Return Routability Check for DTLS 1.2 and DTLS 1.3
draft-tschofenig-tls-dtls-rrc-01

Abstract

This document specifies a return routability check for use in context of the Connection ID (CID) construct for the Datagram Transport Layer Security (DTLS) protocol versions 1.2 and 1.3.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 3, 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

In "classical" DTLS, selecting a security context of an incoming DTLS record is accomplished with the help of the 5-tuple, i.e. source IP address, source port, transport protocol, destination IP address, and destination port. Changes to this 5 tuple can happen for a variety of reasons over the lifetime of the DTLS session. In the IoT context, NAT rebinding is common with sleepy devices. Other examples include end host mobility and multi-homing. Without CID, if the source IP address and/or source port changes during the lifetime of an ongoing DTLS session then the receiver will be unable to locate the correct security context. As a result, the DTLS handshake has to be re-run. Of course, it is not necessary to re-run the full handshake if session resumption is supported and negotiated.

A CID is an identifier carried in the record layer header of a DTLS datagram that gives the receiver additional information for selecting the appropriate security context. The CID mechanism has been specified in [I-D.ietf-tls-dtls-connection-id] for DTLS 1.2 and in [I-D.ietf-tls-dtls13] for DTLS 1.3.
Section 6 of [I-D.ietf-tls-dtls-connection-id] describes how the use of CID increases the attack surface by providing both on-path and off-path attackers an opportunity for (D)DoS. It then goes on describing the steps a DTLS principal must take when a record with a CID is received that has a source address (and/or port) different from the one currently associated with the DTLS connection. However, the actual mechanism for ensuring that the new peer address is willing to receive and process DTLS records is left open. This document standardizes a return routability check (RRC) as part of the DTLS protocol itself.

The return routability check is performed by the receiving peer before the CID-to-IP address/port binding is updated in that peer’s session state database. This is done in order to provide more confidence to the receiving peer that the sending peer is reachable at the indicated address and port.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

This document assumes familiarity with the CID format and protocol defined for DTLS 1.2 [I-D.ietf-tls-dtls-connection-id] and for DTLS 1.3 [I-D.ietf-tls-dtls13].

3. The Return Routability Check Message

When a record with CID is received that has the source address of the enclosing UDP datagram different from the one previously associated with that CID, the receiver MUST NOT update its view of the peer’s IP address and port number with the source specified in the UDP datagram before cryptographically validating the enclosed record(s) but instead perform a return routability check.

```c
enum {
    invalid(0),
    change_cipher_spec(20),
    alert(21),
    handshake(22),
    application_data(23),
    heartbeat(24), /* RFC 6520 */
    return_routability_check(TBD), /* NEW */
    (255)
} ContentType;
```
struct {
 opaque cookie<1..2^16-1>;
} Cookie;

struct {
 Cookie cookie;
} return_routability_check;

The newly introduced return_routability_check message contains a cookie. The semantic of the cookie is similar to the cookie used in the HelloRetryRequest message defined in [RFC8446].

The return_routability_check message MUST be authenticated and encrypted using the currently active security context.

The receiver that observes the peer’s address and or port update MUST stop sending any buffered application data (or limit the sending rate to a TBD threshold) and initiate the return routability check that proceeds as follows:

1. A cookie is placed in the return_routability_check message;

2. The message is sent to the observed new address and a timeout T is started;

3. The peer endpoint, after successfully verifying the received return_routability_check message echoes it back;

4. When the initiator receives and verifies the return_routability_check message, it updates the peer address binding;

5. If T expires, or the address confirmation fails, the peer address binding is not updated.

After this point, any pending send operation is resumed to the bound peer address.

4. RRC Example

The example shown in Figure 1 illustrates a client and a server exchanging application payloads protected by DTLS with an unilaterally used CIDs. At some point in the communication interaction the IP address used by the client changes and, thanks to the CID usage, the security context to interpret the record is successfully located by the server. However, the server wants to test the reachability of the client at his new IP address, to avoid
being abused (e.g., as an amplifier) by an attacker impersonating the client.
Figure 1: Return Routability Example
5. Security and Privacy Considerations

Note that the return routability checks do not protect against flooding of third-parties if the attacker is on-path, as the attacker can redirect the return routability checks to the real peer (even if those datagrams are cryptographically authenticated). On-path adversaries can, in general, pose a harm to connectivity.

6. IANA Considerations

IANA is requested to allocate an entry to the existing TLS "ContentType" registry, for the return_routability_check(TBD) defined in this document.

7. Open Issues

- Should the return routability check use separate sequence numbers and replay windows?
- Should the heartbeat message be re-used instead of the proposed new message exchange?

8. Normative References

[I-D.ietf-tls-dtls-connection-id]

[I-D.ietf-tls-dtls13]

Appendix A. History

RFC EDITOR: PLEASE REMOVE THE THIS SECTION

- 01: Removed text that overlapped with draft-ietf-tls-dtls-connection-id
- 00: Initial version

Appendix B. Acknowledgements

We would like to thank Achim Kraus, Hanno Becker and Manuel Pegourié-Gonnard for their input to this document.

Authors’ Addresses

Thomas Fossati
Arm Limited
EMail: thomas.fossati@arm.com

Hannes Tschofenig (editor)
Arm Limited
EMail: hannes.tschofenig@arm.com