LIN6: A Solution to Mobility and Multi-Homing in IPv6

<draft-teraoka-ipng-lin6-02.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC 2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents, valid for a maximum of six months, and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Abstract

LIN6 is a protocol supporting mobility and multi-homing in IPv6. LIN6 introduces the node id, not the interface id, for each node. Each node can be identified by its node id no matter where the node is connected and no matter how many interfaces the node has. In the IPv6 layer, 64-bit node id called LIN6 ID is used while 128-bit node-id called LIN6 generalized ID is used above the Transport layer. TCP connections and security associations can be preserved even if the node moves to another subnet or the node changes the using interface in a multi-homing environment without modifying TCP or IPsec. In comparison with Mobile IPv6, LIN6 has several advantages in terms of header overhead and fault tolerance.
1. Introduction

This document describes the protocol specification of LIN6[IEICE01,WPMC01]. We propose LINA (Location Independent Network Architecture) to solve several problems such as mobility and multi-homing by redesigning network architecture and addressing. LIN6 is an application of LINA to IPv6[RFC2460]. LIN6 supports mobility and multi-homing with IPsec[RFC2401] in IPv6.

From mobility support viewpoint, LIN6 has several advantages in comparison with Mobile IPv6[MIPv6] as follows:

- LIN6 has no header overhead because it does not use any extension headers of IPv6 while Mobile IPv6 uses the Destination Options Header for the Home Address Option and the Routing Header for optimal routing.
- LIN6 is more fault tolerant than Mobile IPv6. In Mobile IPv6, the Home Agent cannot be replicated to the subnet other than the home link of the mobile node. LIN6 introduces the Mapping Agent which can be replicated anywhere in the Internet.
- LIN6 keeps end-to-end communication model, that is, LIN6 does not use any packet intercepter/forwarder such as the Home Agent of Mobile IPv6. There is no tunneling in LIN6.

LIN6 also has several advantages from viewpoint of multi-homing support. Assume that Node-A starts TCP communication with Node-B, a multi-homing node with two network interfaces, by using IPsec.

- Node-A can recognize the identity of Node-B by the LIN6 address of Node-B no matter which network interface of Node-B is used.
- The same security association (SA) can be used between Node-A and Node-B no matter which network interface of Node-B is used.
- The TCP connection and the SA are still available even after the used network interface of Node-B is switched to another during communication.

2. Terminology

This document uses the following terms.

node:
The node is the general term to specify the equipment that understands IP in the Internet. The node includes hosts, mobile terminals, routers, and so on.

LIN6 ID:
The LIN6 ID is assigned to the node and uniquely identifies the node in the Internet. It is 64 bits in length.

LIN6 prefix:
The LIN6 prefix is a predefined constant value attached to the head of the LIN6 ID to construct the LIN6 generalized ID.

LIN6 generalized ID:
The LIN6 generalized ID is the identifier of the node used in the transport layer and the upper layers. It is 128 bits in length. The higher 64 bits of the LIN6 generalized ID is the LIN6 prefix and the lower 64 bits is the LIN6 ID. The LIN6 generalized ID is assigned to the node, not to the network interface. Application programs use the LIN6 generalized ID to indicate the target node. TCP establishes the TCP connection between two LIN6 generalized IDs. Note that the LIN6 generalized ID does not appear in the IPv6 header on the link.

network prefix:
The network prefix indicates the subnet to which the node is connected. It is attached to the head of the LIN6 ID to construct the LIN6 address.

LIN6 address:
The LIN6 address is assigned to the network interface of the node. The higher 64 bits of the LIN6 address is the network prefix and the lower 64 bits is the LIN6 ID so that the LIN6 address specifies the identifier of the node as well as the point of attachment to the Internet of the node. Note that the LIN6 address appears in the IPv6 header on the link and is not passed to the transport layer.

stationary address:
The stationary address is a LIN6 address assigned to a stationary node that understands LIN6. In the lower half of the stationary address, the Universal/Local bit of EUI-64 is set to zero while that bit in the LIN6 address is set to one.

mapping:
The mapping is the relation between the LIN6 ID and the network prefix.

Mapping Agent:
The Mapping Agent (MA) is the function that maintains the mapping of the mobile node. Each mobile node is associated with one or more Mapping Agents. The relation between the LIN6 ID of the mobile node and the address of the Mapping Agent is registered with the DNS.

Mapping Cache:
The Mapping Cache is the cache for mapping in the node.

normal IPv6 address:
The aggregatable global unicast address.

3. Protocol Overview

3.1. Address

LIN6 uses two types of network addresses: the LIN6 generalized ID and the LIN6 address. Figure 1 depicts their formats. The LIN6 generalized ID is 128 bits in length and is used in the transport layer and the upper layers. LIN6 generalized ID is the identifier of the node in the transport layer and the upper layers and does not change even if the node moves. The LIN6 address is also 128 bits in length and is used in the network layer. The LIN6 address specifies both the location and the identifier of the node. The network prefix part of the LIN6 address changes when the node moves to another subnet. The formats of the LIN6 generalized ID and the LIN6 address are the same as the format of IPv6 aggregatable global unicast address[RFC2374].

```
<-------- 64 bits --------> <-------- 64 bits ------->
| LIN6 generalized ID | LIN6-ID |
+----------------+--------------------------+
| LIN6 address | network prefix | LIN6-ID |
+----------------+--------------------------+
| aggregatable global unicast address | FF|TLA ID|res|NLA ID|SLA ID| Interface ID |
+----------------------------------------+
```

Figure 1: The LIN6 generalized ID and the LIN6 address

Both the LIN6 generalized ID and the LIN6 address consist of two fields: the network prefix and the LIN6 ID. Both fields are 64 bits in length. The LIN6 ID is the global unique identifier of the node. EUI-64[EUI64] will be used as LIN6-ID. The network prefix of the LIN6 address indicates the subnet to which the node is connected while that of the LIN6 generalized ID is the constant value and is called the LIN6 prefix. In other words, the LIN6 address indicates both the location and the identifier of the node while the LIN6 generalized only identifies the node. Thus, the LIN6 generalized ID is used in the transport layer and the upper layers to identify the node, and the LIN6 address is used in the network layer to indicate both the location and the identifier of the node. Note that the LIN6 ID and the LIN6 generalized ID are
assigned per node while the LIN6 address is assigned per network interface. Also note that the normal IPv6 address, i.e., the aggregatable global unicast address, is assigned to the network interface of the node in addition to the LIN6 address.

3.2. Address Processing

Figure 2 shows the procedures of address processing. As mentioned above, the LIN6 generalized ID consists of the (constant) LIN6 prefix and the LIN6 ID. In packet transmission, the transport layer specifies the LIN6 generalized ID of the destination node to the network layer. The network layer obtains the network prefix, i.e., the current location, of the destination node by some means (see Section 3.3). The network layer concatenates the obtained network prefix and the LIN6 ID contained in the LIN6 generalized ID to create the LIN6 address of the destination node.

In packet reception, the source address field of the packet contains the LIN6 address of the source node. The network layer concatenates the LIN6 prefix and the LIN6 ID contained in the LIN6 address of the source node to create the LIN6 generalized ID, and then the network layer notifies the transport layer of the packet reception with the LIN6 generalized ID of the source node. Thus, from the transport layer’s viewpoint, communication is done between the two LIN6 generalized IDs.
3.3. Distinction between the LIN6 Address and the Normal IPv6 Address

As shown on the right side of Figure 2, the receiving node must distinguish the LIN6 address from the normal IPv6 address to decide whether address conversion must be done. From address format viewpoint, however, the LIN6 address is indistinguishable from the normal IPv6 address. (i.e., LIN6 is fully compatible with IPv6.) There are some methods to distinguish the two address types. As a temporary solution, LIN6 employs a special value as a part of the LIN6 ID. To distinguish the LIN6 address, Sony CSL obtained the OUI value 0x00-01-4A of EUI-64[EUI64]. According to the IPv6 addressing scheme, the Universal/Local bit of EUI-64 must be reversed in the global IPv6 address. Thus, if the upper 24 bits of the lower 64 bits of the IPv6 address is 0x02-01-4A, the IPv6 address is the LIN6 address.
3.4. Stationary Address

As mentioned above, LIN6 introduces the 64-bit LIN6 ID as the node identifier. The identity of a mobile node is guaranteed by the LIN6 ID even if the network prefix of the node changes. In case of a stationary node the entire 128-bit can be used as the node identifier because the network prefix does not usually change. Thus, LIN6 introduces another type of LIN6 address, the stationary address which is assigned to a stationary node.

The upper half of the stationary address is the normal network prefix. To distinguish the stationary address, the first three bytes of the lower half of the stationary address must be a special value such as the OUI value of Sony CSL in which the Universal/Local bit is set to zero. The remaining five bytes of the lower half of the stationary address can be generated randomly by the stationary node. Upon generating a stationary address, the Duplicate Address Detection procedure must be done.

By introducing the stationary address, it is not required to assign the LIN6 ID to stationary nodes. The LIN6 ID must be assigned only to mobile nodes. This reduces administrative workload for LIN6 ID assignment.

Upon transmission, if the destination address is a stationary address, this address is set to the destination address field of the IPv6 header without the address processing described in Section 3.2. Upon reception, if the source address is a stationary address, this address is passed to the upper layer without the address processing.

3.5. Mapping Agent

The relation between the LIN6 ID and the network prefix is called mapping. LIN6 introduces the Mapping Agent (MA) to maintain the mapping of the mobile node. The Mapping Agent maintains the mapping of the mobile node and replies to queries about mapping. Each mobile node is associated with one or more Mapping Agents. When the network prefix of the mobile node changes, i.e., when the mobile node moves, the mobile node registers the new network prefix with one of the Mapping Agents that maintain the mapping of the mobile node. Consistency among the databases on the Mapping Agents must be kept by some procedures. These procedures are beyond the scope of this document.

It can be assumed that the relation between the mobile node and its Mapping Agent is almost static in contrast to the mapping of the mobile node. LIN6 makes use of the Domain Name System (DNS) to maintain the relation between the mobile node and its Mapping Agents. A new DNS record MA is introduced to register the address of the Mapping Agent of the mobile node with the DNS database.
3.6. Communication Procedure

The LIN6 Communication procedure is shown in Figure 3. Assume that Node-A tries to send a packet to Node-B. For simplicity, Node-A and Node-B are associated with only a single Mapping Agent, respectively (MA-A and MA-B). The communication procedure is as follows:

1. At first, Node-A and Node-B register their network prefixes with MA-A and MA-B, respectively. The Authentication Header of IPv6 is used in registration.

2. The Node-A obtains the address (AAAA record) of Node-B from the name server by indicating the domain name of Node-B. The obtained address is the LIN6 generalized ID of Node-B.

3. Node-A obtains the address of MA-B from the name server by indicating the LIN6 generalized ID of Node-B.

4. Node-A obtains the network prefix of Node-B from MA-B by indicating the LIN6 ID of Node-B.

5. Node-A sends a packet to Node-B.

6. To avoid impersonation, Node-B must obtain the network prefix of Node-A from MA-A. Node-B obtains the address of MA-A from the name server by indicating the LIN6 generalized ID of Node-A.

7. Node-B obtains the network prefix of Node-A from MA-A by indicating the LIN6 ID of Node-A.

8. Node-B sends a packet to Node-A.
3.7. IPsec Operation

In the sending node, IPsec is processed as follows. When the packet is passed from the transport layer, the source and destination address fields in the IPv6 header contain LIN6 generalized IDs. The security association is decided by using the destination LIN6 generalized ID, and then IPsec calculation is executed. After that, the source and destination LIN6 generalized IDs are converted to LIN6 addresses.

In the receiving node, IPsec is processed as follows. Upon packet reception, the source and destination address fields of IPv6 header contain LIN6 addresses. First, these LIN6 addresses are converted to LIN6 generalized IDs. The security association is decided by using the destination LIN6 generalized ID, and then IPsec calculation is executed.

3.8. Mobility Support

3.8.1. Mobility Support Type 1: Basic Procedure

Mobility support in LIN6 is shown in Figure 4. Assume that SAs are established between the mobile node (MN) and the correspondent node (CN), and between the MN and the MA. This mechanism relies on the SA to avoid impersonation.

1. The MN registers its current network prefix with the Mapping Agent (MA). The Authentication Header is used in this registration.

2. The CN obtains the LIN6 address and MA’s address from the name server.

3. The CN obtains MN’s network prefix from the MA.

4. The CN sends a packet to the MN. The source address of this packet is the normal IPv6 address because the CN is stationary in this case.

5. The MN returns a packet to the CN. The source address of the received packet is used as the destination address of the return packet because the source address of the received packet is the normal IPv6 address.

6. The MN moves to another subnet.

7. The MN registers the new network prefix with the MA and the CN. The Authentication Header is used in these registrations.

8. The CN sends a packet to the MN.
3.8.2. Mobility Support Type 2: Mapping Refresh Message

Figure 5 shows mobility support in which there is no SA between the MN and the CN. In terms of avoiding impersonation, this mechanism is as secure as the current internet where every node trusts the DNS. This mechanism relies on the DNS and the MA. Steps 1 to 6 are the same as Figure 4.

7. The MN registers the new network prefix with the MA. The Authentication Header is used in this registration.

8. The MN sends the Mapping Refresh Message to CN to notify the CN of the event that the MN has moved.

9. The CN obtains the new network prefix of the MN from the MA.

10. The CN sends a packet to the MN.
3.8.3. Mobility Support Type 3: Cookie

Figure 6 shows mobility handling mechanism that uses a cookie for authentication. This mechanism is effective in the environment in which there is no possibility of eavesdropping. For example, messages are encrypted on wireless links and wired links are well managed to avoid eavesdropping. Steps 1 and 2 are the same as Figure 4.

3. The CN receives MN’s network prefix from the MA. At the same time, the CN notifies the MA of CN’s cookie.

4. The MA notifies the MN of CN’s cookie. This notification uses IPsec Authentication Header.

5. The CN sends a packet to the MN.

6. The MN returns a packet to the CN.

7. The MN moves to another subnet.

8. The MN registers the new network prefix with the CN. This registration includes CN’s cookie received from the MA. The CN can trust this registration if the cookie sent to the MA and the cookie received from the MN are the same.

9. The MN registers the new network prefix with the MA. The Authentication Header is used in this registration.

10. The CN sends a packet to the MN.
3.9. Multi-Homing Support

Figure 7 shows multi-homing support in LIN6. In the figure, Node-B is a multi-homing host which has two network interfaces. Node-A and Node-B have the LIN6 generalized ID, "LIN6_P+ID_A" and "LIN6_P+ID_B", respectively, where "LIN6_P" is the LIN6 Prefix, and "ID_A" and "ID_B" are the identifiers of Node-A and Node-B, respectively. Node-A has the LIN6 address, "P_A+ID_A", where "P_A" is the network prefix of Node-A. Node-B has two LIN6 addresses, "P_B1+ID_B" and "P_B2+ID_B", where "P_B1" and "P_B2" are the network prefixes of Node-B corresponding to the two network interfaces.

1. Node-A establishes a TCP connection with Node-B by using IPsec. This TCP connection is established between (LIN6_P+ID_A, port_A) and (LIN6_P+ID_B, port_B). The SA of IPsec is established between "LIN6_P+ID_A" and "LIN6_P+ID_B". Assume that Node-A obtains "P_B1" and "P_B2" as the network prefixes of Node-B and selects "P_B1". The packet in the TCP connection has "P_A+ID_A" and "P_B1+ID_B" as the source/destination addresses. The packets in the TCP connection traverse Path_A in the figure.

2. Assume that Path_A crashes due to some reason, and ICMP Unreach is returned to Node-A.

3. Node-A knows that Path_A is unavailable and selects "P_B2" as the network prefix of Node-B. The packet in the TCP connection has "P_A+ID_A" and "P_B2+ID_B" as the source/destination addresses. The packets in the TCP connection traverse Path_B in the figure. Although the LIN6 address of Node-B changes, the TCP connection and
the SA are still available even after the path change because the TCP connection is established between \((\text{LIN6}_P+\text{ID}_A, \text{port}_A)\) and \((\text{LIN6}_P+\text{ID}_B)\), and the SA is established between "\(\text{LIN6}_P+\text{ID}_A\)" and "\(\text{LIN6}_P+\text{ID}_B\)".

1. (old) TCP connection

```
+-----------------------------+
|                             |
| +-------X 2. ICMP Unreach   |
|     |                      |
| <---+                     |
|     +-----------------------+
```

```
<table>
<thead>
<tr>
<th>Path_A</th>
<th>&quot;P_B1&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node-A ========</td>
<td>Node-B</td>
</tr>
<tr>
<td>&quot;ID_A&quot;</td>
<td>Path_B</td>
</tr>
</tbody>
</table>
```

3. (new) TCP connection

```
+-----------------------------+
|                             |
```

Figure 7: Multi-Homing Support

4. Packet Formats

4.1. Data Packet

LIN6 uses the normal IPv6 header in which the LIN6 addresses are used in the source address field and the destination address field. Figure 8 shows the format of the normal IPv6 header.
4.2. Mapping Update and Reply Messages

When a mobile node moves to another subnet, i.e., when the network prefix of the mobile node changes, the mobile node sends the Mapping Update Message to the Mapping Agent and the correspondent nodes. Upon receiving the Mapping Update Message, the Mapping Agent or the correspondent node returns the Mapping Reply Message to the mobile node. The Mapping Update and Reply Messages are UDP packets. The Authentication Header of IPv6 must be included in the Mapping Update Message to avoid illegal mapping update. Figure 9 shows the formats of the Mapping Update and Reply Messages.
Figure 9 Mapping Update Request/Reply formats

Source Address: the LIN6 address of the source node.

Destination Address: the LIN6 address of the destination node.

Source Port: TBD.

Destination Port: TBD.

Type:
\[0x01\]: update request
\[0x02\]: update reply

Code:
0x00: succeeded
0x01: authentication failed
0x02: ...

Flags: TBD

Sequence Number:
the source node of the Mapping Update Request Message assigns this field a sequence number. This value is copied to this field of the Mapping Update Reply Message.

LIN6 ID: the LIN6 ID of the source node.

Network Prefix: the current network prefix of the source node.

Timestamp: the current time.

Lifetime: the period of time in which this mapping is valid.

4.3. MA Query and Reply Messages

When a node wants to send a packet to a mobile node, the node sends the MA Query Message to the Mapping Agent to obtain the current network prefix of the mobile node. When the Mapping Agent receives the MA Query Message, it returns the MA Reply Message to the node to notify the network prefix of the mobile node. Figure 10 shows the format of the MA Query and Reply Messages.
Source Address: the LIN6 address of the source node.

Destination Address: the LIN6 address of the destination node.

Source Port: TBD.

Destination Port: TBD.

Type:
 0x01: query
 0x02: reply

Code:
 0x00: succeeded
 0x01: no mapping exists
 0x02: ...

Flags: TBD.

Sequence Number:
 the source node of the MA Query Message assigns this field a sequence number. This value is copied to this field of the MA Reply Message.

LIN6 ID: the LIN6 ID of the target node.

Network Prefix: the current network prefix of the target node.
4.4. Mapping Refresh Message

Figure 11 shows the format of the Mapping Refresh Message. When the network prefix of a node changes due to, for example, node movement, if there is no security association between the node and the correspondent node, the node sends the Mapping Refresh Message to the correspondent node. Upon receiving the Mapping Refresh Message, the receiving node sends the MA Query Message to obtain the new network prefix of the node sending the Mapping Refresh Message.

```
+--------+--------------------------+
| IPv6 Base Header |  +--------+--------------------------+
| UDP Header       |   |                   LIN6 ID       |
+----------------+--+   +-----------------------------------+
| Mapping Refresh |      |             Timestamp             |
+----------------+----->+-----------------------------------+
```

Figure 11 Mapping Refresh Message format

Source Address: the LIN6 address of the source node.
Destination Address: the LIN6 address of the destination node.
Source Port: TBD.
Destination Port: TBD.
Type: TBD
LIN6 ID: the LIN6 ID of the target node.
Timestamp: the timestamp of this mapping.
5. Processing on the Mobile Node

5.1. Bootstrap

When the mobile node is powered on, it obtains the network prefix of the subnet to which it is connected by sending the Router Solicitation Message [RFC2461] and receiving the Router Advertisement Message. Next, the mobile node sends a DNS query packet to obtain the address of the Mapping Agent that maintains the mapping of the mobile node. Next, the mobile node establishes a security association of IPsec [RFC2401] with the Mapping Agent. Next, the mobile node sends the Mapping Update Request Message to the Mapping Agent to register the current network prefix and receives the Mapping Update Reply Message.

5.2. Processing on Movement

The mobile node detects the change of the point of attachment to the Internet by some mechanisms, for example, 1) interrupt by hardware, 2) upcall from the link layer, and 3) router advertisement message. When the mobile node detects a location change, first, it sends the Router Solicitation Message and receives the Router Advertisement Message to obtain the network prefix of the subnet to which the mobile node is connected. Next, the mobile node sends the Mapping Update Request Message to the Mapping Agent to notify the current network prefix. The mobile node also sends the Mapping Update Request Message to the correspondent nodes with which it has a security association. The Mapping Update Request Message must include the Authentication Header. The mobile node sends the Mapping Refresh Message to the correspondent nodes with which it has no security association.

6. Processing on Mapping Agent

Upon receiving the Mapping Update Request Message from the mobile node, first, the Mapping Agent makes it sure that the Authentication Header is correct. If authentication fails, the Mapping Agent returns the Mapping Update Reply Message with the error code Authentication Failed. If authentication succeeds, the Mapping Agent updates the mapping of the mobile node and returns the Mapping Update Reply Message to the mobile node.

If the mobile node is associated with two or more Mapping Agents, consistency among the databases on the Mapping Agents must be kept by some procedures. These procedures are beyond of the scope of this document.
7. Packet Transmission and Reception

7.1. Packet Transmission

When the network layer receives a packet transmission request from the transport layer, the network layer makes sure that the destination address passed from the TCP/UDP is a LIN6 generalized ID or a normal IPv6 address by checking the upper 64 bits of the destination address. If the destination address is a normal IPv6 address, the network layer executes the normal IPv6 transmission procedure. If the destination address is a LIN6 generalized ID, the network layer executes the LIN6 procedure described below.

The network layer extracts the LIN6 ID from the LIN6 generalized ID and searches the Mapping Cache for the network prefix by using the LIN6 ID as the key. If the network prefix is found, the network layer concatenates the network prefix and the LIN6 ID to create the LIN6 address of the destination node. After that, the network layer executes the normal IPv6 transmission procedure.

If the network prefix of the destination node is not found in the Mapping Cache, the node keeps the packet waiting for transmission, and then sends the MA Query Message to the Mapping Agent to obtain the network prefix. If the source node does not know the address of the Mapping Agent, it obtains the Mapping Agent’s address from the name server by indicating the LIN6 ID of the destination address. Upon receiving the MA Reply Message, the node creates the LIN6 address of the destination node, and then executes the normal IPv6 transmission procedure.

7.2. Packet Reception

When the network layer receives a packet from the link layer, first the network layer makes sure that the source address of the IPv6 header is a LIN address or a normal IPv6 address. Refer to the next subsection about how to distinguish between the LIN6 address and the normal IPv6 address. If the source address is the normal IPv6 address, the network layer executes the normal IPv6 reception procedure.

If the source address is the LIN6 address, the network layer removes the network prefix part of the LIN6 address, and then attaches the LIN6 prefix to create the LIN6 generalized ID of the source node. After that, the network layer executes the normal IPv6 reception procedure.

7.3. Mapping Refresh Message Reception

When a node receives the Mapping Refresh Message, it sends the MA Query Message to the Mapping Agent of the node sending the Mapping Refresh Message. If the node does not know the address of the Mapping Agent, it
obtains the Mapping Agent’s address from the name server by indicating
the LIN6 ID of the node sending the Mapping Refresh Message.

8. Intellectual Property Right

There are mechanisms included in the following pending patent
applications that have been FILED to the Japanese Patent office.
- Japanese application No.2000-005560 Sony
- Japanese application No.2000-036693 Toshiba

These include the mapping agent and address processing mechanisms. It
must be stressed that they have only been filed, and have not been
granted. They have been filed separately by Sony and Toshiba.

We really intend to contribute to development of the Internet community
and to keep a good relationship with IETF. And our primary concern is to
promote our technology so that others may feel it is useful and
worthwhile in the spirit of the IETF.

If indeed the mechanisms are granted as patents, the patents will be
licensed under reasonable and non-discriminatory conditions to any
person who wants to implement the mechanisms.

Author’s Address

- Fumio Teraoka
 Keio University
 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
 Phone: +81-45-566-1425
 and
 Sony Computer Science Laboratories, Inc.
 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo 141-0022, Japan.
 Phone: +81-3-5448-4380
 Email: tera@wild.ad.jp

- Masahiro Ishiyama
 R&D Center, Toshiba.
 1 Komukai Toshiba-Cho, Saiwai-Ku, Kawasaki, Kanagawa 212-8582, Japan.
 Phone: +81-44-549-2238
 Email: masahiro@isl.rdc.toshiba.co.jp

- Mitsunobu Kunishi
 Keio University
 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
 Phone: +81-45-566-1425
 Email: kunishi@tokoro-lab.org
References

