Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 16, 2007.

Copyright Notice

Copyright (C) The Internet Society (2006).
Abstract

This document describes a means by which a device can learn the URI of the Local Location Information Server (LIS) using a DHCP option.

Table of Contents

1. Introduction ... 3
2. Terminology ... 4
3. Overview .. 5
4. Location Information Server Discovery 6
 4.1. DHCPv4 ... 6
 4.2. DHCPv6 ... 6
5. Security Considerations ... 8
6. IANA Considerations .. 9
7. References ... 10
 7.1. Normative references 10
 7.2. Informative references 10
Authors’ Addresses .. 11
Intellectual Property and Copyright Statements 12
1. Introduction

DHCP [RFC2131] is a commonly used mechanism for providing bootstrap configuration information allowing a host to operate in a specific network environment. Unlike largely static, logical network configuration data, such as a Domain Name Server or default gateway address, required by a host to operate in the network, the physical location of a host can change; in many cases without the need for a network reattachment. The network node responsible for providing physical location information pertaining to a host is the Location Information Server (LIS).

A LIS provides location information to a device using the HELD protocol [I-D.winterbottom-http-location-delivery]. HELD is a webservices application layer protocol that is accessed by a URI. Like most network servers and services the LIS must first be discovered by the host prior to use. This document describes IPv4 and IPv6 DHCP options for LIS discovery.
2. Terminology

The key conventions and terminology used in this document are defined as follows:

This document reuses the terms Target, Location Server, Location Generator, Location Recipient and Using-Protocol as defined in [RFC3693]. Note that in this context, the Location Server is distinct from what is alternatively referred to as a Registrar in other contexts. In some specifications the Location Server is referred to as a Location Information Server or LIS.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
3. Overview

This document describes how a device can learn the address of the local LIS using DHCP.
4. Location Information Server Discovery

4.1. DHCPv4

The DHCPv4 option includes a list of URIs; the first URI must be attempted first and subsequent URIs contacted only in the event of a problem in retrieving location information. Each URI must reference a service that is able to provide the Target with location information.

```
+---------------------------------------------------------------+
| LOCSERV_URI | Length | URI ... |                     |
|---------------------------------------------------------------|
| URI (cont. max of 253 octets)                                |
+---------------------------------------------------------------+
```

LOCSERV_URI: The IANA assigned option number (TBD).
Length: The length of the URI in octets.
URI: The URI of the HELD service. This URI MUST be no more than 253 bytes in length, and MUST NOT be NULL terminated.

4.2. DHCPv6

DHCP for IPv6 is defined in [RFC3315]. The DHCPv6 option for this parameter is similarly formatted to the DHCPv4 option.

```
+---------------------------------------------------------------+
| OPTION_LOCSERV_URI | option-len | URI ... |
|---------------------------------------------------------------|
| URI (cont’d, up to 253 octets) ... |
+---------------------------------------------------------------+
```

OPTION_LOCSERV_URI: The IANA assigned option number (TBD).
option-len: The length of the URI in octets.
URI: The URI of the HELD service. This URI MUST be no more than 253 bytes in length, and MUST NOT be NULL terminated.
5. Security Considerations

The options presented in this document describe how a host can learn the URI of the HELD-based LIS in their access network. The LIS is responsible for providing location information and this information is critical to a number of network services; a host does not necessarily have a prior relationship with a LIS. Therefore, impersonation of a LIS is the most relevant threat to the use of this option. It is recommended that DHCP authentication defined in [RFC3118] be used to provide DHCP option integrity.

The address of a LIS is usually well-known within an access network; therefore, interception of DHCP messages does not introduce any specific concerns.
6. IANA Considerations

IANA has allocated a DHCPv4 option code of [TBD] and a DHCPv6 option code of [TBD] for the HELD Service URI option described in this document.
7. References

7.1. Normative references

7.2. Informative references

Authors’ Addresses

James Winterbottom
Andrew Corporation
PO Box U40
University of Wollongong, NSW 2500
AU

Email: james.winterbottom@andrew.com

Martin Thomson
Andrew Corporation
PO Box U40
University of Wollongong, NSW 2500
AU

Email: martin.thomson@andrew.com
Full Copyright Statement

Copyright (C) The Internet Society (2006).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).