Virtual Enterprise Traversal (VET)
draft-templin-intarea-vet-11.txt

Abstract

Enterprise networks connect hosts and routers over various link types, and often also connect to provider networks and/or the global Internet. Enterprise network nodes require a means to automatically provision addresses/prefixes and support internetworking operation in a wide variety of use cases including Small Office, Home Office (SOHO) networks, Mobile Ad hoc Networks (MANETs), ISP networks, multi-organizational corporate networks and the interdomain core of the global Internet itself. This document specifies a Virtual Enterprise Traversal (VET) abstraction for autoconfiguration and operation of nodes in enterprise networks.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 12, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 4
2. Terminology .. 6
3. Enterprise Network Characteristics 11
4. VET Interface Encapsulation/Decapsulation 12
 4.1. Inner Network Layer Protocol 13
 4.2. Mid-Layer Encapsulation 13
 4.3. SEAL Encapsulation 13
 4.4. Outer UDP Header Encapsulation 13
 4.5. Outer IP Header Encapsulation 14
 4.6. Decapsulation .. 14
5. Autoconfiguration .. 15
 5.1. Enterprise Router (ER) Autoconfiguration 15
 5.2. Enterprise Border Router (EBR) Autoconfiguration 17
 5.2.1. VET Interface Initialization 17
 5.2.2. PRL Discovery and Enterprise Identification 17
 5.2.3. Provider-Aggregated (FA) EID Prefix Autoconfiguration 18
 5.2.4. Provider-Independent (PI) EID Prefix Autoconfiguration 20
 5.3. Enterprise Border Gateway (EBG) Autoconfiguration 21
 5.4. VET Host Autoconfiguration 21
6. Internetworking Operation 21
 6.1. Routing Protocol Participation 22
 6.2. Address Selection 22
 6.3. VET Interface Neighbor Coordination using SEAL 23
 6.3.1. Router and Prefix Discovery 23
 6.3.2. Next Hop Determination 25
 6.3.3. Redirect Function 25
 6.3.4. Neighbor Unreachability Detection 29
 6.3.5. Generating Errors 29
 6.3.6. Processing Errors 30
 6.4. Mobility and Multihoming Considerations 30
 6.5. Multicast ... 31
 6.6. Service Discovery 32
 6.7. Enterprise Network Partitioning 32
 6.8. EBG Prefix State Recovery 32
 6.9. Support for Legacy ISATAP Services 32
 6.10. Neighbor Coordination using IPsec 32
7. IANA Considerations ... 33
8. Security Considerations .. 33
9. Related Work ... 34
10. Acknowledgements .. 35
11. Contributors ... 35
12. References ... 35
 12.1. Normative References 35
 12.2. Informative References 37
Appendix A. Duplicate Address Detection (DAD) Considerations ... 41
Appendix B. Link-Layer Multiplexing and Traffic Engineering ... 42
Appendix C. Anycast Services 44
Appendix D. Change Log ... 45
Author’s Address ... 47
1. Introduction

Enterprise networks [RFC4852] connect hosts and routers over various link types (see [RFC4861], Section 2.2). The term "enterprise network" in this context extends to a wide variety of use cases and deployment scenarios. For example, an "enterprise" can be as small as a SOHO network, as complex as a multi-organizational corporation, or as large as the global Internet itself. ISP networks are another example use case that fits well with the VET enterprise network model. Mobile Ad hoc Networks (MANETs) [RFC2501] can also be considered as a challenging example of an enterprise network, in that their topologies may change dynamically over time and that they may employ little/no active management by a centralized network administrative authority. These specialized characteristics for MANETs require careful consideration, but the same principles apply equally to other enterprise network scenarios.

This document specifies a Virtual Enterprise Traversal (VET) abstraction for autoconfiguration and internetworking operation, where addresses of different scopes may be assigned on various types of interfaces with diverse properties. Both IPv4 [RFC0791] and IPv6 [RFC2460] are discussed within this context, and the use of standard DHCP [RFC2131] [RFC3315] is assumed unless otherwise specified.
Figure 1 above depicts the architectural model for an Enterprise Router (ER). As shown in the figure, an ER may have a variety of interface types including enterprise-edge, enterprise-interior, provider-edge, internal-virtual, as well as VET interfaces used for encapsulating inner network layer protocol packets for transmission over outer IPv4 or IPv6 networks. The different types of interfaces are defined, and the autoconfiguration mechanisms used for each type are specified. This architecture applies equally for MANET routers, in which enterprise-interior interfaces correspond to the wireless multihop radio interfaces typically associated with MANETs. Out of scope for this document is the autoconfiguration of provider interfaces, which must be coordinated in a manner specific to the service provider’s network.

Enterprise networks must have a means for supporting both Provider-Independent (PI) and Provider-Aggregated (PA) addressing. This is especially true for enterprise network scenarios that involve mobility and multihoming. Also in scope are ingress filtering for multihomed sites, adaptation based on authenticated ICMP feedback from on-path routers, effective tunnel path MTU mitigations, and
routing scaling suppression. The VET specification provides adaptable mechanisms that address these and other issues in a wide variety of enterprise network use cases.

The VET framework builds on a Non-Broadcast Multiple Access (NBMA) [RFC2491] virtual interface model in a manner similar to other automatic tunneling technologies [RFC2529][RFC5214]. VET interfaces support the encapsulation of inner network layer protocols over IPv4 or IPv6 networks. VET is also compatible with mid-layer encapsulation technologies including the Subnetwork Encapsulation and Adaptation Layer (SEAL) [I-D.templin-intarea-seal] and IPsec [RFC4301], and supports both stateful and stateless prefix delegation.

VET and its associated technologies are functional building blocks for a new Internetworking architecture based on the Internet Routing Overlay Network (IRON) [I-D.templin-iron] and Routing and Addressing in Networks with Global Enterprise Recursion (RANGER) [RFC5720] [I-D.russert-rangers]. Many of the VET principles can be traced to the deliberations of the ROAD group in January 1992, and also to still earlier initiatives including NIMROD [RFC1753] and the Catenet model for internetworking [CATENET][IEN48][RFC2775]. [RFC1955] captures the high-level architectural aspects of the ROAD group deliberations in a "New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG".

VET is related to the present-day activities of the IETF INTAREA, AUTOCONF, DHC, IPv6, MANET, and V6OPS working groups, as well as the IRTF RRG working group.

2. Terminology

The mechanisms within this document build upon the fundamental principles of IP encapsulation. The term "inner" refers to the innermost (address, protocol, header, packet, etc.) *before* encapsulation, and the term "outer" refers to the outermost (address, protocol, header, packet, etc.) *after* encapsulation. VET also accommodates "mid-layer" encapsulations including the Subnetwork Encapsulation and Adaptation Layer (SEAL) [I-D.templin-intarea-seal], IPsec [RFC4301], etc.

The terminology in the normative references apply; the following terms are defined within the scope of this document:
Virtual Enterprise Traversal (VET)
an abstraction that uses IP encapsulation to create overlays for
traversing IPv4 and IPv6 enterprise networks.

enterprise network
the same as defined in [RFC4852]. An enterprise network is
further understood to refer to a cooperative networked collective
of devices within a structured IP routing and addressing plan and
with a commonality of business, social, political, etc.,
interests. Minimally, the only commonality of interest in some
enterprise network scenarios may be the cooperative provisioning
of connectivity itself.

subnetwork
the same as defined in [RFC3819].

site
a logical and/or physical grouping of interfaces that connect a
topological area less than or equal to an enterprise network in
scope. From a network organizational standpoint, a site within an
enterprise network can be considered as an enterprise unto itself.

Mobile Ad hoc Network (MANET)
a connected topology of mobile or fixed routers that maintain a
routing structure among themselves over dynamic links. The
characteristics of MANETs are defined in [RFC2501], Section 3, and
a wide variety of MANETs share common properties with enterprise
networks.

enterprise/site/MANET
throughout the remainder of this document, the term "enterprise
network" is used to collectively refer to any of {enterprise,
site, MANET}, i.e., the VET mechanisms and operational principles
can be applied to enterprises, sites, and MANETs of any size or
shape.

Enterprise Router (ER)
As depicted in Figure 1, an Enterprise Router (ER) is a fixed or
mobile router that comprises a router function, a host function,
one or more enterprise-interior interfaces, and zero or more
internal virtual, enterprise-edge, provider-edge, and VET
interfaces. At a minimum, an ER forwards outer IP packets over
one or more sets of enterprise-interior interfaces, where each set
connects to a distinct enterprise network.
Enterprise Border Router (EBR)
a network router that connects edge networks to the enterprise network and/or
connects multiple enterprise networks together. An EBR is a
tunnel endpoint router, and it configures a separate VET interface
over each set of enterprise-interior interfaces that connect the
EBR to each distinct enterprise network. In particular, an EBR
may configure multiple VET interfaces - one for each distinct
enterprise network. All EBRs are also ERs.

Enterprise Border Gateway (EBG)
a network router that connects child enterprise networks to provider
networks - either directly via a provider-edge interface or
indirectly via another VET interface configured over a parent
enterprise network. EBRs may act as EBGs on some VET interfaces
and as ordinary EBRs on other VET interfaces. All EBGs are also
EBRs.

VET host
any node (host or router) that configures a VET interface for
host-operation only. Note that a node may configure some of its
VET interfaces as host interfaces and others as router interfaces.

VET node
any node (host or router) that configures and uses a VET
interface.

enterprise-interior interface
an ER’s attachment to a link within an enterprise network.
Packets sent over enterprise-interior interfaces may be forwarded
over multiple additional enterprise-interior interfaces within the
enterprise network before they are forwarded via an enterprise-
edge interface, provider-edge interface, or a VET interface
configured over a different enterprise network. Enterprise-
interior interfaces connect laterally within the IP network
hierarchy.

enterprise-edge interface
an EBR’s attachment to a link (e.g., an Ethernet, a wireless
personal area network, etc.) on an arbitrarily complex edge
network that the EBR connects to an enterprise network and/or
provider network. Enterprise-edge interfaces connect to lower
levels within the IP network hierarchy.

provider-edge interface
an EBR’s attachment to the Internet or to a provider network via
which the Internet can be reached. Provider-edge interfaces
connect to higher levels within the IP network hierarchy.
internal-virtual interface
an interface that is internal to an EBR and does not in itself
directly attach to a tangible physical link (e.g., an Ethernet
cable, a WiFi radio, etc.). Examples include a loopback
interface, a virtual private network interface, or some form of
tunnel interface.

VET link
a virtual link that uses automatic tunneling to create an overlay
network that spans an enterprise-interior routing region. VET
links can be segmented (e.g., by filtering gateways) into multiple
distinct segments that can be joined together by bridges or IP
routers the same as for any link. Bridging would view the
multiple (bridged) segments as a single VET link, whereas IP
routing would view the multiple segments as multiple distinct VET
links. VET link segments can further be partitioned into multiple
logical areas, where each area is identified by a distinct set of
EBGs.

VET links in non-multicast enterprise networks are Non-Broadcast,
Multiple Access (NBMA); VET links in enterprise networks that
support multicast are multicast capable.

VET interface
a VET node’s attachment to a VET link. VET nodes configure each
VET interface over a set of underlying enterprise-interior
interfaces that connect to a routing region spanned by a single
VET link. When there are multiple distinct VET links (each with
their own distinct set of underlying interfaces), the VET node
configures separate VET interfaces for each link.

The VET interface encapsulates each inner packet in any mid-layer
headers followed by an outer IP header, then forwards the packet
on an underlying interface such that the Time to Live (TTL) – Hop
Limit in the inner header is not decremented as the packet
traverses the link. The VET interface therefore presents an
automatic tunneling abstraction that represents the link as a
single IP hop.

Provider-Independent (PI) address/prefix
an IPv6 (e.g., 2001:DB8::/48), IPv4 (e.g., 192.0.2/24) or other
network layer protocol prefix that is either self-generated by an
EBR or delegated to an EBR by a registry.

Provider Aggregated (PA) prefix
a network layer protocol prefix that is delegated to an EBR by a
provider network.
Routing Locator (RLOC)
a non-link-local IPv4 or IPv6 address taken from a PI/PA prefix that can appear in enterprise-interior and/or interdomain routing tables. Global-scope RLOCs are delegated to specific enterprise networks and routable within both the enterprise-interior and interdomain routing regions. Enterprise-local-scope RLOCs (e.g., IPv6 Unique Local Addresses [RFC4193], IPv4 privacy addresses [RFC1918], etc.) are self-generated by individual enterprise networks and routable only within the enterprise-interior routing region.

ERs use RLOCs for operating the enterprise-interior routing protocol and for next-hop determination in forwarding packets addressed to other RLOCs. End systems can use RLOCs as addresses for end-to-end communications between peers within the same enterprise network. VET interfaces treat RLOCs as *outer* IP addresses during encapsulation.

Endpoint Interface iDentifier (EID)
a network layer address taken from a PI/PA prefix that is routable within an enterprise-edge or VET overlay network scope, and mapped to one or more RLOC addresses via a mapping table. EID prefixes are separate and distinct from any RLOC prefix space.

Edge network routers use EIDs for operating the enterprise-edge or VET overlay network routing protocol and for next-hop determination in forwarding packets addressed to other EIDs. End systems can use EIDs as addresses for end-to-end communications between peers either within the same enterprise network or within different enterprise networks. VET interfaces treat EIDs as *inner* network layer addresses during encapsulation.

VET address
an EID network layer address assigned to a VET interface that embeds an RLOC. VET addresses for the case of IPv6 and IPv4 as the inner and outer protocols (respectively) are formed as specified for ISATAP addresses in Sections 6.1 and 6.2 of [RFC5214]. VET address formats for other inner/outer protocol combinations include OSI NSAP addresses with embedded IP addresses [RFC4548].

The following additional acronyms are used throughout the document:

CGA - Cryptographically Generated Address
DHCP (v4, v6) - Dynamic Host Configuration Protocol
ECMP - Equal Cost Multi Path
FIB - Forwarding Information Base
RIB - Routing Information Base
Enterprise networks consist of links that are connected by Enterprise Routers (ERs) as depicted in Figure 1. ERs typically participate in a routing protocol over enterprise-interior interfaces to discover routes that may include multiple Layer 2 or Layer 3 forwarding hops. Enterprise Border Routers (EBRs) are ERs that connect edge networks to the enterprise network and/or join multiple enterprise networks together. Enterprise Border Gateways (EBGs) are EBRs that connect enterprise networks to provider networks.

Conceptually, an ER embodies both a host function and router function. The host function supports Endpoint Interface iDentifier (EID)-based and/or Routing LOCator (RLOC)-based communications according to the weak end-system model [RFC1122]. The router function engages in the enterprise-interior routing protocol, connects any of the ER’s edge networks to the enterprise networks, and may also connect the enterprise network to provider networks (see Figure 1).

An enterprise network may be as simple as a small collection of ERs and their attached edge networks; an enterprise network may also contain other enterprise networks and/or be a subnetwork of a larger enterprise network. An enterprise network may further encompass a set of branch offices and/or nomadic hosts connected to a home office over one or several service providers, e.g., through Virtual Private Network (VPN) tunnels. Finally, an enterprise network may contain many internal partitions that are logical or physical groupings of nodes for the purpose of load balancing, organizational separation, etc. In that case, each internal partition resembles an individual segment of a bridged LAN.

Enterprise networks that comprise link types with sufficiently similar properties (e.g., Layer 2 (L2) address formats, maximum transmission units (MTUs), etc.) can configure a sub-IP layer routing
service such that IP sees the network as an ordinary shared link the same as for a (bridged) campus LAN. In that case, a single IP hop is sufficient to traverse the network without need for encapsulation. Enterprise networks that comprise link types with diverse properties and/or configure multiple IP subnets must also provide an enterprise-interior routing service that operates as an IP layer mechanism. In that case, multiple IP hops may be necessary to traverse the network such that care must be taken to avoid multi-link subnet issues [RFC4903].

In addition to other interface types, VET nodes configure VET interfaces that view all other nodes on the VET link as neighbors on a virtual NBMA link. VET nodes configure a separate VET interface for each distinct VET link to which they connect, and discover other EBRs on the link that can be used for forwarding packets to off-link destinations.

For each distinct enterprise network, a trust basis must be established and consistently applied. For example, in enterprise networks in which EBRs establish symmetric security associations, mechanisms such as IPsec [RFC4301] can be used to assure authentication and confidentiality. In other enterprise network scenarios, asymmetric securing mechanisms such as SEcure Neighbor Discovery (SEND) [RFC3971] may be necessary. Still other enterprise networks may have sufficient infrastructure trust basis (e.g., through proper deployment of filtering gateways at enterprise borders) and may not require nodes to implement such additional mechanisms.

Finally, in enterprise networks with a centralized management structure (e.g., a corporate campus network), an overlay routing/mapping service and a synchronized set of EBGs can provide sufficient infrastructure support for virtual enterprise traversal. In that case, the EBGs can provide a "default mapper" [I-D.jen-apt] service used for short-term packet forwarding until route-optimized paths between EBR pairs can be established. In enterprise networks with a distributed management structure (e.g., disconnected MANETs), peer-to-peer coordination between the EBRs themselves may be required. Recognizing that various use cases will entail a continuum between a fully distributed and fully centralized approach, the following sections present the mechanisms of Virtual Enterprise Traversal as they apply to a wide variety of scenarios.

4. VET Interface Encapsulation/Decapsulation

VET interfaces encapsulate inner network layer packets in any necessary mid-layer headers and trailers (e.g., IPsec [RFC4301],
etc.) followed by a SEAL header (if necessary) followed by an outer UDP header (if necessary) followed by an outer IP header. Following all encapsulations, the VET interface submits the encapsulated packet to the outer IP forwarding engine for transmission on an underlying interface. The following sections provide further details on encapsulation:

4.1. Inner Network Layer Protocol

The inner network layer protocol sees the VET interface as an ordinary data link interface, and views the outer network layer protocol as an L2 transport. The inner- and outer network layer protocol types are mutually independent and can be used in any combination. Inner network layer protocol types include IPv6 [RFC2460] and IPv4 [RFC0791], but they may also include non-IP protocols such as OSI/CLNP [RFC0994][RFC1070].

4.2. Mid-Layer Encapsulation

VET interfaces that use mid-layer encapsulations (e.g.,IPsec [RFC4301]) encapsulate each inner network layer packet in any mid-layer headers and trailers as the first step in a potentially multi-layer encapsulation.

4.3. SEAL Encapsulation

Following any mid-layer encapsulations, the VET interface adds a SEAL header as specified in [I-D.templin-intarea-seal] if necessary. Inclusion of a SEAL header must be applied uniformly between all nodes on the VET link. SEAL encapsulation should be used on VET links that require path MTU mitigations due to encapsulation overhead and/or mechanisms for VET interface neighbor coordination.

When SEAL encapsulation is used, the VET interface sets the 'Next Header' value in the SEAL header to the IP protocol number associated with either the mid-layer encapsulation or the IP protocol number of the inner network layer (if no mid-layer encapsulation is used).

Note that when a VET interface sends a SEAL-encapsulated packet to a VET node that does not use SEAL encapsulation, it may receive an ICMP "protocol unreachable" message.

4.4. Outer UDP Header Encapsulation

Following any mid-layer and/or SEAL encapsulations, the VET interface adds an outer UDP header if necessary. Inclusion of an outer UDP header must be applied uniformly between all nodes on the VET link. UDP encapsulation should be used on VET links that may traverse
Network Address Translators (NATs) and/or legacy networking gear that only recognizes certain network layer protocols, e.g., Equal Cost MultiPath (ECMP) routers, Link Aggregation Gateways (LAGs), etc.

When UDP encapsulation is used, the VET interface encapsulates the mid-layer packet in an outer UDP header then sets the UDP port numbers as specified for the outermost mid-layer protocol (e.g., IPsec [RFC3947][RFC3948], etc.) When SEAL [I-D.templin-intarea-seal] is used as the outermost mid-layer protocol, the VET interface sets the UDP source port number to a hash calculated over the inner network layer (destination, source) values or (optionally) over the inner network layer (destination address, source address, protocol, destination port, source port) values. The VET interface uses a hash function of its own choosing, but it must be consistent in the manner in which the hash is applied.

For VET links configured over IPv4 enterprise networks, the VET interface sets the UDP checksum field to zero. For VET links configured over IPv6 enterprise networks, the VET interface must instead calculate the UDP checksum and set the calculated value in the checksum field as required for UDP operation over IPv6.

Note that when a VET interface sends a UDP-encapsulated packet to a node that does not recognize the UDP port number, it may receive an ICMP "port unreachable" message.

4.5. Outer IP Header Encapsulation

Following any mid-layer, SEAL and/or UDP encapsulations, the VET interface adds an outer IP header. Outer IP header construction is the same as specified for ordinary IP encapsulation (e.g., [RFC2003], [RFC2473], [RFC4213], etc.) except that the "TTL/Hop Limit", "Type of Service/Traffic Class" and "Congestion Experienced" values in the inner network layer header are copied into the corresponding fields in the outer IP header. The VET interface also sets the IP protocol number to the appropriate value for the first protocol layer within the encapsulation (e.g., UDP, SEAL, IPsec, etc.). When IPv6 is used as the outer IP protocol, the VET interface sets the flow label value in the outer IPv6 header the same as described in [I-D.carpenter-flow-ecmp].

4.6. Decapsulation

When a VET interface receives an encapsulated packet, it does not immediately discard the encapsulating headers. Instead, if the packet will be forwarded from the receiving VET interface into a forwarding VET interface, the VET node copies the "TTL/Hop Limit", "Type of Service/Traffic Class" and "Congestion Experienced" values...
in the outer IP header received on the receiving VET interface into the corresponding fields in the outer IP header to be sent over the forwarding VET interface (i.e., the values are transferred between outer headers and *not* copied from the inner network layer header). This is true even if the packet is forwarded out the same VET interface that it arrived on, and necessary to support diagnostic functions (e.g., traceroute) and avoid looping.

During decapsulation, when the next-hop is via a non-VET interface, the "Congestion Experienced" value in the outer IP header is copied into the corresponding field in the inner network layer header.

5. Autoconfiguration

ERs, EBRs, EBGs, and VET hosts configure themselves for operation as specified in the following subsections.

5.1. Enterprise Router (ER) Autoconfiguration

ERs configure enterprise-interior interfaces and engage in any routing protocols over those interfaces.

When an ER joins an enterprise network, it first configures an IPv6 link-local address on each enterprise-interior interface and configures an IPv4 link-local address on each enterprise-interior interface that requires an IPv4 link-local capability. IPv6 link-local address generation mechanisms include Cryptographically Generated Addresses (CGAs) [RFC3972], IPv6 Privacy Addresses [RFC4941], StateLess Address AutoConfiguration (SLAAC) using EUI-64 interface identifiers [RFC4291] [RFC4862], etc. The mechanisms specified in [RFC3927] provide an IPv4 link-local address generation capability.

Next, the ER configures one or more RLOCs and engages in any routing protocols on its enterprise-interior interfaces. The ER can configure RLOCs via explicit management, DHCP autoconfiguration, pseudo-random self-generation from a suitably large address pool, or through an alternate autoconfiguration mechanism. The ER may optionally configure and assign a separate RLOC for each underlying interface, or it may configure only a single RLOC and assign it to a VET interface configured over the underlying interfaces (see Section 5.2.1). In the latter case, the ER can use the VET interface for link layer multiplexing and traffic engineering purposes as specified in Appendix B.

Alternatively (or in addition), the ER can request RLOC prefix delegations via an automated prefix delegation exchange over an
enterprise-interior interface and can assign the prefix(es) on enterprise-edge interfaces. Note that in some cases, the same enterprise-edge interfaces may assign both RLOC and EID addresses if there is a means for source address selection. In other cases (e.g., for separation of security domains), RLOCs and EIDs must be assigned on separate sets of enterprise-edge interfaces.

Pseudo-random self-generation of IPv6 RLOCs can be from a large public or local-use IPv6 address range (e.g., IPv6 Unique Local Addresses [RFC4193]). Pseudo-random self-generation of IPv4 RLOCs can be from a large public or local-use IPv4 address range (e.g., [RFC1918]). When self-generation is used alone, the ER must continuously monitor the RLOCs for uniqueness, e.g., by monitoring the enterprise-interior routing protocol. (Note however that anycast RLOCs may be assigned to multiple enterprise interior interfaces; hence, monitoring for uniqueness applies only to RLOCs that are intended as unicast.)

DHCP generation of RLOCs uses standard DHCP procedures but may require support from relays within the enterprise network. For DHCPv6, relays that do not already know the RLOC of a server within the enterprise network forward requests to the ‘All_DHCP_Servers’ site-scoped IPv6 multicast group [RFC3315]. For DHCPv4, relays that do not already know the RLOC of a server within the enterprise network forward requests to the site-scoped IPv4 multicast group address ‘All_DHCPv4_Servers’, which should be set to 239.255.2.1 unless an alternate multicast group for the site is known. DHCPv4 servers that delegate RLOCs should therefore join the ‘All_DHCPv4_Servers’ multicast group and service any DHCPv4 messages received for that group.

A combined approach using both DHCP and self-generation is also possible when the ER configures both a DHCP client and relay that are connected, e.g., via a pair of back-to-back connected Ethernet interfaces, a tun/tap interface, a loopback interface, inter-process communication, etc. The ER first self-generates an RLOC from a temporary addressing range used only for the bootstrapping purpose of procuring an actual RLOC taken from a preferred addressing range. The ER then engages in the enterprise-interior routing protocol and performs a DHCP client/relay exchange using the temporary RLOC as the address of the relay. When the DHCP server delegates an actual RLOC address/prefix, the ER abandons the temporary RLOC and re-engages in the enterprise-interior routing protocol using an RLOC taken from the delegation.

In some enterprise network use cases (e.g., MANETs), assignment of RLOCs on enterprise-interior interfaces as singleton addresses (i.e., as addresses with /32 prefix lengths for IPv4, or as addresses with
/128 prefix lengths for IPv6) may be necessary to avoid multi-link subnet issues. In other use cases, assignment of an RLOC on a VET interface as specified in Appendix B can provide link layer multiplexing and traffic engineering over multiple underlying interfaces using only a single IP address.

5.2. Enterprise Border Router (EBR) Autoconfiguration

EBRs are ERs that configure VET interfaces over distinct sets of underlying interfaces belonging to the same enterprise network; an EBR can connect to multiple enterprise networks, in which case it would configure multiple VET interfaces. In addition to the ER autoconfiguration procedures specified in Section 5.1, EBRs perform the following autoconfiguration operations.

5.2.1. VET Interface Initialization

EBRs configure a VET interface over a set of underlying interfaces belonging to the same enterprise network such that all other nodes on the VET link appear as single-hop neighbors through the use of encapsulation. After the EBR configures a VET interface, it initializes the interface and assigns an IPv6 link-local address and an IPv4 link-local address if necessary. The EBR also associates an RLOC with the VET interface to serve as the source address for outer IP packets.

When IPv6 and IPv4 are used as the inner/outer protocols (respectively), the EBR autoconfigures an IPv6 link-local VET address on the VET interface formed as specified in Sections 6.1 and 6.2 of [RFC5214]. Link-local address configuration for other inner/outer protocol combinations is through administrative configuration or through an unspecified alternate method. However, link-local address configuration for other inner/outer protocol combinations may not be necessary if a non-link-local address can be configured through other means (e.g., administrative configuration, DHCP, etc.).

After the EBR initializes a VET interface, it can communicate with other VET nodes as single-hop neighbors on the VET link from the viewpoint of the inner protocol. The EBR can also configure the VET interface for link-layer multiplexing and traffic engineering purposes as specified in Appendix B.

5.2.2. PRL Discovery and Enterprise Identification

Following VET interface initialization, the EBR next discovers a Potential Router List (PRL) that includes the RLOC addresses of EBGs. The PRL can be discovered through information conveyed in the enterprise-interior routing protocol, through the mechanisms outlined
in Section 8.3.2 of [RFC5214], through a DHCP option
[I-D.template-isatap-dhcp], etc. In multicast-capable enterprise
networks, EBRs can also listen for advertisements on the 'rasadv'
[RASADV] multicast group address.

Whether or not routing information is available, the EBR can discover
the list of EBGs by resolving an identifying name for the PRL
('PRLNAME') formed as 'hostname.domainname', where 'hostname' is an
enterprise-specific name string and 'domainname' is an enterprise-
specific DNS suffix. The EBR discovers 'PRLNAME' through manual
configuration, the DHCP Domain Name option [RFC2132], 'rasadv'
protocol advertisements, link-layer information (e.g., an IEEE 802.11
Service Set Identifier (SSID)), or through some other means specific
to the enterprise network.

In the absence of other information, the EBR sets the 'hostname'
component of 'PRLNAME' to "isatapv2" and sets the 'domainname'
component to the enterprise-specific DNS suffix (e.g., as
"isatapv2.example.com"). Isolated enterprise networks that do not
connect to the outside world may have no enterprise-specific DNS
suffix, in which case the 'PRLNAME' consists only of the 'hostname'
component. Note that this naming convention is intentionally
distinct from the convention specified in [RFC5214], and is used by
the EBR to distinguish between ISATAP and VET virtual interfaces.

After discovering 'PRLNAME', the EBR resolves the name into a list
of RLOC addresses through a name service lookup. For centrally managed
enterprise networks, the EBR resolves 'PRLNAME' using an enterprise-
local name service (e.g., the DNS). For enterprises with a
distributed management structure, the EBR resolves 'PRLNAME' using
Link-Local Multicast Name Resolution (LLMNR) [RFC4795] over the VET
interface. In that case, all EBGs in the PRL respond to the LLMNR
query, and the EBR accepts the union of all responses.

Each distinct enterprise network must have a unique identity that
EBRs can use to uniquely discern their enterprise affiliations.
'PRLNAME' as well as the RLOCs of EBGs in the PRL serve as an
identifier for the network.

5.2.3. Provider-Aggregated (PA) EID Prefix Autoconfiguration

EBRs that connect their enterprise networks to a provider network
obtain Provider-Aggregated (PA) EID prefixes through stateful and/or
stateless autoconfiguration mechanisms. The stateful and stateless
approaches are discussed in the following subsections.
5.2.3.1. Stateful Prefix Delegation

For IPv4, EBRs acquire IPv4 PA EID prefixes via an unspecified automated IPv4 prefix delegation exchange, explicit management, etc.

For IPv6, EBRs acquire IPv6 PA EID prefixes via DHCPv6 Prefix Delegation exchanges with an EBG acting as a DHCP relay/server. In particular, the EBR (acting as a requesting router) can use DHCPv6 prefix delegation [RFC3633] over the VET interface to obtain prefixes from the server (acting as a delegating router). The EBR obtains prefixes using either a 2-message or 4-message DHCPv6 exchange [RFC3315]. For example, to perform the 2-message exchange, the EBR’s DHCPv6 client forwards a Solicit message with an IA_PD option to its DHCPv6 relay, i.e., the EBR acts as a combined client/relay (see Section 5.1). The relay then forwards the message over the VET interface to an EBG, which either services the request or relays it further. The forwarded Solicit message will elicit a reply from the server containing prefix delegations. The EBR can also propose a specific prefix to the DHCPv6 server per Section 7 of [RFC3633]. The server will check the proposed prefix for consistency and uniqueness, then return it in the reply to the EBR if it was able to perform the delegation.

After the EBR receives IPv4 and/or IPv6 prefix delegations, it can provision the prefixes on enterprise-edge interfaces as well as on other VET interfaces configured over child enterprise networks for which it acts as an EBG. The EBR can also provision the prefixes on enterprise-interior interfaces to service any hosts attached to the link.

The prefix delegations remain active as long as the EBR continues to renew them before lease lifetimes expire. The lease lifetime also keeps the delegation state active even if communications between the EBR and delegation server are disrupted for a period of time (e.g., due to an enterprise network partition, power failure, etc.).

5.2.3.2. Stateless Prefix Delegation

When IPv6 and IPv4 are used as the inner and outer protocols, respectively, a stateless IPv6 PA prefix delegation capability can be leveraged using the mechanisms specified in [RFC5569][I-D.ietf-softwire-ipv6-6rd]. EBRs can use these mechanisms to statelessly configure IPv6 PA prefixes that embed one of the EBR’s IPv4 RLOCs.

Using 6rd stateless prefix delegation, if the IPv4 RLOC changes the IPv6 prefix also changes and the EBR must renumber any interfaces on which sub-prefixes from the prefix are assigned. This method may
therefore be most suitable for enterprise networks in which IPv4 RLOC assignments rarely change, or in enterprise networks in which only services that do not depend on a constant IPv6 prefix (e.g., client-side web browsing) are used.

5.2.4. Provider-Independent (PI) EID Prefix Autoconfiguration

EBRs can acquire Provider Independent (PI) prefixes to facilitate multihoming, mobility and traffic engineering without requiring site-wide renumbering events. These PI prefixes are made available to EBRs through provider-independent assigned numbers authorities, and without need to coordinate with service provider networks.

EBRs that connect major enterprise networks (e.g., large corporations, academic campuses, ISP networks, etc.) to a parent enterprise network (e.g., the public Internet) can acquire highly-aggregated Provider-Independent (PI) EID prefixes (e.g., an IPv6 ::/20, an IPv4 /16, etc.) through the Internet Assigned Numbers Authority (IANA), a major regional Internet registry, etc. The EBRs can then advertise these highly-aggregated PI prefixes into the parent enterprise network Routing Information Base (RIB) without significant impact to routing scaling.

EBRs that connect small enterprise networks (e.g., SOHO networks, MANETs, etc.) to a parent enterprise network can acquire de-aggregated PI prefixes through arrangements with a PI prefix delegation company. The PI prefix delegation company advertises its highly-aggregated prefixes into the Internet default-free Routing Information Based (RIB) the same as for a major enterprise network, and sub-delegates portions of these prefixes to their small enterprise network customers. In that case, the PI prefix delegation company must track the address mappings for EBRs to which it has sub-delegated PI prefixes, and the EBRs must arrange to send and accept encapsulated PI-addressed packets via the PI prefix delegation company’s network even if the tunnel is configured over underlying networks that are also formed by tunnels (i.e., nested tunnels).

After an EBR receives PI prefix sub-delegations, it can provision portions of the prefixes on enterprise-edge interfaces, on other VET interfaces for which it is configured as an EBG and on enterprise-interior interfaces to service any hosts attached to the link. The EBR can also sub-delegate portions of its PI prefixes to requesting routers within child enterprise networks. These requesting routers consider their sub-delegated portions of the PI prefix as PA, and consider the delegating routers as their points of connection to a provider network.
5.3. Enterprise Border Gateway (EBG) Autoconfiguration

EBGs are EBRs that connect child enterprise networks to provider networks via provider-edge interfaces and/or via VET interfaces configured over parent enterprise networks. EBGs autoconfigure their provider-edge interfaces in a manner that is specific to the provider connections, and they autoconfigure their VET interfaces that were configured over parent enterprise networks using the EBR autoconfiguration procedures specified in Section 5.2.

For each of its VET interfaces configured over a child enterprise network, the EBG initializes the interface the same as for an ordinary EBR (see Section 5.2.1). It must then arrange to add one or more of its RLOCs associated with the child enterprise network to the PRL as specified in [RFC5214], Section 9. In particular, for each VET interface configured over a child enterprise network the EBG adds the RLOCs to name service resource records for ‘PRLNAME’ ("isatapv2.example.com", by default).

EBGs respond to LLMNR queries for ‘PRLNAME’ on VET interfaces configured over child enterprise networks with a distributed management structure.

EBGs configure a DHCP relay/server on VET interfaces configured over child enterprise networks that require DHCP services.

To avoid looping, EBGs must not configure a default route on a VET interface configured over a child enterprise network interface.

5.4. VET Host Autoconfiguration

Nodes that cannot be attached via an EBR’s enterprise-edge interface (e.g., nomadic laptops that connect to a home office via a Virtual Private Network (VPN)) can instead be configured for operation as a simple host connected to the VET interface. Such VET hosts perform the same VET interface initialization and border gateway discovery procedures as specified for EBRs in Section 5.2.1, but they configure their VET interfaces as host interfaces (and not router interfaces). Note also that a node may be configured as a host on some VET interfaces and as an EBR/EBG on other VET interfaces.

6. Internetworking Operation

Following the autoconfiguration procedures specified in Section 5, ERs, EBRs, EBGs, and VET hosts engage in normal internetworking operations as discussed in the following sections.
6.1. Routing Protocol Participation

ERs engage in any intra-enterprise routing protocols over enterprise-interior interfaces to discover routing information for forwarding IP packets with RLOC addresses. EBRs can additionally engage in any inter-enterprise routing protocols over VET, enterprise-edge and provider-edge interfaces to discover routing information for forwarding IP packets with EID addresses. Note that the EID-based inter-enterprise IP routing domains are separate and distinct from any RLOC-based enterprise interior IP routing domains.

Routing protocol participation on non-multicast VET interfaces uses the NBMA interface model, e.g., in the same manner as for OSPF over NBMA interfaces [RFC5340], while routing protocol participation on multicast-capable VET interfaces uses the standard multicast interface model. EBRs use the list of EBGs in the PRL (see: Section 5.2.2) as an initial list of neighbors for inter-enterprise routing protocol participation.

EBRs that connect major enterprise networks to the public Internet advertise their EID PI prefixes directly into the Internet default-free RIB via the Border Gateway Protocol (BGP) [RFC4271]. EBRs that connect large enterprise networks to a provider network can advertise their EID PI prefixes into the provider’s routing system if the provider network is configured to accept them. EBRs that connect small enterprise networks to provider networks coordinate the mapping of their EID PI prefixes with their locations through their PI prefix delegation companies. In this way, the PI prefix delegation company acts as a virtual enterprise network that connects its customer small enterprise networks to the Internet routing system and with no arrangements needed with the customers’ provider networks. Further details on routing for PI prefixes is discussed in "The Internet Routing Overlay Network (IRON)" [I-D.templin-iron] and "Fib Suppression with Virtual Aggregation" [I-D.ietf-grow-va].

6.2. Address Selection

When permitted by policy and supported by enterprise interior routing, end systems can avoid VET interface encapsulation through communications that directly invoke the outer IP protocol using RLOC addresses instead of EID addresses for end-to-end communications. For example, an enterprise network that provides native IPv4 intra-network services can provide continued support for native IPv4 communications even when encapsulated IPv6 services are available for inter-enterprise communications. In other enterprise network scenarios, the use of EID-based communications (i.e., instead of RLOC-based communications) may be necessary and/or beneficial to support address scaling, NAT traversal avoidance, security domain
End systems can use source address selection rules (e.g., based on name service information) to determine whether to use EID-based or RLOC-based addressing. The remainder of this section discusses internetworking operation for EID-based communications using the VET interface abstraction.

6.3. VET Interface Neighbor Coordination using SEAL

VET interfaces that use SEAL maintain a neighbor cache, and neighbors on the VET link use the SEAL Control Message Protocol (SCMP) [I-D.templin-intarea-seal] to coordinate reachability, routing information, and mappings between the inner and outer network layer protocols. SCMP directly parallels the IPv6 Neighbor Discovery (ND) [RFC4191][RFC4861] and ICMPv6 [RFC4443] protocols, but operates from within the tunnel and supports operation for any combinations of inner and outer network layer protocols (e.g., IPv6-in-IPv4, IPv6-in-IPv6, OSI/CLNP-in-IPv4, etc.).

SCMP uses the same control message body formats, codes, options etc., as specified in IPv6 ND and ICMPv6 except where otherwise noted. Also, SCMP messages are encapsulated in a SEAL protocol header instead of an IPv6 header. SCMP therefore occurs at a sub-layer below the inner network layer protocol and above the outer network layer protocol. Since all SCMP messages include a packet-in-error portion that includes the SEAL_ID of the original packet, the Checksum is calculated over the SEAL header and SCMP message body only, i.e., it is not calculated over the outer IP header. The following subsections discuss the SCMP neighbor coordination primitives used by VET interfaces:

6.3.1. Router and Prefix Discovery

6.3.1.1. EBR Specification

EBRs discover the PRL for each VET interface as specified in Section 5.2.2, and participate in a dynamic routing protocol over the VET interface using the EBG addresses in the PRL as an initial list of neighboring routers. When a dynamic routing protocol cannot be used, EBRs instead send SCMP Router Solicitation (RS) messages on their VET interfaces to receive solicited SCMP Router Advertisements (RAs) from EBGs in the PRL.

The EBR sends SCMP RS messages the same as described for hosts in Section 6.3.7 of [RFC4861]. When the EBR receives a solicited SCMP RA from an EBG (see Section 6.3.1.2), it authenticates the message then processes any autoconfiguration information except that it
ignores the settings of the ‘M’ and ‘O’ bits.

6.3.1.2. EBG Specification

When an EBG receives an SCMP RS message on a VET interface, it first authenticates the message. If the EBG will include Prefix Information Options (PIOs) in its SCMP RA message response to the solicitation, it creates or updates a neighbor cache entry corresponding to the outer IP source address of the RS in order to track the VET nodes to which it advertises PIOs. The neighbor cache is managed in the same manner as specified in Section 6.2.6 of [RFC4861].

If the neighbor cache entry cannot be created or updated (e.g., due to insufficient resources), the EBG silently discards the RS and does not send an RA. Otherwise, the EBG creates/updates the neighbor cache entry, sets a "Time To Live (TTL)" on the entry that is no shorter than any of its advertised router or prefix lifetimes, and sends an RA response to the RS. If the neighbor cache entry TTL subsequently expires before a new RS arrives, the EBG deletes the neighbor cache entry. Note that the EBG can omit these neighbor cache manipulations if no neighbor cache is required.

The EBG then prepares an RA response to the RS that includes Router Lifetimes, PIOs, and any other options/parameters that the EBG is configured to include. Next, the EBG includes SEND parameters if necessary and encapsulates the RA message in the SEAL header and other outer layer headers. The EBG sets the outer IP source address to one of its RLOC addresses and sets the outer IP destination address to the EBR’s RLOC address. Finally, the EBG sends the solicited RA to the VET node that sent the solicitation.

6.3.1.3. VET Host Specification

VET hosts follow the router and prefix discovery procedures specified in Section 8.3 of [RFC5214]. They discover the addresses of EBGs for each VET interface as specified in Section 5.2.2, and send SCMP RS messages to EBGs in order to receive SCMP RAs with autoconfiguration information.

When the VET host receives a solicited RA from an EBG on a VET interface, it authenticates the message then performs autoconfiguration the same as for any link. In particular, if the RA message contains any PIO options the VET host performs address autoconfiguration on the VET interface according to [RFC4862].
6.3.2. Next Hop Determination

VET nodes perform next-hop determination on VET interfaces via longest prefix match the same as for any interface, and send packets according to the most-specific matching entry in the FIB. If the FIB entry has multiple next-hop addresses, the EBR selects the next-hop with the best metric value. If there are multiple next hops with the best metric value, the VET node can use Equal Cost Multi Path (ECMP) to forward different flows via different next-hop addresses (where flows are determined, e.g., by computing a hash of the inner packet’s source address, destination address and flow label fields).

When there is no matching entry in the FIB (i.e., not even "default"), VET nodes can discover next-hop addresses within the enterprise network by querying the name service for the EID prefix taken from a packet’s destination address (or, by some other inner address to outer address mapping mechanism). For example, for the IPv6 destination address ‘2001:DB8:1:2::1’ and ‘PRNAME’ "isatapv2.example.com" the VET node can perform a name service lookup for the domain name: ‘0.0.1.0.0.8.b.d.0.1.0.0.2.ip6.isatapv2.example.com’.

Name-service lookups in enterprise networks with a centralized management structure use an infrastructure-based service, e.g., an enterprise-local DNS. Name-service lookups in enterprise networks with a distributed management structure and/or that lack an infrastructure-based name service instead use LLMNR over the VET interface. When LLMNR is used, the EBR that performs the lookup sends an LLMNR query (with the prefix taken from the IP destination address encoded in dotted-nibble format as shown above) and accepts the union of all replies it receives from other EBRs on the VET interface. When an EBR receives an LLMNR query, it responds to the query IFF it aggregates an IP prefix that covers the prefix in the query.

If the name-service lookup succeeds, it will return RLOC addresses (e.g., in DNS A records) that correspond to next-hop EBRs to which the VET node can forward packets.

6.3.3. Redirect Function

EBRs with incomplete EID routing information can forward initial packets via default and/or short-prefix EID routes that have an EBG on the VET interface as the next hop. The EBG will forward the packet and return an SCMP Redirect message if necessary to inform the EBR of a more-specific route. Unlike ordinary ICMP redirects, the EBG sends an SCMP Redirect message (subject to rate limiting) whenever it forwards a packet out the same VET interface that it
arrived on regardless of whether the inner source address of the packet was on-link.

The message is formatted the same as for ordinary ICMPv6 redirect messages (see Section 4.5 of [RFC4861]), except that the Destination Address field is omitted since the destination address can already be derived from the Redirected Header option at the end of the Redirect message. The format of the SCMP Redirect message is shown in Figure 2.

```
+-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 137 |    Code = 0   |          Checksum             |
+-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+                                                               +
|                                                               +
|                                                               +
|                                                               |
|                                                               |
|                                                               |
|                                                               +
|                                                               +
|                                                               +
|                                                               +
|                                                               |
|                                                               |
|                                                               |
+-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: SCMP Redirect Message Format

The EBG sets the Target Address field to an IPv6 link-local address corresponding to the next hop on the VET interface toward the inner destination address of the original packet. If the VET interface is configured over an IPv4 network, the EBG sets Target Address to an IPv6 VET link-local address that embeds an IPv4 address. If the VET interface is configured over an IPv6 network, the EBG instead sets Target Address to a native IPv6 link local address assigned to the neighbor’s VET interface. The EBG then adds Options to the Redirect message as described below.

The EBG includes a Target link-layer address option (TLLAO) formatted as specified in Section 4.6.1 of [RFC4861] as the first option in the Options field. For VET interfaces configured over IPv4 networks, the EBG writes the IPv4 RLOC address corresponding to the Target Address in the TLLAO "Link-Layer Address" field as shown in Figure 3.
For VET interfaces configured over IPv6 networks, the EBG instead writes the IPv6 RLOC address corresponding to the Target Address in the TLLAO "Link-Layer Address" field as shown in Figure 4:

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | Length = 3 |            Reserved           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               Reserved                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               IPv6 address (bytes 0 thru 3)                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               IPv6 address (bytes 4 thru 7)                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               IPv6 address (bytes 8 thru 11)                  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               IPv6 address (bytes 12 thru 15)                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 4: SCMP TLLAO Option for IPv6 Networks

The EBG next includes a Route Information Option (RIO) (see: [RFC4191]) that contains a prefix from its FIB that covers the destination address of the original packet. SCMP uses a modified version of the RIO option formatted as shown in Figure 5:
In this modified format, the EBG prepares the RIO option the same as specified in [RFC4191] with the following exceptions:

- the ‘Length’ field is set to 4 if the ‘Prefix Length’ is greater than 128 in order to accommodate prefixes of non-IP protocols of up to 192 bits in length.

- the ‘Prefix Length’ field ranges from 0 to 192. The ‘Prefix’ field is 0, 8, 16 or 24 octets depending on the length, and the embedded prefix may be up to 192 bits in length.

- bits 24 - 26 are used to contain an ‘Address Family (AF)’ value that indicates the embedded prefix protocol type. This document defines the following values for AF:

 * 000 - IPv4
 * 001 - IPv6
 * 010 - OSI/CLNP NSAP

Following the RIO option, the EBG may include SEND options if it is configured to do so. The EBG finally includes a Redirected Header field formatted as specified in as the final option in the Redirect message, encapsulates the Redirect message in the SEAL header and other outer layer headers, sets the outer destination address to the outer source address of the original packet, sets the outer source address to the outer destination address of the original packet and finally sends the message.

When a VET node receives the Redirect, it first authenticates the message (i.e., by checking the SEAL_ID in the Redirected Header, by examining SEND options, etc.) then uses the EID prefix in the RIO with its respective lifetime to update its FIB. The node also caches
the Target Address as the network layer link-local address of the
next-hop and caches the IPv6 or IPv6 address in the TLLAO as the
layer 2 address of the next-hop.

VET nodes retain the FIB entries created as a result of receipt of an
SCMP Redirect until the route lifetime expires, or until this VET
neighbor becomes unreachable. In this way, RLOC liveness detection
parallels IPv6 Neighbor Unreachability Detection as discussed in the
next section.

6.3.4. Neighbor Unreachability Detection

VET nodes use their neighbor cache for Neighbor Unreachability
Detection (NUD) the same as for any IPv6 link as described in Section
7 of [RFC4861]. When a neighbor fails (or appears to be failing),
FIB entries that use the neighbor as a next-hop are deleted and
subsequent packets allowed to flow through less-specific routes until
new Redirects are received.

The NUD mechanism uses hints of forward progress (i.e., evidence that
the tunnel neighbor is receiving packets) coupled with the SCMP
Neighbor Solicitation/Advertisement (NS/NA) process. When hints of
forward progress are available, NS/NA messaging is suppressed; when
no hints are available, the VET node sends NS messages to elicit NAs
from the neighbor. The SEAL mechanism includes an explicit data
packet acknowledgement mechanism that can provide hints of forward
progress.

Responsiveness to routing changes is directly related to the
"REACHABLE_TIME" constant used for NUD as specified in [RFC4861]. In
order to provide responsiveness comparable to dynamic routing
protocols, a reasonably short "REACHABLE_TIME" value (e.g., 5sec)
should be used.

6.3.5. Generating Errors

When an EBR receives an inner network layer packet over a VET
interface, and there is no longest-prefix-match FIB entry for the
destination, it returns an SCMP "Destination Unreachable; No route to
destination" message to the previous hop EBR subject to rate
limiting.

When an EBR receives an inner network layer packet over a VET
interface and the longest-prefix-match FIB entry for the destination
is via a next-hop configured over the same VET interface the packet
arrived on, the EBR forwards the packet then sends an SCMP Redirect
message to the previous-hop EBR as specified in Section 6.3.3.
Generation of other SCMP messages is the same as for any IP interface.

6.3.6. Processing Errors

When a VET node receives an SCMP "Destination Unreachable; No route to destination" message, it first authenticates the message by checking the SEAL_ID, IPsec ID, etc. to ensure that the error corresponds to one of its earlier packet transmissions. The node then translates the inner packet segment encapsulated within the SCMP message into an inner network layer error message and sends it to the source of the original inner packet as normal. If the node has a FIB entry for the original packet’s destination that matches a prefix discovered through an SCMP redirect, the node also deletes the FIB entry.

When a VET node receives an authentic SCMP Redirect, it processes the packet as specified in Section 6.3.3.

Additionally, a VET node may receive outer IP ICMP "Destination Unreachable; net / host unreachable" messages from an ER on the path indicating that the path to a VET neighbor may be failing. The node should first check authenticating information (e.g., the SEAL_ID, IPsec ID, source address of the original packet, etc.) to obtain reasonable assurance that the ICMP message is authentic. If the node receives excessive ICMP unreachable errors through multiple RLOCs associated with the same FIB entry, it should delete the FIB entry and allow subsequent packets to flow through a different route.

6.4. Mobility and Multihoming Considerations

EBRs that travel between distinct enterprise networks must either abandon their PA prefixes that are relative to the "old" enterprise and obtain PA prefixes relative to the "new" enterprise, or somehow coordinate with a "home" enterprise to retain ownership of the prefixes. In the first instance, the EBR would be required to coordinate a network renumbering event using the new PA prefixes [RFC4192][I-D.carpenter-renum-needs-work]. In the second instance, an ancillary mobility management mechanism must be used.

EBRs can retain their PI prefixes as they travel between distinct enterprise networks as long as they update their prefix-to-RLOC mappings with their PI prefix delegation companies. EBRs can also act as delegating routers to sub-delegate portions of their PI prefixes to requesting routers on their enterprise-edge interfaces and on VET interfaces for which they are configured as EBGs. In this sense, the sub-delegations of an EBR’s PI prefixes become the PA prefixes for downstream-dependent nodes.
6.5. Multicast

In multicast-capable deployments, ERs provide an enterprise-wide multicasting service (e.g., Simplified Multicast Forwarding (SMF) [I-D.ietf-manet-smf], Protocol Independent Multicast (PIM) routing, Distance Vector Multicast Routing Protocol (DVMRP) routing, etc.) over their enterprise-interior interfaces such that outer IP multicast messages of site-scope or greater scope will be propagated across the enterprise network. For such deployments, VET nodes can also provide an inner multicast/broadcast capability over their VET interfaces through mapping of the inner multicast address space to the outer multicast address space. In that case, operation of link-scoped (or greater scoped) inner multicasting services (e.g., a link-scoped neighbor discovery protocol) over the VET interface is available, but link-scoped services should be used sparingly to minimize enterprise-wide flooding.

VET nodes encapsulate inner multicast messages sent over the VET interface in any mid-layer headers (e.g., UDP, SEAL, IPsec, etc.) followed by an outer IP header with a site-scoped outer IP multicast address as the destination. For the case of IPv6 and IPv4 as the inner/outer protocols (respectively), [RFC2529] provides mappings from the IPv6 multicast address space to a site-scoped IPv4 multicast address space (for other encapsulations, mappings are established through administrative configuration or through an unspecified alternate static mapping).

Multicast mapping for inner multicast groups over outer IP multicast groups can be accommodated, e.g., through VET interface snooping of inner multicast group membership and routing protocol control messages. To support inner-to-outer multicast address mapping, the VET interface acts as a virtual outer IP multicast host connected to its underlying interfaces. When the VET interface detects that an inner multicast group joins or leaves, it forwards corresponding outer IP multicast group membership reports on an underlying interface over which the VET interface is configured. If the VET node is configured as an outer IP multicast router on the underlying interfaces, the VET interface forwards locally looped-back group membership reports to the outer IP multicast routing process. If the VET node is configured as a simple outer IP multicast host, the VET interface instead forwards actual group membership reports (e.g., IGMP messages) directly over an underlying interface.

Since inner multicast groups are mapped to site-scoped outer IP multicast groups, the VET node must ensure that the site-scope outer IP multicast messages received on the underlying interfaces for one VET interface do not "leak out" to the underlying interfaces of another VET interface. This is accommodated through normal site-
scoped outer IP multicast group filtering at enterprise network boundaries.

6.6. Service Discovery

VET nodes can perform enterprise-wide service discovery using a suitable name-to-address resolution service. Examples of flooding-based services include the use of LLMNR [RFC4795] over the VET interface or multicast DNS (mDNS) [I-D.cheshire-dnsext-multicastdns] over an underlying interface. More scalable and efficient service discovery mechanisms are for further study.

6.7. Enterprise Network Partitioning

An enterprise network can be partitioned into multiple distinct logical groupings. In that case, each partition must configure its own distinct ‘PRLNAME’ (e.g., ‘isatapv2.zone1.example.com’, ‘isatapv2.zone2.example.com’, etc.).

EBGs can further create multiple IP subnets within a partition by sending RAs with PIOs containing different IPv6 prefixes to different groups of nodes. EBGs can identify subnets, e.g., by examining RLOC prefixes, observing the enterprise interior interfaces over which RSs are received, etc.

6.8. EBG Prefix State Recovery

EBGs must retain explicit state that tracks the inner PA prefixes delegated to EBRs within the enterprise network, e.g., so that packets are delivered to the correct EBRs. When an EBG loses some or all of its state (e.g., due to a power failure), it must recover the state so that packets can be forwarded over correct routes.

6.9. Support for Legacy ISATAP Services

EBGs support legacy ISATAP services according to the specifications in [RFC5214]. In particular, EBGs can configure legacy ISATAP interfaces and VET interfaces over the same sets of underlying interfaces as long as the PRLs and IPv6 prefixes associated with the ISATAP/VET interfaces are distinct.

6.10. Neighbor Coordination using IPsec

VET interfaces that use IPsec encapsulation instead of SEAL use the Internet Key Exchange protocol, version 2 (IKEv2) [RFC4306] to manage security association setup and maintenance. The IKEv2 can be seen as a logical equivalent of the SEAL SCMP in terms of VET interface neighbor negotiations. Indeed, IKEv2 also provides mechanisms for
redirection [RFC5685] and mobility [RFC4555].

IPsec additionally provides an extended Identification field and integrity check vector; these features allow IPsec to utilize outer IP fragmentation and reassembly with less risk of exposure to data corruption due to reassembly misassociations. On the other hand, IPsec entails the use of symmetric security associations and hence may not be appropriate to all enterprise network use cases.

For further study is a feature-wise comparison of SEAL and IPsec in terms of the VET domain of applicability.

7. IANA Considerations

There are no IANA considerations for this document.

8. Security Considerations

Security considerations for MANETs are found in [RFC2501].

The security considerations found in [RFC2529] [RFC5214] [I-D.nakibly-v6ops-tunnel-loops] also apply to VET. In particular:

- VET nodes must ensure that a VET interface does not span multiple sites as specified in Section 6.2 of [RFC5214].

- VET nodes must verify that the outer IP source address of a packet received on a VET interface is correct for the inner source address; for the case of IPv6 within IPv4 encapsulation, this is accommodated using the procedures specified in Section 7.3 of [RFC5214].

- EBRs must implement both inner and outer ingress filtering in a manner that is consistent with [RFC2827] as well as ip-proto-41 filtering. When the node at the physical boundary of the enterprise network is an ordinary ER (i.e., and not an EBR), the ER itself should implement filtering.

Additionally, VET interfaces that maintain a coherent neighbor cache drop all outbound packet for which the next hop is not a neighbor and the source address is not link-local; they also drop all incoming packets for which the previous hop is not a neighbor and the destination address is not link-local. (Here, the previous hop is determined by examining the outer source address.)

Finally, VET interfaces that use IPv6 within IPv4 encapsulation drop
all outbound packets for which the IPv6 source address is "foreign-prefix::0200:5efe:V4ADDR" and drop all incoming packets for which the IPv6 destination address is "foreign-prefix::0200:5efe:V4ADDR". (Here, "foreign-prefix" is an IPv6 prefix that is not assigned to the VET interface, and "V4ADDR" is a public IPv4 address over which the VET interface is configured.) Note that these checks are only required for VET interfaces that cannot maintain a coherent neighbor cache.

SEND [RFC3971] and/or IPsec [RFC4301] can be used in environments where attacks on the neighbor discovery protocol are possible. SEAL [I-D.templin-intarea-seal] provides a per-packet identification that can be used to detect source address spoofing.

Rogue neighbor discovery messages with spoofed RLOC source addresses can consume network resources and cause VET nodes to perform extra work. Nonetheless, VET nodes should not "blacklist" such RLOCs, as that may result in a denial of service to the RLOCs’ legitimate owners.

9. Related Work

Brian Carpenter and Cyndi Jung introduced the concept of intra-site automatic tunneling in [RFC2529]; this concept was later called: "Virtual Ethernet" and investigated by Quang Nguyen under the guidance of Dr. Lixia Zhang. Subsequent works by these authors and their colleagues have motivated a number of foundational concepts on which this work is based.

Telcordia has proposed DHCP-related solutions for MANETs through the CECOM MOSAIC program.

The Naval Research Lab (NRL) Information Technology Division uses DHCP in their MANET research testbeds.

Security concerns pertaining to tunneling mechanisms are discussed in [I-D.ietf-v6ops-tunnel-security-concerns].

Default router and prefix information options for DHCPv6 are discussed in [I-D.droms-dhc-dhcpv6-default-router].

An automated IPv4 prefix delegation mechanism is proposed in [I-D.ietf-dhc-subnet-alloc].

RLOC prefix delegation for enterprise-edge interfaces is discussed in [I-D.clausen-manet-autoconf-recommendations].
MANET link types are discussed in [I-D.clausen-manet-linktype].

The LISP proposal [I-D.ietf-lisp] examines encapsulation/decapsulation issues and other aspects of tunneling.

Various proposals within the IETF have suggested similar mechanisms.

10. Acknowledgements

The following individuals gave direct and/or indirect input that was essential to the work: Jari Arkko, Teco Boot, Emmanuel Bacelli, James Bound, Scott Brim, Brian Carpenter, Thomas Clausen, Claudiu Danilov, Chris Dearlove, Remi Despres, Gert Doering, Ralph Droms, Washam Fan, Dino Farinacci, Vince Fuller, Thomas Goff, David Green, Joel Halpern, Bob Hinden, Sascha Hlusiak, Sapumal Jayatissa, Dan Jen, Darrel Lewis, Tony Li, Joe Macker, David Meyer, Gabi Nakibly, Thomas Narten, Pekka Nikander, Dave Oran, Alexandru Petrescu, Mark Smith, John Spence, Jinmei Tatuya, Dave Thaler, Mark Townsley, Ole Troan, Michaela Vanderveen, Robin Whittle, James Woodyatt, Lixia Zhang, and others in the IETF AUTOCONF and MANET working groups. Many others have provided guidance over the course of many years.

11. Contributors

The following individuals have contributed to this document:

Eric Fleischman (eric.fleischman@boeing.com)
Thomas Henderson (thomas.r.henderson@boeing.com)
Steven Russert (steven.w.ruisset@boeing.com)
Seung Yi (seung.yi@boeing.com)

Ian Chakeres (ian.chakeres@gmail.com) contributed to earlier versions of the document.

Jim Bound’s foundational work on enterprise networks provided significant guidance for this effort. We mourn his loss and honor his contributions.

12. References

12.1. Normative References

[I-D.templin-intarea-seal]
Templin, F., "The Subnetwork Encapsulation and Adaptation Layer (SEAL)", draft-templin-intarea-seal-13 (work in

Templin, F., Gleeson, T., and D. Thaler, "Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
12.2. Informative References

(work in progress), November 2009.

[I-D.ietf-grow-va]

[I-D.ietf-lisp]

[I-D.ietf-manet-smf]

[I-D.ietf-softwire-ipv6-6rd]

[I-D.ietf-v6ops-tunnel-security-concerns]

[I-D.jen-apt]

[I-D.nakibly-v6ops-tunnel-loops]

[I-D.russert-rangers]

[I-D.templin-iron]
Templin, F., "The Internet Routing Overlay Network (IRON)", draft-templin-iron-01 (work in progress), April 2010.

Hinden, R., "New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG", RFC 1955, June 1996.

Appendix A. Duplicate Address Detection (DAD) Considerations

A priori uniqueness determination (also known as "pre-service DAD") for an RLOC assigned on an enterprise-interior interface would require either flooding the entire enterprise network or somehow discovering a link in the network on which a node that configures a duplicate address is attached and performing a localized DAD exchange on that link. But, the control message overhead for such an enterprise-wide DAD would be substantial and prone to false-negatives due to packet loss and intermittent connectivity. An alternative to pre-service DAD is to autoconfigure pseudo-random RLOCs on enterprise-interior interfaces and employ a passive in-service DAD (e.g., one that monitors routing protocol messages for duplicate
Pseudo-random IPv6 RLOCs can be generated with mechanisms such as CGAs, IPv6 privacy addresses, etc. with very small probability of collision. Pseudo-random IPv4 RLOCs can be generated through random assignment from a suitably large IPv4 prefix space.

Consistent operational practices can assure uniqueness for EBG-aggregated addresses/prefixes, while statistical properties for pseudo-random address self-generation can assure uniqueness for the RLOCs assigned on an ER’s enterprise-interior interfaces. Still, an RLOC delegation authority should be used when available, while a passive in-service DAD mechanism should be used to detect RLOC duplications when there is no RLOC delegation authority.

Appendix B. Link-Layer Multiplexing and Traffic Engineering

For each distinct enterprise network that it connects to, an EBR configures a VET interface over possibly multiple underlying interfaces that all connect to the same network. The VET interface therefore represents the EBR’s logical point of attachment to the enterprise network, and provides a logical interface for link-layer multiplexing over its underlying interfaces as described in Section 3.3.4.1 of [RFC1122]:

"Finally, we note another possibility that is NOT multihoming: one logical interface may be bound to multiple physical interfaces, in order to increase the reliability or throughput between directly connected machines by providing alternative physical paths between them. For instance, two systems might be connected by multiple point-to-point links. We call this "link-layer multiplexing". With link-layer multiplexing, the protocols above the link layer are unaware that multiple physical interfaces are present; the link-layer device driver is responsible for multiplexing and routing packets across the physical interfaces."

EBRs can support such a link-layer multiplexing capability across the enterprise network in accordance with the Weak End System Model (see Section 3.3.4.2 of [RFC1122]). In particular, when an EBR autoconfigures an RLOC address (see Section 5.1), it can associate it with the VET interface only instead of assigning it to an underlying interface. The EBR therefore only needs to obtain a single RLOC address even if there are multiple underlying interfaces, i.e., it does not need to obtain one for each underlying interface. The EBR can then leave the underlying interfaces unnumbered, or it can configure a randomly chosen IP link-local address (e.g., from the prefix 169.254/16 [RFC3927] for IPv4) on underlying interfaces that
require a configuration. The EBR need not check these link-local addresses for uniqueness within the enterprise network, as they will not normally be used as the source address for packets.

When the EBR engages in the enterprise-interior routing protocol, it uses the RLOC address assigned to the VET interface as the source address for all routing protocol control messages, however it must also supply an interface identifier (e.g., a small integer) that uniquely identifies the underlying interface that the control message is sent over. For example, if the underlying interfaces are known as "eth0", "eth1" and "eth7" the EBR can supply the token "7" when it sends a routing protocol control message over the "eth7" interface. This is necessary to ensure that other routers can determine the specific interface over which the EBR’s routing protocol control message was sent, but the token need only be unique within the EBR itself and need not be unique throughout the enterprise network.

When the EBR discovers an RLOC route via the enterprise interior routing protocol, it configures a preferred route in the IP FIB that points to the VET interface instead of the underlying interface. At the same time, the EBR also configures an ancillary route that points to the underlying interface. If the EBR discovers that the same RLOC route is reachable via multiple underlying interfaces, it configures multiple ancillary routes (i.e., one for each interface). If the EBR discovers that the RLOC route is no longer reachable via any underlying interface, it removes the route in the IP FIB that points to the VET interface.

With these arrangements, all locally-generated packets with RLOC destinations will flow through the VET interface (and thereby use the VET interface’s RLOC address as the source address) instead of through the underlying interfaces. In the same fashion, all forwarded packets with RLOC destinations will flow through the VET interface instead of through the underlying interfaces.

This arrangement has several operational advantages that enable a number of traffic engineering capabilities. First, the VET interface can insert the SEAL header so that ID-based duplicate packet detection is enabled within the enterprise network. Secondly, SEAL can dynamically adjust its packet sizing parameters so that an optimum Maximum Transmission Unit (MTU) can be determined. This is true even if the VET interface reroutes traffic between underlying interfaces with different MTUs.

Most importantly, the EBR can configure default and more-specific routes on the VET interface to direct traffic through a specific egress EBR (eEBR) that may be many outer IP hops away. Encapsulation will ensure that a specific eEBR is chosen, and the best eEBR can be
chosen when multiple are available. Also, local applications see a stable IP source address even if there are multiple underlying interfaces. This link-layer multiplexing can therefore provide continuous operation across failovers between multiple links attached to the same enterprise network without any need for readdressing. Finally, the VET interface can forward packets with RLOC-based destinations over an underlying interface without any encapsulation if encapsulation avoidance is desired.

It must be specifically noted that the above arrangement constitutes a case in which the same RLOC may be used as both the inner and outer IP source address. This will not present a problem as long as both ends configure a VET interface in the same fashion.

It must also be noted that EID-based communications can use the same VET interface arrangement, except that the EID-based next hop must be mapped to an RLOC-based next-hop within the VET interface. For IPvX within IPvX encapsulation, as well as for IPv4 within IPv6 encapsulation, this requires a VET interface specific address mapping database. For IPv6 within IPv4 encapsulation, the mapping is accomplished through simple static extraction of an IPv4 address embedded in a VET address.

Appendix C. Anycast Services

Some of the IPv4 addresses that appear in the Potential Router List may be anycast addresses, i.e., they may be configured on the VET interfaces of multiple EGBRs/EBGs. In that case, each VET router interface that configures the same anycast address must provide equivalent packet forwarding and neighbor discovery services.

Use of an anycast address as the IP destination address of tunneled packets can have subtle interactions with tunnel path MTU and neighbor discovery. For example, if the initial fragments of a fragmented tunneled packet with an anycast IP destination address are routed to different egress tunnel endpoints than the remaining fragments, the multiple endpoints will be left with incomplete reassembly buffers. This issue can be mitigated by ensuring that each egress tunnel endpoint implements a proactive reassembly buffer garbage collection strategy. Additionally, ingress tunnel endpoints that send packets with an anycast IP destination address must use the minimum path MTU for all egress tunnel endpoints that configure the same anycast address as the tunnel MTU. Finally, ingress tunnel endpoints should treat ICMP unreachable messages from a router within the tunnel as at most a weak indication of neighbor unreachability, since the failures may only be transient and a different path to an alternate anycast router quickly selected through reconvergence of
Use of an anycast address as the IP source address of tunneled packets can lead to more serious issues. For example, when the IP source address of a tunneled packet is anycast, ICMP messages produced by routers within the tunnel might be delivered to different ingress tunnel endpoints than the ones that produced the packets. In that case, functions such as path MTU discovery and neighbor unreachability detection may experience non-deterministic behavior that can lead to communications failures. Additionally, the fragments of multiple tunneled packets produced by multiple ingress tunnel endpoints may be delivered to the same reassembly buffer at a single egress tunnel endpoint. In that case, data corruption may result due to fragment misassociation during reassembly.

In view of these considerations, EBRs/EBGs that configure an anycast address should also configure one or more unicast addresses from the Potential Router List; they should further accept tunneled packets destined to any of their anycast or unicast addresses, but should send tunneled packets using a unicast address as the source address. In order to influence traffic to use an anycast route (and thereby leverage the natural fault tolerance afforded by anycast), ISATAP routers should set higher preferences on the default routes they advertise using an anycast address as the source and set lower preferences on the default routes they advertise using a unicast address as the source (see: [RFC4191]).

Appendix D. Change Log

(Note to RFC editor – this section to be removed before publication as an RFC.)

Changes from -10 to -11:

- Major changes with significant simplifications
- Now support stateless PD using 6rd mechanisms
- SEAL Control Message Protocol (SCMP) used instead of ICMPv6
- Multi-protocol support including IPv6, IPv4, OSI/CLNP, etc.

Changes from -09 to -10:

- Changed "enterprise" to "enterprise network" throughout
- dropped "inner IP", since inner layer may be non-IP
- TODO - convert "IPv6 ND" to SEAL SCMP messages so that control messages remain *within* the tunnel interface instead of being exposed to the inner network layer protocol engine.

Changes from -08 to -09:
- Expanded discussion of encapsulation/decapsulation procedures
- cited IRON

Changes from -07 to -08:
- Specified the approach to global mapping using virtual aggregation and BGP

Changes from -06 to -07:
- reworked redirect function
- created new section on VET interface encapsulation
- clarifications on nexthop selection
- fixed several bugs

Changed from -05 to -06:
- reworked VET interface ND
- anycast clarifications

Changes from -03 to -04:
- security consideration clarifications

Changes from -02 to -03:
- security consideration clarifications
- new PRLNAME for VET is "isatav2.example.com"
- VET now uses SEAL natively
- EBGs can support both legacy ISATAP and VET over the same underlying interfaces.
Changes from -01 to -02:
 o Defined CGA and privacy address configuration on VET interfaces
 o Interface identifiers added to routing protocol control messages
 for link-layer multiplexing

Changes from -00 to -01:
 o Section 4.1 clarifications on link-local assignment and RLOC
 autoconfiguration.
 o Appendix B clarifications on Weak End System Model

Changes from RFC5558 to -00:
 o New appendix on RLOC configuration on VET interfaces.

Author’s Address

Fred L. Templin (editor)
Boeing Research & Technology
P.O. Box 3707 MC 7L-49
Seattle, WA 98124
USA

Email: fltemplin@acm.org