Abstract

In the context of MPLS TE Fast Reroute ([FAST-REROUTE]), the Merge Point (MP) address is required at the Point of Local Repair (PLR) in order to select a backup tunnel intersecting a protected Traffic Engineering LSP on a downstream LSR. However, existing protocol mechanisms are not sufficient to find MP address multi-areas or multi-
domain routing network. Hence, the current MPLS Fast Reroute mechanism cannot be used to protect inter-area or inter-AS TE LSPs from a failure of an ABR (Area Border Router) or ASBR (Autonomous System Border Router) respectively. This document specifies the use of existing RRO IPv4 and IPv6 subobjects (with a new flag defined) to define the node-id subobject in order to solve this issue.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [1].

1. Terminology

LSR - Label Switch Router

LSP - An MPLS Label Switched Path

PCS - Path Computation Server (may be any kind of LSR (ABR, ...)) or a centralized path computation server

PCC - Path Computation Client (any head-end LSR) requesting a path computation of the Path Computation Server.

Local Repair - Techniques used to repair LSP tunnels quickly when a node or link along the LSPs path fails.

Protected LSP - An LSP is said to be protected at a given hop if it has one or multiple associated backup tunnels originating at that hop.

Bypass Tunnel - An LSP that is used to protect a set of LSPs passing over a common facility.

Backup Tunnel - The LSP that is used to backup up one of the many LSPs in many-to-one backup.

PLR - Point of Local Repair. The head-end of a backup tunnel or a detour LSP.

MP - Merge Point. The LSR where detour or backup tunnels meet

Vasseur, Ali and Sivabalan

draft-vasseur-mpls-nodeid-subobject-00.txt February 2003

the protected LSP. In case of one-to-one backup, this is where multiple detours converge. A MP may also be a PLR.

NHOP Bypass Tunnel - Next-Hop Bypass Tunnel. A backup tunnel which bypasses a single link of the protected LSP.

NNHOP Bypass Tunnel - Next-Next-Hop Bypass Tunnel. A backup tunnel which bypasses a single node of the protected LSP.

Reroutable LSP - Any LSP for which the "Local protection desired" bit is set in the Flag field of the SESSION_ATTRIBUTE object of its Path messages.

CSPF - Constraint-based Shortest Path First.

Inter-AS MPLS TE: TE LSP whose Head-end LSR and Tail-end LSR do not reside within the same Autonomous System (AS) or both Head-end
LSR and Tail-end LSR are in the same AS but the TE tunnel transiting path may be across different ASes.

Interconnect or ASBR Routers: Routers used to connect to another AS of a different or the same Service Provider via one or more Inter-AS links.

2. Introduction

MPLS Fast Reroute (FRR) ([FAST-REROUTE]) is a fast recovery local protection technique used to protect Traffic Engineering LSPs from link/SRLG/node failure. One or more TE LSPs (called backup LSPs) are pre-established to protect against the failure of a link/node/SRLG. In case of failure, every protected TE LSP traversing the failed resource is rerouted onto the appropriate backup tunnels in 10s of msecs.

There are a couple of requirements on the backup tunnel path. At least, a backup tunnel should not pass through the element it protects. Additionally, a primary tunnel and a backup tunnel should intersect at least at two points (nodes): Point of Local Repair (PLR) and Merge Point (MP). The former should be the head-end LSR of the backup tunnel, and the latter should be the tail-end LSR of the backup tunnel. The PLR is where FRR is triggered when link/node/SRLG failure happens. Furthermore, the MP address is also required to send RSVP Refresh messages of the rerouted TE LSPs when the FRR is active.

There are different methods for computing paths for backup tunnels. Specifically, a user can statically configure one or more backup tunnels at the PLR, with explicit path or the PLR can be configured to automatically compute a backup path or to send a path computation request to a PCS (which can be an LSR or an off-line tool).

Consider the following scenario:

Vasseur, Ali and Sivabalan

draft-vasseur-mpls-nodeid-subobject-00.txt

February 2003

Assumptions:
- a multi-area network made of three areas: 0, 1 and 2.
- a protected TE LSP T1 (TE LSP signaled with the "local Protection desired" bit set in the SESSION-ATTRIBUTE object or the FRR object) from R0 to R3
- a backup tunnel B1 from R1 to R2, not traversing ABR1, and following the R1-ABR3-R2 path. R1 reroutes any protected TE LSP traversing ABR1 onto the backup tunnel B1 in case of ABR1’s failure.

```
<--- area 1 --><---area 0---><---area 2--->
R0-----R1-ABR1--R2------ABR2--------R3
          /                \
         ABR3 /            
```

When T1 is first signaled, the PLR R1 needs to dynamically select an appropriate backup tunnel intersecting T1 on a downstream LSR. However, existing protocol mechanisms are not sufficient to unambiguously find MP address in a network with inter-area or inter-AS traffic engineering (although the example above was given in the context of multi-area networks, a similar reasoning applies to TE LSP spanning multiple ASes). This draft addresses these limitations.

R1 needs to ensure the following:

1. Backup tunnel intersects with the primary tunnel at the MP (and thus has a valid MP address), e.g., in Figure 1, R1 needs to determine that T1 and B1 share the same MP node R2,
2. Backup tunnel satisfies the primary LSP’s request with respect to the bandwidth protection request (i.e., bandwidth guaranteed for the primary tunnel during failure), and the type of protection (preferably, protecting against a node failure versus a link failure), as specified in [FAST-REROUTE].

A PLR can make sure that condition (1) is met by examining the Record Route Object (RRO) of the primary tunnel to see if any of the addresses specified in the RRO is attached to the tail-end of the backup tunnel. As per [RSVP-TE], the addresses specified in the RRO IPv4 subobjects can be node-ids and/or interface addresses, with specific recommendation to use the interface address of the outgoing Path messages. Hence, in Figure 1, router R2 is more likely to specify interface addresses in the RROs for T1 and B1. Note that these interface addresses are different in this example.

The problem of finding the MP using the interface addresses or node-ids can be easily solved in a single area TE. Specifically, in the case of single area TE, the PLR has the knowledge of all the interfaces attached to the tail-end of the backup tunnel. This information is available in PLR’s IGP topology database. Thus, the PLR can determine whether a backup tunnel intersecting a protected TE LSP on a downstream node exists and can also find the MP address regardless of how the addresses contained in the RRO IPv4 or IPv6 subobjects are specified (i.e., whether using the interface addresses or the node IDs). However, such routing information is not available in a multi-area and inter-AS traffic-engineering environments. Hence, unambiguously making sure that condition (1) above is met with inter-area TE and inter-AS traffic-engineering TE LSPs is not possible with existing mechanisms.

In this draft, we define extensions to and describe the use of RSVP [RSVP, RSVP-TE] to solve the above-mentioned problem.

3. Signaling node-ids in RROs

As mentioned above, the limitation that we need to address is the generality of the contents of the RRO IPv4 and IPv6 subobjects, as defined in [RSVP-TE].

The IPv4 and IPv6 RRO subobjects are currently defined in [RSVP-TE] and have the following flags defined:

- **Local protection available**: 0x01

 Indicates that the link downstream of this node is protected via a local repair mechanism, which can be either one-to-one or facility backup.

- **Local protection in use**: 0x02

 Indicates that a local repair mechanism is in use to maintain this tunnel (usually in the face of an outage of the link it was previously routed over, or an outage of the neighboring node).

- **Bandwidth protection**: 0x04

 The PLR will set this when the protected LSP has a backup path which is guaranteed to provide the desired bandwidth specified...
in the FAST_REROUTE object or the bandwidth of the protected LSP, if no FAST_REROUTE object was included. The PLR may set this whenever the desired bandwidth is guaranteed; the PLR MUST set this flag when the desired bandwidth is guaranteed and the "bandwidth protection desired" flag was set in the SESSION_ATTRIBUTE object. If the requested bandwidth is not guaranteed, the PLR MUST NOT set this flag.

Node protection: 0x08

The PLR will set this when the protected LSP has a backup path which provides protection against a failure of the next LSR along the protected LSP. The PLR may set this whenever node protection is provided by the protected LSP’s backup path; the PLR MUST set this flag when the node protection is provided and the "node protection desired" flag was set in the SESSION_ATTRIBUTE object. Thus, if a PLR could only setup a link-protection backup path, the "Local protection available" bit will be set but the "Node protection" bit will be cleared.

An additional flag is specified:

Node-id: 0x10

When set, this indicates that the address specified in the RRO IPv4 or IPv6 subobject is a node-id address, which refers to the "Router Address" as defined in [OSPF-TE], or "Traffic Engineering Router ID" as defined in [ISIS-TE]. A node MUST use the same address consistently.

An IPv4 or IPv6 RRO subobject with the node-is flag set is also called a node-id subobject.

The problem of finding MP address in a network with inter-area or inter-AS traffic engineering is solved by adding a node-id subobject (an RRO "IPv4" and "IPv6" sub-object with the 0x10 flag set).

Any Head-end LSR of a protected TE LSP MUST include an RRO object, as defined in [FAST-REROUTE]. In addition, any LSR compliant with this draft must systematically include a node-id IPv4 or IPv6 subobject in the RRO object for each protected TE LSP (in addition to the sub-objects required by MPLS TE Fast Reroute as defined in [FAST-REROUTE]). A node MAY decide to include its node-id subobject in the RRO object only for the TE LSP whose IPv4 or IPv6 address source address (specified in the SENDER-TEMPLATE object of the RSVP Path message) does not belong to its local area/AS.

4. Processing RRO with node-id subobjects

The node-id subobject is added into the RECORD_ROUTE object after the Label Record subobject. A node MUST not push a node-id subobject without also pushing an IPv4 or IPv6 subobjects, as defined in [FAST-REROUTE]. A node may push both IPv4 node-id and IPv6 node-id sub-objects, but that MUST be done on consistent basis.

4.1. Finding Merge Point
A PLR can find the MP and suitable backup tunnel by simply comparing
the node-id of the backup tunnel’s tail-end with Node IDs included in
the RRO of the primary tunnel. When both IPv4 node-id and IPv6 node-id

4.2. Processing at the border nodes

In a network with inter-AS traffic engineering, there may be some
concerns about leaking the RRO information, including node-id
sub-objects, outside the autonomous system (see [INTER-AS-TE-REQS]). In
such cases, before forwarding the RRO object outside of an AS, the ASBR
may filter some/all node-id sub-objects pertaining to the downstream
nodes in the AS. The RRO node-id sub-objects filtration can be based on
a local policy configured on the ASBR.

How an ASBR handles/filters the contents of the RRO objects is outside
of the scope of this draft.

5. Backward Compatibility Note

To remain compatible with the nodes that do not support the RRO IPv4 or
IPv6 node-id sub-objects, a node can safely ignore these objects. The
implication of this limitation will be that these nodes could not be MP
in a network with inter-area or inter-AS traffic engineering.

6. Security Considerations

This document does not introduce new security issues. The security
considerations pertaining to the original RSVP protocol [RSVP] remain
relevant.

7. Intellectual Property Considerations

Cisco Systems may have intellectual property rights claimed in regard
to some of the specification contained in this document.

8. Acknowledgments

We would like to acknowledge input and helpful comments from Carol
Iturralde, Anca Zamfir, and Reshad Rahman.

References

[ISIS-TE] Li, T., Smit, H., "IS-IS extensions for Traffic Engineering", draft-ietf-isis-traffic-04.txt (work in progress)

Authors’ Address:
Jean Philippe Vasseur
Cisco Systems, Inc.
300 Apollo Drive
Chelmsford, MA 01824
USA
Email: jpv@cisco.com

Zafar Ali
Cisco Systems, Inc.
100 South Main St. #200
Ann Arbor, MI 48104
USA
zali@cisco.com

Siva Sivabalan
Cisco Systems, Inc.
2000 Innovation Drive
Kanata, Ontario, K2K 3E8
Canada
msiva@cisco.com

Vasseur, Ali and Sivabalan