Abstract

This document describes the architecture of delivering the mobility and multicast over 5G core network using network slicing. The mobility and multicast are delivered to customers on demand basis, depending on operator’s use cases and traffic type of customer.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on April 2017.
Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions
Relating to IETF Documents (http://trustee.ietf.org/license-info)
in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Table of Contents

1. Introduction..3
2. Conventions used in this document..................................3
3. Architecture for delivering multicast and mobility..............4
4. Security Considerations...6
5. IANA Considerations..6
6. References..6
 6.1. Normative References..6
 6.2. Informative References..6
1. Introduction

In the 5G era, the mobile network functions and mobile services could be provided on demand basis using network function virtualization (NFV) and network slicing. This document describes the architecture of delivering the mobility and multicast services over 5G core network using NFV and network slicing. The mobility and multicast are delivered to customers depending on their type of traffic that they are going to request or mobile operator’s specific use cases. This architecture makes use of advanced features of current distributed mobility management deployment and management and orchestration framework (MANO) of network function virtualization. This architecture provides a real view of deployment of mobility and multicast functions in 5G core network.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].

The terms about distributed mobility managements, MANO, NFV are defined in [ETSI-NFV-MANO] and [IETF-DMM-deployment-model] and [IETF-DMM-multicast-deployment-model]
3. Architecture for delivering multicast and mobility services using network slicing

Fig 1. Multicast and mobility using slicing
Fig 1. shows the architecture for delivering multicast and mobility services over core network using network slicing. In this document, we assume that mobility and multicast services could be provided using DMM functions, such as CMA, DMA. Those DMM functions are covered in [IETF-DMM-deployment-model] and [IETF-DMM-multicast-deployment-model].

In 5G network, the concepts of MANO and slicing are introduced to increase the network resource efficiency, elasticity, and flexibility. The mobile network services should be provided on the demand basis and optimized for a specific use case using network slicing. We observe that there are several use cases that have different requirements for mobility and multicast services as below.

- Only multicast: public safety, video broadcast over sport area
- Only mobility: user with non-video traffic (web surfing)
- Multicast and mobility: user with video traffic

We introduce the architecture to provide network slice on demand and suitable for each use case. Here, we have three network slices: the only multicast slice providing video streaming services for public safety or sport event use cases; the only mobility slice providing services for non-video traffic users; and the mobility and multicast slice providing services for video traffic users. Here, user traffic could be classified as video and non-video traffic before entering to the specific slice.

Main components of our architecture includes: specific VNF managers (mobility VNF manager, multicast broadcast VNF managers), specific network controllers (mobility controller, multicast broadcast controllers) and a combined orchestration service. The specific VNF managers are used to instantiate, configure, and manage DMM functions. These DMM functions are described by VNF descriptors. The specific network controllers are used to configure virtual networks corresponding to functions supported by each slice. A flowvisor is used to create different network slices over common network infrastructure. A combined orchestration service based on operator’s requirements to compose different DMM functions to provide appropriate network services.
4. Security Considerations
TBD.

5. IANA Considerations
TBD.

6. References

6.1. Normative References

[ETSI-NFV-MANO]

6.2. Informative References

[IETF-DMM-deployment-model]
S. Gundavelli, S. Jeon, DMM Deployment Models and Architectural Considerations,
draft-ietf-dmm-deployment-models-00.txt, Aug 2016

[IETF-DMM-multicast-deployment-model]
Kyoungjae Sun, Truong-Xuan Do, and Younghan Kim,
Multicast mobility deployment scenarios over distributed mobility management,
draft-kjsun-dmm-deployment-scenarios-multicast-dmm-03.txt
July 2016
Authors’ Addresses

Truong-Xuan Do
Soongsil University
Changui Bldg. 403,
(156-743) 511 Sangdo-Dong, Dongjak-Gu, Seoul, Korea

Phone: +82 10 4473 6869
Email: thespring1989@gmail.com

Younghan Kim
Soongsil University
11F Hyungnam Engineering Bldg. 1107,
(156-743) 511 Sangdo-Dong, Dongjak-Gu, Seoul, Korea

Phone: +82-2-820-0904
Email: younghak@ssu.ac.kr