DHCP Option for Local Domain Name Discovery
draft-wang-dhc-ldn-option-00.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on January 6, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
Abstract

This document defines the local domain name option for DHCPv4 and DHCPv6. This option is used by the Peer (DHCP client) to request local domain name described in [RFC5296] which is used to derive the local root key, e.g., DSRK defined in [RFC5295].

Table of Contents

1. Introduction..3
2. Conventions used in this document............................3
3. Local Domain Name Option.....................................3
 3.1. DHCPv4 Local Domain Name Option.........................3
 3.2. DHCPv4 Local Domain Name Sub-Option....................4
 3.3. DHCPv6 Local Domain Name Option.........................4
4. Appearance of the option......................................5
5. Client Behavior..5
6. Relay Agent Behavior..5
7. Server Behavior...6
8. Security Considerations......................................6
9. IANA Considerations...6
10. References..6
 10.1. Normative References...................................6
 10.2. Informative References................................7
11. Acknowledgments..7
Appendix A. Example of Local Domain Name Discovery............8
1. Introduction

[RFC5295] defines the domain-specific root keys (DSRK) which can be
used in the specific domain, e.g., local domain which the peer may be
attached to. [RFC5296] introduces one re-authentication mechanism in
which the local root key, e.g., DSRK is used to derive re-
authentication key to re-authenticate the peer in the local domain
where the peer is attached. Considering the local root key is
generated based on the local domain name, the local domain name (LDN)
discovery is one important part of re-authentication. If the peer
does not know the local domain name, ERP exchange or lower-layer
announcement mechanism is required as described in the [RFC5296].
However lower-layer announcement to obtain the local domain name is
not specified.

This document defines a Local Domain Name (Sub-)Option for DHCPv4 and
DHCPv6. It can be used by the Peer acting as DHCP client to obtain
the local domain name.

If a DHCPv4 client involves in the local domain name discovery, then
the DHCPv4 Local Domain Name Option defined in section 3.1 or 3.2
should be included.

If a DHCPv6 client involves in the local domain name discovery, then
the DHCPv6 Local Domain Name Option defined in section 3.3 should be
included.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [RFC2119].

3. Local Domain Name Option

In general, the local domain name discovery is used to request local
domain name. It happens after network access authentication. An
example of local domain name discovery is described in Appendix A. In
the local domain name discovery, the LDN option is used by the client
(Peer) to obtain the local domain name from DHCP Server.

3.1. DHCPv4 Local Domain Name Option

The format of the option is:
Code: The option code (TBD).
Length: The option length, minimum 1 octet.
Local Domain Name: The local domain name MUST be encoded using the technique described in section 3.1 of RFC1035 [RFC1035]. It MUST NOT be stored in compressed form, as described in section 4.1.4 of RFC1035 [RFC1035].

3.2. DHCPv4 Local Domain Name Sub-Option

It is a sub-option of the relay-agent-information option [RFC3046]. The format of the sub-option is:

Code: The option code (TBD).
Length: The option length, minimum 1 octet.
Local Domain Name: The local domain name MUST be encoded using the technique described in section 3.1 of RFC1035 [RFC1035]. It MUST NOT be stored in compressed form, as described in section 4.1.4 of RFC1035 [RFC1035].

3.3. DHCPv6 Local Domain Name Option

The format of this option is:
option-code: OPTION_LOCAL_DOMAIN_NAME (TBD)

option-length: Length of the ‘local domain name’ field in octets

local-domain-name: The local domain name MUST be encoded as specified in section "Representation and use of domain names" of [RFC3315].

4. Appearance of the option

The DHCPv4 LDN option MUST NOT appear in DHCPv4 messages other than the types DHCPOFFER and DHCPACK. Also the option-code of DHCPv4 LDN option MAY appear in the Parameter Request List in the DHCPv4 message types DHCPDISCOVERY and DHCPREQUEST.

The DHCPv4 LDN sub-option MUST NOT appear in DHCPv4 messages other than the types DHCPDISCOVERY and DHCPREQUEST.

The DHCPv6 LDN option MUST NOT appear in DHCPv6 messages other than the types Solicit, Advertise, Request, Information-Request and Reply. Also the option-code of LDN option MAY appear in the Option Request Option in the DHCPv6 message types Solicit, Request and Information-Request.

5. Client Behavior

If a DHCPv4 client (Peer) requires DHCP Server to provide the DHCPv4 LDN option, it MUST include an Parameter Request List, requesting the DHCPv4 LDN option, as described in section 9.8 of RFC2132 [RFC2132].

If a DHCPv6 client (Peer) requires DHCP Server to provide the DHCPv6 LDN option, it MUST include an Option Request option, requesting the DHCPv6 LDN option, as described in section 22.7 of RFC3315 [RFC3315].

6. Relay Agent Behavior

If a DHCPv4 relay agent retrieves the local domain name from authentication server, it SHOULD include it in the DHCPv4 LDN sub-
option in a relay-agent-information option [RFC3046] and forward to the DHCPv4 server.

If a DHCPv6 relay agent retrieves the local domain name from authentication server, it SHOULD include it in the DHCPv6 LDN option and forward to the DHCPv6 server.

7. Server Behavior

If a DHCPv4 LDN option in the Parameter Request List or a DHCPv6 LDN option in an ORO has been requested, the server SHOULD return the DHCPv4 or DHCPv6 the LDN option to the client. If a DHCPv4 LDN sub-option or a DHCPv6 LDN option is included from relay agent, the server SHOULD extract the local domain name and encapsulate it in the returned LDN option.

8. Security Considerations

The communication between the DHCP client and the DHCP server for the exchange of local domain name information is security sensitive and requires authentication, integrity and replay protection. Either lower-layer security (such as link layer security established as part of the network access authentication protocol run) or DHCP security [RFC3118] can be used.

9. IANA Considerations

Three option codes need to be assigned.

- DHCPv4 LDN Option Code
- DHCPv4 LDN Sub-Option Code
- DHCPv6 LDN Option Code

10. References

10.1. Normative References

10.2. Informative References

11. Acknowledgments

Thanks to DHC and Hokey members for their comments.
Example of Local Domain Name Discovery

This section introduces an example of local domain name discovery. In this example, the AAA client and DHCP Relay agent integrate into the same NAS. The local domain name can be assigned by the AAA server, e.g., ER server in the hokey re-authentication architecture or allocated by the DHCP server. The detailed procedure is shown below.

During step1 ~ step3, the client (Peer) performs initial attachment and access authentication with the AAA Server through NAS (relay agent). In success case, the AAA Server sends the AAA message with the local domain name to NAS (relay agent). NAS (relay agent) extracts the local domain name from the AAA message and then stores it in the local database.

During step4 ~ step11, the client (Peer) initiates the DHCP process, requesting a LDN option in an ORO in DHCP Solicit/Request/Information-Request message, to DHCP Server. If the local domain name is allocated by the AAA server at said step2, the relay agent SHOULD
include the local domain name in the LDN option/sub-option of the being relayed message, and send it to the DHCP Server.

The DHCP Server checks if the LDN option code is included in an ORO of DHCPv6 message or in the Parameter Request List of DHCPv4 message. If included, it MUST return the local domain name with the LDN option encapsulated in DHCP message to the client (Peer). If a DHCPv4 LDN sub-option or a DHCPv6 LDN option is included by the relay agent, i.e., the AAA server allocate the local domain name, the DHCP server SHOULD extract the local domain name received from the relay agent and encapsulate it in the returned LDN option.

Authors’ Addresses

Yungui Wang
Huawei Technologies Co.,Ltd.
Floor 10, HuiHong Mansion, No.91 BaiXia Rd.
Nanjing, Jiangsu, 210001 P.R.China

Email: w52006@huawei.com

Qin Wu
Huawei Technologies Co.,Ltd.
Floor 12, HuiHong Mansion, No.91 BaiXia Rd.
Nanjing, Jiangsu, 210001 P.R.China

Email: sunseawq@huawei.com