A Stochastic Optimal Scheduler for
Multipath Transmission Control Protocol (MPTCP)
draft-xu-mptcp-sosmp-01.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on October 6, 2019.
Abstract

This memo presents a new stochastic optimal scheduler for the Multipath Transmission Control Protocol (MPTCP). The new scheduler is based on the Lyapunov optimization technique, which can make online control decision for data scheduling. Considering the payment of users for different paths, this memo makes a trade off between the throughput utility and the cost. The new scheduler can not only satisfy the demand of service, but also minimize the cost as much as possible.

Table of Contents

1. Introduction .. 3
 1.1. Motivation .. 3
 1.2. Overview of SOS-MPTCP 3
2. Conventions .. 3
3. A New Stochastic Optimal Scheduler 3
 3.1. Admission Control 4
 3.2. Packets Allocation 4
 3.3. Purchasing Data Traffic 4
4. Building Queue .. 4
5. Transmission Performance and Problem Optimization 5
6. Stochastic Optimal Scheduler 5
7. Security Considerations 5
8. Implementation Considerations 5
9. References .. 5
 9.1. Normative References 5
 9.2. Informative References 6
10. Acknowledgments .. 6
1. Introduction

SOS-MPTCP is a new scheduler of MPTCP which can make online control decisions for data distribution. By taking advantage of queue stability, the new stochastic optimal scheduler can make a trade off between the throughput utility and the cost.

1.1. Motivation

The scheduler plays an important role in the data distribution. In the heterogeneous wireless network, the cost of each path is quite diverse and depends on the amount of packets assigned by the scheduler. Traditional scheduler just focuses on the transmission performance without considering the payment cost of users. This memo intends to fill the gap with the Lyapunov optimization technique.

1.2. Overview of SOS-MPTCP

This demo mainly describes the new scheduler of MPTCP. The objection of this scheduler is to maximize the throughput and minimize the corresponding cost to different communication operators. To achieve this goal, the following three important control decisions are to be made:

- How many packets of different connections can be admitted into transmission layer.
- How to distribute the admitted packets to all paths.
- How to purchase data traffic for different paths in advance.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].

3. A New Stochastic Optimal Scheduler

A number of paths which are available are denoted by \(J = \{1, 2, \ldots, j\} \). And there are different connections \(I = \{1, 2, \ldots, i\} \) of packets with diverse arrival rates from the application layer. In order to facilitate the analysis, we consider the system as a discrete time-slotted model divided by \(t = \{1, 2, \ldots, T\} \). In each time slot \(t \), a number of the \(i \)th connection of packets arrive at the system randomly. Let \(A_{i(t)} \)
denote the number of data packets of connection i in time slot t.
The unit price of path j is denoted by \(p_j \).

3.1. Admission Control

In each time slot, a lot of packets arrive at the transmission layer. To prevent the system from congestion, the admission control module decides that the total number of packets noticed by \(A_i(t) \) can be admitted into transmission layer. Therefore, \(A_i(t) \) SHOULD less than the number of arriving packets \(R_i(t) \).

3.2. Packets Allocation

After the packets of connection i are admitted into the transmission layer, the packets allocation module assigns packets to each path. The number of packets of type i distributed to path j in time slot t is denoted as \(A_{ij}(t) \). And this assignment should satisfy the constraint: \(A_i(t)=\sum_j (A_{ij}(t)) \). Each path maintains a queue for each connection of packets which can be transmitted later. We define the queue backlog \(Q_{ij}(t) \) of ith connection of packets assigned on the jth path as the number of pending packets waiting in the queue. We also define \(S_{ij}(t) \) as the number of packets which have been sent successfully and acknowledged.

3.3. Purchasing Data Traffic

In order to satisfy the service demand of users, they will purchase data traffic in advance from the communication operator. We use \(W_j(t) \) to denote the cost of paying for the path j belonging to respective operator in the time slot t. The total cost of the multipath transmission control system can be denoted by \(H_j(t) \) to maintain the consumption for the users.

4. Building Queue

According to the control framework described above, the dynamic updating of queue backlog can be defined as the equation:

\[
Q_{ij}(t+1) = \max[Q_{ij}(t) - S_{ij}(t), 0] + A_{ij}(t)
\]

Similarly, \(H_j(t) \) denotes the cost queue size of path j in the time slot t. Under the control decision of purchasing data traffic, the queue \(H_j(t) \) can be expressed as follows,

\[
H_j(t+1) = H_j(t) - \sum_j (S_{ij}(t) * p_j) + W_j(t)
\]
5. Transmission Performance and Problem Optimization

We define the time averaged throughput \(\text{SUM}_i \ (\text{Thr}_i(t)) = \lim_{t} \ (\frac{1}{T}) \text{SUM}_t \text{E}\{S_i(t)\} \). We also define a cost utility function \(\text{SUM}_j \ (W_j(t)) = \lim_{t} \ (\frac{1}{T}) \text{SUM}_j \text{E}\{W_j(t)\} \). It is challenging to tradeoff the transmission throughput and cost utility function. The transmission performance depends on the throughput and cost utility. Therefore, we NEED to construct an objective to take both sides into consideration.

The problem of maximizing transmission performance is defined as

\[
\text{Max} \ \{ \text{SUM}_i \ (\text{Thr}_i(t)) - \text{SUM}_j \ (W_j(t)) \} \\
\text{s.t.} \ Q_{ij} \text{ is stable}
\]

6. Stochastic Optimal Scheduler

In order to solve the problem mentioned above, we design a distribution approach by using Lyapunov optimization [SNO2010] which contains Lyapunov draft and queue stability. The value of \(A_i(t) \), \(A_{ij}(t) \) are calculated by the queue \(H(t) \) and \(Q(t) \). And \(H(t) \) and \(Q(t) \) are updated by the calculation results.

7. Security Considerations

This memo develops no new security scheme for MPTCP. SOS-MPTCP share the same security issues discussed in [RFC6824] with MPTCP.

8. Implementation Considerations

This approach is a new scheduler for MPTCP, which is named as "stochastic". We can select the scheduler through the socket-option MPTCP_SCHEDULER from the following four schedulers: "default", "roundrobin", "redundant", "stochastic".

9. References

9.1. Normative References

9.2. Informative References

10. Acknowledgments

This Internet Draft is the result of a great deal of constructive discussion with several people, notably Tengfei Cao and Jiangzhong Bai.

This document was prepared using 2-Word-v2.0.template.dot.
Authors’ Addresses

Changqiao Xu
Beijing University of Posts and Telecommunications
Institute of Network Technology, No. 10, Xitucheng Road,
Haidian District, Beijing
P.R. China
Email: cqxu@bupt.edu.cn

Kai Gao
Beijing University of Posts and Telecommunications
Institute of Network Technology, No. 10, Xitucheng Road,
Haidian District, Beijing
P.R. China
Email: gaokai@bupt.edu.cn

Jiuren Qin
Beijing University of Posts and Telecommunications
Institute of Network Technology, No. 10, Xitucheng Road,
Haidian District, Beijing
P.R. China
Email: jrqin@bupt.edu.cn