References

10.2. Informative References

Authors’ Addresses

Stuart Cheshire
Apple Inc.
One Apple Park Way
Cupertino, California 95014
USA

Phone: +1 408 974 3207
Email: cheshire@apple.com

Ted Lemon
Nibbhaya Consulting
P.O. Box 958
Brattleboro, Vermont 05302
United States of America

Email: mellon@fugue.com