Abstract

This document proposes a YANG module for telemetry data export capability which augments system Capabilities model and provide additional telemetry data export attributes associated with system capability for transport dependent capability negotiation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 4, 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 2
 1.1. Terminology .. 2
2. Data Export capability 3
 2.1. Tree Diagram 4
3. YANG Module .. 4
4. IANA Considerations 9
 4.1. Updates to the IETF XML Registry 9
 4.2. Updates to the YANG Module Names Registry 10
5. Security Considerations 10
6. References ... 11
 6.1. Normative References 11
 6.2. Informative References 12
Authors’ Addresses .. 12

1. Introduction

Notification capability model defined in [I-D.netconf-notification-capabilities] allows a client to discover a set of capabilities supported by the server (e.g., basic system capability and YANG-Push related capabilities) both at implementation-time and run-time. These "capabilities" permit the client to adjust its behavior to take advantage of the features exposed by the device.

However pre-configuration for some transport specific parameters (e.g., transport protocol, encoding format, encryption by the client is still inevitable, which may cause unexpected failure and additional message exchange between client and server.

This document proposes a YANG module for telemetry data export capability which augments System Capabilities model and provide additional data export attributes for transport dependent capability negotiation.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
The YANG module ietf-notification-capabilities defined in [I-D.netconf-notification-capabilities] specify the following server capabilities related to YANG Push:

- A set of capabilities related to the amount of notifications the server can send out.
- Specification of which data nodes support on-change notifications.
- Capability values can be specified on server level, datastore level or on specific data nodes (and their contained sub-tree) of a specific datastore. Capability values on a smaller, more specific part of the server’s data always override more generic values.
- On-change capability is not specified on a server level as different datastores usually have different on-change capabilities. On a datastore level on-change capability for configuration and state data can be specified separately.

These server capabilities are transport independent and session level capabilities and can be provided either at implementation time or reported at run time.

This document augments system Capabilities model and provides additional data export attributes associated with system capabilities:

- Specification of transport protocol the client can use to establish transport connection;
- Specification of encoding selection (e.g., XML or JSON, to binary) of Data Modeled with YANG;
- Specification of secure transport mechanisms that are needed by the client to communicate with the server;
- Specification of the type of data compression algorithm (e.g., lossless data compression) the client can use for file compression and decompression;
- Specification of Maximum number of data nodes that can be sent in a group of data node with the same characteristics;
o Specification of the number of sensors group. A sensor group represents a reusable grouping of multiple paths and exclude filters.

o Specification of the notification message encapsulation type, either one notification per message or multiple notifications per message.

o Specification of the type of subscription, e.g., periodic subscription, on-change subscription, bulk subscription, adaptive subscription.

o Specification of the time length of sampling interval.

2.1. Tree Diagram

The following tree diagram [RFC8340] provides an overview of the data model.

```
module: ietf-data-export-capabilities
augment /sysc:system-capabilities:
  +++-ro data-export-capabilities
  +++-ro transport-protocol  transport-protocol
  +++-ro encoding-format     encoding-format
  +++-ro secure-transport    secure-transport
  +++-ro compression-mode    compression-mode
  +++-ro max-nodes-per-sensor-group   unint32
  +++-ro max-sensor-group-per-update  unint32
augment /sysc:system-capabilities/inc:subscription-capabilities:
  +++-ro message-bundling-support  boolean
  +++-ro subscription-mode         subscription-mode
augment /sysc:system-capabilities/sysc:datastore-capabilities/+
  sysc:per-node-capabilities:
  +++-ro sampling-interval*        centiseconds
  +++-ro threshold-support          boolean
```

3. YANG Module

```
<CODE BEGINS> file "ietf-data-export-capabilities.yang"
module ietf-data-export-capabilities {
  yang-version 1.1;
  prefix dec;
import ietf-system-capabilities { prefix sysc ; }
import ietf-notification-capabilities { prefix inc ; }
organization "IETF NETCONF (Network Configuration) Working Group";
contact
```
This module defines an extension to System Capability and YANG Push Notification Capabilities model and provides additional data export attributes for transport dependent capability negotiation.

Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices.

/* Identities */

identity transport-protocol {
 description
 "Base identity for transport protocol type.";
}

identity tcp {
 base transport-protocol;
 description
 "Identity for tcp transport protocol.";
}

identity udp {
 base transport-protocol;
 description
 "Identity for udp transport protocol.";
}

identity grpc {
 base transport-protocol;
 description
 "Identity for grpc transport protocol.";
}

identity security-protocol {
description
 "Base identity for security protocol type."
}

identity tls {
 base security-protocol;
 description
 "Identity for tls security protocol."
}

identity ssh {
 base security-protocol;
 description
 "Identity for ssh transport protocol."
}

identity encoding-format {
 description
 "Base identity for encoding format type."
}

identity xml {
 base encoding-format;
 description
 "Identity for xml encoding format."
}

identity json {
 base encoding-format;
 description
 "Identity for json encoding format."
}

identity gpb {
 base encoding-format;
 description
 "Identity for gpb encoding format."
}

identity cbor {
 base encoding-format;
 description
 "Identity for cbor encoding format."
}

identity compression-mode {
 description
 "Base identity for compression mode."
}
identity gzip {
 base security-protocol;
 description
 "Identity for gzip compression mode."
}

identity deflate {
 base security-protocol;
 description
 "Identity for deflate compression mode."
}

identity subscription-mode {
 description
 "Base identity for subscription mode."
}

identity periodic {
 base subscription-mode;
 description
 "Identity for periodic subscription mode."
}

identity on-change {
 base subscription-mode;
 description
 "Identity for on change subscription mode."
}

identity event {
 base subscription-mode;
 description
 "Identity for event based subscription mode."
}

augment /sysc:system-capabilities {
 description "Add system level capability."
 container data-export-capabilities {
 description "Capabilities related to transport dependent capability negotiation."
 leaf transport-protocol {
 type identityref {
 base transport-protocol;
 }
 description
 "Type of transport protocol."
 }
 leaf encoding-format {
 type identityref {
 base encoding-format;
 }
 }
 }
}
description
 "Type of encoding format."
}
leaf security-protocol {
 type identityref {
 base security-protocol;
 }
 description
 "Type of secure transport."
}
leaf compression-mode{
 type identityref {
 base compression-mode;
 }
 description
 "Type of compression mode."
}
leaf max-nodes-per-sensor-group {
 type uint32 {
 range "1..max";
 }
 description
 "Maximum number of selected data nodes that can be sent per sensor group."
}
leaf max-sensor-group-per-update {
 type uint32 {
 range "1..max";
 }
 description
 "Maximum number of sensor groups that can be sent in an update."
}
}
}
augment /sysc:system-capabilities/inc:subscription-capabilities {
 description "Add subscription level capability.";
 leaf message-bundling-support {
 type boolean;
 default false;
 description
 "Enables message bundling support."
 }
 leaf subscription-mode {
 type identityref {
 base subscription-mode;
 }
 description

"Type of subscription mode."
}

augment /sys:system-capabilities/sysc:datastore-capabilities/sysc:per-node-capabilities {
 description "Add datastore and node level capability."
 leaf-list sampling-interval {
 type uint32;
 units "centiseconds";
 description "Time-based start and stop triggers are used to define the Sampling intervals. All packets are selected that arrive at the Observation Point within the time intervals defined by the start and stop triggers (i.e., arrival time of the packet is larger than the start time and smaller than the stop time).";
 reference "RFC 5475: Sampling and Filtering Techniques for IP Packet Selection";
 }
 leaf threshold-support {
 type boolean;
 default false;
 description "Set to true if the subscription mode is event based subscription mode. Set to false if event based subscription mode is not supported.";
 }
}

<CODE ENDS>

4. IANA Considerations

4.1. Updates to the IETF XML Registry

This document registers a URI in the "IETF XML Registry" [RFC3688]. Following the format in [RFC3688], the following registration has been made:

Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
4.2. Updates to the YANG Module Names Registry

This document registers one YANG module in the "YANG Module Names" registry [RFC6020]. Following the format in [RFC6020], the following registration has been made:

```yaml
name: ietf-data-export-capabilities
prefix: dec
reference: RFC XXXX (RFC Ed.: replace XXX with actual RFC number and remove this note.)
```

5. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The NETCONF Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

- /sysc:system-capabilities/dec:transport-protocol
- /sysc:system-capabilities/dec:encoding-format
- /sysc:system-capabilities/dec:secure-transport
- /sysc:system-capabilities/dec:compression-mode
- /sysc:system-capabilities/dec:max-nodes-per-sensor-group
o /sysc:system-capabilities/dec:sensor-group-count

o /sysc:system-capabilities/inc:subscription-capabilities/
 dec:message-bundling-support

o /sysc:system-capabilities/inc:subscription-capabilities/
 dec:subscription-mode

o /sysc:system-capabilities/sysc:datstore-capabilities/sysc:per-
 node-capabilities/dec:sampling-interval

6. References

6.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,

 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 Writing an IANA Considerations Section in RFCs",
 RFC 8126, DOI 10.17487/RFC8126, June 2017,

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
6.2. Informative References

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,

the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

Authors’ Addresses

Ran Tao
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

Email: taoran20@huawei.com