Manager-to-Manager
Management Information Base

Status of this Memo

This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1 Introduction ... 2
1.1 A Note on Terminology 2
2 Overview .. 3
2.1 A SNMPv2 Entity Acting in a Dual Role 3
2.2 Alarms, Events, and Notifications 3
2.3 Access Control 4
3 Definitions ... 6
3.1 The Alarm Group 7
3.1.1 Alarm-Related Notifications 20
3.2 The Event Group 21
3.3 Conformance Information 29
3.3.1 Compliance Statements 29
3.3.2 Units of Conformance 29
4 Acknowledgements 31
5 References ... 35
6 Security Considerations 36
7 Authors’ Addresses 36
1. Introduction

A network management system contains: several (potentially many) nodes, each with a processing entity, termed an agent, which has access to management instrumentation; at least one management station; and, a management protocol, used to convey management information between the agents and management stations. Operations of the protocol are carried out under an administrative framework which defines both authentication and authorization policies.

Network management stations execute management applications which monitor and control network elements. Network elements are devices such as hosts, routers, terminal servers, etc., which are monitored and controlled through access to their management information.

Management information is viewed as a collection of managed objects, residing in a virtual information store, termed the Management Information Base (MIB). Collections of related objects are defined in MIB modules. These modules are written using a subset of OSI’s Abstract Syntax Notation One (ASN.1) [1], termed the Structure of Management Information (SMI) [2].

The management protocol, version 2 of the Simple Network Management Protocol [3], provides for the exchange of messages which convey management information between the agents and the management stations, including between management stations. It is the purpose of this document to define managed objects which describe the behavior of a SNMPv2 entity acting in both a manager role and an agent role.

1.1. A Note on Terminology

For the purpose of exposition, the original Internet-standard Network Management Framework, as described in RFCs 1155, 1157, and 1212, is termed the SNMP version 1 framework (SNMPv1). The current framework is termed the SNMP version 2 framework (SNMPv2).
2. Overview

The purpose of this MIB is to provide the means for coordination between multiple management stations. That is, the means by which the controlling and monitoring functions of network management can be distributed amongst multiple management stations. Such distribution facilitates the scaling of network management solutions based on the SNMPv2 to meet the needs of very large networks, or of networks composed of multiple interconnected administrations. Specifically, this MIB provides the means for one management station to request management services from another management station.

2.1. A SNMPv2 Entity Acting in a Dual Role

A management station providing services to other management station(s), is a SNMPv2 entity which acts in the dual role of both manager and agent; the requests for service are received through acting in an agent role (with respect to the managed objects defined in this MIB), and the requested services are performed through acting in a manager role.

2.2. Alarms, Events, and Notifications

In this initial version, this MIB defines the concepts of "alarms", "events", and "notifications". Each alarm is a specific condition detected through the periodic (at a configured sampling interval) monitoring of the value of a specific management information variable. An example of an alarm condition is when the monitored variable falls outside a configured range. Each alarm condition triggers an event, and each event can cause (one or more) notifications to be reported to other management stations using the Inform-Request PDU.

Specifically, this MIB defines three MIB tables and a number of scalar objects. The three tables are: the Alarm Table, the Event Table, and the Notification Table.
2.3. Access Control

The Administrative Model for SNMPv2 document [4] includes an access control model, which must not be subverted by allowing access to management information variables via the Alarm table. That is, access to a monitored variable via the Alarm table must be controlled according to the identity of the management station accessing the particular entry in the Alarm table.

An entry in the Alarm table provides the means to configure the sampling of the value of a MIB variable in the MIB view associated with the specified context (which can refer to object resources that are either local or remote). The sampling is done by (conceptually or actually) issuing an SNMPv2 request to retrieve the variable’s value. This request is authenticated and/or protected from disclosure according to a source party and a destination party pair which has access to the indicated context.

Thus, to provide the required access control, the initial MIB view assigned, by convention, to parties on SNMPv2 entities that implement the snmpAlarmTable, must include the component:

```
viewSubtree = { snmpAlarm }
viewStatus = { excluded }
viewMask = { 'H' }
```

Then, the MIB view associated with the context, requestContext, accessible by a requesting management station, can be configured to include specific Alarm table entries -- the ones associated with those contexts to which the requesting management station has access.

In particular, to provide a requestContext with access to the sampling context sampleContext, the following family of view subtrees would be included for the requestContext on the SNMPv2 entity acting in a dual role:

```
{ snmpAlarmEntry WILDCARD sampleContext }
```

Which would be configured in the party MIB [5] as:

```
contextIdentity = { requestContext }
contextViewIndex = { ViewIndex }
```
viewIndex = { ViewIndex }
viewSubtree = { snmpAlarmEntry 0 sampleContext }
viewStatus = { included }
viewMask = { 'FFE'H } -- specifies wildcard for column
3. Definitions

SNMPv2-M2M-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Integer32, Counter32, snmpModules
 FROM SNMPv2-SMI
 DisplayString, InstancePointer, RowStatus, TimeStamp
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF

contextIdentity
 FROM SNMPv2-PARTY-MIB;

snmpM2M MODULE-IDENTITY
 LAST-UPDATED "9304010000Z"
 ORGANIZATION "IETF SNMPv2 Working Group"
 CONTACT-INFO
 "Steven Waldbusser"
 Postal: Carnegie Mellon University
 4910 Forbes Ave
 Pittsburgh, PA 15213
 Tel: +1 412 268 6628
 Fax: +1 412 268 4987
 E-mail: waldbusser@cmu.edu"
 DESCRIPTION
 "The Manager-to-Manager MIB module."
 ::= { snmpModules 2 }

snmpM2MObjects OBJECT IDENTIFIER ::= { snmpM2M 1 }
-- the alarm group
--
-- a collection of objects allowing the description and
-- configuration of threshold alarms from a SNMPv2 entity
-- acting in a dual role.

snmpAlarm OBJECT IDENTIFIER ::= { snmpM2MObjects 1 }

-- This Alarm mechanism periodically takes statistical samples
-- from variables available via SNMPv2 and compares them to
-- thresholds that have been configured. The alarm table
-- stores configuration entries that each define a variable,
-- polling period, and threshold parameters. If a sample is
-- found to cross the threshold values, an event is generated.
-- Only variables that resolve to an ASN.1 primitive type of
-- INTEGER (Integer32, Counter32, Gauge32, TimeTicks,
-- Counter64, or UInteger32) may be monitored in this way.
--
-- This function has a hysteresis mechanism to limit the
-- generation of events. This mechanism generates one event
-- as a threshold is crossed in the appropriate direction. No
-- more events are generated for that threshold until the
-- opposite threshold is crossed.
--
-- In the case of sampling a deltaValue, an entity may
-- implement this mechanism with more precision if it takes a
-- delta sample twice per period, each time comparing the sum
-- of the latest two samples to the threshold. This allows
-- the detection of threshold crossings that span the sampling
-- boundary. Note that this does not require any special
-- configuration of the threshold value. It is suggested that
-- entities implement this more precise algorithm.
--
snmpAlarmNextIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The index number of the next appropriate unassigned entry in the snmpAlarmTable. The value 0 indicates that no unassigned entries are available.

A management station should create new entries in the snmpAlarmTable using this algorithm: first, issue a management protocol retrieval operation to determine the value of snmpAlarmNextIndex; and, second, issue a management protocol set operation to create an instance of the snmpAlarmStatus object setting its value to 'createAndGo' or 'createAndWait' (as specified in the description of the RowStatus textual convention)."

 ::= { snmpAlarm 1 }

snmpAlarmTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of snmpAlarm entries."

 ::= { snmpAlarmTable 1 }

snmpAlarmEntry OBJECT-TYPE
SYNTAX SnmpAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of parameters that set up a periodic sampling query to check for alarm conditions. The contextIdentity included in the INDEX clause is the context to which the sampling queries are directed."

INDEX { contextIdentity, snmpAlarmIndex }

 ::= { snmpAlarmTable 1 }
SnmpAlarmEntry ::= SEQUENCE {
 snmpAlarmIndex INTEGER,
 snmpAlarmVariable InstancePointer,
 snmpAlarmInterval Integer32,
 snmpAlarmSampleType INTEGER,
 snmpAlarmValue Integer32,
 snmpAlarmStartupAlarm INTEGER,
 snmpAlarmRisingThreshold Integer32,
 snmpAlarmFallingThreshold Integer32,
 snmpAlarmRisingEventIndex INTEGER,
 snmpAlarmFallingEventIndex INTEGER,
 snmpAlarmUnavailableEventIndex INTEGER,
 snmpAlarmStatus RowStatus
}

snmpAlarmIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An index that uniquely identifies an entry in the
snmpAlarm table for a particular sampling context.
Each such entry defines a diagnostic sample at a
particular interval for a variable in the
particular context’s object resources."
 ::= { snmpAlarmEntry 1 }
snmpAlarmVariable OBJECT-TYPE
SYNTAX InstancePointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The object identifier of the particular variable
to be sampled. Only variables that resolve to an
ASN.1 primitive type of INTEGER (Integer32,
Counter32, Gauge32, TimeTicks, Counter64, or
UInteger32) may be sampled.

If it is detected by an error response of
authorizationError, noSuchObject, or
noSuchInstance that the variable name of an
established snmpAlarmEntry is no longer available
in the sampling context, a single
snmpObjectUnavailableAlarm event is generated and
the status of this snmpAlarmEntry is set to
‘destroy’. Likewise, if the syntax of the
variable retrieved by the query is not Integer32,
Counter32, Gauge32, TimeTicks, Counter64, or
UInteger32, the same actions will be taken.

If the SNMPv2 entity acting in a dual role detects
that the sampled value can not be obtained due to
lack of response to management queries, it should
either:

1) Set the status of this snmpAlarmEntry to
 ‘destroy’, if it is determined that further
 communication is not possible;

or,

2) Delete the associated snmpAlarmValue
 instance (but not the entire conceptual row),
 and continue to attempt to sample the
 variable and recreate the associated
 snmpAlarmValue instance should communication
 be reestablished.

An attempt to modify this object will fail with an
‘inconsistentValue’ error if the associated
snmpAlarmStatus object would be equal to ‘active’
both before and after the modification attempt."
::= { snmpAlarmEntry 2 }

snmpAlarmInterval OBJECT-TYPE
SYNTAX Integer32
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. When setting this object and the sampling type is 'deltaValue', care should be taken to ensure that the change during this interval of the variable being sampled will not exceed the (-2^31...2^31-1) range of the snmpAlarmValue.

An attempt to modify this object will fail with an 'inconsistentValue' error if the associated snmpAlarmStatus object would be equal to 'active' both before and after the modification attempt."
::= { snmpAlarmEntry 3 }
snmpAlarmSampleType OBJECT-TYPE
SYNTAX INTEGER {
 absoluteValue(1),
 deltaValue(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is ‘absoluteValue’, the value of the selected variable at the end of the sampling interval will be compared directly with both the snmpAlarmRisingThreshold and the snmpAlarmFallingThreshold values. If the value of this object is ‘deltaValue’, the value of the selected variable at the end of the sampling interval will be subtracted from its value at the end of the previous sampling interval, and the difference compared with both the snmpAlarmRisingThreshold and the snmpAlarmFallingThreshold values.

An attempt to modify this object will fail with an ‘inconsistentValue’ error if the associated snmpAlarmStatus object would be equal to ‘active’ both before and after the modification attempt."
DEFVAL { deltaValue }
::= { snmpAlarmEntry 4 }
snmpAlarmValue OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of the statistic during the last
 sampling period. The value during the current
 sampling period is not made available until the
 period is completed. If the value of the
 statistic does not fit in the signed 32 bit
 representation of this object, it should be
 truncated in an implementation specific manner.

 Note that if the associated snmpAlarmSampleType is
 set to 'deltaValue', the value of this object is
 the difference in the sampled variable since the
 last sample.

 This object will be created by the SNMPv2 entity
 acting in a dual role when this entry is set to
 'active', and the first sampling period has
 completed. It may be created and deleted at other
 times by the SNMPv2 entity acting in a dual role
 when the sampled value can not be obtained, as
 specified in the snmpAlarmVariable object."
::= { snmpAlarmEntry 5 }
snmpAlarmStartupAlarm OBJECT-TYPE
SYNTAX INTEGER {
 risingAlarm(1),
 fallingAlarm(2),
 risingOrFallingAlarm(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The alarm that may be sent when this entry is first set to ‘active’. If the first sample after this entry becomes active is greater than or equal to the risingThreshold and snmpAlarmStartupAlarm is equal to ‘risingAlarm’ or ‘risingOrFallingAlarm’, then a single rising alarm will be generated. If the first sample after this entry becomes active is less than or equal to the fallingThreshold and snmpAlarmStartupAlarm is equal to ‘fallingAlarm’ or ‘risingOrFallingAlarm’, then a single falling alarm will be generated. Note that a snmpObjectUnavailableAlarm is sent upon startup whenever it is applicable, independent of the setting of snmpAlarmStartupAlarm.

An attempt to modify this object will fail with an ‘inconsistentValue’ error if the associated snmpAlarmStatus object would be equal to ‘active’ both before and after the modification attempt."
DEFVAL { risingOrFallingAlarm }
::= { snmpAlarmEntry 6 }
snmpAlarmRisingThreshold OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "A threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes active is greater than or equal to this threshold and the associated snmpAlarmStartupAlarm is equal to 'risingAlarm' or 'risingOrFallingAlarm'.

 After a rising event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches the snmpAlarmFallingThreshold.

 An attempt to modify this object will fail with an 'inconsistentValue' error if the associated snmpAlarmStatus object would be equal to 'active' both before and after the modification attempt."

 ::= { snmpAlarmEntry 7 }
snmpAlarmFallingThreshold OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "A threshold for the sampled statistic. When the
current sampled value is less than or equal to
this threshold, and the value at the last sampling
interval was greater than this threshold, a single
event will be generated. A single event will also
be generated if the first sample after this entry
becomes active is less than or equal to this
threshold and the associated snmpAlarmStartupAlarm
is equal to ‘fallingAlarm’ or
‘risingOrFallingAlarm’.

After a falling event is generated, another such
event will not be generated until the sampled
value rises above this threshold and reaches the
snmpAlarmRisingThreshold.

An attempt to modify this object will fail with an
‘inconsistentValue’ error if the associated
snmpAlarmStatus object would be equal to ‘active’
both before and after the modification attempt."
::= { snmpAlarmEntry 8 }
snmpAlarmRisingEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The index of the snmpEventEntry that is used when a rising threshold is crossed. The snmpEventEntry identified by a particular value of this index is the same as identified by the same value of the snmpEventIndex object. If there is no corresponding entry in the snmpEventTable, then no association exists. In particular, if this value is zero, no associated event will be generated, as zero is not a valid snmpEventIndex.

An attempt to modify this object will fail with an 'inconsistentValue' error if the associated snmpAlarmStatus object would be equal to 'active' both before and after the modification attempt."

::= { snmpAlarmEntry 9 }
snmpAlarmFallingEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The index of the snmpEventEntry that is used when
a falling threshold is crossed. The
snmpEventEntry identified by a particular value of
this index is the same as identified by the same
value of the snmpEventIndex object. If there is
no corresponding entry in the snmpEventTable, then
no association exists. In particular, if this
value is zero, no associated event will be
generated, as zero is not a valid snmpEventIndex.

An attempt to modify this object will fail with an
'inconsistentValue' error if the associated
snmpAlarmStatus object would be equal to 'active'
either before and after the modification attempt."
 ::= { snmpAlarmEntry 10 }

snmpAlarmUnavailableEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The index of the snmpEventEntry that is used when
a variable becomes unavailable. The
snmpEventEntry identified by a particular value of
this index is the same as identified by the same
value of the snmpEventIndex object. If there is
no corresponding entry in the snmpEventTable, then
no association exists. In particular, if this
value is zero, no associated event will be
generated, as zero is not a valid snmpEventIndex.

An attempt to modify this object will fail with an
'inconsistentValue' error if the associated
snmpAlarmStatus object would be equal to 'active'
either before and after the modification attempt."
 ::= { snmpAlarmEntry 11 }
snmpAlarmStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this snmpAlarm entry. This object may not be set to ‘active’ unless the following columnar objects exist in this row: snmpAlarmVariable, snmpAlarmInterval, snmpAlarmSampleType, snmpAlarmStartupAlarm, snmpAlarmRisingThreshold, snmpAlarmFallingThreshold, snmpAlarmRisingEventIndex, snmpAlarmFallingEventIndex, and snmpAlarmUnavailableEventIndex."
::= { snmpAlarmEntry 12 }
-- alarm-related notifications

snmpAlarmNotifications
 OBJECT IDENTIFIER ::= { snmpAlarm 3 }

snmpRisingAlarm NOTIFICATION-TYPE
 OBJECTS { snmpAlarmVariable, snmpAlarmSampleType,
 snmpAlarmValue, snmpAlarmRisingThreshold }
 STATUS current
 DESCRIPTION
 "An event that is generated when an alarm entry
 crosses its rising threshold. The instances of
 those objects contained within the varbind list
 are those of the alarm entry which generated this
 event."
 ::= { snmpAlarmNotifications 1 }

snmpFallingAlarm NOTIFICATION-TYPE
 OBJECTS { snmpAlarmVariable, snmpAlarmSampleType,
 snmpAlarmValue, snmpAlarmFallingThreshold }
 STATUS current
 DESCRIPTION
 "An event that is generated when an alarm entry
 crosses its falling threshold. The instances of
 those objects contained within the varbind list
 are those of the alarm entry which generated this
 event."
 ::= { snmpAlarmNotifications 2 }

snmpObjectUnavailableAlarm NOTIFICATION-TYPE
 OBJECTS { snmpAlarmVariable }
 STATUS current
 DESCRIPTION
 "An event that is generated when a variable
 monitored by an alarm entry becomes unavailable.
 The instance of snmpAlarmVariable contained within
 the varbind list is the one associated with the
 alarm entry which generated this event."
 ::= { snmpAlarmNotifications 3 }
-- the event group
--
-- a collection of objects allowing the description and
-- configuration of events from a SNMPv2 entity acting
-- in a dual role.

snmpEvent OBJECT IDENTIFIER ::= { snmpM2MObjects 2 }

-- The snmpEvent table defines the set of events generated on
-- a SNMPv2 entity acting in a dual role. Each entry in the
-- snmpEventTable associates an event type with the
-- notification method and associated parameters. Some
-- snmpEvent entries are fired by an associated condition in
-- the snmpAlarmTable. Others are fired on behalf of
-- conditions defined in the NOTIFICATION-TYPE macro. The
-- snmpNotificationTable defines notifications that should
-- occur when an associated event is fired.

snmpEventNextIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The index number of the next appropriate
unassigned entry in the snmpEventTable. The value
0 indicates that no unassigned entries are
available.

A management station should create new entries in
the snmpEventTable using this algorithm: first,
issue a management protocol retrieval operation to
determine the value of snmpEventNextIndex; and,
second, issue a management protocol set operation
to create an instance of the snmpEventStatus
object setting its value to 'createAndWait' or
'createAndGo'."

::= { snmpEvent 1 }
snmpEventTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpEventEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A list of events."
 ::= { snmpEvent 2 }

SnmpEventEntry OBJECT-TYPE
SYNTAX SnmpEventEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A set of parameters that describe an event that
 is generated when certain conditions are met."
INDEX { snmpEventIndex }
 ::= { snmpEventTable 1 }

SnmpEventEntry ::= SEQUENCE {
 snmpEventIndex INTEGER,
 snmpEventID OBJECT IDENTIFIER,
 snmpEventDescription DisplayString,
 snmpEventEvents Counter32,
 snmpEventLastTimeSent TimeStamp,
 snmpEventStatus RowStatus
}

snmpEventIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An index that uniquely identifies an entry in the
 snmpEvent table. Each such entry defines an event
 generated when the appropriate conditions occur."
 ::= { snmpEventEntry 1 }
snmpEventID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The authoritative identification of the event type generated by this entry. This variable occurs as the second varbind of an InformRequest-PDU. If this OBJECT IDENTIFIER maps to a NOTIFICATION-TYPE the sender will place the objects listed in the NOTIFICATION-TYPE in the varbind list."
::= { snmpEventEntry 2 }

snmpEventDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..127))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A comment describing this snmpEvent entry."
::= { snmpEventEntry 3 }

snmpEventEvents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of events caused by event generators associated with this snmpEvent entry."
::= { snmpEventEntry 4 }
snmpEventLastTimeSent OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of sysUpTime at the time this snmpEvent
 entry last generated an event. If this entry has
 not generated any events, this value will be
 zero."
DEFVAL { 0 }
::= { snmpEventEntry 5 }

snmpEventStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The status of this snmpEvent entry. This object
 may not be set to 'active' unless the following
 columnar objects exist in this row: snmpEventID,
 snmpEventDescription, snmpEventEvents, and
 snmpEventLastTimeSent.

 Setting an instance of this object to the value
 'destroy' has the effect of invalidating any/all
 entries in the snmpEventTable, and the
 snmpEventNotifyTable which reference the
 corresponding snmpEventEntry."
::= { snmpEventEntry 6 }
snmpEventNotifyMinInterval OBJECT-TYPE
SYNTAX Integer32
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The minimum interval that the SNMPv2 entity
 acting in a dual role will wait before
 retransmitting an InformRequest-PDU. This object
 specifies the minimal value supported by the
 SNMPv2 entity acting in a dual role, based on
 resource or implementation constraints.

 For a particular entry in the
 snmpEventNotifyTable, if the associated
 snmpEventNotifyIntervalRequested variable is
 greater than this object, the
 snmpEventNotifyIntervalRequested value shall be
 used as the minimum interval for retransmissions
 of InformRequest-PDUs sent on behalf of that
 entry."
 ::= { snmpEvent 3 }

snmpEventNotifyMaxRetransmissions OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The maximum number of time that the SNMPv2 entity
 acting in a dual role will retransmit an
 InformRequest-PDU. This object specifies the
 maximal value supported by the SNMPv2 entity
 acting in a dual role, based on resource or
 implementation constraints.

 For a particular entry in the
 snmpEventNotifyTable, if the associated
 snmpEventNotifyRetransmissionsRequested variable
 is less than this object, the
 snmpEventNotifyRetransmissionsRequested value
 shall be used as the retransmission count for
 InformRequest-PDUs sent on behalf of that entry."
 ::= { snmpEvent 4 }

-- The snmpEventNotifyTable is used to configure the
destination and type of notifications sent by a SNMPv2
entity acting in a manager role when a particular event
is triggered.

snmpEventNotifyTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpEventNotifyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of protocol configuration entries for
event notifications from this entity."
 ::= { snmpEvent 5 }

snmpEventNotifyEntry OBJECT-TYPE
SYNTAX SnmpEventNotifyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of parameters that describe the type and
destination of InformRequest-PDUs sent for a
particular event. The snmpEventIndex in this
entry’s INDEX clause identifies the snmpEventEntry
which, when triggered, will generate a
notification as configured in this entry. The
contextIdentity in this entry’s INDEX clause
identifies the context to which a notification
will be sent."
INDEX { snmpEventIndex, contextIdentity }
 ::= { snmpEventNotifyTable 1 }

SnmpEventNotifyEntry ::= SEQUENCE {
 snmpEventNotifyIntervalRequested Integer32,
 snmpEventNotifyRetransmissionsRequested Integer32,
 snmpEventNotifyLifetime Integer32,
 snmpEventNotifyStatus RowStatus
}
snmpEventNotifyIntervalRequested OBJECT-TYPE
SYNTAX Integer32
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The requested interval for retransmission of Inform PDUs generated on behalf of this entry.

This variable will be the actual interval used unless the snmpEventNotifyMinInterval is greater than this object, in which case the interval shall be equal to snmpEventNotifyMinInterval."
DEFVAL { 30 }
 ::= { snmpEventNotifyEntry 1 }

snmpEventNotifyRetransmissionsRequested OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The requested number of retransmissions of an InformRequest-PDU generated on behalf of this entry.

This variable will be the actual number of retransmissions used unless the snmpEventNotifyMaxRetransmissions is less than this object, in which case the retransmission count shall be equal to snmpEventNotifyMaxRetransmissions."
DEFVAL { 5 }
 ::= { snmpEventNotifyEntry 2 }
snmpEventNotifyLifetime OBJECT-TYPE
SYNTAX Integer32
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The number of seconds this entry shall live until
the corresponding instance of
snmpEventNotifyStatus is set to 'destroy'. This
value shall count down to zero, at which time the
Corresponding instance of snmpEventNotifyStatus
will be set to 'destroy'. Any management station
that is using this entry must periodically refresh
this value to ensure the continued delivery of
events."
DEFVAL { 86400 }
 ::= { snmpEventNotifyEntry 3 }

snmpEventNotifyStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The state of this snmpEventNotifyEntry. This
object may not be set to 'active' unless the
following columnar objects exist in this row:
 snmpEventNotifyIntervalRequested,
 snmpEventNotifyRetransmissionsRequested, and
 snmpEventNotifyLifetime."
 ::= { snmpEventNotifyEntry 4 }
snmpM2MConformance
 OBJECT IDENTIFIER ::= { snmpM2M 2 }

snmpM2MCompliances
 OBJECT IDENTIFIER ::= { snmpM2MConformance 1 }

snmpM2MGroups
 OBJECT IDENTIFIER ::= { snmpM2MConformance 2 }

-- compliance statements

snmpM2MCompliance
 MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for SNMPv2 entities
 which implement the Manager-to-Manager MIB."
 MODULE -- this module
 MANDATORY-GROUPS { snmpAlarmGroup, snmpEventGroup }
 ::= { snmpM2MCompliances 1 }

-- units of conformance

snmpAlarmGroup
 OBJECT-GROUP
 OBJECTS { snmpAlarmNextIndex, snmpAlarmVariable, snmpAlarmInterval, snmpAlarmSampleType, snmpAlarmValue, snmpAlarmStartupAlarm, snmpAlarmRisingThreshold, snmpAlarmFallingThreshold, snmpAlarmRisingEventIndex, snmpAlarmFallingEventIndex, snmpAlarmUnavailableEventIndex, snmpAlarmStatus }
 STATUS current
 DESCRIPTION "A collection of objects allowing the description
 and configuration of threshold alarms from a
 SNMPv2 entity acting in a dual role."
 ::= { snmpM2MGroups 1 }
snmpEventGroup OBJECT-GROUP
 OBJECTS { snmpEventNextIndex,
 snmpEventID, snmpEventDescription,
 snmpEventEvents, snmpEventLastTimeSent,
 snmpEventStatus, snmpEventNotifyMinInterval,
 snmpEventNotifyMaxRetransmissions,
 snmpEventNotifyIntervalRequested,
 snmpEventNotifyRetransmissionsRequested,
 snmpEventNotifyLifetime, snmpEventNotifyStatus }
STATUS current
DESCRIPTION
 "A collection of objects allowing the description
 and configuration of events from a SNMPv2 entity
 acting in a dual role."
::= { snmpM2MGroups 2 }

END
4. Acknowledgements

The comments of the SNMP version 2 working group are gratefully acknowledged:

Beth Adams, Network Management Forum
Steve Alexander, INTERACTIVE Systems Corporation
David Arneson, Cabletron Systems
Toshiya Asaba
Fred Baker, ACC
Jim Barnes, Xylogics, Inc.
Brian Bataille
Andy Bierman, SynOptics Communications, Inc.
Uri Blumenthal, IBM Corporation
Fred Bohle, Interlink
Jack Brown
Theodore Brunner, Bellcore
Stephen F. Bush, GE Information Services
Jeffrey D. Case, University of Tennessee, Knoxville
John Chang, IBM Corporation
Szusin Chen, Sun Microsystems
Robert Ching
Chris Chiotasso, Ungermann-Bass
Bobby A. Clay, NASA/Boeing
John Cooke, Chipcom
Tracy Cox, Bellcore
Juan Cruz, Datability, Inc.
David Cullerot, Cabletron Systems
Cathy Cunningham, Microcom
James R. (Chuck) Davin, Bellcore
Michael Davis, Clearpoint
Mike Davison, FiberCom
Cynthia DellaTorre, MITRE
Taso N. Devetzis, Bellcore
Manual Diaz, DAVID Systems, Inc.
Jon Dreyer, Sun Microsystems
David Engel, Optical Data Systems
Mike Erlinger, Lexcel
Roger Fajman, NIH
Daniel Fauvarque, Sun Microsystems
Karen Frisa, CMU
Shari Galitzer, MITRE
Shawn Gallagher, Digital Equipment Corporation
Richard Graveman, Bellcore
Maria Greene, Xyplex, Inc.
Michel Guittet, Apple
Robert Gutierrez, NASA
Bill Hagerty, Cabletron Systems
Gary W. Haney, Martin Marietta Energy Systems
Patrick Hanil, Nokia Telecommunications
Matt Hecht, SNMP Research, Inc.
Edward A. Heiner, Jr., Synernetics Inc.
Susan E. Hicks, Martin Marietta Energy Systems
Geral Holzhauer, Apple
John Hopprich, DAVID Systems, Inc.
Jeff Hughes, Hewlett-Packard
Robin Iddon, Axon Networks, Inc.
David Itusak
Kevin M. Jackson, Concord Communications, Inc.
Ole J. Jacobsen, Interop Company
Ronald Jacoby, Silicon Graphics, Inc.
Satish Joshi, SynOptics Communications, Inc.
Frank Kastenholz, FTP Software
Mark Kepke, Hewlett-Packard
Ken Key, SNMP Research, Inc.
Zbiginew Kielczewski, Eicon
Jongyeoi Kim
Andrew Knutsen, The Santa Cruz Operation
Michael L. Kornegay, VisiSoft
Deirdre C. Kostik, Bellcore
Cheryl Krupczak, Georgia Tech
Mark S. Lewis, Telebit
David Lin
David Lindemulder, AT&T/NCR
Ben Lisowski, Sprint
David Liu, Bell-Northern Research
John Lunny, The Wollongong Group
Robert C. Lushbaugh Martin, Marietta Energy Systems
Michael Luufer, BBN
Carl Madison, Star-Tek, Inc.
Keith McCloghrie, Hughes LAN Systems
Evan McGinnis, 3Com Corporation
Bill McKenzie, IBM Corporation
Donna McMaster, SynOptics Communications, Inc.
John Medicke, IBM Corporation
Doug Miller, Telebit
Dave Minnich, FiberCom
Mohammad Mirhakkak, MITRE
Rohit Mital, Protocols
George Mouradian, AT&T Bell Labs
Luanne Waul, Timeplex
Donald E. Westlake III, Digital Equipment Corporation
Gerry White
Bert Wijnen, IBM Corporation
Peter Wilson, 3Com Corporation
Steven Wong, Digital Equipment Corporation
Randy Worzella, IBM Corporation
Daniel Woycke, MITRE
Honda Wu
Jeff Yarnell, Protocols
Chris Young, Cabletron
Kiho Yum, 3Com Corporation
5. References

6. Security Considerations

Security issues are not discussed in this memo.

7. Authors’ Addresses

Jeffrey D. Case
SNMP Research, Inc.
3001 Kimberlin Heights Rd.
Knoxville, TN 37920-9716
US

Phone: +1 615 573 1434
Email: case@snmp.com

Keith McCloghrie
Hughes LAN Systems
1225 Charleston Road
Mountain View, CA 94043
US

Phone: +1 415 966 7934
Email: kzm@hls.com

Marshall T. Rose
Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043-2186
US

Phone: +1 415 968 1052
Email: mrose@dbc.mtview.ca.us

Steven Waldbusser
Carnegie Mellon University
4910 Forbes Ave
Pittsburgh, PA 15213
US

Phone: +1 412 268 6628
Email: waldbusser@cmu.edu