Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols. In particular it defines objects for managing multicast LDP point-to-multipoint (P2MP) and multipoint-to-multipoint (MP2MP) Label Switched Paths. The MIB module defined in this document is extension of LDP MIB defined in RFC3815 which supports only for LDP point-to-point LSPs.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 14, 2016.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
2. The Internet-Standard Management Framework 3
3. Conventions .. 4
4. Overview .. 4
5. Future Considerations 5
6. Structure of the MIB Module 5
 6.1. Summary of mLDP Scalar Objects 5
 6.2. Summary of mLDP Table Objects 5
7. mLDP Scalar Objects 6
 7.1. mplsMldpP2mpCapable 6
 7.2. mplsMldpMp2mpCapable 6
 7.3. mplsMldpMbbCapable 6
 7.4. mplsMldpMbbTime 6
 7.5. mplsMldpNumFecs 6
 7.6. mplsMldpNumFecsActive 6
 7.7. mplsMldpPlrCapable 6
 7.8. mplsMldpMptCapable 7
 7.9. mplsMldpProtLsrCapable 7
 7.10. mplsMldpNodeProtCapable 7
8. mLDP Table Objects ... 7
 8.1. LDP Peer Capability Table mplsLdpPeerCapabilityTable .. 7
 8.2. mLDP Session Stats Table: mplsLdpSessionStatsTable ... 7
 8.3. mLDP Fec Table: mplsMldpFecTable 7
 8.4. mLDP Fec Branch Traffic statistics Table: mplsMldpFecBranchStatsTable 7
 8.5. mLDP Fec Upstream Session Table: mplsMldpFecUpstreamSessTable 8
 8.6. mLDP Interface Traffic statistics Table: mplsMldpInterfaceStatsTable 8
9. The mLDP Notifications 8
10. Relationship to Other MIB Modules 8
 10.1. Diagrammatic Representation 8
 10.2. Relationship to the LSR MIB 9
 10.3. Relationship to the LDP MIB 9
11. Multicast MPLS Label Distribution Protocol MIB Definitions 10
12. Security Considerations 32
13. IANA Considerations 33
14. Acknowledgments ... 33
15. References .. 33
1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols. In particular it defines objects for managing multicast LDP point-to-multipoint (P2MP) and multipoint-to-multipoint (MP2MP) Label Switched Paths. The MIB module defined in this document is extension of LDP MIB defined in [RFC3815] which supports only for LDP point-to-point LSPs.

The [RFC3815] describes only unicast Managed objects for the Label distribution protocol. The [RFC6388] describes LDP protocol extensions for the point to multipoint and multipoint to multipoint LSPs. The [RFC 6826] describes multicast LDP inband signalling for P2MP and MP2MP LSPs.

This document defines a MIB module for managing and controlling mLDP P2MP and MP2MP LSPs. It builds on the objects and tables defined in [RFC3815] for mLDP MIB.

2. The Internet-Standard Management Framework

[[CREF1: The title and text for this section has been copied from the official boilerplate, and should not be modified unless the official boilerplate text from the OPS Area web site has changed. See RFC4818 section 3.1 for a discussion of the boilerplate section.]]

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

4. Overview

This document focuses on the management of following multicast LDP (mLDP) features, which were defined after unicast LDP [RFC5036].

- RFC6826: Multipoint LDP In-Band Signaling for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths.
- RFC7060: Using LDP Multipoint Extensions on Targeted LDP Sessions.
- [I-D.ietf-rtgwg-mofrr] Multicast only Fast Re-Route.
- [I-D.ietf-mpls-mldp-node-protection] mLDP Node Protection.

For all the above features, the mLDP MIB needs to include the following information:

- Session Capability (P2MP, MP2MP) information: configured capability, negotiated capability.
- mLDP FECs: include opaque information (Generic LSP Identifier, source and group address) and MoFRR enable.
- Primary and backup upstream session when mLDP MoFRR enabled.
- Active and inactive upstream session for make before break.
- mLDP Traffic stats per mLDP Fec: The traffic stats for mLDP fec.
- mLDP Traffic stats per per Interface: The mLDP traffic stats per Interface.
- Traps when mLDP Fec LSP up, down.
5. Future Considerations

Any new opaque TLVs added for any other mLDP features, the opaque value object in the mplsMldpFecTable need to be enhanced accordingly.

6. Structure of the MIB Module

This section describes the structure of the mLDP MIB. In this MIB MPLS-MLDP-STD-MIB, scalar objects, table objects and notifications are defined. Following section describes in details about each object.

6.1. Summary of mLDP Scalar Objects

New scalar objects mplsMldpP2mpCapable and mplsMldpMp2mpCapable are defined to provide the mLDP capabilities of P2MP, MP2MP support.

New scalar objects mplsMldpMbICapable and mplsMldpMbICapableTime are defined to provide MBB capability information.

New scalar object mplsMldpNumFecs which will give the total number of mLDP FECs setup on the LSR.

Another New scalar object mplsMldpNumFecsActive, which will give the total number of active mLDP FECs.

New scalar objects mplsMldpPlrCapable, mplsMldpMptCapable, mplsMldpProtLsrCapable and mplsMldpNodeProtCapable are defined to provide mLDP node protection capabilities.

6.2. Summary of mLDP Table Objects

mplsLdpPeerCapabilityTable to include peer capability information.

mplsMldpSessionStatsTable : This table contains the number of mLDP FECs received and advertised to particular LDP session.

mplsMldpFecTable: This table is similar to point to point mplsLdpFecTable and will have mLDP specific Fec information.

mplsMldpFecBranchStatsTable : This table contains the traffic statistics for the given mLDP FECs on particular interface.

mplsMldpFecUpstreamSessTable : Includes the upstream session info for the particular mLDP Fec and also includes the primary or backup upstream session, that may be used for mLDP MoFRR.
mplsMldpInterfaceStatsTable : This table contains the traffic statistics for all mLDP related FECs.

7. mLDP Scalar Objects

There are ten scalars, listed below are defined for this MIB module.

7.1. mplsMldpP2mpCapable

The mplsMldpP2mpCapable scalar object denotes whether the LSR is capable of supporting multicast LDP with Point-to-Multipoint capability.

7.2. mplsMldpMp2mpCapable

The mplsMldpMp2mpCapable scalar object denotes whether the LSR is capable of supporting multicast LDP with Multipoint-to-Multipoint LSPs.

7.3. mplsMldpMbbCapable

The mplsMldpMbbCapable scalar object denotes whether the LSR is capable of supporting multicast LDP with MBB (make before break) feature mentioned in the section 8 of RFC 6388.

7.4. mplsMldpMbbTime

The mplsMldpMbbTime scalar object denotes MBB time for which LSR is waiting for MBB Ack from upstream node. This timer helps LSR to prevent waiting indefinitely for the MBB Notification from upstream node.

7.5. mplsMldpNumFecs

The mplsMldpNumFecs provides a read-only counter of the number of mLDP FECs setup on this LSR.

7.6. mplsMldpNumFecsActive

The mplsMldpNumFecsActive provides a read-only counter of the number of mLDP FECs Active on this LSR.

7.7. mplsMldpPlrCapable

The mplsMldpPlrCapable scalar object denotes whether the LSR is capable of supporting PLR capability as specified in the section 5.1 of [I-D.ietf-mpls-mldp-node-protection].
7.8. mplsMldpMptCapable

The mplsMldpMptCapable scalar object denotes whether the LSR is capable of supporting MPT capability as specified in the section 5.2 of [I-D.ietf-mpls-mldp-node-protection].

7.9. mplsMldpProtLsrCapable

The mplsMldpProtLsrCapable scalar object denotes whether the LSR is capable of supporting the "Protected LSR" capability as specified in the section 5.3 of [I-D.ietf-mpls-mldp-node-protection].

7.10. mplsMldpNodeProtCapable

The mplsMldpNodeProtCapable scalar object denotes whether the LSR is capable of supporting the "Node Protection" capability as specified in the section 5.4 of [I-D.ietf-mpls-mldp-node-protection].

8. mLDP Table Objects

8.1. LDP Peer Capability Table mplsLdpPeerCapabilityTable

The new table mplsLdpPeerCapabilityTable is read-only table, which contains learned capability information from LDP peer. This table augments the mplsLdpPeerTable, which is defined in RFC 3815.

8.2. mLDP Session Stats Table: mplsMldpSessionStatsTable

The mplsMldpSessionStatsTable is a read-only table which contains mLDP statistical information on sessions. This table augments the mplsLdpSessionStatsTable, which is defined in the RFC 3815.

8.3. mLDP Fec Table: mplsMldpFecTable

The mplsMldpFecTable is a table which contains FEC (Forwarding Equivalence Class) information relating to point to multi-point and multipoint to multipoint LDP LSP. Each entry/row represents a single FEC Element. This table is similar LDP LSP FEC Table, mplsLdpLspFecTable, which is defined in the RFC 3815, which associates FECs with the LSPs.

8.4. mLDP Fec Branch Traffic statistics Table: mplsMldpFecBranchStatsTable

This table mplsMldpFecBranchStatsTable gives the information about number of packets and number of bytes sent out on particular downstream session or on outgoing interface.
8.5. mLDp Fec Upstream Session Table: mplsMldpFecUpstreamSessTable

The mplsMldpFecUpstreamSessTable is a read-only table which contains mLDp upstream session information for mLDp Fec. This table is similar to mplsInSegmentLdpLspTable. This table will also have information about primary, backup upstream session, and also indicates whether the label is in MBB request or MBB Ack received state.

8.6. mLDp Interface Traffic statistics Table: mplsMldpInterfaceStatsTable

This table mplsMldpInterfaceStatsTable gives the information about number of mLDp packets and number of mLDp bytes sent and received on particular interface for all mLDp FECs.

9. The mLDp Notifications

The RFC 3815 defined some of the notifications related to session and P2P Fec. In this MIB, the following notification added to support mLDp features.

The mplsMldpFecUp and mplsMldpFecDown notifications are generated when mLDp FEC changes the state to UP and Down.

The mplsMldpMoFrrStatusChange notification is generated when mLDp MoFRR status switches from primary to backup path and vice versa.

10. Relationship to Other MIB Modules

This section describes relationships between MIB tables defined in this document as part of MPLS-MLDP-STD-MIB, and the tables defined in MPLS-LDP-STD-MIB [RFC3815] and MPLS-LSR-STD-MIB [RFC3813].

The Figure 1 shows the diagrammatic representation of the relationship between MPLS-MLDP-STD-MIB, MPLS-LDP-STD-MIB and MPLS-LSR-STD-MIB. An arrow in the Figure shows that the MIB table pointed from contains a reference to the MIB table pointed to.

10.1. Diagrammatic Representation
10.2. Relationship to the LSR MIB

The LSR MIB [RFC3813] have below tables, which cross connects the incoming label to outgoing label. Below Tables will be used for mLDP also in the similar way as in the point to point LDP LSPs.

mplsXCTable
mplsInSegmentTable
mplsOutSegmentTable

10.3. Relationship to the LDP MIB

The MIB module defined in this document is extension of MPLS-LDP-STD-MIB to support multicast LDP features.

Below optional tables in MPLS-LDP-STD-MIB, will also be used in mLDP for associating the mLDP LSPs to LSR-MIB tables.
mplsLdpLspFecTable
mplsInSegmentLdpLspTable
mplsOutSegmentLdpLspTable

11. Multicast MPLS Label Distribution Protocol MIB Definitions

MPLS-MLDP-STD-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Unsigned32, Counter32, Counter64, TimeTicks
 FROM SNMPv2-SMI -- RFC 2578
 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- RFC 2580
 TruthValue, RowStatus, StorageType, TimeStamp
 FROM SNMPv2-TC -- RFC 2579
 InterfaceIndex
 FROM IF-MIB -- [RFC2020]
 mplsStdMIB, MplsLdpIdentifier
 FROM MPLS-TC-STD-MIB -- RFC 3811
 MplsIndexType
 FROM MPLS-LSR-STD-MIB -- RFC 3813
 IndexInteger, IndexIntegerNextFree
 FROM DIFFSERV-MIB -- RFC 3289
 InetAddress, InetAddressType
 FROM INET-ADDRESS-MIB -- RFC 4001
 mplsLdpStdMIB
 FROM MPLS-LDP-STD-MIB -- RFC 3815
;

mplsMldpStdMIB MODULE-IDENTITY
 LAST-UPDATED "201510120000Z" -- October 12, 2015
 ORGANIZATION "Multiprotocol Label Switching (mpls)
 Working Group"
 CONTACT-INFO
 "Kishore Tiruveedhula
 Juniper Networks
 Email: kishoret@juniper.net"
DESCRIPTION

"Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

The initial version of this MIB module was published in RFC XXXX. For full legal notices see the RFC itself or see: http://www.ietf.org/copyrights/ianamib.html -- RFC Editor. Please replace XXXX with the RFC number for this document and remove this note.

This MIB module contains managed object definitions for mLDPS LSPS defined in Label Distribution Protocol Extensions Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths, RFC 6388, November 2011."

REVISION "2015101200Z" -- October 12, 2015
DESCRIPTION
"Initial version issued as part of RFC XXXX."
-- RFC Editor. Please replace XXXX with the RFC number for this document and remove this note.

::= { mplsStdMIB YYY }
-- RFC Editor. Please replace YYY with the codepoint issued by IANA and remove this note.

-- Top level components of this MIB module.

-- notifications
mplsMldpNotifications OBJECT IDENTIFIER ::= { mplsMldpStdMIB 0 }

-- tables, scalars
mplsMldpScalars OBJECT IDENTIFIER ::= { mplsMldpStdMIB 1 }
mplsMldpObjects OBJECT IDENTIFIER ::= { mplsMldpStdMIB 2 }

-- MPLS mLDP LSP scalars.

mplsMldpP2mpCapable OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object provides the P2MP capability of the LSR."

REFERENCE "Section 2.1 of [RFC6388]."

::= { mplsMldpScalars 1 }

mplsMldpMp2mpCapable OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object provides MP2MP capability of the LSR."

REFERENCE "Section 3.1 of [RFC6388]."

::= { mplsMldpScalars 2 }

mplsMldpMbbCapable OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object provides MBB (make before break) capability of the LSR."
REFERENCE

"Section 8.3 of [RFC6388]."

::= { mplsMldpScalars 3 }

mplsMldpMbbTime OBJECT-TYPE
SYNTAX Unsigned32 (1..300)
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The 32-bit unsigned integer value provides the time for waiting MBB Ack from upstream node."
DEFVAL { 30 }
::= { mplsMldpScalars 4 }

mplsMldpNumFecs OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of active and passive mLdp Fecs on this device."
::= { mplsMldpScalars 5 }

mplsMldpNumFecsActive OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of mLdp FECs Active on this device. The mLDP FEC is considered active if the mplsMldpFecOperStatus is up(1)."
::= { mplsMldpScalars 6 }

mplsMldpPdrCapable OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
 }
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object provides Point of Local Repair (PLR) capability of the LSR."
::= { mplsMldpScalars 7 }

mplsMldpMptCapable OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object provides Merge Point (MPT) capability of the LSR."

::= { mplsMldpScalars 8 }

mplsMldProtLsrCapable OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object provides Protected LSR capability."

::= { mplsMldpScalars 9 }

mplsMldProtNodeProtCapable OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object provides Node Protection capability of the LSR."

REFERENCE
"Section 5.1 of [I-D.ietf-mpls-mldp-node-protection]."

REFERENCE
"Section 5.2 of [I-D.ietf-mpls-mldp-node-protection]."

REFERENCE
"Section 5.3 of [I-D.ietf-mpls-mldp-node-protection]."
 ::= { mplsMldpScalars 10 }

-- End of MPLS mLDP scalars.

-- MPLS mLDP tables.

--
-- The MPLS LDP Peer Capability Table
--

mplsLdpPeerCapabilityTable OBJECT-TYPE
SYNTAX SEQUENCE OF MplsLdpPeerCapabilityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table will have learned information relating to Mldp.
 ::= (mplsMldpObjects 1)

mplsLdpPeerCapabilityEntry OBJECT-TYPE
SYNTAX MplsLdpPeerCapabilityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Information about a single Peer which is related
to a Session. This table is augmented by
the mplsLdpSessionTable."
INDEX { mplsLdpEntityLdpId,
 mplsLdpEntityIndex,
 mplsLdpPeerLdpId }

 ::= (mplsLdpPeerCapabilityTable 1)

mplsLdpPeerCapabilityEntry ::= SEQUENCE {
 mplsLdpPeerLdpId MplsLdpIdentifier,
 mplsLdpPeerCapability Integer32,
}

mplsLdpPeerCapability OBJECT-TYPE
SYNTAX BITS {
 none (0),
 p2mp (1),
 mp2mp(2),
 mbb (3),
 upstream-label-assignment (4),
 dynamic (5),
 plr (6),
 mpt (7),
 prot-lsr (8),
 }
node-prot (9)
)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This will indicate the LDP capability information about peer.
The p2mp indicates peer supports P2MP Capability.
The mp2mp indicates peer supports MP2MP Capability.
The mbb indicates peer supports MBB Capability.
The upstream-label-assignment indicates peer supports Upstream label assignment Capability.
The dynamic indicates peer supports dynamic Capability.
The plr indicates Point of Local Repair Capability.
The mpt indicates Point of Merge Point Capability.
The prot-lsr indicates Protected LSR Capability.
The node-prot indicates Node Protection LSR Capability."

REFERENCE
"RFC6388, Section 2.1 for P2MP Capability TLV.
The RFC6388 for MBB Capability TLV.
The RFC5561 Section 9 for Dynamic Capability Announcement TLV.
The RFC6389 Section 3 for Upstream Label Assignment Capability TLV.
Section 5 of [I-D.ietf-mpls-mldp-node-protection] describes for Point of Local Repair (plr) capability, Merge Point (mpt) capability, The Protected LSR (prot-lsr) and Node Protection (node-prot) Capability."

::= { mplsLdpPeerCapability 2 }

--
-- The MPLS mLDP Session Statistics Table
--

mplsMldpSessionStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF MplsMldpSessionStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of statistics related to mLDP on Sessions. This table AUGMENTS the mplsLdpSessionStatsTable."
::= { mplsLdpObjects 2 }

mplsMldpSessionStatsEntry OBJECT-TYPE
SYNTAX MplsMldpSessionStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
An entry in this table represents mLDP statistical information on a single session between an LDP Entity and LDP Peer.

AUGMENTS { mplsLdpSessionStatsEntry }
 ::= { mplsmMldpSessionStatsTable 1 }

MplsMldpSessionStatsEntry ::= SEQUENCE {
 mplsMldpSessionStatsNumFecsSent Counter32,
 mplsMldpSessionStatsNumMbbReqSentState Counter32,
 mplsMldpSessionStatsNumFecsRcvd Counter32,
 mplsMldpSessionStatsNumMbbReqRcvdState Counter32,
 mplsMldpSessionStatsNumMbbResetAckByTimer Counter32
}

mplsMldpSessionStatsNumFecsSent OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object counts the number of mLDP FECs sent on this session. If the FEC is withdrawn, then this number is decremented. Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of mplsLdpSessionDiscontinuityTime."

 ::= { mplsMldpSessionStatsEntry 1 }

mplsMldpSessionStatsNumMbbReqSentState OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object counts the number of mLDP FECs sent on this session and waiting for MBB Ack. This counter will get incremented when MBB req sent for a label on this session and will get decremented when the MBB Ack received."

 ::= { mplsMldpSessionStatsEntry 2 }

mplsMldpSessionStatsNumFecsRcvd OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
DESCRIPTION

"This object counts the number of mLDP FECs received on this session. If the FEC is withdrawn from the downstream session, then this is decremented.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of mplsLdpSessionDiscontinuityTime."

::= { mplsMldpSessionStatsEntry 3 }

mplsMldpSessionStatsNumMbbReqRcvdState OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object counts the number of mLDP FECs received on this session and waiting for sending MBB Ack. This counter will get incremented when MBB req is received for a label on this session and will get decremented when the MBB Ack sent."

::= { mplsMldpSessionStatsEntry 4 }

mplsMldpSessionStatsNumMbbResetAckByTimer OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object counts the number mLDP FECs for which the MBB Ack is reset by MBB timer, in which the LSR is waiting for MBB ack.

::= { mplsMldpSessionStatsEntry 5 }

--
-- Mpls mLDP FEC Table
--

mplsMldpFecTable OBJECT-TYPE
SYNTAX SEQUENCE OF MplsFecEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table represents the FEC (Forwarding Equivalence Class) Information associated with an mLDP LSP."
::= { mplsMldpObjects 3 }

mplsMldpFecEntry OBJECT-TYPE
SYNTAX MplsMldpFecEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Each row represents a single mLDP FEC Element."
INDEX { mplsMldpFecIndex }

::= { mplsMldpFecTable 1 }

MplsMldpFecEntry ::= SEQUENCE {
 mplsMldpFecIndex IndexInteger,
 mplsMldpFecType INTEGER,
 mplsMldpFecRootAddrType InetAddressType,
 mplsMldpFecRootAddr InetAddress,
 mplsMldpFecOpaqueType INTEGER,
 mplsMldpFecOpaqueGenLspId Unsigned32,
 mplsMldpFecOpaqueTransitSourceOrBidirAddrType InetAddressType,
 mplsMldpFecOpaqueTransitSourceOrBidirAddr InetAddress,
 mplsMldpFecOpaqueTransitGroupAddrType InetAddressType,
 mplsMldpFecOpaqueTransitGroupAddr InetAddress,
 mplsMldpFecAdminStatus INTEGER,
 mplsMldpFecOperStatus INTEGER,
 mplsMldpFecMoFrr INTEGER,
 mplsMldpFecLsrState INTEGER,
 mplsMldpFecUpTime TimeStamp
}

mplsMldpFecIndex OBJECT-TYPE
SYNTAX IndexInteger
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The index which uniquely identifies this entry."

::= { mplsMldpFecEntry 1 }

mplsMldpFecType OBJECT-TYPE
SYNTAX INTEGER {
 p2mp(6),
 mp2mpUpstream(7),
 mp2mpDownstream(8)
}
MAX-ACCESS read-only
The type of the FEC. If the value of this object is 6, then it is P2MP Fec Type, and 7, 8 are correspond to MP2MP upstream and downstream type.

"RFC6388, Section 2.2. The P2MP FEC Element and the section 3.3 for the MP2MP Fec elements."

::= { mplsMldpFecEntry 2 }

mplsMldpFecRootAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is the type of the Internet address. The value of this object, decides how the value of the mplsMldpFecRootAddr object is interpreted."

"RFC6388, Section 2.2. The P2MP FEC Element and the section 3.3 for the MP2MP Fec elements."

::= { mplsMldpFecEntry 3 }

mplsMldpFecOpaqueType OBJECT-TYPE
SYNTAX INTEGER {
genericLspId(1),
..."
.. code-block::

 transitIpv4Source(3),
 transitIpv6Source(4),
 transitIpv4Bidir(5),
 transitIpv6Bidir(6)

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This is opaque type of the mLDP FEC. The value of this object is
 shown below.

 1 - The Generic LSP Identifier
 3 - Transit IPv4 Source TLV
 4 - Transit IPv6 Source TLV
 5 - Transit IPv4 Bidir TLV
 6 - Transit IPv6 Bidir TLV.

 ::= { mplsMldpFecEntry 5 }

mplsMldpFecOpaqueGenLspId OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The 32-bit unsigned integer value which is to represent Generic
LSP ID. This value is only valid if the mplsMldpFecOpaqueType is
genericLspId(1), otherwise 0 must be returned."

REFERENCE
"RFC6388, Section 2.3.1."

 ::= { mplsMldpFecEntry 6 }

mplsMldpFecOpaqueTransitSourceOrBidirAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is the type of the
Internet address. The value of this object,
decides how the value of the mplsMldpFecOpaqueTransitSourceOrBidirAddr
object is interpreted."

REFERENCE
"RFC6826, Section 3.1."

 ::= { mplsMldpFecEntry 7 }

mplsMldpFecOpaqueTransitSourceOrBidirAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object is interpreted based
 on the value of the mplsMldpFecOpaqueTransitSourceOrBidirAddrType
 object. This is source node address for the mLDP inband LSP."

REFERENCE
 "RFC6826, Section 3.1."

::= { mplsMldpFecEntry 8 }

mplsMldpFecOpaqueTransitGroupAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object is the type of the
 Internet address. The value of this object,
 decides how the value of the mplsMldpFecOpaqueTransitGroupAddr
 object is interpreted."

REFERENCE
 "RFC6826, Section 3.2."

::= { mplsMldpFecEntry 9 }

mplsMldpFecOpaqueTransitGroupAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object is interpreted based
 on the value of the mplsMldpFecOpaqueTransitGroupAddrType
 object. This is group node address for the mLDP inband LSP."

REFERENCE
 "RFC6826, Section 3.2."

::= { mplsMldpFecEntry 10 }

mplsMldpFecAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
 up(1), -- ready to pass data
 down(2) -- out of service
}

Kishore Tируveedhula, et Expires April 14, 2016 [Page 22]
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the admin status of this mLDP FEC."

DEFVAL { up }
::= { mplsMldpFecEntry 11 }

mplsMldpFecOperStatus OBJECT-TYPE
SYNTAX INTEGER {
 up(1), -- ready to pass data
 down(2) -- out of service
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the actual operational status of this mLDP Fec."

::= { mplsMldpFecEntry 12 }

mplsMldpFecMoFrr OBJECT-TYPE
SYNTAX INTEGER {
 enable(1),
 disable(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object provides whether MoFRR enabled for this mLDP FEC.

on this mLDP FEC. As mentioned in the section 3.2 of [I-D.ietf-rtgwg-mofrr],
When this is enabled, then mLDP may select two upstream sessions,
one is primary and other one is backup. The backup traffic is
discarded when the primary upstream session is UP. When the
primary upstream session goes down, the traffic from the backup
upstream session will be forwarded to downstream.
"

::= { mplsMldpFecEntry 13 }

mplsMldpFecLsrState OBJECT-TYPE
SYNTAX INTEGER {
 egress(1),
 bud(2),
 transit(3),
 ingress(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the role of FEC either egress, bud, transit or ingress"
 ::= { mplsMldpFecEntry 14 }

mplsMldpFecUpTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This values shows Fec UP time. This is time since mplsMldpFecOperStatus is UP."
 ::= { mplsMldpFecEntry 15 }

mplsMldpFecBranchStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF MplsMldpFecBranchStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table provides mLDP Fec branch MPLS Traffic Stats information."
 ::= { mplsMldpObjects 4 }

mplsMldpFecBranchStatsEntry OBJECT-TYPE
SYNTAX MplsMldpFecBranchStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table is created by the LSR for each downstream branch (out-segment) from this LSR for this mLDP LSP. Each downstream session may represent a single out-segment.

Each entry in the table is indexed by the four identifiers of the mLDP LSP, and the out-segment that identifies the outgoing branch."
INDEX { mplsLdpEntityLdpId,
 mplsLdpEntityIndex,
 mplsLdpPeerLdpId,
 mplsMldpFecBranchFecIndex,
 mplsMldpFecBranchOutSegIndex }
 ::= { mplsMldpFecBranchStatsTable 1 }
MplsMldpFecBranchStatsEntry ::= SEQUENCE {
 mplsMldpFecBranchFecIndex MplsIndexType,
 mplsMldpFecBranchOutSegIndex MplsIndexType,
 mplsMldpFecBranchStatsPackets Counter64,
 mplsMldpFecBranchStatsBytes Counter64,
 mplsMldpFecBranchStatsDiscontinuityTime TimeStamp
}

mplsMldpFecBranchFecIndex OBJECT-TYPE
SYNTAX MplsIndexType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This index identifies the mLDP FEC entry in the
mplsMldpFecTable. This is same as mplsMldpFecIndex."
::= { mplsMldpFecBranchStatsEntry 1 }

mplsMldpFecBranchOutSegIndex OBJECT-TYPE
SYNTAX MplsIndexType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This object identifies an outgoing branch from this mLDP LSP
Its value is unique within the context of the mLDP LSP.
This contains the same value as the mplsOutSegmentIndex in the
MPLS-LSR-STD-MIBs mplsOutSegmentTable."
::= { mplsMldpFecBranchStatsEntry 2 }

mplsMldpFecBranchStatsPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object represent the 64-bit value, which gives the number
of packets forwarded by the mLDP LSP onto this branch.
This object should be read in conjunction with
mplsMldpFecBranchStatsDiscontinuityTime."
::= { mplsMldpFecBranchStatsEntry 3 }

mplsMldpFecBranchStatsBytes OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This object represent the 64-bit value, which gives the number of bytes forwarded by the mLDP LSP onto this branch. This object should be read in conjunction with mplsMldpFecBranchStatsDiscontinuityTime."

::= { mplsMldpFecBranchStatsEntry 4 }

mplsMldpFecBranchStatsDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime on the most recent occasion at which any one or more of this rows Counter32 or Counter64 objects experienced a discontinuity. If no such discontinuity has occurred since the last re-initialization of the local management subsystem, then this object contains a zero value."

::= { mplsMldpFecBranchStatsEntry 5 }

-- End of mplsMldpFecBranchStatsTable

-- MPLS mLDP LSP Upstream Session Table.

mplsMldpFecUpstreamSessTable OBJECT-TYPE
SYNTAX SEQUENCE OF MplsMldpFecUpstreamSessEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"This table provides mLDP Fec upstream Session information."

::= { mplsMldpObjects 5 }

mplsMldpFecUpstreamSessEntry OBJECT-TYPE
SYNTAX MplsMldpFecUpstreamSessEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry in this table is created by the LSR for each upstream session (in-segment) from this LSR for this mLDP LSP. Each upstream session may represent a single in-segment. Each entry in the table is indexed by the four identifiers of the mLDP LSP, and the in-segment that identifies the incoming traffic."
INDEX { mplsLdpEntityLdpId, mplsLdpEntityIndex, mplsLdpPeerLdpId, mplsMldpFecUpstreamSessFecIndex, mplsMldpFecUpstreamSessInSegIndex }

::= { mplsMldpFecUpstreamSessTable 1 }

MplsmLdpFecUpstreamSessEntry ::= SEQUENCE {
 mplsMldpFecUpstreamSessFecIndex MplsIndexType,
 mplsMldpFecUpstreamSessInSegIndex MplsIndexType,
 mplsMldpFecUpstreamSessPrimary INTEGER,
 mplsMldpFecUpstreamSessActive INTEGER,
 mplsMldpFecUpstreamSessPackets Counter64,
 mplsMldpFecUpstreamSessBytes Counter64,
 mplsMldpFecUpstreamSessDiscontinuityTime TimeStamp
}

mplsMldpFecUpstreamSessFecIndex OBJECT-TYPE
SYNTAX MplsIndexType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This index identifies the mLDP FEC entry in the
mplsMldpFecTable."

::= { mplsMldpFecUpstreamSessEntry 1 }

mplsMldpFecUpstreamSessInSegIndex OBJECT-TYPE
SYNTAX MplsIndexType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This object identifies an upstream session from this mLDP LSP
Its value is unique within the context of the mLDP LSP.
This contains the same value as the mplsInSegmentIndex in the
MPLS-LSR-STD-MIBs mplsInSegmentTable."

::= { mplsMldpFecUpstreamSessEntry 2 }

mplsMldpFecUpstreamSessPrimary OBJECT-TYPE
SYNTAX INTEGER {
 primary(1),
 backup(2)
}
This indicated whether the received traffic from upstream is primary or backup. This is valid only if the MoFRR (mplsMldpFecMoFrr) is enabled on this FEC.

 ::= { mplsMldpFecUpstreamSessEntry 3 }

mplsMldpFecUpstreamSessActive OBJECT-TYPE
SYNTAX INTEGER { active(1), inactive(2) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This indicates whether the upstream session is active, means the LSR programmed the forwarding engine to receive the traffic from this upstream session. This will be Inactive if the LSR is waiting for MBB Ack."

 ::= { mplsMldpFecUpstreamSessEntry 4 }

mplsMldpFecUpstreamSessPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object represent the 64-bit value, which gives the number of packets received by the mLDP LSP from this upstream session. This object should be read in conjunction with mplsMldpFecUpstreamSessDiscontinuityTime."

 ::= { mplsMldpFecUpstreamSessEntry 5 }

mplsMldpFecUpstreamSessBytes OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object represent the 64-bit value, which gives the number of bytes received by the mLDP LSP from this upstream session. This object should be read in conjunction with mplsMldpFecUpstreamSessDiscontinuityTime."

 ::= { mplsMldpFecUpstreamSessEntry 6 }

mplsMldpFecUpstreamSessDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime on the most recent occasion at which
any one or more of this rows Counter32 or Counter64 objects
experienced a discontinuity. If no such discontinuity has
occurred since the last re-initialization of the local
management subsystem, then this object contains a zero
value."
::= { mplsMldpFecUpstreamSessEntry 7 }

-- End of mplsMldpFecBranchStatsTable

-- MPLS mLDP Interface Traffic Stats Table.

mplsMldpInterfaceStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF MplsMldpInterfaceStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table provides mLDP Traffic Stats on specified interface."
::= { mplsMldpObjects 6 }

MplsMldpInterfaceStatsEntry OBJECT-TYPE
SYNTAX MplsMldpInterfaceStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table is created by the LSR for each
downstream branch (out-segment) from this LSR for this mLDP
LSP. Each downstream session may represent a single out-segment.

Each entry in the table is indexed by the four identifiers
of the mLDP LSP, and the out-segment that identifies the
outgoing branch."

INDEX { mplsMldpInterfaceIndex }
::= { mplsMldpInterfaceStatsTable 1 }

MplsMldpInterfaceStatsEntry ::= SEQUENCE {
 mplsMldpInterfaceIndex InterfaceIndex,
 mplsMldpInterfaceStatsSentPackets Counter64,
mplsMldpInterfaceIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This index identifies the specific interface."
::= { mplsMldpInterfaceStatsEntry 1 }

mplsMldpInterfaceStatsSentPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This is 64 bit value, which gives the number of packets
 forwarded by all mLDP LSPs onto this interface."
::= { mplsMldpInterfaceStatsEntry 2 }

mplsMldpInterfaceStatsSentBytes OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This is 64 bit value, which gives the number of bytes
 forwarded by all mLDP LSPs onto this interface."
::= { mplsMldpInterfaceStatsEntry 3 }

mplsMldpInterfaceRecvPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This is 64 bit value, which gives the number of packets
 received by all mLDP LSPs from this interface."
::= { mplsMldpInterfaceStatsEntry 4 }

mplsMldpInterfaceStatsRecvBytes OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
This is 64 bit value, which gives the number of bytes received by all mLDP LSPs from this interface.

 ::= { mplsMldpInterfaceStatsEntry 5 }

-- End of mplsMldpInterfaceStatsTable

-- Notifications.

mplsMldpFecUp NOTIFICATION-TYPE
OBJECTS {
 mplsMldpFecAdminStatus,
 mplsMldpFecOperStatus

} STATUS current
DESCRIPTION
"This notification is generated when a mplsMldpFecOperStatus object changes from down to up."

 ::= { mplsMldpNotifications 1 }

mplsMldpFecDown NOTIFICATION-TYPE
OBJECTS {
 mplsMldpFecAdminStatus,
 mplsMldpFecOperStatus

} STATUS current
DESCRIPTION
"This notification is generated when a mplsMldpFecOperStatus object changes from up to down."

 ::= { mplsMldpNotifications 2 }

mplsMldpMoFrrStatusChange NOTIFICATION-TYPE
OBJECTS {
 mplsMldpFecUpstreamSessPrimary,

} STATUS current
DESCRIPTION
"This notification is generated when a mplsMldpFecUpstreamSessPrimary object changes from primary to backup and vice versa."

 ::= { mplsMldpNotifications 3 }

-- End of notifications.
12. Security Considerations

This MIB module is useful for the configuration of certain objects and monitoring of mLDP LSPs.

There are no management objects defined in this MIB module that have a MAX-ACCESS clause of read-write and/or read-create. So, if this MIB module is implemented correctly, then there is no risk that an intruder can alter or create any management objects of this MIB module via direct SNMP SET operations.

Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

- mplsMldpFecTable
- mplsLdpPeerCapabilityTable
- mplsMldpSessionStatsTable
- mplsMldpFecBranchStatsTable
- mplsMldpFecUpstreamSessTable
- mplsMldpInterfaceStatsTable
- mplsMldpNumFecs
- mplsMldpNumFecsActive
- mplsMldpMbbTime

Above listed tables and objects show information about the mLDP LSPs, its route through the network, and its traffic statistics. Knowledge of this information could be used to compromise the network, or simply to breach confidentiality. If an Administrator does not want to reveal this information, these tables and objects should be considered sensitive/vulnerable.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to
access and GET/SET (read/change/create/delete) the objects in this MIB module.

Implementations SHOULD provide the security features described by the SNMPv3 framework (see [RFC3410]), and implementations claiming compliance to the SNMPv3 standard MUST include full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353].

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

13. IANA Considerations

This is new MPLS MIB module, contained in this document and IANA is requested to assign an oid (mplsStdMIB YYY) under the mplsStdMIB subtree to the MPLS-MLDP-STD-MIB module specified in this document.

14. Acknowledgments

The authors wish to thank Santosh Esale, Alia Atlas and Martin Ehlers for doing the detailed review. Thanks to Adrian Farrel and Raveendra Torvi for their input to this work and for many helpful suggestions.

15. References

15.1. Normative References

15.2. Informative References

[I-D.ietf-mpls-mldp-node-protection]
Appendix A. Change Log

Appendix B. Open Issues

Authors’ Addresses

Kishore Tiruveedhula (editor)
Juniper Networks
10 Technology Park Drive
Westford MA 01886
USA

Phone: +1 9785898861
EMail: kishore@juniper.net

Uwe Joorde
Deutsche Telekom
Dahlweg 100
Munster 48153
Germany

EMail: Uwe.Joorde@telekom.de

Arvind Venkateswaran
Cisco Systems
510 McCarthy Blvd
Milpitas CA 95035
USA

EMail: arvvenka@cisco.com