OSI Internet Management: Management Information Base

Status of this Memo

This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This RFC documents a MIB for use with CMIP, either over pure OSI stacks or with the CMIP over TCP specification. It redefines objects comprised by the second revision of the Management Information Base for Network Management of TCP/IP-based internets: MIB-II so as to conform to the OSI structure of management information. This document is a product of the IETF OIM working group.

Table of Contents

1. Introduction... 2
2. Additions to MIB-II... 3
 2.1 Structure of the OIM Subtree.......................... 3
 2.2 Supporting ISO Definitions............................ 3
 2.3 Additions for Object Instance Identification......... 4
 2.3.1 Distinguished Names............................ 4
 2.4 Events.. 5
 2.5 Containment (Naming) Tree Definition.................... 5
 2.6 Changes from RFC 1158.................................. 6
3. Format of OSI Templates... 7
4. Object Class Definitions....................................... 7
5. Attribute Definitions.. 16
6. Notifications.. 44
7. The Containment Hierarchy.................................... 45
8. ASN.1 Definitions... 49
9. Acknowledgements... 54
References.. 55
Appendix 1: Notational Tools for Managed Object Definition.... 57
 A1.1 Overview of Notational Tools.......................... 57
 A1.2 Conventions Used in Template Definitions............. 58
 A1.3 Managed Object Class Template........................ 60
 A1.4 Package Template.. 63
1. Introduction

This memo defines the management information base (MIB) for use with the OSI network management protocol in TCP/IP based internets. It formats the Management Information Base (MIB-II) in OSI templates and adds variables necessary for use with the OSI management protocol. Together with internet memos that define agreements for using the OSI management protocol to manage TCP/IP internets (RFC 1189) [3], the management information base: MIB-II, and OSI standards defining the structure of management information (ISO/IEC DIS 10165) [4,5,6], these documents provide an OSI compatible architecture and system for managing TCP/IP based internets and in particular the Internet community.

This OSI version of the MIB specification is an incremental refinement of MIB-II. It has been designed according to the following policy: first, maintain compatibility with MIB-II by including objects in MIB-II without changes to their registered identifiers, syntax, and behaviour; second, format the MIB-II using the OSI structure of information defined templates; third, add attributes necessary for identification using the OSI management protocol; fourth, identify object instances in a manner which is compatible with development of a common application programming interface for both CMIP and SNMP; and finally, define notifications (events), including those defined by SNMP (RFC 1157) [14], deemed necessary for management.

It is expected that the MIB will grow over time to accommodate the changing needs of the Internet.

As reported in RFC 1109, Report of the Second Ad Hoc Network Management Review Group [13], the requirements for SNMP and OSI frameworks were more different than anticipated. Therefore, the requirement for compatibility between the SMI/MIB for both frameworks was suspended. This action allowed both frameworks to independently define the MIB according to their SMI requirements and views of management. The SNMP response included development of MIB-II. The OSI response is this document which builds on the excellent work done in MIB-II, and adds to it attributes necessary to map into the OSI
SMI.

The OIM network management framework consists of: Open Systems Interconnection - Structure of Management Information: Parts 1-4, ISO/IEC DIS 10165 [4,5,6], with slight modifications to maintain compatibility with RFC 1155 [11]; OSI Internet Management: Management Information Base, this memo; and the OSI Common Management Information Service (CMIS) [7] and Common Management Information Protocol (CMIP) [8].

2. Additions to MIB-II

Additions to MIB-II fall into the following categories: the addition of the managed object class "top" from which all object classes are derived; additions for object instance identification purposes according to the OSI SMI; additions for generation of asynchronous events; the addition of name bindings which define the binding between objects in the containment (naming) hierarchy; and the addition of proposed changes to RFC 1158 that are expected to be accepted by the IETF [16].

2.1 Structure of the OIM Subtree

The oim subtree structure is defined below. Note that the "cmot" subtree has been relabeled to "oim".

```
cmot            OBJECT IDENTIFIER ::= {mib 9}
oim             OBJECT IDENTIFIER ::= {cmot}
cmotVersion     OBJECT IDENTIFIER ::= {oim 1}
cmotACSEInfo    OBJECT IDENTIFIER ::= {oim 2}
cmotSystemId    OBJECT IDENTIFIER ::= {oim 3}
misc            OBJECT IDENTIFIER ::= {oim 4}
objects         OBJECT IDENTIFIER ::= {oim 5}
attributes      OBJECT IDENTIFIER ::= {oim 6}
events          OBJECT IDENTIFIER ::= {oim 7}
nameforms       OBJECT IDENTIFIER ::= {oim 8}
actions         OBJECT IDENTIFIER ::= {oim 9}
```

2.2 Supporting ISO Definitions

The OSI defined managed object class "top" [5], as defined by OSI, has been added to the MIB. This managed object class is the root of the inheritance hierarchy. The class "top" contains attributes that are inherited by all objects in the MIB. Pending the progression of ISO/IEC DIS 10165 to an International Standard status, "top" and its associated attributes are registered in Appendix 3.
2.3 Additions for Object Instance Identification

The conventions for identifying objects in the OIM MIB-II for use with CMIP are defined below.

2.3.1 Distinguished Names

The distinguished name of an object shall consist of a sequence of relative distinguished names, one for each object on the containment path from the root to the object. Each relative distinguished name shall contain exactly one attribute, the "naming" attribute for the corresponding class, as specified by a NAME BINDING template. The CMIP ObjectInstance shall be encoded using the distinguishedName choice.

Object classes for which there is only a single instance normally implemented in a managed system, other than the "system" managed object class, shall use an empty string for their naming attribute value, i.e., a string of length zero.

The format of the naming attribute for the "system" managed object class and object classes which normally have multiple instances, e.g., table entries, are defined in the attribute templates for the naming attributes of those classes. The formats for naming attributes of table entries are compatible with instance identification conventions used by SNMP, thereby facilitating the development of a common application programming interface that may interface to either protocol.

For example, a distinguished name designating a particular routing table entry (of class ipRouteEntry) might be

```
{ 
  { sysName = "troi.mitre.org"}
  { ipId = ""}
  { ipRoutingTableId = ""} 
  { ipRouteEntryId = "129.83.2.17" } 
}
```

The naming attributes for each OIM MIB-II managed object class listed in section 5 may be determined by reference to the NAME BINDING templates listed in section 8. The naming attribute definitions can be found in the alphabetical listing of all attributes in section 6.

The following attributes have been defined for MIB-II object classes for purposes of object instance identification.
2.4 Events

Events have been defined in accordance with the OSI SMI. These events include those defined for SNMP. The OSI SMI requires that events (notifications) are part of a specific managed object class definition. Accordingly the SNMP defined events have been assigned to specific objects within the MIB.

<table>
<thead>
<tr>
<th>Event</th>
<th>Identifier</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>coldStartEvent</td>
<td>{events 0}</td>
<td>system</td>
</tr>
<tr>
<td>warmStartEvent</td>
<td>{events 1}</td>
<td>system</td>
</tr>
<tr>
<td>linkDownEvent</td>
<td>{events 2}</td>
<td>ifEntry</td>
</tr>
<tr>
<td>linkUpEvent</td>
<td>{events 3}</td>
<td>ifEntry</td>
</tr>
<tr>
<td>snmpAuthentFailureEvent</td>
<td>{events 4}</td>
<td>snmp</td>
</tr>
<tr>
<td>egpNeighborLossEvent</td>
<td>{events 5}</td>
<td>egpNeighEntry</td>
</tr>
<tr>
<td>entSpecificEvent</td>
<td>{events 6}</td>
<td>system</td>
</tr>
</tbody>
</table>

2.5 Containment (Naming) Tree Definition

The OSI SMI requires that object classes be bound into the containment hierarchy for purposes of naming. The binding must
specify for the managed object class: a) the object which is superior to it in the containment hierarchy; and b) an attribute in the managed object class that is used to distinguish instances of the object at a given level in the containment hierarchy. The containment tree begins with "root". Agents in managed systems will consider root to be immediately above the "system" object in the containment hierarchy. They may ignore any relative distinguished names that precede the relative distinguished name for "system".

The name bindings for objects in the OIM MIB-II are specified in section 8.

2.6 Changes from RFC 1158

The proposed successor to RFC 1158 [16] contains several minor additions that have been incorporated into this document.

- The sysLocation attribute of the system managed object class is changed to GET-REPLACE.
- The ipRouteMetric5 and ipRouteInfo attributes are added to the ipRouteEntry managed object class.
- The textual descriptor of the snmpEnableAuthTraps is changed to snmpEnableAuthenTraps.
- The PhysAddress textual convention is introduced to represent media addresses.
- The definition of sysServices is clarified.
- New ifType values (29-32) are defined. In addition, the textual-descriptor for the DS1 and E1 interface types is corrected.
- The definition of ipForwarding is clarified.
- The definition of ipRouteType is clarified.
- The tcpConnState attribute is now GET-REPLACE, to support deletion of the TCB associated with a TCP connection. The definition of this object is clarified to explain this usage.
- The definition of egpNeighEventTrigger is clarified.
- The definition of several of the variables in the new snmp group are clarified. In addition, the
snmpInBadTypes and snmpOutReadOnlys objects are no longer present. (However, the object identifiers associated with those objects are reserved to prevent future use.)

- The definition of snmpInReadOnlys is clarified.
- The ipRoutingDiscards attribute is added to the ip object.
- The optional use of an implementation-dependent, small positive integer is disallowed when identifying instances of the IP address and routing tables.

3. Format of OSI Templates

The format of OSI templates is defined in ISO/IEC DIS 10165-4 [6], Open Systems Interconnection - Structure of Management Information - Part 4: Guidelines for Managed Object Definition.

The template definitions relevant to this document are included in Appendix 1.

4. Object Class Definitions

The Internet SMI objects are recast into OSI template form using the following conventions:

- MIB II groups become OSI object classes, except for the "at" group which has no attributes.
- Tables become OSI object classes.
- Table entries become OSI object classes.
- All other object types become OSI attributes and are assigned to object classes according to their association in MIB II.

The templates for the OIM MIB-II object classes are listed in alphabetical order below.

```plaintext
atEntry   MANAGED OBJECT CLASS
          DERIVED FROM  top;
          CHARACTERIZED BY
          atEntryPkg  PACKAGE
             -- see MIB II [16] for attribute semantics
          ATTRIBUTES
          atEntryId     GET,
```
atTable MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
atTablePkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
 atTableId GET;;;
REGISTERED AS { atTable 1};

egp MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
egpPkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
 egpId GET,
 egpInMsgs GET,
 egpInErrors GET,
 egpOutMsgs GET,
 egpOutErrors GET,
 egpAs GET;;;
REGISTERED AS { mib 8};

egpNeighEntry MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
egpNeighEntryPkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
 egpNeighEntryId GET,
 egpNeighState GET,
 egpNeighAddr GET,
 egpNeighAs GET,
 egpNeighInMsgs GET,
 egpNeighInErrs GET,
 egpNeighOutMsgs GET,
 egpNeighOutErrs GET,
 egpNeighInErrMsgs GET,
 egpNeighOutErrMsgs GET,
 egpNeighStateUps GET,
 egpNeighStateDowns GET,
egpNeighMode GET,
egpNeighEventTrigger GET-REPLACE;

NOTIFICATIONS
egpNeighborLossEvent;;;

REGISTERED AS { egpNeighTable 1};

egpNeighTable MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
egpNeighTablePkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 egpNeighTableId GET;;;
REGISTERED AS { egp 5};

icmp MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
icmpPkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 icmpId GET,
icmpInMsgs GET,
icmpInErrors GET,
icmpInDestUnreachs GET,
icmpInTimeExcds GET,
icmpInParmProbs GET,
icmpInSrcQuenchs GET,
icmpInRedirects GET,
icmpInEchos GET,
icmpInEchoReps GET,
icmpInTimestamps GET,
icmpInTimestampReps GET,
icmpInAddrMasks GET,
icmpInAddrMaskReps GET,
icmpOutMsgs GET,
icmpOutErrors GET,
icmpOutDestUnreachs GET,
icmpOutTimeExcds GET,
icmpOutParmProbs GET,
icmpOutSrcQuenchs GET,
icmpOutRedirects GET,
icmpOutEchos GET,
icmpOutEchoReps GET,
icmpOutTimestamps GET,
icmpOutTimestampReps GET,
icmpOutAddrMasks GET,
icmpOutAddrMaskReps GET;;;

OIM Working Group [Page 9]
REGISTERED AS (mib 5);

ifEntry MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
ifEntryPkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 ifEntryId GET,
 ifIndex GET,
 ifDescr GET,
 ifType GET,
 ifMtu GET,
 ifSpeed GET,
 ifPhysAddress GET,
 ifAdminStatus GET-REPLACE,
 ifOperStatus GET,
 ifLastChange GET,
 ifInOctets GET,
 ifInUcastPkts GET,
 ifInNUcastPkts GET,
 ifInDiscards GET,
 ifInErrors GET,
 ifInUnknownProtos GET,
 ifOutOctets GET,
 ifOutUcastPkts GET,
 ifOutNUcastPkts GET,
 ifOutDiscards GET,
 ifOutErrors GET,
 ifOutQLen GET,
 ifSpecific GET;

NOTIFICATIONS
 linkUpEvent,
 linkDownEvent;

REGISTERED AS (ifTable 1);

ifTable MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
ifTablePkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 ifTableId GET;;

REGISTERED AS (interface 2);

interfaces MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
interfacesPkg PACKAGE
 -- see MIB II [16] for attribute semantics
 ATTRIBUTES
 ifId GET,
 ifNumber GET;;;
 REGISTERED AS { mib 2};

ip MANAGED OBJECT CLASS
 DERIVED FROM top;
 CHARACTERIZED BY
 ipPkg PACKAGE
 -- see MIB II [16] for attribute semantics
 ATTRIBUTES
 ipId GET,
 ipForwarding GET-REPLACE,
 ipDefaultTTL GET-REPLACE,
 ipInReceives GET,
 ipInHdrErrors GET,
 ipInAddrErrors GET,
 ipForwDatagrams GET,
 ipInUnknownProtos GET,
 ipInDiscards GET,
 ipInDelivers GET,
 ipOutRequests GET,
 ipOutDiscards GET,
 ipOutNoRoutes GET,
 ipReasmTimeout GET,
 ipReasmReqds GET,
 ipReasmOKs GET,
 ipReasmFails GET,
 ipFragOKs GET,
 ipFragFails GET,
 ipFragCreates GET,
 ipRoutingDiscards GET;;;
 REGISTERED AS { mib 4};

ipAddrEntry MANAGED OBJECT CLASS
 DERIVED FROM top;
 CHARACTERIZED BY
 ipAddrEntryPkg PACKAGE
 -- see MIB II [16] for attribute semantics
 ATTRIBUTES
 ipAdEntryId GET,
 ipAdEntAddr GET,
 ipAdEntIfIndex GET,
 ipAdEntNetMask GET,
 ipAdEntBcastAddr GET,
 ipAdEntReasmMaxSize GET;;;

OIM Working Group [Page 11]
REGISTERED AS { ipAddrTable 1};

ipAddrTable MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
ipAddrTablePkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 ipAddrTableId GET;;;
REGISTERED AS { ip 20};

ipNetToMediaEntry MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
ipNetToMediaEntryPkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 ipNetToMediaEntryId GET,
ipNetToMediaIfIndex GET-REPLACE,
ipNetToMediaPhysAddress GET-REPLACE,
ipNetToMediaNetAddress GET-REPLACE,
ipNetToMediaType GET-REPLACE;;;
REGISTERED AS { ipNetToMediaTable 1};

ipNetToMediaTable MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
ipNetToMediaTablePkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 ipNetToMediaTableId GET;;
REGISTERED AS { ip 22};

ipRouteEntry MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
ipRouteEntryPkg PACKAGE
 -- see MIB II [16] for attribute semantics
ATTRIBUTES
 ipRouteEntryId GET,
ipRouteDest GET-REPLACE,
ipRouteIfIndex GET-REPLACE,
ipRouteMetric1 GET-REPLACE,
ipRouteMetric2 GET-REPLACE,
ipRouteMetric3 GET-REPLACE,
ipRouteMetric4 GET-REPLACE,
ipRouteMetric5 GET-REPLACE,
ipRouteNextHop GET-REPLACE,
ipRouteType GET-REPLACE,
ipRouteProto GET,
ipRouteAge GET-REPLACE,
ipRouteMask GET-REPLACE,
ipRouteInfo GET-REPLACE;;;
REGISTERED AS { ipRoutingTable 1};

ipRoutingTable MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
ipRoutingTablePkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
ipRoutingTableId GET;;;
REGISTERED AS { ip 21};

snmp MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
snmpPkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES

snmpId GET,

snmpInPkts GET,

snmpInBadVersions GET,

snmpInBadCommunityNames GET,

snmpInBadCommunityUses GET,

snmpInASNParseErrs GET,

snmpInTooBigs GET,

snmpInNoSuchNames GET,

snmpInBadValues GET,

snmpInReadOnlys GET,

snmpInGenErrs GET,

snmpInTotalReqVars GET,

snmpInTotalSetVars GET,

snmpInGetRequests GET,

snmpInGetNexts GET,

snmpInSetRequests GET,

snmpInGetResponses GET,

snmpInTraps GET,

snmpOutPkts GET,

snmpOutBadValues GET,

snmpOutGenErrs GET,

snmpOutGetRequests GET,

snmpOutGetNexts GET,

snmpOutSetRequests GET,
snmpOutGetResponses GET, snmpOutTraps GET, snmpEnableAuthenTraps GET-REPLACE;

NOTIFICATIONS
snmpAuthentFailureEvent;;;
REGISTERED AS {mib 11};

system MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
systemPkg PACKAGE
-- SEE MIB II [16] for attribute semantics
ATTRIBUTES
sysDescr GET,
sysObjectId GET,
sysUpTime GET,
sysContact GET-REPLACE,
sysName GET-REPLACE,
-- MAJOR HEALTH WARNING sysName is the
-- naming attribute and should not be
-- modified via remote management without
-- coordinated local system changes
sysLocation GET-REPLACE,
sysServices GET;

NOTIFICATIONS
coldStartEvent,
warmStartEvent,
entSpecificEvent;;;
REGISTERED AS {mib 1};

tcp MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
tcpPkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
tcpId GET,
tcpRtoAlgorithm GET,
tcpRtoMin GET,
tcpRtoMax GET,
tcpMaxConn GET,
tcpActiveOpens GET,
tcpPassiveOpens GET,
tcpAttemptFails GET,
tcpEstabResets GET,
tcpCurrEstab GET,
tcpInSegs GET,
tcpOutSegs GET,
tcpRetransSegs GET,
tcpInErrs GET,
tcpOutRsts GET;;;
REGISTERED AS { mib 6};

tcpConnEntry MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
tcpConnEntryPkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
tcpConnId GET,
tcpConnState GET-REPLACE,
tcpConnLocalAddress GET,
tcpConnLocalPort GET,
tcpConnRemAddress GET,
tcpConnRemPort GET;;;
REGISTERED AS { tcpConnTable 1 };

tcpConnTable MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
tcpConnTablePkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
tcpConnTableId GET;;;
REGISTERED AS { tcp 13 };

udp MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
udpPkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
udpId GET,
udpInDatagrams GET,
udpNoPorts GET,
udpInErrors GET,
udpOutDatagrams GET;;;
REGISTERED AS { mib 7};

udpEntry MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY
udpEntryPkg PACKAGE
-- see MIB II [16] for attribute semantics
ATTRIBUTES
5. Attribute Definitions

Attribute templates for the attributes referenced in the managed object class templates of section 5 are listed here in alphabetical order.

atEntryId ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
MATCHES FOR Equality;
-- identifies the atEntry instance
-- <index>".1." <address>, where <index is the decimal
-- representation of atIfIndex and <address> is atNetAddress
-- represented in "dot notation". The "1" subidentifier
-- indicates that the address is an IP address.
REGISTERED AS {attributes 3};

atIfIndex ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {atEntry 1};

atNetAddress ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.NetworkAddress;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {atEntry 3};

atPhysAddress ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.PhysAddress;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {atEntry 2};

atTableId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute identifies the instance of
 -- the address table which is being used.
 -- An empty string is used for a single
 -- instance.
REGISTERED AS {attributes 2};

egpAs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
REGISTERED AS {egp 6};

egpId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- EGP entity naming attribute.
 -- An empty string is used for a single instance.
REGISTERED AS {attributes 16};

egpInErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
REGISTERED AS {egp 2};

egpInMsgs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
REGISTERED AS {egp 1};

egpNeighAddr ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 2};

egpNeighAs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
REGISTERED AS {egpNeighEntry 3};

egpNeighEntryId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- identifies the egp neighbor table entry.
 -- egpNeighAddr encoded in "dot notation".
 REGISTERED AS {attributes 22};

egpNeighEventTrigger ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.EgpNeighEventTrigger;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {egpNeighEntry 15};

egpNeighInErrMsgs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {egpNeighEntry 8};

egpNeighInErrs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {egpNeighEntry 5};

egpNeighInMsgs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {egpNeighEntry 4};

egpNeighIntervalHello ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {egpNeighEntry 12};

egpNeighIntervalPoll ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
egpNeighMode ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.EgpNeighMode;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 13};

egpNeighOutErrMsgs ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 9};

egpNeighOutErrs ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 7};

egpNeighOutMsgs ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 6};

egpNeighState ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.EgpNeighState;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 1};

egpNeighStateDowns ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 11};

egpNeighStateUps ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {egpNeighEntry 10};
egpNeighTableId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute uniquely identifies the
 -- egp neighbor table
 -- An empty string is used for a single instance.
 REGISTERED AS {attributes 17};

egpOutErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {egp 4};

egpOutMsgs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {egp 3};

icmpId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute uniquely identifies the
 -- ICMP object instance
 -- An empty string is used for a single instance.
 REGISTERED AS {attributes 9};

icmpInAddrMaskReps ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 13};

icmpInAddrMasks ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 12};

icmpInDestUnreachs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 3};

icmpInEchoReps ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 9};

icmpInEchos ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 8};

icmpInErrors ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 2};

icmpInMsgs ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 1};

icmpInParmProbs ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 5};

icmpInRedirects ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 7};

icmpInSrcQuenchs ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 6};
icmpInTimeExcds ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 4};

icmpInTimestampReps ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 11};

icmpInTimestamps ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 10};

icmpOutAddrMaskReps ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 26};

icmpOutAddrMasks ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 25};

icmpOutDestUnreachs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 16};

icmpOutEchoReps ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 22};
icmpOutEchos ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 21};

icmpOutErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 15};

icmpOutMsgs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 14};

icmpOutParmProbs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 18};

icmpOutRedirects ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 20};

icmpOutSrcQuenchs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 19};

icmpOutTimeExcds ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {icmp 17};
icmpOutTimestampReps ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 24};

icmpOutTimestamps ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {icmp 23};

ifAdminStatus ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.IfAdminStatus;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ifEntry 7};

ifDescr ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ifEntry 2};

ifEntryId ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
MATCHES FOR Equality;
-- The decimal representation of ifIndex.
REGISTERED AS {attributes 21};

ifId ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
MATCHES FOR Equality;
-- An empty string is used for a single instance.
REGISTERED AS {attributes 23};

ifIndex ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ifEntry 1};

ifInDiscards ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;

ifInErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 13};

ifInNUcastPkts ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 14};

ifInOctets ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 12};

ifInUcastPkts ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 11};

ifInUnknownProtos ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 15};

ifLastChange ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.TimeTicks;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 9};

ifMtu ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 4};

ifNumber ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {interfaces 1};

ifOperStatus ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.IfOperStatus;
 MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 8};

ifOutDiscards ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 19};

ifOutErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;

 MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 20};

ifOutNUcastPkts ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 18};

ifOutOctets ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;

 MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 16};

ifOutQLen ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Gauge;
 MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 21};

ifOutUcastPkts ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 17};
ifPhysAddress ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PhysAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 6};

ifSpecific ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.ObjectId;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 22};

ifSpeed ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Gauge;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 5};

ifTableId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- an empty string
 REGISTERED AS {attributes 1};

ifType ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.IfType;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ifEntry 3};

ipAddrTableId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute provides a unique id
 -- which identifies the address table.
 -- An empty string is used for a single instance.
 REGISTERED AS {attributes 5};

ipAdEntAddr ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipAddrEntry 1};

ipAdEntBcastAddr ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ipAddrEntry 4};

ipAdEntIfIndex ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipAddrEntry 2};

ipAdEntNetMask ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipAddrEntry 3};

ipAdEntReasmMaxSize ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer64k;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipAddrEntry 5};

ipAdEntryId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute uniquely identifies the ip address
 -- table entry. The format is:
 -- <addr> , where <addr> is ipAdEntAddr
 -- represented in "dot notation".
 REGISTERED AS {attributes 19};

ipDefaultTTL ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 2};

ipForwarding ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.IpForwarding;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 1};

ipForwDatagrams ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
REGISTERED AS {ip 6};

ipFragCreates ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 19};

ipFragFails ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 18};

ipFragOKs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 17};

ipId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- identifies the Ip entity.
 -- An empty string is used for a single instance
 REGISTERED AS {attributes 4};

ipInAddrErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 5};

ipInDelivers ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 9};

ipInDiscards ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 8};

ipInHdrErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ip 4};

ipInReceives ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ip 3};

ipInUnknownProtos ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ip 7};

ipNetToMediaEntryId ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
MATCHES FOR Equality;
-- identifies an instance of IpNetToMediaEntry
-- <interface> "." <address>, where <interface> is the
-- decimal representation of ipNetToMediaIfIndex and
-- <address> is ipNetToMediaNetAddress in
-- "dot notation".
REGISTERED AS {attributes 8};

ipNetToMediaIfIndex ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ipNetToMediaEntry 1};

ipNetToMediaNetAddress ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ipNetToMediaEntry 3};

ipNetToMediaPhysAddress ATTRIBUTE
WITH ATTRIBUTE SYNTAX OIM-Module.PhysAddress;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ipNetToMediaEntry 2};
ipNetToMediaTableId ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This is the distinguishing attribute for the
 -- Ip Net to Media Table.
 -- An empty string is used for a single instance.
 REGISTERED AS {attributes 7};

ipNetToMediaType ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 OIM-Module.IpNetToMediaType;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipNetToMediaEntry 4};

ipOutDiscards ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 11};

ipOutNoRoutes ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 12};

ipOutRequests ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 10};

ipReasmFails ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 16};

ipReasmOKs ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ip 15};

ipReasmReqds ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
 -- See MIB II [16] for attribute semantics
REGISTERED AS {ip 14};

ipReasmTimeout ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- See MIB II [16] for attribute semantics
REGISTERED AS {ip 13};

ipRouteAge ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- See MIB II [16] for attribute semantics
REGISTERED AS {ipRouteEntry 10};

ipRouteDest ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- See MIB II [16] for attribute semantics
REGISTERED AS {ipRouteEntry 1};

ipRouteEntryId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute identifies the ip route table entry.
 -- The format is <dest>, where <dest> is
 -- ipRouteDest represented in "dot notation.
REGISTERED AS {attributes 20};

ipRouteIfIndex ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality;
 -- See MIB II [16] for attribute semantics
REGISTERED AS {ipRouteEntry 2};

ipRouteInfo ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.ObjectId;
 MATCHES FOR Equality;
 -- See MIB II [16] for attribute semantics
REGISTERED AS {ipRouteEntry 13};

ipRouteMask ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- See MIB II [16] for attribute semantics
REGISTERED AS {ipRouteEntry 11};
ipRouteMetric1 ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 3};

ipRouteMetric2 ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 4};

ipRouteMetric3 ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 5};

ipRouteMetric4 ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 6};

ipRouteMetric5 ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 12};

ipRouteNextHop ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 7};

ipRouteProto ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.IpRouteProto;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 9};

ipRouteType ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.IpRouteType;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {ipRouteEntry 8};
ipRoutingDiscards ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {ip 23};

ipRoutingTableId ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
MATCHES FOR Equality;
-- unique id which identifies the
-- Ip Routing Table instance.
-- An empty string is used for a single instance.
REGISTERED AS {attributes 6};

snmpEnableAuthenTraps ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 OIM-Module.SnmpEnableAuthenTraps;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 30};

snmpId ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 OIM-Module.PrintString;
MATCHES FOR Equality;
-- naming attribute for snmp
-- An empty string is used for a single instance.
REGISTERED AS {attributes 18};

snmpInASNParseErrs ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 6};

snmpInBadCommunityNames ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 4};

snmpInBadCommunityUses ATTRIBUTE
WITH ATTRIBUTE SYNTAX
 RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 5};

snmpInBadValues ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 10};

snmpInBadVersions ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 3};

snmpInGenErrs ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 12};

snmpInGetNexts ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 16};

snmpInGetRequests ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 15};

snmpInGetResponses ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 18};

snmpInNoSuchNames ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 9};

snmpInPkts ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 1};

snmpInReadOnlys ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 11};

snmpInSetRequests ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 17};

snmpInTooBigs ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 8};

snmpInTotalReqVars ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 13};

snmpInTotalSetVars ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 14};

snmpInTraps ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
--- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 19};
snmpOutBadValues ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 22};

snmpOutGenErrs ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 24};

snmpOutGetNexts ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 26};

snmpOutGetRequests ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 25};

snmpOutGetResponses ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 28};

snmpOutNoSuchNames ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 21};

snmpOutPkts ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 2};
snmpOutRequests ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 27};

snmpOutTooBigs ATTRIBUTE
WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 20};

snmpOutTraps ATTRIBUTE
WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {snmp 29};

sysContact ATTRIBUTE
WITH ATTRIBUTE SYNTAX
OIM-Module.PrintString;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {system 4};

sysDescr ATTRIBUTE
WITH ATTRIBUTE SYNTAX
OIM-Module.PrintString;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {system 1};

sysLocation ATTRIBUTE
WITH ATTRIBUTE SYNTAX
OIM-Module.PrintString;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {system 6};

sysName ATTRIBUTE
WITH ATTRIBUTE SYNTAX
OIM-Module.PrintString;
MATCHES FOR Equality;
-- SEE MIB II [16] for attribute semantics
-- The nodes domain name.
REGISTERED AS {system 5};
sysObjectIds ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.ObjectId;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {system 2};

sysServices ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer128;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {system 7};

sysUpTime ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.TimeTicks;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {system 3};

tcpActiveOpens ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcp 5};

tcpAttemptFails ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcp 7};

tcpConnId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- identifies an instance of tcpConnEntry
 -- <laddr> "." <lport> "." <raddr> "." <rport>, where
 -- <laddr> is the "dot notation" representation of
 -- tcpConnLocalAddress,
 -- <lport> is the decimal representation of
 -- tcpConnLocalPort,
 -- <raddr> is the "dot notation" representation of
 -- tcpConnRemAddress, and
 -- <rport> is the decimal representation of
 -- tcpConnRemPort.
 REGISTERED AS {attributes 12};
tcpConnLocalAddress ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcpConnEntry 2};

tcpConnLocalPort ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer64k;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcpConnEntry 3};

tcpConnRemAddress ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IpAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcpConnEntry 4};

tcpConnRemPort ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer64k;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcpConnEntry 5};

tcpConnState ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.TcpConnState;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcpConnEntry 1};

tcpConnTableId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute defines a unique index of
 -- tcpConnEntry in the TCP Connection Table
 -- An empty string is used for a single instance.
 REGISTERED AS {attributes 11};

tcpCurrEstab ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Gauge;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcp 9};

tcpEstabResets ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
tcpId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
RFC1065-SMI.PrintString;
MATCHES FOR Equality;
-- This attribute uniquely identified a tcp
-- object instance
-- An empty string is used for a single instance.
REGISTERED AS {tcp 8};

tcpInErrs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {tcp 14};

tcpInSegs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {tcp 10};

tcpMaxConn ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {tcp 4};

tcpOutRsts ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {tcp 15};

tcpOutSegs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
-- SEE MIB II [16] for attribute semantics
REGISTERED AS {tcp 11};
tcpPassiveOpens ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
RFC1065-SMI.Counter;
MATCHES FOR Equality, Ordering;
tcpRetransSegs ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcp 6};

tcpRtoAlgorithm ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.TcpRtoAlgorithm;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcp 12};

tcpRtoMax ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcp 3};

tcpRtoMin ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {tcp 2};

udpEntryId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute defines an entry
 -- for the UDP Listener Table
 -- <port> "." <address>, where <port> is the decimal
 -- representation of udpLocalPort and <address> is
 -- udpLocalAddress represented in "dot notation".
 REGISTERED AS {attributes 15};

udpId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute provides a unique id to
 -- identify the UDP entity.
 -- An empty string is used for a single instance.
 REGISTERED AS {attributes 13};
udpInDatagrams ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {udp 1};

udpInErrors ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {udp 3};

udpLocalAddress ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.IPAddress;
 MATCHES FOR Equality;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {udpEntry 1};

udpLocalPort ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.Integer64k;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {udpEntry 2};

udpNoPorts ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {udp 2};

udpOutDatagrams ATTRIBUTE
 WITH ATTRIBUTE SYNTAX RFC1065-SMI.Counter;
 MATCHES FOR Equality, Ordering;
 -- SEE MIB II [16] for attribute semantics
 REGISTERED AS {udp 4};

udpTableId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX OIM-Module.PrintString;
 MATCHES FOR Equality;
 -- This attribute defines a unique id
 -- for the UDP Listener Table
 -- An empty string is used for a single instance.
 REGISTERED AS {attributes 14};
6. Notifications

Notification templates for the notifications referenced in the managed object class templates of section 5 are listed here in alphabetical order.

coldStartEvent NOTIFICATION
-- clause 4.1.6.1 of RFC1157
-- emitted by system
 MODE NON-CONFIRMED;
 WITH INFORMATION SYNTAX OIM-Module.SnmpTrapInfo
 REGISTERED AS {events 0};

egpNeighborLossEvent NOTIFICATION
-- clause 4.1.6.6 of RFC1157
-- with generic-trap = 5
-- The first VarBindList element
-- contains the name and value of the
-- egpNeighAddr of the affected
-- neighbor.
-- emitted by egpNeighEntry
 MODE NON-CONFIRMED;
 WITH INFORMATION SYNTAX OIM-Module.SnmpTrapInfo;
 REGISTERED AS {events 5};

linkDownEvent NOTIFICATION
-- clause 4.1.6.3 of RFC1157
-- emitted by ifEntry
-- with generic-trap = 2
 MODE NON-CONFIRMED;
 WITH INFORMATION SYNTAX OIM-Module.SnmpTrapInfo;
 REGISTERED AS {events 2};

linkUpEvent NOTIFICATION
-- clause 4.1.6.4 of RFC1157
-- emitted by ifEntry
-- with generic-trap = 3
 MODE NON-CONFIRMED;
 WITH INFORMATION SYNTAX OIM-Module.SnmpTrapInfo;
 REGISTERED AS {events 3};

snmpAuthentFailureEvent NOTIFICATION
-- clause 4.1.6.5 of RFC1157
-- emitted by snmp
 MODE NON-CONFIRMED;
 WITH INFORMATION SYNTAX OIM-Module.SnmpTrapInfo;
 REGISTERED AS {events 4};
entSpecificEvent NOTIFICATION
 -- clause 4.1.6.7 of RFC1157
 -- emitted by system
 MODE NON-CONFIRMED;
 WITH INFORMATION SYNTAX OIM-Module.SnmpTrapInfo;
 REGISTERED AS {events 6};

warmStartEvent NOTIFICATION
 -- clause 4.1.6.2 of RFC1157
 -- emitted by system
 MODE NON-CONFIRMED;
 WITH INFORMATION SYNTAX OIM-Module.SnmpTrapInfo;
 REGISTERED AS {events 1};

7. The Containment Hierarchy

Name Binding templates that define the containment hierarchy for the
OIM MIB-II are listed here in alphabetical order. The containment
hierarchy within a managed system begins at the "system" managed
object.

atEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS atEntry;
 NAMED BY SUPERIOR OBJECT CLASS atTable;
 WITH ATTRIBUTE atEntryId;
 CREATE;
 DELETE only-if-no-contained-objects;
 REGISTERED AS { nameForms 5};

atTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS atTable;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE atTableId;
 REGISTERED AS { nameForms 4};

egp-nf NAME BINDING
 SUBORDINATE OBJECT CLASS egp;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE egpId;
 REGISTERED AS { nameForms 20};

egpNeighEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS egpNeighEntry;
 NAMED BY SUPERIOR OBJECT CLASS egpNeighTable;
 WITH ATTRIBUTE egpNeighEntryId;
 CREATE;
 DELETE only-if-no-contained-objects;
REGISTERED AS { nameForms 22};

egpNeighTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS egpNeighTable;
 NAMED BY SUPERIOR OBJECT CLASS egp;
 WITH ATTRIBUTE egpNeighTableId;
 REGISTERED AS { nameForms 21};

icmp-nf NAME BINDING
 SUBORDINATE OBJECT CLASS icmp;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE icmpId;
 REGISTERED AS { nameForms 13};

interfaces-nf NAME BINDING
 SUBORDINATE OBJECT CLASS interfaces;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE ifId;
 REGISTERED AS { nameForms 24};

ifEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ifEntry;
 NAMED BY SUPERIOR OBJECT CLASS ifTable;
 WITH ATTRIBUTE ifEntryId;
 CREATE;
 DELETE only-if-no-contained-objects;
 REGISTERED AS { nameForms 3};

ifTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ifTable;
 NAMED BY SUPERIOR OBJECT CLASS interfaces;
 WITH ATTRIBUTE ifTableId;
 REGISTERED AS { nameForms 2};

ip-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ip;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE ipId;
 REGISTERED AS { nameForms 6};

ipAddrEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ipAddrEntry;
 NAMED BY SUPERIOR OBJECT CLASS ipAddrTable;
 WITH ATTRIBUTE ipAdEntryId;
 CREATE;
 DELETE only-if-no-contained-objects;
 REGISTERED AS { nameForms 8};
ipAddrTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ipAddrTable;
 NAMED BY SUPERIOR OBJECT CLASS ip;
 WITH ATTRIBUTE ipAddrTableId;
 REGISTERED AS { nameForms 7};

ipNetToMediaEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ipNetToMediaEntry;
 NAMED BY SUPERIOR OBJECT CLASS ipNetToMediaTable;
 WITH ATTRIBUTE ipNetToMediaEntryId;
 CREATE;
 DELETE only-if-no-contained-objects;
 REGISTERED AS { nameForms 12};

ipNetToMediaTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ipNetToMediaTable;
 NAMED BY SUPERIOR OBJECT CLASS ip;
 WITH ATTRIBUTE ipNetToMediaTableId;
 REGISTERED AS { nameForms 11};

ipRouteEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ipRouteEntry;
 NAMED BY SUPERIOR OBJECT CLASS ipRoutingTable;
 WITH ATTRIBUTE ipRouteEntryId;
 CREATE;
 DELETE only-if-no-contained-objects;
 REGISTERED AS { nameForms 10};

ipRoutingTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS ipRoutingTable;
 NAMED BY SUPERIOR OBJECT CLASS ip;
 WITH ATTRIBUTE ipRoutingTableId;
 REGISTERED AS { nameForms 9};

snmp-nf NAME BINDING
 SUBORDINATE OBJECT CLASS snmp;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE snmpId;
 REGISTERED AS { nameForms 23};

system-nf NAME BINDING
 SUBORDINATE OBJECT CLASS system;
 NAMED BY SUPERIOR OBJECT CLASS root;
 WITH ATTRIBUTE sysName;
 REGISTERED AS { nameForms 1 };
tcp-nf NAME BINDING
 SUBORDINATE OBJECT CLASS tcp;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE tcpid;
 REGISTERED AS { nameForms 14};

tcpConnEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS tcpConnEntry;
 NAMED BY SUPERIOR OBJECT CLASS tcpConnTable;
 WITH ATTRIBUTE tcpConnId;
 REGISTERED AS { nameForms 16};

tcpConnTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS tcpConnTable;
 NAMED BY SUPERIOR OBJECT CLASS tcp;
 WITH ATTRIBUTE tcpConnTableId;
 REGISTERED AS { nameForms 15};

udp-nf NAME BINDING
 SUBORDINATE OBJECT CLASS udp;
 NAMED BY SUPERIOR OBJECT CLASS system;
 WITH ATTRIBUTE udpId;
 REGISTERED AS { nameForms 17};

udpEntry-nf NAME BINDING
 SUBORDINATE OBJECT CLASS udpEntry;
 NAMED BY SUPERIOR OBJECT CLASS udpTable;
 WITH ATTRIBUTE udpEntryId;
 REGISTERED AS { nameForms 19};

udpTable-nf NAME BINDING
 SUBORDINATE OBJECT CLASS udpTable;
 NAMED BY SUPERIOR OBJECT CLASS udp;
 WITH ATTRIBUTE udpTableId;
 REGISTERED AS { nameForms 18};
8. ASN.1 Definitions

The ASN.1 syntax referenced by the attribute templates in section 6 are either defined in RFC1065-SMI, the Attribute-ASN1Module of ISO/IEC DIS 10165-2, or in the OIM-Module defined in this section. This module includes some syntax definitions taken from the RFC1158 since they were not included in that document inside an ASN.1 module and hence could not be externally referenced.

OIM-Module

```asn1
{iso org(3) dod(6) internet(1) mgmt(2) mib(1)
  oim(9) misc(4) 1}
```

```
DEFINITIONS ::= BEGIN
-- EXPORTS
Everything

IMPORTS ObjectClass, ObjectInstance
FROM CMIP-1{joint-iso-ccitt ms(9) cmip(1)
  modules(0) protocol(3)}
ObjectName, ObjectSyntax
FROM RFC1065-SMI;
```

```
mib
OBJECT IDENTIFIER ::= {iso org(3) dod(6)
  internet(1) mgmt(2) 1}
at
OBJECT IDENTIFIER ::= {mib 3}
oim
OBJECT IDENTIFIER ::= {mib 9}
cmotVersion
OBJECT IDENTIFIER ::= {oim 1}
cmotACSEInfo
OBJECT IDENTIFIER ::= {oim 2}
cmotSystemId
OBJECT IDENTIFIER ::= {oim 3}
misc
OBJECT IDENTIFIER ::= {oim 4}
objects
OBJECT IDENTIFIER ::= {oim 5}
attributes
OBJECT IDENTIFIER ::= {oim 6}
events
OBJECT IDENTIFIER ::= {oim 7}
nameforms
OBJECT IDENTIFIER ::= {oim 8}
actions
OBJECT IDENTIFIER ::= {oim 9}
```

-- Generic and MIB specific syntax

```
EgpNeighEventTrigger
  ::= INTEGER {
      start(1),
      stop(2)
    }
```

```
EgpNeighMode
  ::= INTEGER {
      active(1),
      passive(2)
    }
```

```
EgpNeighState
  ::= INTEGER {
```

OIM Working Group

[Page 49]
idle(1),
acquisition(2),
down(3),
up(4),
cease(5)
}

Integer ::= INTEGER

Integer128 ::= INTEGER (0..127)

Integer64k ::= INTEGER (0..65535)

IfAdminStatus ::= INTEGER {
 up(1), -- ready to pass packets
 down(2),
 testing(3) -- in some test mode
}

IfOperStatus ::= INTEGER {
 up(1), -- ready to pass packets
 down(2),
 testing(3) -- in some test mode
}

IfType INTEGER {
 other(1), -- none of the following
 regular1822(2),
 hdh1822(3),
 ddn-x25(4),
 rfc877-x25(5),
 ethernet-csmacd(6),
 iso88023-csmacd(7),
 iso88024-tokenBus(8),
 iso88025-tokenRing(9),
 iso88026-man(10),
 starLan(11),
 proteon-10Mbit(12),
 proteon-80Mbit(13),
 hyperchannel(14),
 ffdi(15),
 lapb(16),
 sdlc(17),
 ds1(18),
 e1(19), -- european equivalent
 -- of T-1
 basicISDN(20),
 primaryISDN(21),
}
propPointToPointSerial(22),
ppp(23),
softwareLoopback(24),
eon(25), -- CLNP over IP
ethernet-3Mbit(26),
nsip(27), -- XNS over IP
slip(28), -- generic SLIP
ultra(29), -- ULTRA technologies
ds3(30), -- T-3
sip(31), -- SMDS
frame-relay(32)

IpForwarding ::= INTEGER {
 forwarding(1), -- acting as a gateway
 not-forwarding(2) -- NOT acting as
 -- a gateway
}

IpNetToMediaType ::= INTEGER {
 other(1), -- none of the
 -- following
 invalid(2), -- an invalidated
 -- mapping
 dynamic(3),
 static(4) }

IpRouteProto ::= INTEGER {
 other(1), -- none of the
 -- following
 local(2), -- configured entries
 netmgmt(3), -- mgmt protocol
 icmp(4), -- obtained via ICMP,
 -- e.g., redirect
 egp(5),
 ggp(6),
 hello(7),
 rip(8),
 is-is(9),
 es-is(10),
 ciscoIgrp(11),
 bbnSpfIgp(12),
 ospf(13),
 bgp(14)
}
IpRouteType ::= INTEGER {

other(1), -- none of the
 -- following
invalid(2), -- an invalidated
 -- route
direct(3), -- route to directly
 -- connected
 -- subnetwork
indirect(4) -- route to a
 -- non-local
 -- host/network/
 -- subnet
}

ObjectId ::= OBJECT IDENTIFIER

OctetString ::= OCTET STRING

PhysAddress ::= OCTET STRING

PrintString ::= DisplayString (SIZE (0..255))

DisplayString ::= OCTET STRING

-- SNMP trap syntax

SnmpEnableAuthenTraps ::= INTEGER {
 enabled(1),
 disabled(2)
}

SnmpTrapInfo ::= SEQUENCE {
 enterprise -- type of device generating event
 -- see sysObjectID
 OBJECT IDENTIFIER,
 agent-addr -- address of device generating the event
 NetworkAddress,
 generic-trap INTEGER {
 coldStart (0),
 warmStart (1),
 linkDown (2),
 linkUp (3),
 authenticationFailure (4),
 egpNeighborLoss (5),
 enterpriseSpecific (6) },
 specific-trap INTEGER OPTIONAL, -- enterprise specific
 variable-bindings VarBindList OPTIONAL
}

VarBindList ::= SEQUENCE OF VarBind

VarBind ::= SEQUENCE {
 name ObjectName,
 ovalue ObjectSyntax
}

TcpConnState ::= INTEGER {
 closed(1),
 listen(2),
 ...}
synSent(3),
synReceived(4),
established(5),
finWait1(6),
finWait2(7),
closeWait(8),
lastAck(9),
closing(10),
timeWait(11),
deleteTCP(12) }

TcpRtoAlgorithm ::= INTEGER {
 other(1), -- none of the
 -- following
 constant(2), -- a constant rto
 rsre(3), -- MIL-STD-1778,
 -- Appendix B
 vanj(4) -- Van Jacobsons alg.
}

END

9. Acknowledgements

The editor acknowledges the contributions of the members of the OIM
working group. Particular thanks are made to the following for their
comments and assistance:

 Marvin Solomon, University of Wisconsin
 Nancy Hall, University of Wisconsin
 Subhendu Ghatak, University of Tennessee at Knoxville
References

Appendix 1: Notational Tools for Managed Object Definition

This section provides descriptions of the notational tools used to define the templates defined in this memorandum. The text is excerpted and paraphrased from reference 6. Only the templates used in this document are included here. For a complete description of the notational tools specified for OSI management, see reference 6.

A1.1 Overview of Notational Tools

The "Templates" defined in this clause provide a common set of tools and a common format for the representation of the various aspects of a managed object class definition and its associated naming structure. Formal definitions of each template will be found in clauses A1.3 - A1.11 inclusive; the syntactic conventions used in these formal definitions are specified in clause A1.2. Examples of the use of these tools may be found in Annex A (of 10165-4).

The structure and behaviour of a managed object class is primarily defined by means of the Managed Object Class Template. This template identifies the inheritance relationships that exist between the class and other managed object classes, the packages of class specific behaviour, the attributes that are associated with the class, the notifications that the class may issue and the operations that may be performed upon the class. In order to allow re-use of parts of this specification in the specification of other managed object classes, additional templates are defined to provide for the specification of attributes (individual and group), behaviour, actions, notifications and conditional packages. These other templates are "called up" by the Managed Object Class template by means of the referencing mechanism defined in clause A1.2; this mechanism allows references to be made in one standard to specifications that are contained in other standards, hence allowing "generic" specifications to be made available for use in managed object class definitions in addition to local specifications. Templates may also be included "in-line" if so desired.

The naming of a managed object class is defined by means of the Name Binding template. This template identifies the managed object class being named and defines the relative distinguished name that will be used to name instances of the class in the context of a particular superior class. This template also provides for the specification of relationships that exist between two object classes as a consequence of a particular name binding.
A1.2 Conventions Used in Template Definitions

The templates definitions contained in this clause are based on the following syntactic conventions:

- Strings surrounded by [] delimit parts of the template that may either be present or absent in each instance of use of the template. If the closing brace is followed by an asterisk, e.g., []*, the contents of the braces may appear zero or more times. The circumstances under which these parts of the definition may be omitted or repeated are dependent upon the template type;

- Strings surrounded by < > delimit strings that must be replaced in each instance of use of the template. The structure and meaning of the replacement string is dependent upon the string type;

- Upper case strings denote Keywords which are required to be present in each instance of use of the template, unless they are enclosed in [];

- The solidus, |, is used to separate alternative strings in the template;

- Spaces and carriage returns are significant only as string delimiters;

- In order to simplify the structure of the templates, particularly where the same syntactic structure is repeated in the template definitions, supporting syntactic definitions may be defined. If any such supporting syntactic definitions are required in order to complete the template definition, these appear following the keywords "supporting productions" at the end of the template definition. These supporting definitions take the general form:

\[
\text{definition-label} \rightarrow \text{syntactic-definition}
\]

where definition-label allows the definition to be referenced by the template definition and syntactic-definition gives the expansion of the definition, using the above notational rules;

- The templates themselves have the general structure:

\[
<\text{template-label}> \text{TEMPLATE NAME}
\]

\[
[\text{ELEMENT NAME } [\text{<element-definition>] ;}]*
\]

\[
[\text{REGISTERED AS } \text{<object-identifier> ;}]
\]
[supporting productions

[<definition-label> -> <syntactic-definition >]*

Each instance of use of a template therefore declares a template-label by which that instance may be referenced from other templates, and if the REGISTERED AS clause is present, assigns a value of an ASN.1 OBJECT IDENTIFIER under which the instance has been registered;

- Semicolons are used to mark the end of each distinct element in the template. In an instance of use of the template, any text inserted between a semicolon and the next valid keyword is assumed to be a comment;

- The notation used for representing object identifiers is the normal notation defined in ASN.1 for object identifier values; i.e., the production:

 object-identifier-> <ASN.1 ObjectIdentifierValue notation>

 is assumed to be a supporting production for all template definitions in this document;

- Further definitions, such as the nature of the element definitions, follow the syntactic definition of the template;

- Template labels shall be unique within the standard or document in which they are declared. Where a template-label is declared in document A and referenced in document B, the reference in document B shall be prefixed by the globally unique name of document A. In the case of documents named by an internationally recognized naming authority such as [CCITT|ISO/IEC], the registered name of the document shall be used as the identifier, such as [Recommendation X.722|ISO/IEC 10165-4]. Where a globally unique name is not already available, it is permissible to assign the value of an OBJECT IDENTIFIER to the referenced document, and use this value as a globally unique document name. The syntax of a template-label, defined using the above notation, is defined as follows:

 [<document-identifier> :] < label-string>

 document-identifier-> "<standard-name>" | <object-identifier>

A label-string may include any number of the following characters:

- upper or lower case alphabetic characters;
- the digits 0-9;
- the hyphen character (-);

in any order, commencing with a lower case character. For example, the following template-label:

"ISO/IEC 10165/4":exampleObjectClass

constitutes a globally unique label for the definition of exampleObjectClass contained in Annex A of 10165-4.

Label references that are not prefixed by a document-identifier are assumed to refer to labels declared in the document in which the reference appears.

- Whenever a template-label is present in a template as a pointer to another template, it may be replaced by the entire text of the referenced template itself (including the template’s label).

A1.3 Managed Object Class Template

A1.3.1 Overview

The Managed Object Class template forms the basis of the formal definition of a managed object. Elements in the template allow the class to be placed at the appropriate node of the inheritance tree, the various attributes of the class to be specified, and the behaviour of the class to be defined. The major elements of the definition are:

- Inheritance. Each managed object class defines the superclass(es) from which it has been derived. All characteristics of the superclass(es) are inherited by the subclass; the subclass definition may add to these characteristics (refinement) but may not remove any characteristics of the superclass. Ultimately, all classes are subclasses of TOP;

- Allomorphs. If the class supports allomorphism, the set of classes that are legitimate allomorphic views of the class must be defined. These classes must all be superclasses of the class being defined;

- Mandatory Packages. The managed object class definition includes the packages of behaviour, attributes, operations and notifications that provide a complete specification of the
behaviour that is common to all instances of the class;

- Conditional Packages. The managed object class definition includes the specification of packages of behaviour, attributes, operations and notifications that are present or absent in instances of that class as a consequence of a specified condition;

Note: Attributes, Operations and Notifications that form part of a class definition may only be omitted from an instance of that class if they are defined as features of a Conditional Package and are omitted in accordance with the condition defined for that package.

- Class Naming. The managed object class definition must include a class name which may be used to refer to the class in CMIP. This is achieved by registration of an Object Identifier value which corresponds to the class.

A1.3.2 Template Structure

<class-label> MANAGED OBJECT CLASS

[DERIVED FROM <class-label>
 [, <class-label>] *;
]

[ALLOMORPHIC SET <class-label>
 [, <class-label>] *;
]

[CHARACTERIZED BY <package-label>[,<package-label>] *;
]

[CONDITIONAL PACKAGES <package-label> PRESENT IF
 <condition-definition>
 [,<package-label> PRESENT IF
 <condition-definition>] *;
]

[PARAMETERS <parameter-label> [,<parameter-label>] *;
]

REGISTERED AS <object-identifier>;

A1.3.3 Supporting Definitions

DERIVED FROM <class-label>[,<class-label>]*

The DERIVED FROM clause shall be present in all managed object class definitions other than "top". It is therefore the case that "top" is a superclass of all classes other than itself.

The class-label identifies a managed object class from which the
A managed object class has been derived; i.e., a managed object class which is one of the object class’s parents in the inheritance hierarchy. As multiple inheritance is permitted, a managed object class may have one or more parent classes.

The process of inheritance (specialization) requires all the characteristics of the superclass(es) other than DERIVED FROM and ALLOMORPHIC SET to be included in the definition of the subclass. If it is intended that the subclass be allomorphic, the definition of the subclass shall include a ALLOMORPHIC SET clause that explicitly defines the set of classes that the subclass is allomorphic to.

Where multiple inheritance results in the same element definition being multiply imported (as could happen, for example, if two parent superclasses contain the same attribute), the subclass is assumed to contain a single copy of the definition concerned.

Characteristics that are inherited from a superclass shall not be repeated in the documentation of the subclass unless one of the techniques described in ISO/IEC 10165-4 for extending or modifying an element of the superclass is being used. The DERIVED FROM clause is therefore presumed to automatically import all inheritable elements of definition from the superclass definition(s). There may be augmented or modified by elements defined within the CHARACTERISED BY, CONDITIONAL PACKAGES, and PARAMETER constructs.

**ALLOMORPHIC SET <class-label>[,<class-label>]*

The Allomorphic Set allows a set of superclasses to be identified that are "backwards compatible" with the managed object class. Thus, if managed object class A identifies classes B and C as members of its allomorphic set, it is possible to operate on an instance of class A as if it were an instance of class B or C. The definition of allomorphic forms allows, for example, the definition of enhanced versions of a managed object class that are backwards compatible with previous versions. The class label shall identify the class-label of a managed object class definition that is a superclass of the managed object class that is being defined.

**CHARACTERIZED BY <package-label>[,<package-label>]*

This construct, if present, allows one or more mandatory packages of behaviour, attributes, operations, and notifications to be included in the managed object class definition, in addition to those that are present as a result of the Derived From construct.

**CONDITIONAL PACKAGES <package-label> PRESENT IF <condition-definition>[,<package-label> PRESENT IF <condition-definition>]*
Present if one or more conditional packages are to be included in the managed object class definition. The package-label identifies the package definition that is applicable. The condition-definition is a description of the condition that, if true, requires that the package be included in an instance of the class. The condition shall refer to a documented feature of the definition of the underlying resource or a related standard which is permitted to be present or absent in an implementation.

PARAMETERS <parameter-label>[,<parameter-label>]*

If present, this construct permits the definition of parameters to be included in the object class definition in addition to any inherited parameters.

REGISTERED AS <object-identifier>

The object identifier value provides a globally unique identifier for the object class definition. This value is used in the management protocol when it is necessary to identify the object class.

A1.4 Package Template

This template allows a package of behaviour definitions, attributes, operations and notifications to be defined for subsequent insertion into a managed object class template under the Characterized By and Conditional Packages constructs. The major elements of the definition are:

- Behaviour. The managed object class definition provides a complete specification of the behaviour of the object. This includes:
 - The effect of the Operations upon the managed object;
 - Any constraints that are placed on operations in order to satisfy consistency rules, and in particular, the rules under which Creation and Deletion of managed objects may be performed and the consequences of these operations;
 - A specification of how instances of a managed object class interact with each other, related, managed objects of the same or different classes.
 - A complete definition of any other aspects of the behaviour of the managed object class.
 - Contained attributes. The set of attributes that the
package contains must be defined;

- Operations and Notifications. The package definition
 specifies which notifications instances of the class that make
 use of this package shall be able to generate, which operations
 instance of the class shall be capable of performing, and in the
 case of attribute related operations, which attributes shall be
 available to be operated upon.

Note: The operations identified in the package definition are the
operation types defined in the Information Model (Get, Replace, Set
to Default,...etc). In the case of Actions and Notifications,
further definitions are required in order to characterise their
functionality, as described in clauses A1.10, A1.11. The create and
delete operations are defined as part of the Name Binding template
described in clause A1.6, a creation and deletion of an object is
closely bound to the containment relationship between superior and
subordinate objects, rather than to all instances of a managed object
class.

A1.4.1 Template Structure

< package-label> PACKAGE

[BEHAVIOUR DEFINITIONS < behaviour-definition-label>
 [, < behaviour-definition-label >] *];
]
[ATTRIBUTES<attribute-label> <propertylist>[<parameter-label>]
 [, < attribute-label> < propertylist> [< parameter-label>]]*];
]
[ATTRIBUTE GROUPS <group-label> [<attribute-label>]*
 [, < group-label > [< attribute-label >]]*];
]
[ACTIONS <action-label>[<parameter-label>]*
 [, < action-label > [< parameter-label >]]*];
]
[NOTIFICATIONS <notification-label> [<parameter-label>]*
 [, < notification-label > [< parameter-label >]]*];
]
[REGISTERED AS < object-identifier>];

supporting productions

propertylist -> [REPLACE WITH DEFAULT]
 [DEFAULT VALUE < value-definition >]
 [PERMITTED VALUES < value-set-syntax-label >]
 [REQUIRED VALUES < value-set-syntax-label >]
 [GET | REPLACE | GET-REPLACE]
A1.4.2 Supporting Definitions

BEHAVIOUR DEFINITIONS < definition-label> [,<definition-label>]*

Behaviour Definitions allow the behaviour (semantics) of the managed object class to be completely described. These definitions relate the external view of the object (its operations and notifications) to its internal operation. The definition-label identifies an instance of use of the Behaviour template.

Note: It should not be assumed that the behaviour defined by this clause is testable using existing conformance test technology.

ATTRIBUTES. <attribute-label><propertylist> [(<parameter-label>]*

This allows attributes to be included in the package definition. The propertylist that follows each attribute label defines the set of operations that may be performed on the managed object with reference to the attribute, and defines any default, permitted or required value(s) associated with the attribute. The Replace With Default property is included if the property has a default value that may be set by means of the Replace With Default Value operation. The value-definition used to specify the default value shall be a value reference name, using the Externaltypereference notation defined in ISO 8824.

If the PERMITTED VALUES property is present, the value-set-syntax-label specifies any restrictions on the possible values that the attribute may take. The value-set-syntax-label shall be a type reference name, using the Externaltypereference notation defined in ISO 8824. The form of the specification referenced shall be a subtype of the attribute syntax type, defined using the ASN.1 subtype notation.

Note: The Permitted Values construct is required only in attribute definitions where it is necessary to specify a restriction on the value set permitted by the specification of the Attribute Syntax, e.g., when modifying an existing attribute specification.

If the REQUIRED VALUES property is present, the value-set-syntax-label specifies any restrictions on the possible values that the attribute may take. The value-set-syntax-label shall be a type reference name, using the Externaltypereference notation defined in ISO 8824. The form of the specification referenced shall be a subtype of the attribute syntax type, defined using the ASN.1 subtype notation.
notation.

Note: This property defines the value set required for conformance.

The parameter-labels allow parameters to be associated with the operations permitted on the attribute.

ATTRIBUTE GROUPS <group-label> [,<attribute-label>] *[,<group-label> [,<attribute-label>]]*

This allows a set of attributes groups to be identified as part of the package. The original definition of an attribute group may be extended by the addition of further attribute-labels.

ACTIONS <action-label>[,<parameter-label>] *[,<action-label>[,<parameter-label>]]*

If present, the action-labels identify the set of action definitions that are included in the package. The behaviour definitions shall specify the effect of these Actions upon managed objects.

The parameter-labels allow parameters to be associated with the Action.

NOTIFICATIONS <notification-label>[,<parameter-label>] *[,<notification-label>[,<parameter-label>]]*

Present if any Notifications are included in the package. The notification labels identify the Notification definitions that are applicable. The behaviour definitions shall specify the circumstances under which those Notifications are generated by a managed object.

The parameter-labels allow parameters to be associated with the Notification.

REGISTERED AS <object-identifier>

The object identifier value, if present, provides a globally unique identifier for the package definition, and registers the groupings of behaviour definitions, attributes, attribute groups, actions and notifications that the package defines. This value is required in cases where the package is referenced by a conditional packages construct in an object class template and the package contains a behaviour construct or more than one element, in which case the value of the object identifier is included in the conditional packages attribute of any instances of the object class that are created with the package present.
A1.5 Parameter Template

This template permits the specification and registration of parameter syntaxes and associated behaviour that may be associated with particular operations and notifications within the managed object class and conditional package templates defined in clauses A1.3 and A1.4. This mechanism is not used in the OIM MIB-II.

A1.6 Name Binding Template

A1.6.1 Overview

This template allows alternative naming structures to be defined for managed objects of a given managed object class by means of name bindings. The name binding allows an attribute to be selected as the naming attribute for a given subordinate class/superior class pair.

The attribute selected must be an attribute of the subordinate object that is present in all instances of the specified managed object class. This attribute is used for the purpose of constructing the relative distinguished name (RDN) of subordinate objects of that class. An RDN is constructed from the OBJECT IDENTIFIER assigned to that attribute type and the value of the instance of the attribute. The Distinguished Name of the subordinate object is obtained by appending its RDN to the Distinguished Name of its superior object.

Name bindings are not considered to be part of the definition of either of the managed object classes that they reference. A given managed object class may have more than one name binding associated with it. The set of name bindings defines the set of possible naming relationships with superior managed objects and the set of managed object classes from which subordinate object classes may be instantiated.

Note: Name Bindings may be specified for a managed object class subsequent to the specification of the managed object class itself.

A1.6.2 Template Structure

<name-binding-label> NAME BINDING

SUBORDINATE OBJECT CLASS <class-label>;
NAMED BY
SUPERIOR OBJECT CLASS <class-label>;
WITH ATTRIBUTE <attribute-label>;
[BEHAVIOUR <behaviour-definition-label>
 [,<behaviour-definition-label>]*)
]
[CREATE [<create-modifier>[,<create-modifier>]]
 [<parameter-label>] *;
]
[DELETE <delete-modifier>[<parameter-label>] *;
]

REGISTERED AS <object-identifier>;

supporting productions

create-modifier->
 with-reference-object |
 with-automatic-instance-naming

delete-modifier ->
 only-if-no-contained-objects |
 deletes-contained-objects

A1.6.3 Supporting Definitions

SUBORDINATE OBJECT CLASS <class-label>

This defines the managed object class being named. The name of an instance of the subordinate managed object class is constructed by concatenating the distinguished name of the superior managed object class with the relative distinguished name of the subordinate managed object class.

NAMED BY SUPERIOR OBJECT CLASS <class-label>

This defines a managed object class that may contain instances of the subordinate managed object class.

WITH ATTRIBUTE <attribute label>

This defines the attribute that shall be used, in the context of this name binding, to construct the relative distinguished name for the subordinate managed object class. Values of this attribute shall be represented by single-valued data types, complying with the restrictions specified in ISO 10165-1; if no naturally suitable attribute is available for use as a naming attribute, object designers are encouraged to provide a naming attribute of type Graphic String.

BEHAVIOUR <behaviour-definition-label>

If present, this clause permits any behavioural impact imposed as a consequence of the name binding to be defined. The behaviour-definition-label identifies the constraint definition concerned; the constraint is therefore expressed using the behaviour template.
CREATE [<create-modifier>,<create-modifier>][<parameter-label>]*

Present if it is permitted to create new instances of the managed object class referenced by the SUBORDINATE OBJECT CLASS construct in the context of this name binding, by means of systems management operations. The create-modifier values specify the options available on creation. The permitted create-modifiers are as follows:

- with reference-object. If present, a reference object may be specified on creation as a source of default values and to specify choice of Conditional Packages;

- with automatic instance naming. If present, the CREATE request may omit to specify the instance name of the new object instance. The behaviour definitions shall specify what course of action is taken when there is a choice of Name Forms that may be applied to the new object instance.

If neither create-modifier is specified, the instance name and all necessary default values shall be specified in the CREATE request.

The parameter-labels allows parameters to be associated with the CREATE operation.

DELETE <delete-modifier> [<parameter-label>]*

Present if it is permitted to delete instances of the managed object class referenced by the SUBORDINATE OBJECT CLASS construct in the context of this name binding. The delete-modifier indicates the behaviour of a managed object of that class if the managed object is deleted. The permitted delete-modifiers are:

- only-if-no-contained-objects. If specified, any contained managed objects must be explicitly deleted prior to deletion of the containing managed object, i.e., a DELETE request will cause an error if there are contained managed objects;

- delete-contained-objects. If specified, a DELETE request applied to an instance of the managed object class has the effect of deleting contained objects also.

If there are constraints on deletion relative to other relationships or conditions, these are specified as part of the behaviour of the managed object class.

The parameter-labels allows parameters to be associated with the DELETE operation.
A1.7 Attribute Template

A1.7.1 Overview

This template is used to define individual attribute types. These definitions may be further combined by the Attribute Group template where attribute groups are required. The major elements of the definition are:

- Derivation. The definition of an attribute type may modify or constrain the definition of another attribute type.

- Attribute Syntax. The definition of an attribute type must include the definition of the syntax that will be used to convey values of the attribute in CMIP. This definition is achieved by means of a reference to an ASN.1 Type Definition. The definition of an attribute syntax indicates whether the attribute value is a single or set-valued attribute type. If the base type is SET OF, the attribute is a set-valued type, otherwise it is a single-valued type;

- Value Matching. The definition of an attribute type may include the valid ways in which the value of an instance of the type may be tested, i.e., whether the attribute may be tested for equality, magnitude, etc.. Value matching on some attribute types may require the specification of how a matching rule is defined to operate, as part of the attribute’s behaviour definition. The absence of any matching rules in the attribute definition implies that matching of values is undefined;

- Behaviour. The attribute definition may include definition of attribute specific behaviour; i.e., behaviour that applies to an attribute type regardless of which managed object class contains instances of the attribute type;

- Attribute type name. An Object Identifier value shall be allocated to each attribute that is to be included in the definition of a managed object class. This value is used in CMIP to identify the attribute.

A1.7.2 Template Structure

```
<attribute-label> ATTRIBUTE
    derived-from-construct | with attribute-syntax-construct
    [MATCHES FOR <qualifier>[,<qualifier>]* ;]
    [BEHAVIOUR <behaviour-definition-label>
        [,<behaviour-definition-label>]* ;]
```
A1.7.3 Supporting Definitions

DERIVED FROM <attribute-label>

If this element is present, the attribute definition takes as a starting point all aspects of the definition referenced by attribute-label, including any that it may in turn have derived from other attribute definitions. The rules for interpreting the effect of presence of any of the other elements of the attribute template under these circumstances are as follows:

- WITH ATTRIBUTE SYNTAX is not permitted to be present. The attribute syntax shall be the attribute syntax of the attribute from which this attribute has been derived.;

- MATCHES FOR: The resultant set of matching rules shall be the logical OR of the matching rules specified by this construct with any derived matching rules;

- BEHAVIOUR is assumed to extend any derived behaviour definitions;

- REGISTERED AS is assumed to replace any registration derived from other definitions.

This derivation mechanism permits:

- The definition of an attribute based on an existing attribute definition;

- The addition of further constraints to an existing attribute
WITH ATTRIBUTE SYNTAX <syntax label>

This element, present only if the DERIVED FROM construct is absent, identifies the ASN.1 data type that describes how instances of the attribute value are carried in protocol. The syntax-label shall be an ASN.1 Externaltypereference.

The ASN.1 data type also defines the data type of the attribute itself. If the base type of the syntax is set-of, the attribute is a set-valued attribute. All other ASN.1 data types, including set, sequence of, and sequence type, define single-valued attribute types.

MATCHES FOR <qualifier>[,<qualifier>]*

This element defines the types of test that may be applied to a value of the attribute as part of a Filter operation. Matching for the presence of an attribute is implicitly permitted for all attributes. For all other types of matching, if this clause is not present, matching is undefined and is therefore not permitted on the attribute. The options are:

- Equality. If present, the attribute value may be tested for equality against a given value;

- Ordering. If present, the attribute value may be tested against a given value in order to determine which has the greater value;

- Substrings. If present, the attribute value may be tested against a given substring value in order to determine its presence or absence in the attribute value;

- Set Comparison. If present, the attribute value may be tested against a given value in order to determine set equality or subset/superset relationships between the values;

- Set Intersection. If present, the attribute value may be tested against a given value in order to determine the presence or absence of a non-null set intersection between the two values.

BEHAVIOUR <behaviour-definition-label>
[,<behaviour-definition-label>]*

Any behaviour that is generic to this attribute type may be defined by means of this behaviour clause. The behaviour definition shall include any additional specification that is required in order to
define how the chosen set of matching rules are applied to the attribute definition. Behaviour that is specific to the managed object class is defined in the behaviour clause of the managed object class template.

Note: It should not be assumed that the behaviour defined by this clause is testable using existing conformance test technology.

REGISTERED AS <object-identifier>

If present, the object-identifier provides a globally unique identifier for the attribute definition; this includes all elements referenced either directly, or indirectly by the Derived From, With Attribute Syntax, Matches For and Behaviour constructs, where present. This value is used in the management protocol when it is necessary to identify the attribute type. If this construct is omitted, the attribute definition shall not be referenced in a managed object class definition without further constraints being applied in another attribute definition.

A1.8 Notification Template

A1.8.1 Overview

This template is used to define the behaviour and syntax associated with a particular Notification type. The main features of the definition are as follows:

- Behaviour. The definition of a Notification type must specify the circumstances under which a notification of the type is generated;

- Mode of operation. The definition of a notification type shall indicate whether the notification may be confirmed, unconfirmed or both;

- Syntax Definitions. The definition of the Notification type must specify any syntax that will be used to convey the CMIS Event Information and Event Reply parameters in CMIP. These syntaxes are defined by means of ASN.1 data types. The template also permits the allocation of attribute values to fields in the syntax;

- Notification naming. The value of the Object Identifier associated with the Notification definition is used to identify the Event type in CMIP.
A1.8.2 Template Structure

<notification-label> NOTIFICATION
BEHAVIOUR <behaviour-definition-label>
 [,<behaviour-definition-label>]*;
MODE <confirmation-mode>;
[PARAMETERS <parameter-label>[,<parameter-label>]*;
]
[WITH INFORMATION SYNTAX <syntax-label>
 [AND ATTRIBUTE IDS <field-name><attribute-label>
 [,<field-name><attribute-label>]*];
]
[WITH REPLY SYNTAX <syntax-label>;
]
REGISTERED AS <object-identifier>;

supporting productions

confirmation-mode -> CONFIRMED | NON-CONFIRMED | CONFIRMED AND NON-CONFIRMED

A1.8.3 Supporting Definitions

BEHAVIOUR <behaviour-definition-label>

This defines the behaviour of the notification, the data that must be specified with the notification, the results that the notification may generate and their meaning. The behaviour-definition-label references a behaviour description defined by use of the Behaviour Template.

Note: It should not be assumed that the behaviour defined by this clause is testable using existing conformance test technology.

MODE CONFIRMED | NON-CONFIRMED | CONFIRMED AND NON-CONFIRMED

This defines the allowable mode of operation of the notification type, as follows:

- CONFIRMED: The notification type shall operate in the confirmed mode only;
- NON-CONFIRMED: The notification type shall operate in the non-confirmed mode only;
- CONFIRMED AND NON-CONFIRMED: The notification type may operate in either confirmed mode or non-confirmed mode.
PARAMETERS <parameter-label>[,<parameter-label>]*

The parameter-labels allow parameters to be associated with the behaviour of the attribute type.

WITH INFORMATION SYNTAX <syntax-label> [AND ATTRIBUTE IDS
<field-name><attribute-label> [,<field-name><attribute-label>]*;]

This construct identifies the ASN.1 data type that describes the structure of the notification information that is carried in management protocol, and permits the association of attribute identifiers with named fields in the abstract syntax. The syntax-label shall be a type reference name, using the Externaltypereference notation defined in ISO 8824. If absent, there is no information associated with the notification invocation. If the AND ATTRIBUTE IDS option is used, the field-name label shall be a label defined within the abstract syntax referenced by the syntax that appears in the construct. The data type that is labeled by the field-name is used to carry values of the attribute referenced by attribute-label. The ASN.1 data type of the attribute shall be the same as the data type referenced by field-name.

WITH REPLY SYNTAX <syntax-label>

If a syntax-label is present, this identifies the ASN.1 data type that describes the structure of the notification reply that is carried in management protocol. The syntax-label shall be a type reference name, using the Externaltypereference notation defined in ISO 8824. If absent, there is no information associated with the notification reply.
Appendix 2: New Objects: Internet SMI Object Type Macros

atEntryId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"<index>.1.<address>, where <index is the decimal representation of atIfIndex and <address> is atNetAddress represented in dot notation. The 1 is a subidentifier indicating that an IP address follows."
::= { attributes 3}

atTableId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An empty string."
::= { attributes 2}

egpId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An empty string."
::= { attributes 16}

egpNeighEntryId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"egpNeighAddr encoded in dot notation."
::= { attributes 22}

egpNeighTableId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An empty string."
::= { attributes 17}

icmpId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION "An empty string."
::= { attributes 9}

ifId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION "An empty string."
::= { attributes 23}

ifEntryId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION "The decimal representation of ifIndex."
::= { attributes 21}

ifTableId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION "An empty string."
::= { attributes 1}

ipAdEntryId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION "ipAdEntAddr encoded in dot notation."
::= { attributes 19}

ipAddrTableId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION "An empty string."
::= { attributes 5}
ipId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "An empty string."
::= { attributes 4}

ipNetToMediaEntryId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "<interface>.<address>, where <interface> is the decimal representation of
 ipNetToMediaIndex and <address> is ipNetToMediaNetAddress in dot notation."
::= { attributes 8}

ipNetToMediaTableId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "An empty string."
::= { attributes 7}

ipRouteEntryId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "<dest> , where <dest> is ipRouteDest represented in dot notation."
::= { attributes 20}

ipRoutingTableId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "An empty string."
::= { attributes 6}

snmpId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An empty string."
 ::= { attributes 18}

tcpConnId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<laddr> . <lport> . <raddr> . <rport>, where
 <laddr> is the dot notation representation of
tcpConnLocalAddress,
 <lport> is the decimal representation of tcpConnLocalPort,
 <raddr> is the dot notation representation of
tcpConnRemAddress, and
 <rport> is the decimal representation of tcpConnRemPort."
 ::= { attributes 12}

tcpConnTableId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "An empty string."
 ::= { attributes 11}

tcpId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "An empty string."
 ::= { attributes 10}

updEntryId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<index> . <address>, where <index> is the decimal
 representation of atIfIndex and <address> is atNetAddress
 represented in dot notation."
 ::= { attributes 15}

udpId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
"An empty string."
::= { attributes 13}

udpTableId OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "An empty string."
::= { attributes 14}
The definition of the object class "top", from which all object classes are derived, is taken from ISO/IEC DIS 10165-2: Definition of Management Information [5]. However, pending progression of that document to an International Standard, the object class "top" and its associated attributes have been registered here under the oim registration arc.

```
  top     MANAGED OBJECT CLASS
         CHARACTERIZED BY
            topPackage PACKAGE
         BEHAVIOUR DEFINITIONS topBehaviour;
         ATTRIBUTES
            objectClass      GET,
            name            GET,
            allomorphs      GET,
            nameBindings    GET,
            packages        GET;;;
         REGISTERED AS {objects 1};

  topBehaviour    BEHAVIOUR
         DEFINED AS
         This is the top level of managed object class hierarchy and
         every other managed object class is a specialization of either
         this generic class (top) or a specialization of a subclass of top.;

  allomorphs ATTRIBUTE
         WITH ATTRIBUTE SYNTAX
            Top-Syntax.Allomorphs;
         MATCHES FOR  Set Comparison, Set Intersection;
         REGISTERED AS {attributes 30};

  name ATTRIBUTE
         WITH ATTRIBUTE SYNTAX InformationFramework.
            RelativeDistinguishedName;
         MATCHES FOR Equality;
         REGISTERED AS {attributes 31};

  nameBindings ATTRIBUTE
         WITH ATTRIBUTE SYNTAX
            Top-Syntax.NameBindings;
         MATCHES FOR  Set Comparison, Set Intersection;
         REGISTERED AS {attributes 32};
```
objectClass ATTRIBUTE
 WITH ATTRIBUTE SYNTAX CMIP-1.ObjectClass;
 MATCHES FOR Equality, Ordering;
REGISTERED AS {attributes 33};

packages ATTRIBUTE
 WITH ATTRIBUTE SYNTAX
 Top-Syntax.Packages;
 -- The set of optional packages defined for the
 -- class that are included in this instantiation of
 -- the object.
 MATCHES FOR Set Comparison, Set Intersection;
REGISTERED AS {attributes 34};

Top-Syntax {iso(1) org(3) dod(6) internet(1) mgmt(1) mib(1)
 oim(9) misc(4) 2}

DEFINITIONS ::= BEGIN

 -- from ISO/IEC DIS 10165-2:Definition of Management Information

 Allomorphs ::= SET OF OBJECT IDENTIFIER

 NameBindings ::= SET OF OBJECT IDENTIFIER

 Packages ::= SET OF OBJECT IDENTIFIER

 -- From Directory InformationFramework

 RelativeDistinguishedName ::= SET OF AttributeValueAssertion

 AttributeValueAssertion ::= SEQUENCE {
 AttributeType,
 AttributeValue
 }

 AttributeType ::= OBJECT IDENTIFIER

 AttributeValue ::= ANY

 -- From CMIP-1

 ObjectClass ::= CHOICE {
 globalForm [0] OBJECT IDENTIFIER,
 localForm [1] INTEGER
 }

END

Security Considerations

 Security issues are not discussed in this memo.
Author’s Address

Lee LaBarre
The MITRE Corporation
Burlington Road
Bedford, MA 01730

Phone: (617) 271-8507
EMail: cel@mbunix.mitre.org