SNMP MIB Extension for the X.25 Packet Layer

Status of this Memo

This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing the Packet Layer of X.25. The objects defined here, along with the objects in the "SNMP MIB Extension for LAPB" [9] and the "Definitions of Managed Objects for RS-232-like Hardware Devices" [8], combine to allow management of an X.25 protocol stack.

Table of Contents

1. The Network Management Framework 2
2. Objects .. 2
 2.1 Format of Definitions 3
3. Overview .. 3
 3.1 Informal Overview 3
3.2 Textual Conventions 4
3.3 Structure of MIB .. 4
3.4 Tables .. 5
3.5 Table Usage .. 6
3.6 Conformance .. 6
4. Object Definitions ... 7
5. Appendix: Revision History 62
 July 30 1992 .. 62
 June 26 1992 .. 62
 June 1992 ... 63
 April 1992 .. 63
 February 1992 .. 65
 October 1991 .. 65
 June 1991 ... 66
 April 1991 ... 66
6. Acknowledgements .. 66
1. The Network Management Framework

The Internet-standard Network Management Framework consists of three components. These components give the rules for defining objects, the definitions of objects, and the protocol for manipulating objects.

The network management framework structures objects in an abstract information tree. The branches of the tree name objects and the leaves of the tree contain the values manipulated to effect management. This tree is called the Management Information Base or MIB. The concepts of this tree are given in STD 16/RFC 1155, "The Structure of Management Information" or SMI [1]. The SMI defines the trunk of the tree and the types of objects used when defining the leaves. STD 16/RFC 1212, "Towards Concise MIB Definitions" [4], defines a more concise description mechanism that preserves all the principals of the SMI.

STD 15/RFC 1157 [3] defines the SNMP protocol itself. The protocol defines how to manipulate the objects in a remote MIB.

The tree structure of the MIB allows new objects to be defined for the purpose of experimentation and evaluation.

2. Objects

The definition of an object in the MIB requires an object name and type. Object names and types are defined using the subset of Abstract Syntax Notation One (ASN.1) [6] defined in the SMI [1]. Objects are named using ASN.1 object identifiers, administratively assigned names, to specify object types. The object name, together with an optional object instance, uniquely identifies a specific instance of an object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to objects.

Objects also have a syntax that defines the abstract data structure corresponding to that object type. The ASN.1 language [6] provides the primitives used for this purpose. The SMI [1] purposely
restricts the ASN.1 constructs which may be used for simplicity and ease of implementation. The encoding of an object type simply describes how to represent an object using ASN.1 encoding rules [7], for purposes of dealing with the SNMP protocol.

2.1. Format of Definitions

Section 4 contains the specification of all object types defined in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in "Towards Concise MIB Definitions" [4].

3. Overview

3.1. Informal Overview

This section describes how the objects defined below relate with other MIBs. This section is only informational to help understand how the pieces fit together.

The objects defined below are used in conjunction with MIB-II and other MIBs such as the LAPB MIB [9]. A system with a complete X.25 stack running over a synchronous line will have at least two interfaces in the ifTable defined in MIB-II. There will be an interface for LAPB and another interface for the packet layer of X.25. There will also be objects defined in the RS-232-like MIB for the physical sync line.

Each software interface identifies the layer below it used to send and receive packets. The X.25 MIB object, defined below, x25OperDataLinkId, specifies an instance of lapbAdminIndex for the LAPB interface under that X.25. The LAPB object, lapbOperPortId, identifies an instance of the rs232PortIndex for the the Sync line used by LAPB.

For X.25 running over LAPB over Ethernet, the lapbOperPortId would identify the instance of ifIndex for the Ethernet interface.

Each X.25 subnetwork will have separate entries in the ifTable. Thus a system with two X.25 lines would have two ifTable entries for the two X.25 packet layers and two other entries for the two LAPB interfaces. Each X.25 Packet Layer MIB would identify the instance of the LAPB MIB for the interface below it. Each LAPB MIB would identify the Sync line below it. The system would also have two entries in the rs232PortTable and rs232SyncPortTable for the two physical lines.

Since the ifTable as defined in MIB-II is device independent, it doesn’t have anything specific for any type of interface. The
objects below define the X.25 packet layer specific information for
an interface of type X.25. Different X.25 interfaces can also be
differentiated by matching the values of ifIndex with x25AdmnIndex.

3.2. Textual Conventions

This MIB introduces a new data type as a textual convention for use
with X.25. This textual convention enhances the readability of the
specification and can ease comparison with other specifications if
appropriate. It should be noted that the introduction of such
textual conventions has no effect on either the syntax nor the
semantics of any managed objects. These conventions are merely an
artifact of the explanatory method used. Objects defined in terms of
one of these methods are always encoded by means of the rules that
define the primitive type. Hence, no changes to the SMI or the SNMP
are necessary to accommodate these textual conventions which are
adopted merely for the convenience of readers and writers in pursuit
of the elusive goal of clear, concise, and unambiguous MIB documents.

This MIB introduces the data type of:

X121Address

3.3. Structure of MIB

Instances of the objects defined below represent attributes of an
X.25 Packet Layer interface. At present these interfaces are
identified by an ifType object in the Internet-standard MIB-II [5]
of:

 ddn-x25(4), and
 rfc887-x25(5).

For these interfaces, the value of the ifSpecific variable in the
MIB-II [5] has the OBJECT IDENTIFIER value:

 x25 OBJECT IDENTIFIER ::= { transmission 5 }

The objects defined below are similar to those defined in a draft ISO
document for X.25 management [11]. Some object definitions also
reference the ISO specification for X.25 [10] to specify the section
that will give the reader additional information about the object.
Access to those documents maybe useful (but isn’t essential) to
understand the names and semantics of some objects. The similarity
of these objects with the ISO objects minimizes the instrumentation
required by those systems that support both OSI and TCP/IP management
protocols.
Since the objects defined here are extensions to the Internet Standard MIB [2] and thus also an extension of the second version, MIB-II [5], the objects defined here explicitly do not duplicate objects defined in existing standards. In some instances clarification of how to apply those objects has been given.

The relationship between an X.25 Packet Layer interface and an interface in the context of the Internet-standard MIB [5] is one-to-one. As such, the value of an ifIndex object instance can be directly used to identify corresponding instances of the objects defined below.

3.4. Tables

The objects below form several tables. These tables are:

- x25AdminTable
- x25OperTable
- x25StatTable
- x25ChannelTable
- x25CircuitTable
- x25ClearedCircuitTable
- x25CallParmTable

The x25AdminTable defines objects for the parameters of an X.25 interface which the administrator can read and set. These objects are used at interface initialization time to start the interface. Once the interface has started, changes to the objects in the Administration table may not take affect until the interface is re-initialized.

The x25OperTable defines objects that report the current parameters used by a running interface. These objects are read-only.

The x25StatTable defines objects that report operational statistics for an X.25 interface. These are read-only counters of events that occurred at the interface.

The x25ChannelTable defines objects to allow the administrator to manage the division of channel numbers.

The x25CircuitTable defines objects that return information about existing X.25 circuits. These entries result from calls placed or answered by the PLE or from PVCs.

The x25ClearedCircuitTable contains objects for recording the termination information from circuits that cleared abnormally.
The x25CallParmTable defines the call parameters used to call other systems. This table contains call parameter entries which are referenced by other tables. For example, the x25AdmnTable has one object that identifies the entry in the table for the default PLE parameters. The x25CircuitTable has one object that identifies the entry in the x25CallParmTable for the parameters in use by that circuit. Other MIBs may also reference entries to identify call parameters to use to make X.25 calls.

3.5. Table Usage

Different tables provide different functions. The administrator sets the starting X.25 parameters in the x25AdmnTable for the X.25 PLE; these objects include a reference to the x25CallParmTable entry to identify the default call parameters for the PLE. Once all the parameters are set, the administrator initializes the interface. As part of initializing the interface, the operating parameters are copied into the interface from the x25AdmnTable; these parameters are viewable by getting the objects in the x25OperTable. (The interface maybe started by setting the value of ifAdminStatus to up.) If any PVCs are configured, their parameters can be set in the the x25CircuitTable before initializing the interface; this should be done in conjunction with configuring higher layer entities to use the PVCs via the MIBs for those entities.

Once the PLE completes initialization, it makes additional entries in the x25CircuitTable for calls placed or answered. When a circuit is cleared, the status of the entry for the circuit is set to closed and, if the clear is abnormal, an entry will also be made in the x25ClearedCircuitTable. An entry in the x25CircuitTable with a status of closed maybe deleted by the agent at its convenience. A closed entry will always be reused at the time the PLE re-allocates the channel number of the entry for another call. The call parameters used for a circuit can be found by looking in the x25CircuitTable and following the x25CircuitCallParamId pointer to the entry in the x25CallParmTable that contains the parameters.

There are no mechanisms in the X.25 MIB for telling the PLE to place an X.25 call. Such mechanisms belong in the MIBs for the higher layer entities that use the X.25 circuits.

3.6. Conformance

All the objects defined here are mandatory. To claim conformance with this MIB an implementation must support all objects. However some objects pertain to features that are optional. There are values defined for those objects that indicate the implementation does not support the optional feature. The agent for such an implementation
must support reading the object and return the value that indicates
the optional feature isn’t supported and reject set requests to
change the object.

Some optional features have more than one object that pertain to it
(window rotation has a timer, a count, and a counter for timer
runouts). In such case, any object which indicates the optional
feature isn’t supported is sufficient to indicate the feature isn’t
supported and the values of the other objects relative to that
feature are undefined.

4. Object Definitions

RFC1382-MIB DEFINITIONS ::= BEGIN

IMPORTS
 Counter, Gauge, TimeTicks
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 DisplayString, transmission
 FROM RFC1213-MIB
 TRAP-TYPE
 FROM RFC-1215
 EntryStatus
 FROM RFC1271-MIB
 PositiveInteger,
 IfIndexType
 FROM RFC1381-MIB;

x25 OBJECT IDENTIFIER ::= { transmission 5 }

-- Support of the X25 subtree and all subtrees under it
-- is mandatory for all agents of system that implement X.25.

X121Address ::= OCTET STRING (SIZE(0..17))
-- 0 to 17 bytes in length containing the ASCII
-- characters [0-9], each octet contains one digit
-- of the address.

-- ###
-- X.25 Administration Table
-- ###

x25AdmnTable OBJECT-TYPE

Throop
This table contains the administratively set configuration parameters for an X.25 Packet Level Entity (PLE).

Most of the objects in this table have corresponding objects in the x25OperTable. This table contains the values as last set by the administrator. The x25OperTable contains the values actually in use by an X.25 PLE.

Changing an administrative value may or may not change a current operating value. The operating value may not change until the interface is restarted. Some implementations may change the values immediately upon changing the administrative table. All implementations are required to load the values from the administrative table when initializing a PLE.

```plaintext
::= { x25 1 }

x25AdmnEntry OBJECT-TYPE
SYNTAX X25AdmnEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Entries of x25AdmnTable."
INDEX { x25AdmnIndex }
 ::= { x25AdmnTable 1 }

X25AdmnEntry ::= SEQUENCE {
    x25AdmnIndex
        IfIndexType,
    x25AdmnInterfaceMode
        INTEGER,
    x25AdmnMaxActiveCircuits
        INTEGER,
    x25AdmnPacketSequencing
        INTEGER,
    x25AdmnRestartTimer
        PositiveInteger,
    x25AdmnCallTimer
        PositiveInteger,
```
x25AdmnResetTimer
 PositiveInteger,
x25AdmnClearTimer
 PositiveInteger,
x25AdmnWindowsTimer
 PositiveInteger,
x25AdmnDataRxmtTimer
 PositiveInteger,
x25AdmnInterruptTimer
 PositiveInteger,
x25AdmnRejectTimer
 PositiveInteger,
x25AdmnRegistrationRequestTimer
 PositiveInteger,
x25AdmnMinimumRecallTimer
 PositiveInteger,
x25AdmnRestartCount
 INTEGER,
x25AdmnResetCount
 INTEGER,
x25AdmnClearCount
 INTEGER,
x25AdmnDataRxmtCount
 INTEGER,
x25AdmnRejectCount
 INTEGER,
x25AdmnRegistrationRequestCount
 INTEGER,
x25AdmnNumberPVCs
 INTEGER,
x25AdmnDefCallParamId
 OBJECT IDENTIFIER,
x25AdmnLocalAddress
 X121Address,
x25AdmnProtocolVersionSupported
 OBJECT IDENTIFIER
}

x25AdmnIndex OBJECT-TYPE
SYNTAX IfIndexType
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The ifIndex value for the X.25 Interface."
::= { x25AdmnEntry 1 }

x25AdmnInterfaceMode OBJECT-TYPE
SYNTAX INTEGER {
dte (1),
dce (2),
dxe (3)
}

ACCESS read-write
STATUS mandatory
DESCRIPTION
"Identifies DCE/DTE mode in which the
interface operates. A value of dxe
indicates the mode will be determined by XID
negotiation."
REFERENCE "10733 5.9 interfaceMode"
::= { x25AdmnEntry 2 }

x25AdmnMaxActiveCircuits OBJECT-TYPE
SYNTAX INTEGER (0..4096)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum number of circuits this PLE can
support; including PVCs."
REFERENCE "10733 5.9 maxActiveCircuits;
See ISO 8208, Section 3.7"
::= { x25AdmnEntry 3 }

x25AdmnPacketSequencing OBJECT-TYPE
SYNTAX INTEGER {
 modulo8 (1),
 modulo128 (2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The modulus of the packet sequence number
space."
REFERENCE "10733 extendedPacketSequencing;
See ISO 8208 Section 7.1.1"
::= { x25AdmnEntry 4 }

x25AdmnRestartTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T20 restart timer in milliseconds."
REFERENCE "10733 5.9 restartTime
See ISO 8208 Section 4.1, table 26"
::= { x25AdmnEntry 5 }
x25AdmnCallTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T21 Call timer in milliseconds."
REFERENCE "10733 callTime;
 See ISO 8208 Section 5.2.1, table 26"
::= { x25AdmnEntry 6 }

x25AdmnResetTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T22 Reset timer in milliseconds."
REFERENCE "10733 resetTime;
 See ISO 8208 Section 8.1, table 26"
::= { x25AdmnEntry 7 }

x25AdmnClearTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T23 Clear timer in milliseconds."
REFERENCE "10733 clearTime;
 See ISO 8208 Section 5.5.1, table 26"
::= { x25AdmnEntry 8 }

x25AdmnWindowTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T24 window status transmission timer in milliseconds. A value of 2147483647 indicates no window timer in use."
REFERENCE "10733 5.10.1 windowTime (opt);
 See ISO 8208 Section 11.2.2, table 26"
::= { x25AdmnEntry 9 }

x25AdmnDataRxmtTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T25 data retransmission timer in
milliseconds. A value of 2147483647 indicates no data retransmission timer in use."
REFERENCE "10733 5.10.1 dataRetransmissionTime (opt); See ISO 8208 Section 11.2.1, table 26"
::= { x25AdmnEntry 10 }

x25AdmnInterruptTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T26 interrupt timer in milliseconds. A value of 2147483647 indicates no interrupt timer in use."
REFERENCE "10733 interruptTime; See ISO 8208 Section 6.8.1, table 26"
::= { x25AdmnEntry 11 }

x25AdmnRejectTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T27 Reject retransmission timer in milliseconds. A value of 2147483647 indicates no reject timer in use."
REFERENCE "10733 5.10.1 dataRejectTime (opt); See ISO 8208 Section 13.4.1, table 26"
::= { x25AdmnEntry 12 }

x25AdmnRegistrationRequestTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The T28 registration timer in milliseconds. A value of 2147483647 indicates no registration timer in use."
REFERENCE "10733 5.8.1 registrationRequestTime (opt) See ISO 8208 Section 13.1.1.1, table 26"
::= { x25AdmnEntry 13 }

x25AdmnMinimumRecallTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Minimum time interval between unsuccessful call attempts in milliseconds."
REFERENCE "10733 5.9 minimum RecallTimer"
::= { x25AdmnEntry 14 }

x25AdmnRestartCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION "The R20 restart retransmission count."
REFERENCE "10733 5.9 restartCount;
See ISO 8208 Section 4.1, table 27"
::= { x25AdmnEntry 15 }

x25AdmnResetCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION "The r22 Reset retransmission count."
REFERENCE "10733 resetCount;
See section ISO 8208 8.1, table 27"
::= { x25AdmnEntry 16 }

x25AdmnClearCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION "The r23 Clear retransmission count."
REFERENCE "10733 clearCount;
See ISO 8208 Section 5.5.1, table 27"
::= { x25AdmnEntry 17 }

x25AdmnDataRxmtCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION "The R25 Data retransmission count. This value is irrelevant if the x25AdmnDataRxmtTimer indicates no timer in use."
REFERENCE "10733 5.10.1 dataRetransmissionCount (opt)
See ISO 8208 Section 11.2.1, table 27"
::= { x25AdmnEntry 18 }

Throop [Page 13]
x25AdmnRejectCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The R27 reject retransmission count. This value is irrelevant if the x25AdmnRejectTimer indicates no timer in use."
REFERENCE "10733 5.10.1 dataRejectCount (opt)"
::= { x25AdmnEntry 19 }

x25AdmnRegistrationRequestCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The R28 Registration retransmission Count. This value is irrelevant if the x25AdmnRegistrationRequestTimer indicates no timer in use."
REFERENCE "10733 5.8.1 registrationRequestCount (opt); See ISO 8208 Section 13.1.1.1, table 27"
::= { x25AdmnEntry 20 }

x25AdmnNumberPVCs OBJECT-TYPE
SYNTAX INTEGER (0..4096)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The number of PVC configured for this PLE. The PVCs use channel numbers from 1 to this number."
::= { x25AdmnEntry 21 }

x25AdmnDefCallParamId OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This identifies the instance of the x25CallParmIndex for the entry in the x25CallParmTable which contains the default call parameters for this PLE."
::= { x25AdmnEntry 22 }

x25AdmnLocalAddress OBJECT-TYPE
SYNTAX X121Address
The local address for this PLE subnetwork. A zero length address maybe returned by PLEs that only support PVCs.

REFERENCE "10733 5.9 localDTEAddress"

::= { x25AdmnEntry 23 }

Identifies the version of the X.25 protocol this interface should support. Object identifiers for common versions are defined below in the x25ProtocolVersion subtree.

REFERENCE "10733 5.9 protocolVersionSupported"

::= { x25AdmnEntry 24 }

The operation parameters in use by the X.25 PLE.

::= { x25 2 }

Entries of x25OperTable.

INDEX { x25OperIndex }

::= { x25OperTable 1 }

x25OperEntry ::= SEQUENCE {
 x25OperIndex
 IfIndexType,
 x25OperInterfaceMode
INTEGER,
x25OperMaxActiveCircuits
INTEGER,
x25OperPacketSequencing
INTEGER,
x25OperRestartTimer
 PositiveInteger,
x25OperCallTimer
 PositiveInteger,
x25OperResetTimer
 PositiveInteger,
x25OperClearTimer
 PositiveInteger,
x25OperWindowTimer
 PositiveInteger,
x25OperDataRxmtTimer
 PositiveInteger,
x25OperInterruptTimer
 PositiveInteger,
x25OperRejectTimer
 PositiveInteger,
x25OperRegistrationRequestTimer
 PositiveInteger,
x25OperMinimumRecallTimer
 PositiveInteger,
x25OperRestartCount
 INTEGER,
x25OperResetCount
 INTEGER,
x25OperClearCount
 INTEGER,
x25OperDataRxmtCount
 INTEGER,
x25OperRejectCount
 INTEGER,
x25OperRegistrationRequestCount
 INTEGER,
x25OperNumberPVCs
 INTEGER,
x25OperDefCallParamId
 OBJECT IDENTIFIER,
x25OperLocalAddress
 X121Address,
x25OperDataLinkId
 OBJECT IDENTIFIER,
x25OperProtocolVersionSupported
 OBJECT IDENTIFIER
}
x25OperIndex OBJECT-TYPE
SYNTAX IfIndexType
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The ifIndex value for the X.25 interface."
 ::= { x25OperEntry 1 }

x25OperInterfaceMode OBJECT-TYPE
SYNTAX INTEGER {
 dte (1),
 dce (2),
 dxe (3)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Identifies DCE/DTE mode in which the
interface operates. A value of dxe
indicates the role will be determined by XID
negotiation at the Link Layer and that
negotiation has not yet taken place."
REFERENCE "10733 5.9 interfaceMode"
 ::= { x25OperEntry 2 }

x25OperMaxActiveCircuits OBJECT-TYPE
SYNTAX INTEGER (0..4096)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Maximum number of circuits this PLE can
support."
REFERENCE "10733 5.9 maxActiveCircuits
See ISO 8208, Section 3.7"
 ::= { x25OperEntry 3 }

x25OperPacketSequencing OBJECT-TYPE
SYNTAX INTEGER {
 modulo8 (1),
 modulo128 (2)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The modulus of the packet sequence number
space."
REFERENCE "10733 extendedPacketSequencing;
See ISO 8208 Section 7.1.1"
::= { x25OperEntry 4 }

x25OperRestartTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T20 restart timer in milliseconds."
REFERENCE "10733 5.9 restartTime;
See ISO 8208 Section 4.1, table 26"
::= { x25OperEntry 5 }

x25OperCallTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T21 Call timer in milliseconds."
REFERENCE "10733 callTime;
See ISO 8208 Section 5.2.1, table 26"
::= { x25OperEntry 6 }

x25OperResetTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T22 Reset timer in milliseconds."
REFERENCE "10733 resetTime;
See ISO 8208 Section 8.1, table 26"
::= { x25OperEntry 7 }

x25OperClearTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T23 Clear timer in milliseconds."
REFERENCE "10733 clearTime;
See ISO 8208 Section 5.5.1, table 26"
::= { x25OperEntry 8 }

x25OperWindowTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T24 window status transmission timer
milliseconds. A value of 2147483647 indicates no window timer in use.
REFERENCE "10733 5.10.1 windowTime (opt);
See ISO 8208 Section 11.2.2, table 26"
::= { x25OperEntry 9 }

x25OperDataRxmtTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T25 Data Retransmission timer in milliseconds. A value of 2147483647
indicates no data retransmission timer in use."
REFERENCE "10733 5.10.1 dataRetransmissionTime (opt);
See ISO 8208 Section 11.2.1, table 26"
::= { x25OperEntry 10 }

x25OperInterruptTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T26 Interrupt timer in milliseconds. A value of 2147483647
indicates interrupts are not being used."
REFERENCE "10733 interruptTime;
See ISO 8208 Section 6.8.1, table 26"
::= { x25OperEntry 11 }

x25OperRejectTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T27 Reject retransmission timer in milliseconds. A value of 2147483647
indicates no reject timer in use."
REFERENCE "10733 5.10.1 dataRejectTime (opt);
See ISO 8208 Section 13.4.1, table 26"
::= { x25OperEntry 12 }

x25OperRegistrationRequestTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The T28 registration timer in milliseconds. A value of 2147483647 indicates no registration timer in use."
REFERENCE "10733 5.8.1 registrationRequestTime (opt);
 See ISO 8208 Section 13.1.1.1, table 26"
::= { x25OperEntry 13 }

x25OperMinimumRecallTimer OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "Minimum time interval between unsuccessful call attempts in milliseconds."
REFERENCE "10733 5.9 minimum RecallTimer"
::= { x25OperEntry 14 }

x25OperRestartCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The R20 restart retransmission count."
REFERENCE "10733 5.9 restartCount
 See ISO 8208 Section 4.1, table 27"
::= { x25OperEntry 15 }

x25OperResetCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The r22 Reset retransmission count."
REFERENCE "10733 resetCount;
 See section ISO 8208 8.1, table 27"
::= { x25OperEntry 16 }

x25OperClearCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The r23 Clear retransmission count."
REFERENCE "10733 clearCount;
 See ISO 8208 Section 5.5.1, table 27"
::= { x25OperEntry 17 }

x25OperDataRxmtCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The R25 Data retransmission count. This value is undefined if the x25OperDataRxtmTimer indicates no timer in use."
REFERENCE "10733 5.10.1 dataRetransmissionCount (opt); See ISO 8208 Section 11.2.1, table 27"
::= { x25OperEntry 18 }

x25OperRejectCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The R27 reject retransmission count. This value is undefined if the x25OperRejectTimer indicates no timer in use."
REFERENCE "10733 5.10.1 dataRejectCount (opt)"
::= { x25OperEntry 19 }

x25OperRegistrationRequestCount OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The R28 Registration retransmission Count. This value is undefined if the x25OperRegistrationRequestTimer indicates no timer in use."
REFERENCE "10733 5.8.1 registrationRequestCount (opt); See ISO 8208 Section 13.1.1.1, table 27"
::= { x25OperEntry 20 }

x25OperNumberPVCs OBJECT-TYPE
SYNTAX INTEGER (0..4096)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of PVC configured for this PLE. The PVCs use channel numbers from 1 to this number."
::= { x25OperEntry 21 }

x25OperDefCallParamId OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER

Throop
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This identifies the instance of the
x25CallParmIndex for the entry in the
x25CallParmTable that contains the default
call parameters for this PLE."
 ::= { x25OperEntry 22 }

x25OperLocalAddress OBJECT-TYPE
SYNTAX X121Address
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The local address for this PLE subnetwork.
A zero length address maybe returned by PLEs
that only support PVCs."
REFERENCE "10733 5.9 localDTEAddress"
 ::= { x25OperEntry 23 }

x25OperDataLinkId OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This identifies the instance of the index
object in the first table of the most device
specific MIB for the interface used by this
PLE."
 ::= { x25OperEntry 24 }

x25OperProtocolVersionSupported OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Identifies the version of the X.25 protocol
this interface supports. Object identifiers
for common versions are defined below in the
x25ProtocolVersion subtree."
REFERENCE "10733 5.9 protocolVersionSupported"
 ::= { x25OperEntry 25 }

-- MIB-II also provides:

-- ifDescr:
-- On an X.25 interface this must include sufficient
-- information to enable the system's administrator
-- to determine the appropriate configuration
-- information on a system having multiple X.25
-- subnetworks.

-- ifType: ddn-x25 or rfc877-x25
-- an interface of type ddn-x25 will use an algorithm to
-- translate between X.121 address and IP addresses.
-- An interface of type rfc877-x25 will use a
-- configuration table to translate between X.121
-- addresses and IP addresses.

-- ifMtu: the maximum PDU a higher layer can pass to X.25 or
-- receive from X.25

-- ifSpeed:
-- This will be the value of the local clock for this line.
-- A value of zero indicates external clocking.

-- ifAdminStatus:

-- ifOperStatus

-- ifLastChange

-- ###
-- X.25 Statistics Table
-- ###

x25StatTable OBJECT-TYPE
SYNTAX SEQUENCE OF X25StatEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Statistics information about this X.25 PLE."
 ::= { x25 3 }

x25StatEntry OBJECT-TYPE
SYNTAX X25StatEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Entries of the x25StatTable."
INDEX { x25StatIndex }
 ::= { x25StatTable 1 }
X25StatEntry ::= SEQUENCE {
 x25StatIndex IfIndexType,
 x25StatInCalls Counter,
 x25StatInCallRefusals Counter,
 x25StatInProviderInitiatedClears Counter,
 x25StatInRemotelyInitiated Resets Counter,
 x25StatInProviderInitiated Resets Counter,
 x25StatInRestarts Counter,
 x25StatInDataPackets Counter,
 x25StatInAccusedOfProtocolErrors Counter,
 x25StatInInterrupts Counter,
 x25StatOutCallAttempts Counter,
 x25StatOutCallFailures Counter,
 x25StatOutInterrupts Counter,
 x25StatOutDataPackets Counter,
 x25StatOutgoingCircuits Gauge,
 x25StatIncomingCircuits Gauge,
 x25StatTwowayCircuits Gauge,
 x25StatRestartTimeouts Counter,
 x25StatCallTimeouts Counter,
 x25StatResetTimeouts Counter,
 x25StatClearTimeouts Counter,
 x25StatDataRxmtTimeouts Counter,
 x25StatInterruptTimeouts Counter,
 x25StatRetryCountExceededs
}

Throop
Counter,
x25StatClearCountExceededs Counter
}

x25StatIndex OBJECT-TYPE
SYNTAX IfIndexType
ACCESS read-only
STATUS mandatory
DESCRIPTION "The ifIndex value for the X.25 interface."
::= { x25StatEntry 1 }

x25StatInCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of incoming calls received."
::= { x25StatEntry 2 }

x25StatInCallRefusals OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of incoming calls refused. This
includes calls refused by the PLE and by
higher layers. This also includes calls
cleared because of restricted fast select."
::= { x25StatEntry 3 }

x25StatInProviderInitiatedClears OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of clear requests with a cause
code other than DTE initiated."
REFERENCE "10733 providerInitiatedDisconnect"
::= { x25StatEntry 4 }

x25StatInRemotelyInitiatedResets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of reset requests received with

cause code DTE initiated."
REFERENCE "10733 remotelyInitiatedResets"
::= { x25StatEntry 5 }

x25StatInProviderInitiatedResets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of reset requests received with
 cause code other than DTE initiated."
REFERENCE "10733 ProviderInitiatedResets"
::= { x25StatEntry 6 }

x25StatInRestarts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of remotely initiated (including
 provider initiated) restarts experienced by
 the PLE excluding the restart associated
 with bringing up the PLE interface. This
 only counts restarts received when the PLE
 already has an established connection with
 the remove PLE."
REFERENCE "10733 5.9 remotelyInitiatedRestarts"
::= { x25StatEntry 7 }

x25StatInDataPackets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of data packets received."
REFERENCE "10733 5.9 dataPacketsReceived."
::= { x25StatEntry 8 }

x25StatInAccusedOfProtocolErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of packets received containing a
 procedure error cause code. These include
 clear, reset, restart, or diagnostic
 packets."
REFERENCE "CD 10733 5.9 accusedOfProtocolError"
::= { x25StatEntry 9 }

x25StatInInterrupts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of interrupt packets received by
the PLE or over the PVC/Vc."
REFERENCE "10733 interruptPacketsReceived"
::= { x25StatEntry 10 }

x25StatOutCallAttempts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of calls attempted."
REFERENCE "10733 5.9 callAttempts"
::= { x25StatEntry 11 }

x25StatOutCallFailures OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of call attempts which failed.
This includes calls that were cleared
because of restrictive fast select."
::= { x25StatEntry 12 }

x25StatOutInterrupts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of interrupt packets send by the
PLE or over the PVC/Vc."
REFERENCE "10733 InterruptPacketsSent"
::= { x25StatEntry 13 }

x25StatOutDataPackets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of data packets sent by this
PLE."
REFERENCE "10733 dataPacketSent"
::= { x25StatEntry 14 }

x25StatOutgoingCircuits OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of active outgoing circuits. This includes call requests sent but not yet confirmed. This does not count PVCs."
::= { x25StatEntry 15 }

x25StatIncomingCircuits OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of active Incoming Circuits. This includes call indications received but not yet acknowledged. This does not count PVCs."
::= { x25StatEntry 16 }

x25StatTwowayCircuits OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of active two-way Circuits. This includes call requests sent but not yet confirmed. This does not count PVCs."
::= { x25StatEntry 17 }

x25StatRestartTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T20 restart timer expired."
REFERENCE "10733 5.9 restartTimeouts"
::= { x25StatEntry 18 }

x25StatCallTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory

Throop

[Page 28]
DESCRIPTION
"The number of times the T21 call timer expired."
REFERENCE "10733 5.9 callTimeouts"
::= { x25StatEntry 19 }

x25StatResetTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T22 reset timer expired."
REFERENCE "10733 5.9 resetTimeouts"
::= { x25StatEntry 20 }

x25StatClearTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T23 clear timer expired."
REFERENCE "10733 5.9 clearTimeouts"
::= { x25StatEntry 21 }

x25StatDataRxmtTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T25 data timer expired."
REFERENCE "10733 5.9 dataRetransmissionsTimerExpiries"
::= { x25StatEntry 22 }

x25StatInterruptTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T26 interrupt timer expired."
REFERENCE "10733 5.9 interruptTimerExpires"
::= { x25StatEntry 23 }

x25StatRetryCountExceededs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times a retry counter was
exhausted."
REFERENCE "10733 5.9 retryCountsExceeded"
::= { x25StatEntry 24 }

x25StatClearCountExceededs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the R23 clear count was
exceeded."
REFERENCE "10733 5.9 clearCountsExceeded"
::= { x25StatEntry 25 }

-- MIB-II also contains:

-- ifInOctets: Number of data octets delivered to upper
-- layer entities.

-- ifInUcastPkts: Number of packets with a clear M-bit
-- delivered to higher layer entities.

-- ifDiscards: Number of packets dropped for lack of buffering

-- ifInErrors: Number of packets received containing errors
-- REFERENCE ProtocolErrorsDetectedLocally

-- ifInUnknownProtos: Number of packets with unknown circuit
-- identifier.

-- ifOutOctets: Number of data octets delivered by
-- X.25 to upper layers.

-- ifOutUcastPkts: Number of packets with a clear M-bit
-- received from higher layer entities.

-- ##

X.25 Channel Table

-- ##
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"These objects contain information about the channel number configuration in an X.25 PLE. These values are the configured values. changes in these values after the interfaces has started may not be reflected in the operating PLE."
REFERENCE "See ISO 8208, Section 3.7"
::= { x25 4 }

x25ChannelEntry OBJECT-TYPE
SYNTAX X25ChannelEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Entries of x25ChannelTable."
REFERENCE "This provides the information available in 10733 logicalChannelAssignments."
INDEX { x25ChannelIndex }
::= { x25ChannelTable 1 }

X25ChannelEntry ::= SEQUENCE {
 x25ChannelIndex
 IfIndexType,
 x25ChannelLIC
 INTEGER,
 x25ChannelHIC
 INTEGER,
 x25ChannelLTC
 INTEGER,
 x25ChannelHTC
 INTEGER,
 x25ChannelLOC
 INTEGER,
 x25ChannelHOC
 INTEGER
}

x25ChannelIndex OBJECT-TYPE
SYNTAX IfIndexType
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The ifIndex value for the X.25 Interface."
::= { x25ChannelEntry 1 }
x25ChannelLIC OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Lowest Incoming channel."
::= { x25ChannelEntry 2 }

x25ChannelHIC OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Highest Incoming channel. A value of zero indicates no channels in this range."
::= { x25ChannelEntry 3 }

x25ChannelLTC OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Lowest Two-way channel."
::= { x25ChannelEntry 4 }

x25ChannelHTC OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Highest Two-way channel. A value of zero indicates no channels in this range."
::= { x25ChannelEntry 5 }

x25ChannelLOC OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Lowest outgoing channel."
::= { x25ChannelEntry 6 }

x25ChannelHOC OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Highest outgoing channel. A value of zero
indicates no channels in this range.

::= { x25ChannelEntry 7 }

-- ###
-- X25 Per Circuits Information Table
-- ###

x25CircuitTable OBJECT-TYPE
 SYNTAX SEQUENCE OF X25CircuitEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "These objects contain general information
 about a specific circuit of an X.25 PLE."
 ::= { x25 5 }

x25CircuitEntry OBJECT-TYPE
 SYNTAX X25CircuitEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Entries of x25CircuitTable."
 INDEX { x25CircuitIndex,
 x25CircuitChannel }
 ::= { x25CircuitTable 1 }

X25CircuitEntry ::= SEQUENCE {
 x25CircuitIndex
 IfIndexType,
 x25CircuitChannel
 INTEGER,
 x25CircuitStatus
 INTEGER,
 x25CircuitEstablishTime
 TimeTicks,
 x25CircuitDirection
 INTEGER,
 x25CircuitInOctets
 Counter,
 x25CircuitInPdus
 Counter,
 x25CircuitInRemotelyInitiatedResets
 Counter,
 x25CircuitInProviderInitiatedResets
 Counter,
x25CircuitInInterrupts
 Counter,
x25CircuitOutOctets
 Counter,
x25CircuitOutPdus
 Counter,
x25CircuitOutInterrupts
 Counter,
x25CircuitDataRetransmissionTimeouts
 Counter,
x25CircuitResetTimeouts
 Counter,
x25CircuitInterruptTimeouts
 Counter,
x25CircuitCallParamId
 OBJECT IDENTIFIER,
x25CircuitCalledDteAddress
 X121Address,
x25CircuitCallingDteAddress
 X121Address,
x25CircuitOriginallyCalledAddress
 X121Address,
x25CircuitDescr
 DisplayString

x25CircuitIndex OBJECT-TYPE
SYNTAX IfIndexType
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The ifIndex value for the X.25 Interface."
::= { x25CircuitEntry 1 }

x25CircuitChannel OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The channel number for this circuit."
::= { x25CircuitEntry 2 }

x25CircuitStatus OBJECT-TYPE
SYNTAX INTEGER { invalid (1),
 closed (2), -- (p1)
 calling (3), -- (p2,p3,p5)
 open (4), -- (p4) }
clearing (5), -- (p6,p7)
pvc (6),
pvcResetting (7),
startClear (8), -- Close cmd
startPvcResetting (9), -- Reset cmd
other (10)
}

ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object reports the current status of
the circuit.

An existing instance of this object can only
be set to startClear, startPvcResetting, or
invalid. An instance with the value calling
or open can only be set to startClear and
that action will start clearing the circuit.
An instance with the value PVC can only be
set to startPvcResetting or invalid and that
action resets the PVC or deletes the circuit
respectively. The values startClear or
startPvcResetting will never be returned by
an agent. An attempt to set the status of
an existing instance to a value other than
one of these values will result in an error.

A non-existing instance can be set to PVC to
create a PVC if the implementation supports
dynamic creation of PVCs. Some
implementations may only allow creation and
deletion of PVCs if the interface is down.
Since the instance identifier will supply
the PLE index and the channel number,
setting this object alone supplies
sufficient information to create the
instance. All the DEFVAL clauses for the
other objects of this table are appropriate
for creating a PVC; PLEs creating entries
for placed or accepted calls will use values
appropriate for the call rather than the
value of the DEFVAL clause. Two managers
trying to create the same PVC can determine
from the return code which manager succeeded
and which failed (the failing manager fails
because it can not set a value of PVC for an
existing object)."
An entry in the closed or invalid state may be deleted or reused at the agent's convenience. If the entry is kept in the closed state, the values of the parameters associated with the entry must be correct. Closed implies the values in the circuit table are correct.

The value of invalid indicates the other values in the table are invalid. Many agents may never return a value of invalid because they dynamically allocate and free unused table entries. An agent for a statically configured systems can return invalid to indicate the entry has not yet been used so the counters contain no information."

REFERENCE "See ISO 8208, table 33 for (p<n>) state table"

```::= { x25CircuitEntry 3 }
```

x25CircuitEstablishTime OBJECT-TYPE

SYNTAX TimeTicks

ACCESS read-only

STATUS mandatory

DESCRIPTION "The value of sysUpTime when the channel was associated with this circuit. For outgoing SVCs, this is the time the first call packet was sent. For incoming SVCs, this is the time the call indication was received. For PVCs this is the time the PVC was able to pass data to a higher layer entity without loss of data."

```::= { x25CircuitEntry 4 }
```

x25CircuitDirection OBJECT-TYPE

SYNTAX INTEGER {
 incoming (1),
 outgoing (2),
 pvc (3)
}

ACCESS read-write

STATUS mandatory

DESCRIPTION "The direction of the call that established this circuit."

REFERENCE "10733 direction"
DEFVAL { pvc }
::= { x25CircuitEntry 5 }

-- X.25 Circuit data flow statistics

x25CircuitInOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of octets of user data delivered
to upper layer."
REFERENCE "5.11 octetsReceivedCounter"
::= { x25CircuitEntry 6 }

x25CircuitInPdus OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of PDUs received for this
circuit."
REFERENCE "10733 5.11 dataPacketsReceived"
::= { x25CircuitEntry 7 }

x25CircuitInRemotelyInitiatedResets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of Resets received for this
circuit with cause code of DTE initiated."
REFERENCE "10733 remotelyInitiatedResets"
::= { x25CircuitEntry 8 }

x25CircuitInProviderInitiatedResets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of Resets received for this
circuit with cause code other than DTE
initiated."
REFERENCE "10733 ProviderInitiatedResets"
::= { x25CircuitEntry 9 }

x25CircuitInInterrupts OBJECT-TYPE
SYNTAX Counter
The number of interrupt packets received for this circuit.

x25CircuitOutOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of octets of user data sent for this circuit."
REFERENCE "10733 5.11 octetsSentCounter"
::= { x25CircuitEntry 11 }

The number of PDUs sent for this circuit.

x25CircuitOutPdus OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of PDUs sent for this circuit."
REFERENCE "10733 5.11 dataPacketsSent"
::= { x25CircuitEntry 12 }

The number of interrupt packets sent on this circuit.

x25CircuitOutInterrupts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of interrupt packets sent on this circuit."
REFERENCE "10733 interruptPacketsSent"
::= { x25CircuitEntry 13 }

-- X25 circuit timer statistics

The number of times the T25 data retransmission timer expired for this circuit.

x25CircuitDataRetransmissionTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T25 data retransmission timer expired for this circuit."
REFERENCE "10733 5.11 dataRetransmissionTimerExpries"
::= { x25CircuitEntry 14 }

x25CircuitResetTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T22 reset timer
expired for this circuit."
REFERENCE "10733 5.11 resetTimeouts"
::= { x25CircuitEntry 15 }

x25CircuitInterruptTimeouts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the T26 Interrupt timer
expired for this circuit."
REFERENCE "10733 interruptTimerExpries"
::= { x25CircuitEntry 16 }

x25CircuitCallParamId OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This identifies the instance of the
x25CallParmIndex for the entry in the
x25CallParmTable which contains the call parameters in use with this circuit. The entry referenced must contain the values that are currently in use by the circuit rather than proposed values. A value of NULL indicates the circuit is a PVC or is using all the default parameters."
DEFVAL { (0 0) }
::= { x25CircuitEntry 17 }

x25CircuitCalledDteAddress OBJECT-TYPE
SYNTAX X121Address
ACCESS read-write
STATUS mandatory
DESCRIPTION
"For incoming calls, this is the called address from the call indication packet. For outgoing calls, this is the called
address from the call confirmation packet. This will be zero length for PVCs."
REFERENCE "10733 calledDTEAddress"
DEFVAL { ''h }
::= { x25CircuitEntry 18 }

x25CircuitCallingDteAddress OBJECT-TYPE
SYNTAX X121Address
ACCESS read-write
STATUS mandatory
DESCRIPTION
"For incoming calls, this is the calling address from the call indication packet. For outgoing calls, this is the calling address from the call confirmation packet. This will be zero length for PVCs."
REFERENCE "10733 callingDTEAddress"
DEFVAL { ''h }
::= { x25CircuitEntry 19 }

x25CircuitOriginallyCalledAddress OBJECT-TYPE
SYNTAX X121Address
ACCESS read-write
STATUS mandatory
DESCRIPTION
"For incoming calls, this is the address in the call Redirection or Call Deflection Notification facility if the call was deflected or redirected, otherwise it will be called address from the call indication packet. For outgoing calls, this is the address from the call request packet. This will be zero length for PVCs."
REFERENCE "10733 originallyCalledAddress"
DEFVAL { ''h }
::= { x25CircuitEntry 20 }

x25CircuitDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A descriptive string associated with this circuit. This provides a place for the agent to supply any descriptive information it knows about the use or owner of the circuit. The agent may return the process identifier and user name for the process"
using the circuit. Alternative the agent may return the name of the configuration entry that caused a bridge to establish the circuit. A zero length value indicates the agent doesn’t have any additional information."

DEFVAL { "h }
::= { x25CircuitEntry 21 }

-- ###
-- The Cleared Circuit Table
-- ###

x25ClearedCircuitEntriesRequested OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The requested number of entries for the agent to keep in the x25ClearedCircuit table."
::= { x25 6 }

x25ClearedCircuitEntriesGranted OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The actual number of entries the agent will keep in the x25ClearedCircuit Table."
::= { x25 7 }

x25ClearedCircuitTable OBJECT-TYPE
SYNTAX SEQUENCE OF X25ClearedCircuitEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table of entries about closed circuits. Entries must be made in this table whenever circuits are closed and the close request or close indication packet contains a clearing cause other than DTE Originated or a Diagnostic code field other than Higher Layer Initiated disconnection-normal. An agent may optionally make entries for normal closes (to record closing facilities or
other information).

Agents will delete the oldest entry in the table when adding a new entry would exceed agent resources. Agents are required to keep the last entry put in the table and may keep more entries. The object x25OperClearEntriesGranted returns the maximum number of entries kept in the table.

REFERENCE "See ISO 8208 Section 12.2.3.1.1 and 12.2.3.1.2"

::= { x25 8 }

x25ClearedCircuitEntry OBJECT-TYPE
SYNTAX X25ClearedCircuitEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Information about a cleared circuit."
INDEX { x25ClearedCircuitIndex }
 ::= { x25ClearedCircuitTable 1 }

X25ClearedCircuitEntry ::= SEQUENCE {
 x25ClearedCircuitIndex
 PositiveInteger,
 x25ClearedCircuitPleIndex
 IfIndexType,
 x25ClearedCircuitTimeEstablished
 TimeTicks,
 x25ClearedCircuitTimeCleared
 TimeTicks,
 x25ClearedCircuitChannel
 INTEGER,
 x25ClearedCircuitClearingCause
 INTEGER,
 x25ClearedCircuitDiagnosticCode
 INTEGER,
 x25ClearedCircuitCalledAddress
 X121Address,
 x25ClearedCircuitCallingAddress
 X121Address,
 x25ClearedCircuitClearFacilities
 OCTET STRING
 x25ClearedCircuitInPdus
 Counter,
 x25ClearedCircuitOutPdus
 Counter,
 x25ClearedCircuitCalledAddress
 X121Address,
 x25ClearedCircuitCallingAddress
 X121Address,
 x25ClearedCircuitClearFacilities
 OCTET STRING
 }
An index that uniquely distinguishes one entry in the clearedCircuitTable from another. This index will start at 2147483647 and will decrease by one for each new entry added to the table. Upon reaching one, the index will reset to 2147483647. Because the index starts at 2147483647 and decreases, a manager may do a getnext on entry zero and obtain the most recent entry. When the index has the value of 1, the next entry will delete all entries in the table and that entry will be numbered 2147483647.

::= { x25ClearedCircuitEntry 1 }

The value of ifIndex for the PLE which cleared the circuit that created the entry.

::= { x25ClearedCircuitEntry 2 }

The value of sysUpTime when the circuit was established. This will be the same value that was in the x25CircuitEstablishTime for the circuit.

::= { x25ClearedCircuitEntry 3 }

The value of sysUpTime when the circuit was cleared. For locally initiated clears, this
will be the time when the clear confirmation was received. For remotely initiated clears, this will be the time when the clear indication was received."

::= { x25ClearedCircuitEntry 4 }

x25ClearedCircuitChannel OBJECT-TYPE
SYNTAX INTEGER (0..4095)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The channel number for the circuit that was cleared."
 ::= { x25ClearedCircuitEntry 5 }

x25ClearedCircuitClearingCause OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The Clearing Cause from the clear request or clear indication packet that cleared the circuit."
REFERENCE "See ISO 8208 Section 12.2.3.1.1"
 ::= { x25ClearedCircuitEntry 6 }

x25ClearedCircuitDiagnosticCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The Diagnostic Code from the clear request or clear indication packet that cleared the circuit."
REFERENCE "See ISO 8208 Section 12.2.3.1.2"
 ::= { x25ClearedCircuitEntry 7 }

x25ClearedCircuitInPdus OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of PDUs received on the circuit."
 ::= { x25ClearedCircuitEntry 8 }

x25ClearedCircuitOutPdus OBJECT-TYPE
SYNTAX Counter
x25ClearedCircuitCalledAddress OBJECT-TYPE
SYNTAX X121Address
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The called address from the cleared circuit."
::= { x25ClearedCircuitEntry 10 }

x25ClearedCircuitCallingAddress OBJECT-TYPE
SYNTAX X121Address
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The calling address from the cleared circuit."
::= { x25ClearedCircuitEntry 11 }

x25ClearedCircuitClearFacilities OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..109))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The facilities field from the clear request or clear indication packet that cleared the circuit. A size of zero indicates no facilities were present."
::= { x25ClearedCircuitEntry 12 }

-- ###
-- The Call Parameter Table
-- ###

x25CallParmTable OBJECT-TYPE
SYNTAX SEQUENCE OF X25CallParmEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
These objects contain the parameters that can be varied between X.25 calls. The entries in this table are independent of the PLE. There exists only one of these tables for the entire system. The indexes for the entries are independent of any PLE or any circuit. Other tables reference entries in this table. Entries in this table can be used for default PLE parameters, for parameters to use to place/answer a call, for the parameters currently in use for a circuit, or parameters that were used by a circuit.

The number of references to a given set of parameters can be found in the x25CallParmRefCount object sharing the same instance identifier with the parameters. The value of this reference count also affects the access of the objects in this table. An object in this table with the same instance identifier as the instance identifier of an x25CallParmRefCount must be considered associated with that reference count. An object with an associated reference count of zero can be written (if its ACCESS clause allows it). An object with an associated reference count greater than zero cannot be written (regardless of the ACCESS clause). This ensures that a set of call parameters being referenced from another table cannot be modified or changed in a way inappropriate for continued use by that table.

```plaintext
::= { x25 9 }

x25CallParmEntry OBJECT-TYPE
SYNTAX  X25CallParmEntry
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION
   "Entries of x25CallParmTable."
INDEX { x25CallParmIndex }
::= { x25CallParmTable 1 }

X25CallParmEntry ::= SEQUENCE {
   x25CallParmIndex
      PositiveInteger,
   ...
```
x25CallParmStatus
 EntryStatus,
x25CallParmRefCount
 PositiveInteger,
x25CallParmInPacketSize
 INTEGER,
x25CallParmOutPacketSize
 INTEGER,
x25CallParmInWindowSize
 INTEGER,
x25CallParmOutWindowSize
 INTEGER,
x25CallParmAcceptReverseCharging
 INTEGER,
x25CallParmProposeReverseCharging
 INTEGER,
x25CallParmFastSelect
 INTEGER,
x25CallParmInThruPutClsSize
 INTEGER,
x25CallParmOutThruPutClsSize
 INTEGER,
x25CallParmCug
 DisplayString,
x25CallParmCugoa
 DisplayString,
x25CallParmBcug
 DisplayString,
x25CallParmNui
 OCTET STRING,
x25CallParmChargingInfo
 INTEGER,
x25CallParmRpoa
 DisplayString,
x25CallParmTrnstDly
 INTEGER,
x25CallParmCallingExt
 DisplayString,
x25CallParmCalledExt
 DisplayString,
x25CallParmInMinThuPutCls
 INTEGER,
x25CallParmOutMinThuPutCls
 INTEGER,
x25CallParmEndTrnsDly
 OCTET STRING,
x25CallParmPriority
 OCTET STRING,
x25CallParmProtection
 DisplayString,
x25CallParmExptData
 INTEGER,
x25CallParmUserData
 OCTET STRING,
x25CallParmCallingNetworkFacilities
 OCTET STRING,
x25CallParmCalledNetworkFacilities
 OCTET STRING
}

x25CallParmIndex OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "A value that distinguishes this entry from another entry. Entries in this table are referenced from other objects which identify call parameters.

 It is impossible to know which other objects in the MIB reference entries in the table by looking at this table. Because of this, changes to parameters must be accomplished by creating a new entry in this table and then changing the referencing table to identify the new entry.

 Note that an agent will only use the values in this table when another table is changed to reference those values. The number of other tables that reference an index object in this table can be found in x25CallParmRefCount. The value of the reference count will affect the writability of the objects as explained above.

 Entries in this table which have a reference count of zero maybe deleted at the convence of the agent. Care should be taken by the agent to give the NMS sufficient time to create a reference to newly created entries.

 Should a Management Station not find a free index with which to create a new entry, it may feel free to delete entries with a
reference count of zero. However in doing so the Management Station much realize it may impact other Management Stations.

::= { x25CallParmEntry 1 }

x25CallParmStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this call parameter entry. See RFC 1271 for details of usage."
::= { x25CallParmEntry 2 }

x25CallParmRefCount OBJECT-TYPE
SYNTAX PositiveInteger
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of references know by a management station to exist to this set of call parameters. This is the number of other objects that have returned a value of, and will return a value of, the index for this set of call parameters. Examples of such objects are the x25AdmnDefCallParamId, x25OperDataLinkId, or x25AdmnDefCallParamId objects defined above."
::= { x25CallParmEntry 3 }

x25CallParmInPacketSize OBJECT-TYPE
SYNTAX INTEGER (0..4096)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum receive packet size in octets for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE means use a default size of 128."
REFERENCE "10733 proposedPacketSize; See ISO 8208 Section 15.2.2.1.1"
DEFVAL { 128 }
::= { x25CallParmEntry 4 }

x25CallParmOutPacketSize OBJECT-TYPE
SYNTAX INTEGER (0..4096)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum transmit packet size in octets for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE default means use a default size of 128."
REFERENCE "10733 proposedPacketSize; See ISO 8208 Section 15.2.2.1.1"
DEFVAL { 128 }
::= { x25CallParmEntry 5 }

x25CallParmInWindowSize OBJECT-TYPE
SYNTAX INTEGER (0..127)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The receive window size for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE default means use 2."
REFERENCE "10733 proposedWindowSize; See ISO 8208 Section 15.2.2.1.2"
DEFVAL { 2 }
::= { x25CallParmEntry 6 }

x25CallParmOutWindowSize OBJECT-TYPE
SYNTAX INTEGER (0..127)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The transmit window size for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE default means use 2."
REFERENCE "10733 proposedWindowSize; See ISO 8208 Section 15.2.2.1.2"
DEFVAL { 2 }
::= { x25CallParmEntry 7 }

x25CallParmAcceptReverseCharging OBJECT-TYPE
SYNTAX INTEGER {
 default (1),
 accept (2),
 refuse (3),
 neverAccept (4)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"An enumeration defining if the PLE will accept or refuse charges. A value of
default for a circuit means use the PLE default value. A value of neverAccept is
only used for the PLE default and indicates
the PLE will never accept reverse charging.
A value of default for a PLE default means refuse."
REFERENCE "10733 acceptReverseCharging"
DEFVAL { refuse }
::= { x25CallParmEntry 8 }

\[x25CallParmProposeReverseCharging\] OBJECT-TYPE
SYNTAX INTEGER {
 default (1),
 reverse (2),
 local (3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"An enumeration defining if the PLE should propose reverse or local charging. The
value of default for a circuit means use the PLE default. The value of default for the
PLE default means use local."
REFERENCE "10733 proposedPacketSize;
See ISO 8208 Section 15.2.2.6"
DEFVAL { local }
::= { x25CallParmEntry 9 }

\[x25CallParmFastSelect\] OBJECT-TYPE
SYNTAX INTEGER {
 default (1),
 notSpecified (2),
 fastSelect (3),
 restrictedFastResponse (4),
 noFastSelect (5),
 noRestrictedFastResponse (6)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Expresses preference for use of fast select facility. The value of default for a
circuit is the PLE default. A value of
default for the PLE means noFastSelect. A value of noFastSelect or noRestrictedFastResponse indicates a circuit may not use fast select or restricted fast response."

REFERENCE "10733 fastSelect; Sec ISO 8208 Section 15.2.2.6"
DEFVAL { noFastSelect }
::= { x25CallParmEntry 10 }

x25CallParmInThruPutClasSize OBJECT-TYPE
SYNTAX INTEGER {
 tcReserved1 (1),
 tcReserved2 (2),
 tc75 (3),
 tc150 (4),
 tc300 (5),
 tc600 (6),
 tc1200 (7),
 tc2400 (8),
 tc4800 (9),
 tc9600 (10),
 tc19200 (11),
 tc48000 (12),
 tc64000 (13),
 tcReserved14 (14),
 tcReserved15 (15),
 tcReserved0 (16),
 tcNone (17),
 tcDefault (18)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The incoming throughput class to negotiate. A value of tcDefault for a circuit means use the PLE default. A value of tcDefault for the PLE default means tcNone. A value of tcNone means do not negotiate throughput class."

REFERENCE "See ISO 8208 Section 15.2.2.2, table 18"
DEFVAL { tcNone }
::= { x25CallParmEntry 11 }

x25CallParmOutThruPutClasSize OBJECT-TYPE
SYNTAX INTEGER {
 tcReserved1 (1),
 tcReserved2 (2),
tc75 (3),
tc150 (4),
tc300 (5),
tc600 (6),
tc1200 (7),
tc2400 (8),
tc4800 (9),
tc9600 (10),
tc19200 (11),
tc48000 (12),
tc64000 (13),
tcReserved14 (14),
tcReserved15 (15),
tcReserved0 (16),
tcNone (17),
tcDefault (18)
\}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The outgoing throughput class to negotiate. A value of tcDefault for a circuit means use the PLE default. A value of tcDefault for the PLE default means use tcNone. A value of tcNone means do not negotiate throughput class."
REFERENCE "See ISO 8208 Section 15.2.2.2, table 18"
DEFVAL { tcNone }
 ::= { x25CallParmEntry 12 }

x25CallParmCug OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..4))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The Closed User Group to specify. This consists of two or four octets containing the characters 0 through 9. A zero length string indicates no facility requested. A string length of three containing the characters DEF for a circuit means use the PLE default, (the PLE default parameter may not reference an entry of DEF.)"
REFERENCE "See ISO 8208 Section 15.2.2.3"
DEFVAL { ''h }
 ::= { x25CallParmEntry 13 }

x25CallParmCugoan OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..4))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The Closed User Group with Outgoing Access to specify. This consists of two or four octets containing the characters 0 through 9. A string length of three containing the characters DEF for a circuit means use the PLE default (the PLE default parameters may not reference an entry of DEF). A zero length string indicates no facility requested."

REFERENCE "See ISO 8208 Section 15.2.2.4"
DEFVAL { ''h }
::= { x25CallParmEntry 14 }

x25CallParmBcug OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..3))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The Bilateral Closed User Group to specify. This consists of two octets containing the characters 0 through 9. A string length of three containing the characters DEF for a circuit means use the PLE default (the PLE default parameter may not reference an entry of DEF). A zero length string indicates no facility requested."

REFERENCE "See ISO 8208 Section 15.2.2.5"
DEFVAL { ''h }
::= { x25CallParmEntry 15 }

x25CallParmNui OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..108))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The Network User Identifier facility. This is binary value to be included immediately after the length field. The PLE will supply the length octet. A zero length string indicates no facility requested. This value is ignored for the PLE default parameters entry."

REFERENCE "See ISO 8208 Section 15.2.2.7"
DEFVAL { ''h }
::= { x25CallParmEntry 16 }

x25CallParmChargingInfo OBJECT-TYPE
SYNTAX INTEGER {
 default (1),
 noFacility (2),
 noChargingInfo (3),
 chargingInfo (4)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
 "The charging Information facility. A value of default for a circuit means use the PLE
default. The value of default for the default PLE parameters means use noFacility. The value of noFacility means do not include
a facility."
REFERENCE "See ISO 8208 Section 15.2.2.8"
DEFVAL { noFacility }
::= { x25CallParmEntry 17 }

x25CallParmRpoa OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..108))
ACCESS read-write
STATUS mandatory
DESCRIPTION
 "The RPOA facility. The octet string contains n * 4 sequences of the characters
0-9 to specify a facility with n entries. The octet string containing the 3 characters
DEF for a circuit specifies use of the PLE default (the entry for the PLE default may
not contain DEF). A zero length string indicates no facility requested."
REFERENCE "See ISO 8208, section 15.2.2.9"
DEFVAL { ''h }
::= { x25CallParmEntry 18 }

x25CallParmTrnstDly OBJECT-TYPE
SYNTAX INTEGER (0..65537)
ACCESS read-write
STATUS mandatory
DESCRIPTION
 "The Transit Delay Selection and Indication value. A value of 65536 indicates no
facility requested. A value of 65537 for a circuit means use the PLE default (the PLE
default parameters entry may not use the value 65537). The value 65535 may only be used to indicate the value in use by a circuit."

REFERENCE "See ISO 8208, Section 15.2.2.13"
DEFVAL { 65536 }
 ::= { x25CallParmEntry 19 }
the length octet.

A value containing the three character DEF for a circuit means use the PLE default, (the entry for the PLE default parameters may not use the value DEF).

A zero length string indicates no facility requested."
REFERENCE "See ISO 8208 Section 15.3.2.2"
DEFVAL { ''h } ::= { x25CallParmEntry 21 }

x25CallParmInMinThuPutCls OBJECT-TYPE
SYNTAX INTEGER (0..17)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The minimum input throughput Class. A value of 16 for a circuit means use the PLE default (the PLE parameters entry may not use this value). A value of 17 indicates no facility requested."
REFERENCE "See ISO 8208 Section 15.3.2.3"
DEFVAL { 17 } ::= { x25CallParmEntry 22 }

x25CallParmOutMinThuPutCls OBJECT-TYPE
SYNTAX INTEGER (0..17)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The minimum output throughput Class. A value of 16 for a circuit means use the PLE default (the PLE parameters entry may not use this value). A value of 17 indicates no facility requested."
REFERENCE "See ISO 8208 Section 15.3.2.3"
DEFVAL { 17 } ::= { x25CallParmEntry 23 }

x25CallParmEndTrnsDly OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..6))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The End-to-End Transit Delay to negotiate. An octet string of length 2, 4, or 6
contains the facility encoded as specified in ISO/IEC 8208 section 15.3.2.4. An octet string of length 3 containing the three character DEF for a circuit means use the PLE default (the entry for the PLE default cannot contain the characters DEF). A zero length string indicates no facility requested.

REFERENCE "See ISO 8208 Section 15.3.2.4"
DEFVAL { ''h }
::= { x25CallParmEntry 24 }

x25CallParmPriority OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..6))
ACCESS read-write
STATUS mandatory
DESCRIPTION "The priority facility to negotiate. The octet string encoded as specified in ISO/IEC 8208 section 15.3.2.5. A zero length string indicates no facility requested. The entry for the PLE default parameters must be zero length."

REFERENCE "See ISO 8208 Section 15.3.2.5"
DEFVAL { ''h }
::= { x25CallParmEntry 25 }

x25CallParmProtection OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..108))
ACCESS read-write
STATUS mandatory
DESCRIPTION "A string contains the following:
A hex string containing the value for the protection facility. This will be converted from hex to the octets actually in the packet by the agent. The agent will supply the length field and the length octet is not contained in this string.

An string containing the 3 characters DEF for a circuit means use the PLE default (the entry for the PLE default parameters may not use the value DEF).

A zero length string means no facility requested."

REFERENCE "See ISO 8208 Section 15.3.2.5"
DEFVAL { ''h } ::= { x25CallParmEntry 26 }

x25CallParmExptData OBJECT-TYPE
SYNTAX INTEGER {
 default (1),
 noExpeditedData (2),
 expeditedData (3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The Expedited Data facility to negotiate.
A value of default for a circuit means use
the PLE default value. The entry for the
PLE default parameters may not have the
value default."
REFERENCE "See ISO 8208 Section 15.3.2.7"
DEFVAL { noExpeditedData } ::= { x25CallParmEntry 27 }

x25CallParmUserData OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..128))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The call user data as placed in the packet.
A zero length string indicates no call user
data. If both the circuit call parameters
and the PLE default have call user data
defined, the data from the circuit call
parameters will be used. If only the PLE
has data defined, the PLE entry will be
used. If neither the circuit call
parameters or the PLE default entry has a
value, no call user data will be sent."
REFERENCE "See ISO 8208 Section 12.2.1.1.6, 12.2.1.2"
DEFVAL { ''h } ::= { x25CallParmEntry 28 }

x25CallParmCallingNetworkFacilities OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..108))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The calling network facilities. The
facilities are encoded here exactly as
encoded in the call packet. These
facilities do not include the marker facility code.

A zero length string in the entry for the parameter to use when establishing a circuit means use the PLE default. A zero length string in the entry for PLE default parameters indicates no default facilities.

REFERENCE "See ISO 8206 Section 15.1, category b"
DEFVAL { ''h }
 ::= { x25CallParmEntry 29 }

x25CallParmCalledNetworkFacilities OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..108))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The called network facilities. The facilities are encoded here exactly as encoded in the call packet. These facilities do not include the marker facility code.

A zero length string in the entry for the parameter to use when establishing a circuit means use the PLE default. A zero length string in the entry for PLE default parameters indicates no default facilities."

REFERENCE "See ISO 8206 Section 15.1, category c"
DEFVAL { ''h }
 ::= { x25CallParmEntry 30 }

-- ###
-- X.25 Traps
-- ###

x25Restart TRAP-TYPE
ENTERPRISE x25
VARIABLES { x25OperIndex }
DESCRIPTION
"This trap means the X.25 PLE sent or received a restart packet. The restart that brings up the link should not send a x25Restart trap so the interface should send a linkUp trap. Sending this trap means the agent does not send a linkDown and linkUp trap."

 ::= 1
x25Reset TRAP-TYPE
ENTERPRISE x25
VARIABLES { x25CircuitIndex, x25CircuitChannel }
DESCRIPTION
"If the PLE sends or receives a reset, the agent should send an x25Reset trap."
::= 2

-- ###
-- X.25 Protocol Version Identifiers
-- ###

x25ProtocolVersion OBJECT IDENTIFIER ::= { x25 10 }

x25protocolCcittV1976 OBJECT IDENTIFIER ::= { x25ProtocolVersion 1 }

x25protocolCcittV1980 OBJECT IDENTIFIER ::= { x25ProtocolVersion 2 }

x25protocolCcittV1984 OBJECT IDENTIFIER ::= { x25ProtocolVersion 3 }

x25protocolCcittV1988 OBJECT IDENTIFIER ::= { x25ProtocolVersion 4 }

x25protocolIso8208V1987 OBJECT IDENTIFIER ::= { x25ProtocolVersion 5 }

x25protocolIso8208V1989 OBJECT IDENTIFIER ::= { x25ProtocolVersion 6 }

-- ###
5. Appendix: Revision History

July 30 1992

The July, 1992 release (Editor’s Internal Reference Number 2.14) made the following changes:

The syntax of the index objects for tables that are congruent with the MIB-II ifTable were changed to ifIndexType.

The x25CallParmRefCount object was added to the x25CallParmTable.

The description of the x25CallParmTable and x25CallParmIndex objects were changed to only allow writing an entry with a zero reference count.

A requirement for conformance was added after the definition of x25 in the ASN.1 definition.

June 26 1992

The June 29, 1992 release (Editor’s Internal Reference Number 2.12) made the following changes:

The range of x25ChannelLIC was changed from (0..4096) to (0..4095).

The range of x25ChannelHIC was changed from (0..4096) to (0..4095).

The range of x25ChannelLTC was changed from (0..4096) to (0..4095).

The range of x25ChannelHTC was changed from (0..4096) to (0..4095).

The range of x25ChannelLOC was changed from (0..4096) to (0..4095).

The range of x25ChannelHOC was changed from (0..4096) to (0..4095).

The range of x25CircuitChannel was changed from (1..4096) to (0..4095).

The range of x25ClearedCircuitChannel was changed from
June 1992

The June 92 release (Editor’s Internal Reference Number 2.11) made the following changes:

A value of dxe was defined for x25AdmnInterfaceMode and x25OperInterfaceMode.

The objects in the x25ChannelTable can now have a value of zero to indicate no channels configured in the range.

The length of an X121Address was extended to 17 to accommodate the 1988 CCITT X.25 standard.

Some object descriptions have been expanded and simplified, these include: all the channel table objects except the index, x25AdmnDataRxmtCount, x25AdmnRejectCount, x25AdmnRegistrationRequestCount, x25OperDataRxmtCount, x25OperRejectCount, x25OperRegistrationRequestCount, x25CircuitEstablishTime, x25ClearedCircuitTimeEstablished, x25ClearedCircuitTimeCleared, x25CallParmIndex, x25CallParmInPacketSize, x25CircuitCalledAddress, x25CircuitOriginalCalledAddress, x25CircuitCallingAddress, x25CallParmFastSelect, x25CallParmCug, x25CallParmCugoa, x25CallParmBcug, x25CallParmNui, x25CallParmRpoa, x25CallParmCallingExt, x25CallParmCalledExt, x25CallParmProtection, x25StatInCallRefusals and x25CallParmOutPacketSize.

The x25StatNumberPvcs object was deleted and x25AdmnNumberPVCs and x25OperNumberPVCs objects added.

The object x25StatOutDataPackets was added.

The object x25AdmnProtocolVersionSupported as added.

The x25CircuitRemoteDteAddress was deleted.

Some ASN.1 errors were corrected.

April 1992

The April release (Editor’s Internal Reference Number 2.8) made many changes to incorporate the comments of the working group meeting in March 1992.
All reference comments were changed to reference fields.

The type PositiveInteger was imported from the RFC1381-MIB and used for all index and timer values.

The x25PleTable was split into the x25AdmnTable, x25OperTable, and x25StatTable.

The timer and counter objects from the x25CircuitTable were moved to the x25AdmnTable and replicated in the x25OperTable.

The objects in the x25CircuitTable were reordered to put the non-integer objects at the end of the table for easier implementation.

The called and calling extension character set was extended to include a-f, and A-F.

Additional states were added to the x25CircuitStatus object.

Additional values were added to x25CircuitDirection, x25CircuitCallParamId, and the addresses in the Circuit Table for PVCs.

The length of the X25Address was changed to 0..15.

The objects x25ClearedCircuitTimeEstablished, x25ClearedCircuitInPdus, and x25ClearedCircuitOutPdus were added to the x25ClearedCircuitTable.

The name of the x25CircuitName was changed to x25CircuitDescr and the description was expanded.

The access of the x25CircuitCallParamId was changed to read-only.

The x25ClearedCircuitCodes object was split into the x25ClearedCircuitClearingCause and x25ClearedCircuitDiagnosticCode objects.

The semantics of the x25ClearedCircuitIndex was redefined.

Some of the description clauses were changed in an attempt to add clarity.
DEFVAL clauses were added to most objects in the x25CallParmTable.

Additional text was added to the description section to provide an overview of the tables of the MIB.

The minimum allowable value for maximum active circuits was changed from one to zero.

February 1992

The February release (Editor’s Internal Reference Number 1.14) made many changes.

Many of the tables were combined. For example, the x25InfoTable, x25PktStatTable, and x25TmrStatTable were combined into the x25PleTable. The x25ConInfoTable, x25ConStatTable, and x25ConTimrTable were combined into the x25CircuitTable.

The objects for call parameters were drastically reworked. All call parameters were combined in the x25CallParmTable. Any table, such as the x25PleTable or x25CircuitTable, that needs to reference call parameters identifies an entry in the new table. As part of this the x25ConDefTable was deleted and replaced with the x25PleDefCallParamId.

The x25PvcTable was deleted; the x25CircuitStatus object provides similar information about PVCs.

The x25ClearedCircuitTable was added to record the status code of cleared circuits.

Many object definitions were restructured. For example, the time units for timers was changed from 1/100ths of a second to milliseconds. Some indexes into tables were replaced with object identifiers.

Much of the introductory text was changed and the references were changed to match.

October 1991

The October release (Editor Internal Reference Number 1.10) made the following changes:

Changed x25ConInfoStatus to clarify the description and
the pvcResetting(5) value was changed to pvcResetting(6) to avoid a conflict with a previous use of the number 5.

The name of the counter object x25TmrStatRetryCountsExceeded was changed to x25TmrStatRetryCountExceededs.

The name of the counter object x25TmrStatClearCountsExceeded was changed to x25TmrStatClearCountExceededs.

All occurrence of Guage was changed to Gauge.

Added the x25CallFcltyTable, x25CallFcltyCcittTable, and x25CallParamTable.

June 1991

The June release corrected some syntax errors and cleaned up some other minor things.

April 1991

The April 26 release of this document was the first release. That version was derived from the ISO work on network layer management as presented in ISO/IEC 10733 [11]

6. Acknowledgements

This document was produced by the x25mib working group:

Fred Baker, ACC
Art Berggreen, ACC
Frank Bieser
Gary Bjerke, Tandem
Bill Bowman, HP
Christopher Bucci, Datability
Charles Carvalho, ACC
Jeff Case, Snmp Research
Angela Chen, HP
Carson Cheung, BNR
Tom Daniel, Spider Systems
Chuck Davin, MIT
Billy Durham, Honeywell
Richard Fox, Synoptics
Doug Geller, Data General
Herve Goguely, LIR Corp
Andy Goldthorpe, british-telecom
Walter D. Guilarte
David Gurevich
Steve Huston, Process Software Corporation
Jon Infante, ICL
Frank Kastenholz, Clearpoint
Zbigniew Kielczewski, Eicon
Cheryl Krupezak, Georgia Tech
Mats Lindstrom, Diab Data AB
Andrew Malis, BBN
Evan McGinnis, 3Com
Gary (G.P.)Mussar, BNR
Chandy Nilakantan, 3Com
Randy Pafford, Data General
Ragnar Paulson, The Software Group Limited
Dave Perkins, Synoptics
Walter Pinkarschewsky, DEC
Karen Quidley, Data General
Chris Ranch, Novell
Paul S. Rarey, DHL Systems Inc.
Jim Roche, Newbridge Research
Philippe Roger, LIR Corp.
Timon Sloane
Mike Shand, DEC
Brad Steina, Microcom
Bob Stewart, Xyplex
Tom Sullivan, Data General
Rodney Thayer, Sable Technology Corporation
Mark Therieau, Microcom
Jane Thorn, Data General
Dean Throop, Data General
Maurice Turcotte, Racal Datacom
Mike Zendels, Data General

In addition, the contributions of the following individuals are also acknowledged:

John Harper, DEC
Chairman of the ISO committee for
Network Level Management Information

7. References

8. Security Considerations

Security issues are not discussed in this memo.
9. Authors’ Addresses

Dean D. Throop
Data General Corporation
62 Alexander Dr.
Research Triangle Park, NC 27709

Phone: (919)248-8421
EMail: throop@dg-rtp.dg.com