Abstract

PIM Sparse-Mode uses a Rendezvous Point (RP) and shared trees to forward multicast packets to Last Hop Routers (LHR). After the first packet is received by the LHR, the source of the multicast stream is learned and the Shortest Path Tree (SPT) can be joined. This draft proposes a solution to support PIM Sparse Mode (SM) without the need for PIM registers, RPs or shared trees. Multicast source information is flooded throughout the multicast domain using a new generic PIM flooding mechanism. This mechanism is defined in this document, and is modeled after the PIM Bootstrap Router protocol. By removing the need for RPs and shared trees, the PIM-SM procedures are simplified, improving router operations, management and making the protocol more robust.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 13, 2014.
1. Introduction

PIM Sparse-Mode uses a Rendezvous Point (RP) and shared trees to forward multicast packets to Last Hop Routers (LHR). After the first packet is received by the LHR, the source of the multicast stream is learned and the Shortest Path Tree (SPT) can be joined. This draft proposes a solution to support PIM Sparse Mode (SM) without the need for PIM registers, RPs or shared trees. Multicast source information is flooded throughout the multicast domain using a new generic PIM flooding mechanism. This mechanism is defined in this document, and is modeled after the Bootstrap Router protocol [RFC5059]. By removing the need for RPs and shared trees, the PIM-SM procedures are
simplified, improving router operations, management and making the protocol more robust.

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Terminology

RP: Rendezvous Point.
BSR: Bootstrap Router.
RPF: Reverse Path Forwarding.
SPT: Shortest Path Tree.
FHR: First Hop Router, directly connected to the Source.
LHR: Last Hop Router, directly connected to the receiver.
SG Mapping: Multicast source to group mapping.
SG Message: A PIM message containing SG Mappings.

2. A generic PIM flooding mechanism

The Bootstrap Router protocol (BSR) [RFC5059] is a commonly used protocol for distributing dynamic Group to RP mappings in PIM. It is responsible for flooding information about such mappings throughout a PIM domain, so that all routers in the domain can have the same information. BSR as defined, is only able to distribute Group to RP mappings. We are defining a more generic mechanism that can flood any kind of information throughout a PIM domain. It is not necessarily a domain though, it depends on administrative boundaries being configured. The forwarding rules are identical to BSR, except that there is no BSR election. The protocol includes an originator address which is used for RPF checking to restrict the flooding, just like BSR. Just like BSR it is also sent hop by hop. Note that there is no built in election mechanism as in BSR, so there can be multiple originators. It is still possible to add such an election mechanism if this protocol is used in scenarios where this is desirable. We include a type field, which can allow boundaries to be defined, and election to take place, independently per type. We call this protocol the PIM Flooding Protocol (PFP).
2.1. PFP message format

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PIM Ver | Type  | N |  Reserved   |           Checksum            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Originator Address (Encoded-Unicast format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PFP Type | Reserved | U |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type 1 | Length 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type n | Length n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

PIM Version: Reserved, Checksum Described in [RFC4601].

Type: PIM Message Type. Value (pending IANA) for a PFP message.

[N]o-Forward bit: When set, this bit means that the PFP message is not to be forwarded.

Originator Address: The address of the router that originated the message. This can be any address assigned to this router, but MUST be routable in the domain to allow successful forwarding (just like BSR address). The format for this address is given in the Encoded-Unicast address in [RFC4601].

PFP Type: There may be different sub protocols or different uses for this generic protocol. The PFP Type specifies which sub protocol it is used for.

[U]nknown-No-Forwarding bit: Some sub protocols may require each router to do some processing of the contents and not simply forwarding. This bit controls how a router should treat an unknown PFP Type. When set, a router MUST NOT forward the message...
when the PFP Type is unknown. When clear, a router MUST forward
the message when possible. If the PFP Type is known, then the
specification of that type will specify how to handle the message,
including whether it should be forwarded.

Type 1..n: A message contains one or more TLVs, in this case n
TLVs. The Type specifies what kind of information is in the
Value. Note that the Type space is shared between all PFP. Not
all types make sense for all protocol types though.

Length 1..n: The length of the the value field.

Value 1..n: The value associated with the type and of the specified
length.

3. Distributing Source to Group Mappings

We want to provide information about active multicast sources
throughout a PIM domain by making use of the generic flooding
mechanism defined in the previous section. We request PFP Type 0 to
be assigned for this purpose. We call a message with PFP Type 0 an
SG Message. We also define a PFP TLV which we request to be type 0.
How this TLV is used with PFP Type 0 is defined in the next section.
Other PFP Types may specify the use of this TLV for other purposes.
For PFP Type 0 the U-bit MUST NOT be set. This means that routers
not supporting PFP Type 0 would still forward the message.

3.1. Group Source Holdtime TLV

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
| Type = 0 | Length |
+-
| Group Address (Encoded-Group format) |
+-
| Src Count | Src Holdtime |
+-
| Src Address 1 (Encoded-Unicast format) |
+-
| Src Address 2 (Encoded-Unicast format) |
+-
| . |
+-
| . |
+-
Type: This TLV has type 0.

Length: The length of the value.

Group Address: The group we are announcing sources for. The format for this address is given in the Encoded-Group format in [RFC4601].

Src Count: How many unicast encoded sources address encodings follow.

Src Holdtime: The Holdtime (in seconds) for the corresponding source(s).

Src Address: The source address for the corresponding group. The format for these addresses is given in the Encoded-Unicast address in [RFC4601].

4. Originating SG messages

An SG Message, that is a PFP message of Type 0, may contain one or more Group Source Holdtime TLVs. This is used to flood information about active multicast sources. Each FHR that is directly connected to an active multicast source originates SG BSR messages. How a multicast router discovers the source of the multicast packet and when it considers itself the FHR follows the same procedures as the registering process described in [RFC4601]. After it is decided that a register needs to be sent, the SG is not registered via the PIM SM register procedures, but the SG mapping is included in an SG message. Note, only the SG mapping is distributed in the message, not the entire packet as would have been done with a PIM register. The router originating the SG messages includes one of its own addresses in the originator field. Note that this address must be routeable due to RPF checking. The SG messages are periodically sent for as long as the multicast source is active, similar to how PIM registers are periodically sent. The default announcement period is 60 seconds, which means that as long as the source is active, it is included in an SG message originated every 60 seconds. The holdtime for the source is by default 210 seconds. Other values can be configured, but the holdtime must be larger than the announcement period.

5. Processing SG messages
A router that receives an SG message should parse the message and store the SG mappings with a holdtimer started with the advertised holdtime for that group. If there are directly connected receivers for that group this router should send PIM (S,G) joins for all the SG mappings advertised in the message. The SG mappings are kept alive for as long as the holdtimer for the source is running. Once the holdtimer expires a PIM (S,G) prune must be sent to remove itself from the tree.

6. The first packets and bursty sources

The PIM register procedure is designed to deliver Multicast packets to the RP in the absence of a native SPT tree from the RP to the source. The register packets received on the RP are decapsulated and forwarded down the shared tree to the LHRs. As soon as an SPT tree is built, multicast packets would flow natively over the SPT to the RP or LHR and the register process would stop. The PIM register process bridges the gap between how long it takes to build the SPT tree to the FHR. If the packets would not be unicast encapsulated to the RP they would be dropped by the FHR until the SPT is setup. This functionality is important for applications where the initial packet(s) must be received for the application to work correctly. Another reason would be for bursty sources. If the application sends out a multicast packet every 4 minutes (or longer), the SPT is torn down (typically after 3:30 minutes of inactivity) before the next packet is forwarded down the tree. This will cause no multicast packet to ever be forwarded. A well behaved application should really be able to deal with packet loss since IP is a best effort based packet delivery system. But in reality this is not always the case.

With the procedures proposed in this draft the packet(s) received by the FHR will be dropped until the LHR has learned about the source and the SPT tree is built. That means for bursty sources or applications sensitive for the delivery of the first packet this proposal would not be very applicable. This proposal is mostly useful for applications that don’t have strong dependency on the initial packet(s) and have a fairly constant data rate, like video distribution for example. For applications with strong dependency on the initial packet(s) we recommend using PIM Bidir [RFC5015] or SSM [RFC4607]. The protocol operations are much simpler compared to PIM SM, it will cause less churn in the network and both guarantee best effort delivery for the initial packet(s).

Another solution to address the problems described above is documented in [I-D.ietf-magma-msnip]. This proposal allows for a host to tell the FHR its willingness to act as Source for a certain Group before sending the data packets. LHRs have time to join the
SPT tree before the host starts sending which would avoid packet loss. The SG mappings announced by [I-D.ietf-magma-msnip] can be advertised directly in SG messages, allowing a very nice integration of both proposals. The life time of the SPT is not driven by the liveliness of Multicast data packets (which is the case with PIM SM), but by the announcements driven via [I-D.ietf-magma-msnip]. This will also prevent packet loss due to bursty sources.

7. Resiliency to network partitioning

In a PIM SM deployment where the network becomes partitioned, due to link or node failure, it is possible that the RP becomes unreachable to a certain part of the network. New sources that become active in that partition will not be able to register to the RP and receivers within that partition are not able to receive the traffic. Ideally you would want to have a candidate RP in each partition, but you never know in advance which routers will form a partitioned network. In order to be fully resilient, each router in the network may end up being a candidate RP. This would increase the operational complexity of the network.

The solution described in this document does not suffer from that problem. If a network becomes partitioned and new sources become active, the receivers in that partitioned will receive the SG Mappings and join the source tree. Each partition works independently of the other partition(s) and will continue to have access to sources within that partition. As soon as the network heals, the SG Mappings are re-flooded into the other partition(s) and other receivers can join to the newly learned sources.

8. Security Considerations

The security considerations are no different from what is documented in [RFC5059].

9. IANA considerations

This document requires the assignment of a new PIM Protocol type for the PIM Flooding Protocol (PFP). IANA also needs to create a registry for PFP Types with type 0 allocated to "Source-Group Message". IANA also needs to create a registry for PFP TLVs, with type 0 allocated to the "Source Group Holdtime" TLV. The allocation procedures are yet to be determined.

10. Acknowledgments

The authors would like to thank Arjen Boers for contributing to the initial idea and Yiqun Cai for his comments on the draft.
11. References

11.1. Normative References

11.2. Informative References

Authors’ Addresses

IJ'sbrand Wijnands
Cisco Systems, Inc.
De kleetlaan 6a
Diegem 1831
Belgium

Email: ice@cisco.com

Stig Venaas
Cisco Systems, Inc.
Tasman Drive
San Jose CA 95134
USA

Email: stig@cisco.com