SNMP over OSI

Table of Contents

1. Status of this Memo ... 1
2. Background ... 1
 2.1 A Digression on User Interfaces 2
 2.1.1 Addressing Conventions for UDP-based service 3
 2.2 A Digression of Layering 3
3. Mapping onto CLTS .. 4
 3.1 Addressing Conventions 4
 3.1.1 Conventions for CLNP-based service 4
4. Mapping onto COTS .. 4
 4.1 Addressing Conventions 5
 4.1.1 Conventions for TP4/CLNP-based service 5
 4.1.2 Conventions for TP0/X.25-based service 6
5. Acknowledgements .. 6
6. References .. 7
7. Security Considerations 8
8. Author’s Address... 8

1. Status of this Memo

This memo defines an experimental means for running the Simple Network Management Protocol (SNMP) over OSI transports.

This memo does not specify a standard for the Internet community, however, after experimentation, if sufficient consensus is reached in the Internet community, then a subsequent revision of this document might be made an Internet standard for those systems choosing to implement the SNMP over OSI transport services.

Distribution of this memo is unlimited.

2. Background

The Simple Network Management Protocol (SNMP) as defined in [1] is now used as an integral part of the network management framework for TCP/IP-based internets. Together, with its companions standards, which define the Structure of Management Information (SMI) [2], and the Management Information Base (MIB) [3], the SNMP has received widespread deployment in many operational networks running the Internet suite of protocols.

IETF SNMP Working Group [Page 1]
It should not be surprising that many of these sites might acquire OSI capabilities and may wish to leverage their investment in SNMP technology towards managing those OSI components. This memo addresses these concerns by defining a framework for running the SNMP in an environment which supports the OSI transport services.

In OSI, there are two such services, a connection-oriented transport services (COTS) as defined in [4], and a connectionless-mode transport service (CLTS) as defined in [5]. Although the primary deployment of the SNMP is over the connectionless-mode transport service provided by the Internet suite of protocols (i.e., the User Datagram Protocol or UDP [6]), a design goal of the SNMP was to be able to use either a CO-mode or CL-mode transport service. As such, this memo describes mappings from the SNMP onto both the COTS and the CLTS.

2.1. A Digression on User Interfaces

It is likely that user-interfaces to the SNMP will be developed that support multiple transport backings. In an environment such as this, it is often important to maintain a consistent addressing scheme for users. Since the mappings described in this memo are onto the OSI transport services, use of the textual scheme described in [7], which describes a string encoding for OSI presentation addresses, is recommended. The syntax defined in [7] is equally applicable towards transport addresses.

In this context, a string encoding usually appears as:

\[
\text{[<t-selector>]/<n-provider><n-address>[+<n-info>]}
\]

where:

(1) \(<t-selector>\) is usually either an ASCII string enclosed in double-quotes (e.g., "snmp"), or a hexadecimal number (e.g., '736e6d70'H);

(2) \(<n-provider>\) is one of several well-known providers of a connectivity-service, one of: "Internet=" for a transport-service from the Internet suite of protocols, "Int-X25=" for the 1980 CCITT X.25 recommendation, or "NS=" for the OSI network service;

(3) \(<n-address>\) is an address in a format specific to the \(<n-provider>\); and,

(4) \(<n-info>\) is any additional addressing information in a format specific to the \(<n-provider>\).
It is not the purpose of this memo to provide an exhaustive description of string encodings such as these. Readers should consult [7] for detailed information on the syntax. However, this memo recommends that, as an implementation option, user-interfaces to the SNMP that support multiple transport backings SHOULD implement this syntax.

2.1.1. Addressing Conventions for UDP-based service

In the context of a UDP-based transport backing, addresses would be encoded as:

\[\text{Internet}=<\text{host}>+161+2 \]

which says that the transport service is from the Internet suite of protocols, residing at <host>, on port 161, using the UDP (2). The token <host> may be either a domain name or a dotted-quad, e.g., both

\[\text{Internet}=\text{cheetah.nyser.net}+161+2 \]

and

\[\text{Internet}=192.52.180.1+161+2 \]

are both valid. Note however that if domain name "cheetah.nyser.net" maps to multiple IP addresses, then this implies multiple transport addresses. The number of addresses examined by the application (and the order of examination) are specific to each application.

Of course, this memo does not require that other interface schemes not be used. Clearly, use of a simple hostname is preferable to the string encoding above. However, for the sake of uniformity, for those user-interfaces to the SNMP that support multiple transport backings, it is strongly RECOMMENDED that the syntax in [7] be adopted and even the mapping for UDP-based transport be valid.

2.2. A Digression of Layering

Although other frameworks view network management as an application, extensive experience with the SNMP suggests otherwise. In essence, network management is a function unlike any other user of a transport service. The citation [8] develops this argument in full. As such, it is inappropriate to map the SNMP onto the OSI application layer. Rather, it is mapped to OSI transport services, in order to build on the proven success of the Internet network management framework.
3. Mapping onto CLTS

Mapping the SNMP onto the CLTS is straight-forward: the elements of procedure are identical to that of using the UDP. In particular, note that the CLTS and the service offered by the UDP both transmit packets of information which contain full addressing information. Thus, mapping the SNMP onto the CLTS, a "transport address" in the context of [1], is simply a transport-selector and network address.

3.1. Addressing Conventions

Unlike the Internet suite of protocols, OSI does not use well-known ports. Rather demultiplexing occurs on the basis of "selectors", which are opaque strings of octets, which have meaning only at the destination. In order to foster interoperable implementations of the SNMP over the CLTS, it is necessary define a selector for this purpose.

3.1.1. Conventions for CLNP-based service

When the CLTS is used to provide the transport backing for the SNMP, demultiplexing will occur on the basis of transport selector. The transport selector used shall be the four ASCII characters

`snmp`

Thus, using the string encoding of [7], such addresses may be textual, described as:

```
"snmp"/NS+<nsap>
```

where:

(1) `<nsap>` is a hex string defining the nsap, e.g.,

```
"snmp"/NS+4900590800200038bafe00
```

Similarly, SNMP traps are, by convention, sent to a manager listening on the transport selector

`snmp-trap`

which consists of nine ASCII characters.

4. Mapping onto COTS

Mapping the SNMP onto the COTS is more difficult as the SNMP does not specifically require an existing connection. Thus, the mapping
consists of establishing a transport connection, sending one or more
SNMP messages on that connection, and then releasing the transport
connection.

Consistent with the SNMP model, the initiator of a connection should
not require that responses to a request be returned on that
connection. However, if a responder to a connection sends SNMP
messages on a connection, then these MUST be in response to requests
received on that connection.

Ideally, the transport connection SHOULD be released by the
initiator, however, note that the responder may release the
connection due to resource limitations. Further note, that the
amount of time a connection remains established is implementation-
specific. Implementors should take care to choose an appropriate
dynamic algorithm.

Also consistent with the SNMP model, the initiator should not
associate any reliability characteristics with the use of a
connection. Issues such as retransmission of SNMP messages, etc.,
always remain with the SNMP application, not with the transport
service.

4.1. Addressing Conventions

Unlike the Internet suite of protocols, OSI does not use well-known
ports. Rather demultiplexing occurs on the basis of "selectors",
which are opaque strings of octets, which have meaning only at the
destination. In order to foster interoperable implementations of the
SNMP over the COTS, it is necessary define a selector for this
purpose. However, to be consistent with the various connectivity-
services, different conventions, based on the actual underlying
service, will be used.

4.1.1. Conventions for TP4/CLNP-based service

When a COTS based on the TP4/CLNP is used to provide the transport
backing for the SNMP, demultiplexing will occur on the basis of
transport selector. The transport selector used shall be the four
ASCII characters

 snmp

Thus, using the string encoding of [7], such addresses may be
textual, described as:

 "snmp"/NS+<nsap>
where:

(1) <nsap> is a hex string defining the nsap, e.g.,

 "snmp"/NS+4900590800200038bafe00

Similarly, SNMP traps are, by convention, sent to a manager listening on the transport selector

snmp-trap

which consists of nine ASCII characters.

4.1.2. Conventions for TP0/X.25-based service

When a COTS based on the TP0/X.25 is used to provide the transport backing for the SNMP, demultiplexing will occur on the basis of X.25 protocol-ID. The protocol-ID used shall be the four octets

03018200

Thus, using the string encoding of [7], such addresses may be textual described as:

Int-X25=<dte>+PID+03018200

where:

(1) <dte> is the X.121 DTE, e.g.,

Int-X25=23421920030013+PID+03018200

Similarly, SNMP traps are, by convention, sent to a manager listening on the protocol-ID

03019000

5. Acknowledgements

This document was produced by the SNMP Working Group:

Karl Auerbach, Epilogue Technology
David Bridgham, Epilogue Technology
Brian Brown, Synoptics
John Burress, Wellfleet
Jeffrey D. Case, University of Tennessee at Knoxville
James R. Davin, MIT-LCS
Mark S. Fedor, PSI, Inc.
6. References

7. Security Considerations

Security issues are not discussed in this memo.

8. Author’s Address

Marshall T. Rose
PSI, Inc.
PSI California Office
P.O. Box 391776
Mountain View, CA 94039

Phone: (415) 961-3380

Email: mrose@PSI.COM