Abstract

Group communication over the Constrained Application Protocol (CoAP) can be secured by means of Object Security for Constrained RESTful Environments (OSCORE). At deployment time, devices may not know the exact OSCORE groups to join, the respective Group Manager, or other information required to perform the joining process. This document describes how CoAP endpoints can use the CoRE Resource Directory to discover OSCORE groups and acquire information to join them through their respective Group Manager. A same OSCORE group may protect multiple application groups, which are separately announced in the Resource Directory as sets of endpoints sharing a pool of resources.

This approach is consistent with, but not limited to, the joining of OSCORE groups based on the ACE framework for Authentication and Authorization in constrained environments.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 12, 2019.
1. Introduction

A set of CoAP endpoints may share a common pool of resources, hence composing an application group. All the members of an application group may also be members of a same security group, hence sharing a common set of keying material to secure group communication.

The Constrained Application Protocol (CoAP) [RFC7252] supports group communication over IP multicast [RFC7390] to improve efficiency and latency of communication and reduce bandwidth requirements. The method Object Security for Constrained RESTful Environments (OSCORE) [I-D.ietf-core-object-security] enables end-to-end security for CoAP messages through CBOR Object Signing and Encryption (COSE) [RFC8152].
In particular, [I-D.ietf-core-oscore-groupcomm] specifies how OSCORE protects CoAP messages in group communication contexts, so enabling OSCORE groups as security groups. Typically, one application group relies on exactly one OSCORE group, while a same OSCORE group may be used by multiple application groups at the same time.

A CoAP endpoint joins an OSCORE group via the responsible Group Manager (GM), in order to get the necessary group keying material. As in [I-D.ietf-ace-key-groupcomm-oscore], the joining process can be based on the ACE framework for Authentication and Authorization in constrained environments [I-D.ietf-ace-oauth-authz], with the joining endpoint and the GM as ACE Client and Resource Server, respectively. That is, the joining endpoint accesses the join resource associated to the OSCORE group of interest and exported by the GM.

Typically, devices are equipped with a static X509 IDevID certificate installed at manufacturing time. This certificate is used at deployment time during an enrollment process that provides the device with an Operational Certificate, possibly updated during the device lifetime. In the presence of secure group communication for CoAP, such an Operational Certificate may be accompanied by information required to join OSCORE groups. This especially includes a reference to the join resources to access at the respective GMs.

However, it is usually impossible to provide such precise information to freshly deployed devices as part of their (early) Operational Certificate. This can be due to a number of reasons: the OSCORE group(s) to join and the responsible GM(s) are generally unknown at manufacturing time; an OSCORE group of interest is created, or the responsible GM is deployed, only after the device is enrolled and fully operative in the network; information related to existing OSCORE groups or to their GMs has been changed. This requires a method for CoAP endpoints to dynamically discover OSCORE groups and their GM, and to retrieve updated information about those groups.

This specification describes how CoAP endpoints can use the CoRE Resource Directory (RD) [I-D.ietf-core-resource-directory] for discovering an OSCORE group and retrieving the information required to join that group through the responsible GM. In principle, the GM registers as an endpoint with the RD. The corresponding registration resource includes one link for each OSCORE group under that GM, specifying the path to the related join resource.

More information about the OSCORE group is stored in the target attributes of the respective link. This especially includes the identifiers of the application groups which use that OSCORE group. This enables a lookup of those application groups at the Resource
Directory, where they are separately announced by a Commissioning Tool (see Appendix A of [I-D.ietf-core-resource-directory]).

When querying the RD for OSCORE groups, a CoAP endpoint can further benefit of the CoAP Observe Option [RFC7641]. This enables convenient notifications about the creation of new OSCORE groups or the updates of information concerning existing ones. Thus, it facilitates the early deployment of CoAP endpoints, i.e. even before the GM is deployed and the OSCORE groups of interest are created.

The approach in this document is consistent with, but not limited to, the joining of OSCORE groups in [I-D.ietf-ace-key-groupcomm-oscore].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

This specification requires readers to be familiar with the terms and concepts discussed in [I-D.ietf-core-resource-directory] and [RFC6690]. Readers should also be familiar with the terms and concepts discussed in [RFC7252], [I-D.ietf-core-oscore-groupcomm] and [I-D.ietf-ace-key-groupcomm-oscore].

Terminology for constrained environments, such as "constrained device" and "constrained-node network", is defined in [RFC7228].

This document also refers to the following terminology.

- **OSCORE group**: a set of CoAP endpoints that share a same OSCORE Common Security Context to protect group communication as described in [I-D.ietf-core-oscore-groupcomm]. That is, an OSCORE group acts as security group for all its members.

- **Application group**: a set of CoAP endpoints that share a set of common resources. Application groups are announced in the RD by a Commissioning Tool, according to the RD-Groups usage pattern (see Appendix A of [I-D.ietf-core-resource-directory]). An application group can be associated to a single OSCORE group, while different application groups can rely on the same OSCORE group. Application groups MAY share resources. Any two application groups associated to the same OSCORE group do not share any resource.

- **Zeroed-epoch Group ID**: this refers to the Group ID of an OSCORE group as stored in the RD. The structure of such a stored Group
ID is as per Appendix C of [I-D.ietf-core-oscore-groupcomm], with the "Group Epoch" part immutable and set to zero.

2. Registration Resource for Group Managers

With reference to Figure 3 of [I-D.ietf-core-resource-directory], a Group Manager (GM) registers as an endpoint with the CoRE Resource Directory (RD). The registration includes the links to the join resources at the GM, associated to the OSCORE groups under that GM.

In particular, each link to a join resource includes:

- "target": URI of the join resource at the GM.

- target attributes, including:
 * Resource Type (rt) with the value "core.osc.j" defined in Section 7.1 of this specification.
 * The zeroed-epoch Group ID of the OSCORE group.
 * One target attribute for each application group associated to the OSCORE group, specifying the name of that application group.

3. Registration of Group Manager Endpoints

Upon deployment, a GM finds the RD as described in Section 4 of [I-D.ietf-core-resource-directory]. After that, the GM registers as an endpoint with the RD, as described in Section 5.3 of [I-D.ietf-core-resource-directory].

When doing so, the GM MUST also register all the join resources it is exporting at that point in time, i.e. one for each of its OSCORE groups.

For each registered join resource, the GM MUST specify the following parameters in the payload of the registration request.

- 'rt' = "core.osc.j" (see Section 7.1).
- 'oscore-gid', specifying the zeroed-epoch Group ID of the OSCORE group of interest. This parameter MUST specify a single value.
- 'app-gp', specifying the name(s) of the application group(s) associated to the OSCORE group of interest. This parameter MAY be included multiple times, and each occurrence MUST specify the name
of one application group. A same application group MUST NOT be specified multiple times.

The GM SHOULD NOT use the Simple Registration approach described in Section 5.3.1 of [I-D.ietf-core-resource-directory].

The example below shows a GM with endpoint name "gm1" and address 2001:db8::ab that registers with the RD. The GM specifies the link to one join resource for accessing the OSCORE group with zeroed-epoch Group ID "feedca570000" and used by one application group with name "group1".

Request: GM -> RD

Req: POST coap://rd.example.com/rd?ep=gm1
Content-Format: 40
Payload:
</join/feedca570000>;ct=41;rt="core.osc.j";
oscore-gid="feedca570000";app-gp="group1"

Response: RD -> GM

Res: 2.01 Created
Location-Path: /rd/4521

4. Addition and Update of OSCORE Groups

The GM is responsible to keep its registration with the RD up to date with links to all its join resources. This means that the GM has to update the registration within its lifetime as per Section 5.4.1 of [I-D.ietf-core-resource-directory], and has to change the content of the registration when a join resource is added/removed or if its target attributes have to be changed, such as in the following cases.

- The GM creates a new OSCORE group and starts exporting the related join resource.
- The GM dismisses an OSCORE group and stops exporting the related join resource.
- Information related to an existing OSCORE group changes, e.g. the list of associated application groups.

In order to perform an update to the set of links in its registration, the GM can re-register with the RD and fully specify all links to its join resources and their target attributes in the payload of the POST request.
The example below shows the same GM from Section 3 that re-registers with the RD. When doing so, it specifies:

- The same previous join resource associated to the OSCORE group with zeroed-epoch Group ID "feedca570000".
- A second join resource associated to the OSCORE group with zeroed-epoch Group ID "ech0ech00000" and used by one application group, namely "group2".
- A third join resource associated to the OSCORE group with zeroed-epoch Group ID "abcdef120000" and used by two application groups, namely "group3" and "group4".

Request: GM -> RD

Req: POST coap://rd.example.com/rd?ep=gm1
Content-Format: 40
Payload:
</join/feedca570000>;ct=41;rt="core.osc.j";
oscore-gid="feedca570000";app-gp="group1",
</join/ech0ech00000>;ct=41;rt="core.osc.j";
oscore-gid="ech0ech00000";app-gp="group2",
</join/abcdef120000>;ct=41;rt="core.osc.j";
oscore-gid="abcdef120000";app-gp="group3";app-gp="group4"

Response: RD -> GM

Res: 2.04 Changed
Location-Path: /rd/4521

Alternatively, the GM can perform a PATCH/iPATCH [RFC8132] request to the RD, as per Section 5.4.3 of [I-D.ietf-core-resource-directory]. This requires semantics to be defined in future standards, in order to apply a link-format document as a patch to a different one.

5. Discovery of OSCORE Groups

A CoAP endpoint that wants to join an OSCORE group, hereafter called the joining node, might not have all the necessary information at deployment time. Also, it might want to know about possible new OSCORE groups created afterwards by the respective Group Managers.

To this end, the joining node can perform a resource lookup at the RD as per Section 6.1 of [I-D.ietf-core-resource-directory], in order to retrieve the missing pieces of information needed to join the OSCORE group(s) of interest. The joining node can find the RD as described in Section 4 of [I-D.ietf-core-resource-directory].
The joining node MUST consider the following search criteria for the lookup filtering.

- `'rt' = "core.osc.j" (see Section 7.1).`

The joining node MAY additionally consider the following search criteria for the lookup filtering, depending on the information it has already available.

- `'oscore-gid'`, specifying the zeroed-epoch Group ID of the OSCORE group of interest. This parameter MUST specify a single value.

- `'ep'`, specifying the identifier of the GM as endpoint registered with the RD.

- `'app-gp'`, specifying the name(s) of the application group(s) associated to the OSCORE group of interest. This parameter MAY be included multiple times, and each occurrence MUST specify the name of one application group. A same application group MUST NOT be specified multiple times.

5.1. Discovery Example #1

Consistently with the examples in Section 3 and Section 4, the example below considers a joining node that wants to join the OSCORE group associated to the application group "group1", but that does not know the zeroed-epoch Group ID of the OSCORE group, the responsible GM and the join resource to access.

Request: Joining node -> RD

```
Req: GET coap://rd.example.com/lookup/res?rt=core.osc.j&app-gp=group1
```

Response: RD -> Joining node

```
Res: 2.05 Content
Payload:
<coap://[2001:db8::ab]/join/feedca570000>;rt="core.osc.j";
oscore-gid="feedca570000";app-gp="group1";
anchor="coap://[2001:db8::ab]"
```

If it does not know the multicast IP address used in "group1", the joining node can retrieve it by performing an endpoint lookup as shown below. The following assumes that the application group "group1" had been previously registered as per Appendix A of [I-D.ietf-core-resource-directory], with ff35:30:2001:db8::23 as associated multicast IP address.
5.2. Discovery Example #2

Consistently with the examples in Section 3 and Section 4, the example below considers a joining node that wants to join the OSCORE group with zeroed-epoch Group ID "feedca570000", but that does not know the responsible GM, the join resource to access, and the associated application groups.

The example also shows how the joining node uses observation [RFC7641], in order to be notified of possible changes in the join resource’s target attributes. This is also useful to handle the case where the OSCORE group of interest has not been created yet, so that the joining node can receive the requested information when available at a later point in time.

Request: Joining node -> RD

Req: GET coap://rd.example.com/lookup/res?rt=osc.j&
 oscore-gid=feedca570000
Observe: 0

Response: RD -> Joining node

Res: 2.05 Content
Observe: 24
Payload:
 <coap://[2001:db8::ab]/join/feedca570000>;rt="osc.j";
 oscore-gid="feedca570000";app-gp="group1";
 anchor="coap://[2001:db8::ab]"

Depending on the used search criteria, the joining node performing the resource lookup can get a response whose payload is quite large in size. This can happen, for instance, in case the lookup request targets all the join resources at a specified GM, or all the join resources of all the registered GMs, as in the example below.

Request: Joining node -> RD
Req: GET coap://rd.example.com/lookup/res?rt=osc.j

Response: RD -> Joining node

Res: 2.05 Content
Payload:
<coap://[2001:db8::ab]/join/feedca570000>;rt="osc.j";
oscore-gid="feedca570000";app-gp="group1";
anchor="coap://[2001:db8::ab]",
<coap://[2001:db8::ab]/join/ech0ech00000>;rt="osc.j";
oscore-gid="ech0ech00000";app-gp="group2";
anchor="coap://[2001:db8::ab]",
<coap://[2001:db8::cd]/join/abcdef120000>;rt="osc.j";
oscore-gid="abcdef120000";app-gp="group3";app-gp="group4";
anchor="coap://[2001:db8::cd]

Therefore, it is RECOMMENDED that a joining node performing a resource lookup to discover OSCORE groups uses observation only when including the fine-grained search criterion ‘oscore-gid’ in its GET request sent to the RD.

6. Security Considerations

The security considerations as described in Section 8 of [I-D.ietf-core-resource-directory] apply here as well.

7. IANA Considerations

This document has the following actions for IANA.

7.1. Resource Types

IANA is asked to enter the following value into the Resource Type (rt=) Link Target Attribute Values subregistry within the Constrained Restful Environments (CoRE) Parameters registry defined in [RFC6690].

+-----------------+------------------------+-------------------+
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>core.osc.j</td>
<td>Join resource of an OSCORE Group Manager</td>
<td>[[this document]]</td>
</tr>
</tbody>
</table>
+-----------------+------------------------+-------------------+
8. References

8.1. Normative References

[I-D.ietf-ace-key-groupcomm-oscore]
Tiloca, M., Park, J., and F. Palombini, "Key Management for OSCORE Groups in ACE", draft-ietf-ace-key-groupcomm-oscore-01 (work in progress), March 2019.

[I-D.ietf-core-oscore-groupcomm]

[I-D.ietf-core-resource-directory]

8.2. Informative References

[I-D.ietf-ace-oauth-authz]
Acknowledgments

The authors sincerely thank Carsten Bormann, Francesca Palombini and Jim Schaad for their comments and feedback.

The work on this document has been partly supported by VINNOVA and the Celtic-Next project CRITISEC, and by the EIT-Digital High Impact Initiative ACTIVE.

Authors’ Addresses

Marco Tiloca
RISE AB
Isafjordsgatan 22
Kista SE-16440 Stockholm
Sweden

Email: marco.tiloca@ri.se