Bijective MAC for Constraint Nodes

draft-urien-core-bmac-00.txt

Abstract

In this draft context, things are powered by micro controllers units (MCU) comprising a set of memories such as static RAM (SRAM), FLASH and EEPROM. The total memory size, ranges from 10KB to a few megabytes.

In this context code and data integrity is a major security issue, for the deployment of Internet of Things infrastructure. The goal of the bijective MAC (bMAC) is to compute an integrity value, which cannot be guessed by malicious software.

In classical keyed MAC, MAC is computing according to a fix order. In the bijective MAC, the content of N addresses is hashed according to a permutation P (i.e. bijective application).

The number of permutations for N addresses is N!. So the computation of the bMAC requires the knowledge of the whole space memory; this is trivial for genuine software, but could very difficult for corrupted software.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 2020.
Bijective MAC for Constraint Nodes

November 2019

Table of Contents

Abstract... 1
Requirements Language.. 1
Status of this Memo.. 1
Copyright Notice... 2
1 Overview.. 4
2 Bijective MAC.. 4
 2.1 Memory space.. 4
 2.2 Permutation.. 4
 2.3 bMAC computation... 5
 2.4 Unused memory... 5
 2.5 Permutation entropy....................................... 5
 2.6 Time-stamped bMAC....................................... 5
3. The Pq permutation family..................................... 6
 3.1 How to compute generators................................ 6
 3.2 Shifted permutation....................................... 7
 3.3 Composition in Pq... 7
 3.4 Code example... 7
 3.4.1 Example 1 .. 7
 3.4.2 Example 2 .. 8
4 bMAC protocol.. 9
5 IANA Considerations.. 9
6 Security Considerations... 9
7 References... 9
 7.1 Normative References.................................... 10
 7.2 Informative References.................................. 10
8 Authors’ Addresses.. 10
Overview

In this draft context, things are powered by micro controllers units (MCU) comprising a set of memories such as static RAM (SRAM), FLASH and EEPROM. The total memory size ranges from 10KB to a few megabytes.

In this context code and data integrity is a major security issue for the deployment of Internet of Things infrastructure. The goal of the bijective MAC (bMAC) is to compute an integrity value, which cannot be guessed by malicious software.

In classical keyed MAC, MAC is computing according to a fix order. In the bijective MAC, the content of N addresses (A[0]...A[N-1]) is hashed according to a hash function H and a permutation P (i.e. bijective application in [0,N-1]) so that:

\[\text{bMAC}(A, P) = H(A[P(0)] || A[P(1)] ... || A[P(N-1)]) \]

The bijective MAC key is the permutation P. The number of permutations for N addresses is N!, as an illustration 35! is greater than 2**128. So the computation of the bMAC requires the knowledge of the whole space memory; this is trivial for genuine software, but could very difficult for corrupted software.

Bijective MAC

Memory space

The memory space is represented by an application A, working with N addresses, whose content is a byte value.

<table>
<thead>
<tr>
<th>[0,N-1] -> [0,255]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x -> A[x]</td>
</tr>
</tbody>
</table>

Non volatile memories (FLASH, EEPROM) MUST be included in the memory space. A subset of SRAM is included in the memory, whose structure relies on operational constraints.

Permutation

For practical reasons, permutation MAY use a range of M values, greater than the size N of the memory space.

<table>
<thead>
<tr>
<th>[0,M-1] -> [0,M-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x -> P(x)</td>
</tr>
</tbody>
</table>

For example, given a N memory space, and q a prime number so that q>N+1, and g a generator for the group Z/qZ, the P permutation (with M= q-1) can computed as:

\[P(x) = g^x \mod q \]
2.3 bMAC computation

We consider a one way hash function H (such as SHA2 or SHA3) with three procedures, $H\text{.reset}$, $H\text{.update}$, and $H\text{.final}$.

Given a space memory N, a permutation P with M values, the bMAC, according to C like notation, is computed as:

```c
H.reset();
for (i=0; i<M; i++)
{ if (P(i) < N)
    H.update(A[P[i]]);
}
bMAC= H.final();
```

2.4 Unused memory

Unused memory MAY be filled by pseudo random values, before performing the bMAC computation.

2.5 Permutation entropy

A family of P_k permutations is a subset of $M!$ existing permutations of M elements, which is computed according to dedicated algorithms.

We note $O(P_k)$ the number of elements of a P_k family.

The entropy is the integer e, such as 2^e is closed to $O(P_k)$:

$$2^e \leq O(P_k) < 2^{e+1}$$

The entropy of a family may be increased by the composition of P_k functions so that:

$$P(k_1,k_2,...,k_n) = P_n \circ ... \circ P_2 \circ P_1$$

2.6 Time-stamped bMAC

We assume that the bMAC computing time (T) ranges between the values T_{min} and T_{max}:

$$T_{\text{min}} \leq T \leq T_{\text{max}}$$

We define the following values:

Range = $T_{\text{max}}-T_{\text{min}}+1$
Delta = Tmin modulo Range

For a given computing time T we define the canonical computing time cT as :

\[cT = (T - \Delta) / \text{Range} \]

For every T value, cT has a fix value equal to the quotient of Tmin/Range.

The main interest of the canonical time is that it could work as a secret value, deduced from the bMAC computing but not stored in the software memory image.

The time-stamped bMAC is computed from an exor operation between the bMAC and the canonical time:

\[\text{Time-stamped bMAC} = \text{bMAC exor } cT \]

3. The Pq permutation family

We consider a N memory space, and q a prime number so that q>N+1.

\(\mathbb{Z}/q\mathbb{Z} \) is a monogenous group with \(n=\phi(q-1) \) generators \(g \), \(\phi \) being the Euler number. Generators \(g \) in \(\mathbb{Z}/q\mathbb{Z} \) can be used to build a permutation family \(P_q = \{ P_{g_1}, P_{g_2}, \ldots, P_{g_n} \} \), so that:

\[
\begin{align*}
\text{Pg}(x) & \mid [1,q-1] \rightarrow [1,q-1] \\
& \mid x \rightarrow g^x
\end{align*}
\]

Given a P permutation working in the \([1,q-1]\) range (such as \(P_g \)), we use the \(P^*(P) \) permutation in order to enforce compatibility with the memory space \(A(x) \) starting at the zero address :

\[
\begin{align*}
\text{P}^* & \mid [0,q-2] \rightarrow [0,q-2] \\
& \mid x \rightarrow P^*(x) = P(1+x)-1
\end{align*}
\]

3.1 How to compute generators

The group order being \(q-1 \), generators are numbers prime with \(q-1 \), i.e. :

\(\text{GCD}(g,q-1)=1 \), \(\text{GCD} \) being the Greatest Common Divisor of two integers.

Example 1.
Memory space \(N = 512B \) EEPROM + 8192B Flash + 1024B SRAM = 9728B

Nearest prime number \(q = 9733 \)

\(q-1 = 9732 = 811 \times 4 \times 3 \)

\(\phi(9732) = 3240 \)

Generators are numbers, less than \(q=9733 \), prime with 811, 4 and 3.
Example 2.
Memory space $N = 4096B$ EEPROM + $262144B$ FLASH + $1024B$ SRAM = 274432
prime number $q = 278543$
$q-1 = 278542 = 2 \times 11^2 \times 1151$
$\phi(278542) = 126500$
generators are numbers, less than $q=278543$, prime with 2, 11, and 1151

3.2 Shifted permutation

Given an integer s in the range $[0, q-1]$, the shifted permutation $P(g,s)$ is defined as

\[
\begin{align*}
P(g,s)(x) & \rightarrow [1,q-1] \\
x & \rightarrow s \cdot g^x
\end{align*}
\]

In other words $P(g,s)(x) = s \cdot P_g(x)$.

Because s can be written in the form $s = g^d$, $s \cdot g = g^{x+d}$, which leads to a right shift.

The number of shifted permutations is $(q-1) \cdot \phi(q-1)$.

The benefit of shifted permutation is to increase, with a low cost computation, the bMAC entropy.

3.3 Composition in F_q

Given a set of k ptuples $\{(g_1,s_1), (g_2,s_2), \ldots, (g_k,s_k)\}$ and associated shifted permutations $P(g_i,s_i)$, a permutation $P(q,k)$ is computed according to the relation:

$P(q,k) = P(g_k,s_k) \circ \ldots \circ P(g_2,s_2) \circ P(g_1,s_1)$

3.4 Code example

The bMAC is computed with a permutation $P = P(g_2) \circ P(g_1,s_1)$
The pseudo code is written in a C like way.
H is a SHA3-256 KECCAK hash function.

3.4.1 Example 1

In this example 32 bits integers are used.
The prime number q is 9733.
The address space is $N= 9664$.
With a 8 bits processor, 12MHz clock, the bMAC is computed in about $10s$, i.e. $1ms$ per byte.
Bijective MAC for Constraint Nodes November 2019

```c
uint32-t x,y,bitn,v,gi[13];
uint32-t PRIME, g1=a-generator, s1=a-value, g2=a-generator;
bool tohash;

PRIME =9733;
H.reset();

gi[0]= g2;
for (int n=1;n<=13;n++)
gi[n] = (gi[n-1] * gi[n-1]) % PRIME;

x= s1;

for(int i=1;i<PRIME;i++)
{ tohash = false
  x = (x*g1) % PRIME;
  bitn=x;
  y=1;
  for (int n=1;n<=14;n++)
  { if ( (bitn & 0x1) == 0x1)  y = (y*gi[n-1]) % PRIME;
    bitn = bitn >>1;
  }
  v = (y-1);
  // if address v exists, read the v address content A(v)
  // tohash=true ;
  if (tohash) H.update(A(v));
}

H.dofinal();
```

3.4.2 Example 2

In this example 64 bits and 32 bits integers are used.
The prime number q is 278543.
The address space is N= 271360.
With a 8 bits processor, 16MHz clock, the bMAC is computed in about
320s, i.e. 1.1 ms per byte.

```c
uint32-t bitn,v;
uint64-t x,y,gi[19];
uint32-t PRIME, g1=a-generator, s1=a-value, g2=a-generator;
bool tohash;

PRIME = 278543;
H.reset();

gi[0]=(uint64-t)g2;
for (n=1;n<=19;n++)
{ gi[n] = gi[n-1] * gi[n-1];
  gi[n] = gi[n] % PRIME;
```
x = s1;

for (i=1; i<PRIME; i++)
{
 tohash=false;
 x = x * (uint64-t)g1 ;
 x= x % PRIME ;
 bitn= (uint32-t) x;
 y= (uint64-t) 1;

 for (n=1; n<=19; n++)
 {
 if ((bitn & 0x1) == 0x1)
 {
 y = y * gi[n-1] ;
 y = y % PRIME;
 }
 bitn = bitn >>1;
 }

 v = (uint32-t)(y-1);
 // if address v exists, read the v address content A(v)
 // tohash=true ;
 if (tohash) H.update(A(v));
}

H.final();

4 bMAC protocol

A bMAC protocol involves a bMAC requester and a bMAC provider.

The requester sends to the bMAC provider the parameters needed for the P permutation.

The bMAC provider computes the bMAC according to the P permutation and returns the result.

If the bMAC provider has access to internet, the requester (typically a gateway) SHOULD control its internet access in order to avoid side channel attack.

5 IANA Considerations

TODO

6 Security Considerations

TODO

7 References

Urien

Expires May 2020

[Page 9]
7.1 Normative References

7.2 Informative References

8 Authors’ Addresses

Pascal Urien
Telecom ParisTech
19 Place Marguerite Perey
91120 Palaiseau
France

Phone: NA
Email: Pascal.Urien@telecom-paristech.fr