FDDI Management Information Base

Status of this Memo

This RFC specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing devices which implement the FDDI based on the ANSI FDDI SMT 7.3 draft standard [8], which has been forwarded for publication by the X3T9.5 committee.

Table of Contents

1. The Network Management Framework 2
1.1 Object Definitions 2
1.2 Format of Definitions 2
2. Overview .. 2
2.1 Textual Conventions 3
3. Changes from RFC 1285 3
4. Object Definitions 4
4.1 The SMT Group 6
4.2 The MAC Group 17
4.3 The Enhanced MAC Counters Group 29
4.4 The PATH Group 32
4.5 The PORT Group 38
5. Acknowledgements 48
6. References ... 50
7. Security Considerations 51
8. Authors’ Addresses 51
1. The Network Management Framework

The Internet-standard Network Management Framework consists of three components. They are:

- STD 16, RFC 1155 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. STD 16, RFC 1212 defines a more concise description mechanism, which is wholly consistent with the SMI.

- STD 17, RFC 1213 defines MIB-II, the core set of managed objects for the Internet suite of protocols.

- STD 15, RFC 1157 which defines the SNMP, the protocol used for network access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

1.1. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

1.2. Format of Definitions

Section 4 contains contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [7].

2. Overview

This document defines the managed objects for FDDI devices which are to be accessible via the Simple Network Management Protocol (SNMP). At present, this applies to these values of the ifType variable in the Internet-standard MIB:

\[\text{fddi}(15) \]

For these interfaces, the value of the ifSpecific variable in the
MIB-II [4] has the OBJECT IDENTIFIER value:

fddimib OBJECT IDENTIFIER ::= { fddi 73 }

The definitions of the objects presented here draws heavily from related work in the ANSI X3T9.5 committee and the SMT subcommittee of that committee [8]. In fact, the definitions of the managed objects in this document are, to the maximum extent possible, identical to those identified by the ANSI committee. The semantics of each managed object should be the same with syntactic changes made as necessary to recast the objects in terms of the Internet-standard SMI and MIB so as to be compatible with the SNMP. Examples of these syntactic changes include remapping booleans to enumerated integers, remapping bit strings to octet strings, and the like. In addition, the naming of the objects was changed to achieve compatibility.

These minimal syntactic changes with no semantic changes should allow implementations of SNMP manageable FDDI systems to share instrumentation with other network management schemes and thereby minimize implementation cost. In addition, the translation of information conveyed by managed objects from one network management scheme to another is eased by these shared definitions.

Only the essential variables, as indicated by their mandatory status in the ANSI specification, were retained in this document. The importance of variables which have an optional status in the ANSI specification were perceived as being less widely accepted.

2.1. Textual Conventions

Several new datatypes are introduced as a textual convention in this MIB document. These textual conventions enhance the readability of the document and ease comparisons with its ANSI counterpart. It should be noted that the introduction of these textual conventions has no effect on either the syntax or the semantics of any managed objects. The use of these is merely an artifact of the explanatory method used. Objects defined in terms of one of these methods are always encoded by means of the rules that define the primitive type. Hence, no changes to the SMI or the SNMP are necessary to accommodate these textual conventions which are adopted merely for the convenience of readers and writers in pursuit of the elusive goal of clear, concise, and unambiguous MIB documents.

3. Changes from RFC 1285

The changes from RFC 1285 [2] to this document, based on changes from ANSI SMT 6.2 to SMT 7.3, were so numerous that the objects in this MIB module are located on a different branch of the MIB tree. No
assumptions should be made about compatibility with RFC 1285.

4. Object Definitions

FDDI-SMT73-MIB DEFINITIONS ::= BEGIN

IMPORTS

Counter

FROM RFC1155-SMI

OBJECT-TYPE

FROM RFC-1212;

-- This MIB module uses the extended OBJECT-TYPE macro as
-- defined in [7].

-- this is the FDDI MIB module

fddi OBJECT IDENTIFIER ::= { transmission 15 }
fddimib OBJECT IDENTIFIER ::= { fddi 73 }

-- textual conventions

FddiTimeNano ::= INTEGER (0..2147483647)

-- This data type specifies 1 nanosecond units as
-- an integer value.
--
-- NOTE: The encoding is normal integer representation, not
-- two’s complement. Since this type is used for variables
-- which are encoded as TimerTwosComplement in the ANSI
-- specification, two operations need to be performed on such
-- variables to convert from ANSI form to SNMP form:
--
-- 1) Convert from two’s complement to normal integer
-- representation
-- 2) Multiply by 80 to convert from 80 nsec to 1 nsec units
--
-- No resolution is lost. Moreover, the objects for which
-- this data type is used effectively do not lose any range
-- due to the lower maximum value since they do not require
-- the full range.
--
-- Example: If fddimibMACReq had a value of 8 ms, it would
-- be stored in ANSI TimerTwosComplement format as 0xFFFE7960
-- (8 ms is 100000 in 80 nsec units, which is then converted
-- to two’s complement) but be reported as 8000000 in SNMP
-- since it is encoded here as FddiTimeNano.
FddiTimeMilli ::= INTEGER (0..2147483647)
-- This data type is used for some FDDI timers. It specifies
-- time in 1 millisecond units, in normal integer
-- representation.

FddiResourceId ::= INTEGER (0..65535)
-- This data type is used to refer to an instance of a MAC,
-- PORT, or PATH Resource ID. Indexing begins
-- at 1. Zero is used to indicate the absence of a resource.

FddiSMTStationIdType ::= OCTET STRING (SIZE (8))
-- The unique identifier for the FDDI station. This is a
-- string of 8 octets, represented as X’ yy yy xx xx xx xx
-- xx xx’ with the low order 6 octet (xx) from a unique IEEE
-- assigned address. The high order two bits of the IEEE
-- address, the group address bit and the administration bit
-- (Universal/Local) bit should both be zero. The first two
-- octets, the yy octets, are implementor-defined.
--
-- The representation of the address portion of the station id
-- is in the IEEE (ANSI/IEEE P802.1A) canonical notation for
-- 48 bit addresses. The canonical form is a 6-octet string
-- where the first octet contains the first 8 bits of the
-- address, with the I/G(Individual/Group) address bit as the
-- least significant bit and the U/L (Universal/Local) bit
-- as the next more significant bit, and so on. Note that
-- addresses in the ANSI FDDI standard SMT frames are
-- represented in FDDI MAC order.

FddiMACLongAddressType ::= OCTET STRING (SIZE (6))
-- The representation of long MAC addresses as management
-- values is in the IEEE (ANSI/IEEE P802.1A) canonical
-- notation for 48 bit addresses. The canonical form is a
-- 6-octet string where the first octet contains the first 8
-- bits of the address, with the I/G (Individual/Group)
-- address bit as the least significant bit and the U/L
-- (Universal/Local) bit as the next more significant bit,
-- and so on. Note that the addresses in the SMT frames are
-- represented in FDDI MAC order.
--
-- groups in the FDDI MIB module

fddimibSMT OBJECT IDENTIFIER ::= { fddimib 1 }

fddimibMAC OBJECT IDENTIFIER ::= { fddimib 2 }

fddimibMACCounters OBJECT IDENTIFIER ::= { fddimib 3 }
fddimibPATH OBJECT IDENTIFIER ::= { fddimib 4 }
fddimibPORT OBJECT IDENTIFIER ::= { fddimib 5 }

-- the SMT group
-- Implementation of the SMT group is mandatory for all
-- systems which implement manageable FDDI subsystems.

fddimibSMTNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of SMT implementations (regardless of
their current state) on this network management
application entity. The value for this variable
must remain constant at least from one re-
initialization of the entity’s network management
system to the next re-initialization."
::= { fddimibSMT 1 }

-- the SMT table

fddimibSMTTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibSMTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of SMT entries. The number of entries
shall not exceed the value of fddimibSMTNumber."
::= { fddimibSMT 2 }

FddimibSMTEntry OBJECT-TYPE
SYNTAX FddimibSMTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An SMT entry containing information common to a
given SMT."
INDEX { fddimibSMTIndex }
::= { fddimibSMTTable 1 }

FddimibSMTEntry ::= SEQUENCE {
 fddimibSMTIndex
 INTEGER,
fddimibSMTStationId
 FddiSMTStationIdType,
 fddimibSMTOpVersionId
 INTEGER,
 fddimibSMTHiVersionId
 INTEGER,
 fddimibSMTLoVersionId
 INTEGER,
 fddimibSMTUserData
 OCTET STRING,
 fddimibSMTMIBVersionId
 INTEGER,
 fddimibSMTMACCts
 INTEGER,
 fddimibSMTNonMasterCts
 INTEGER,
 fddimibSMTMasterCts
 INTEGER,
 fddimibSMTAvailablePaths
 INTEGER,
 fddimibSMTConfigCapabilities
 INTEGER,
 fddimibSMTConfigPolicy
 INTEGER,
 fddimibSMTConnectionPolicy
 INTEGER,
 fddimibSMTNotify
 INTEGER,
 fddimibSMTStatRptPolicy
 INTEGER,
 fddimibSMTTraceMaxExpiration
 FddiTimeMilli,
 fddimibSMTBypassPresent
 INTEGER,
 fddimibSMTECMState
 INTEGER,
 fddimibSMTCFState
 INTEGER,
 fddimibSMTRemoteDisconnectFlag
 INTEGER,
 fddimibSMTStationStatus
 INTEGER,
 fddimibSMTPeerWrapFlag
 INTEGER,
 fddimibSMTTimeStamp
 FddiTimeMilli,
 fddimibSMTTransitionTimeStamp
 FddiTimeMilli,
fddimibSMTStationAction
 INTEGER

fddimibSMTIndex OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A unique value for each SMT. The value for each
 SMT must remain constant at least from one re-
 initialization of the entity’s network management
 system to the next re-initialization."
 ::= { fddimibSMTEntry 1 }

fddimibSMTStationId OBJECT-TYPE
 SYNTAX FddiSMTStationIdType -- OCTET STRING (SIZE (8))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Used to uniquely identify an FDDI station."
 REFERENCE
 "ANSI { fddiSMT 11 }"
 ::= { fddimibSMTEntry 2 }

fddimibSMTOpVersionId OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The version that this station is using for its
 operation (refer to ANSI 7.1.2.2). The value of
 this variable is 2 for this SMT revision."
 REFERENCE
 "ANSI { fddiSMT 13 }"
 ::= { fddimibSMTEntry 3 }

fddimibSMTHiVersionId OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The highest version of SMT that this station
 supports (refer to ANSI 7.1.2.2)."
 REFERENCE
 "ANSI { fddiSMT 14 }"
 ::= { fddimibSMTEntry 4 }
fddimibSMTLoVersionId OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The lowest version of SMT that this station
 supports (refer to ANSI 7.1.2.2)."
 REFERENCE
 "ANSI { fddiSMT 15 }"
 ::= { fddimibSMTEntry 5 }

fddimibSMTUserData OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (32))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "This variable contains 32 octets of user defined
 information. The information shall be an ASCII
 string."
 REFERENCE
 "ANSI { fddiSMT 17 }"
 ::= { fddimibSMTEntry 6 }

fddimibSMTMIBVersionId OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The version of the FDDI MIB of this station. The
 value of this variable is 1 for this SMT
 revision."
 REFERENCE
 "ANSI { fddiSMT 18 }"
 ::= { fddimibSMTEntry 7 }

fddimibSMTMACCts OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of MACs in this station or
 concentrator."
 REFERENCE
 "ANSI { fddiSMT 21 }"
 ::= { fddimibSMTEntry 8 }

fddimibSMTNonMasterCts OBJECT-TYPE
 SYNTAX INTEGER (0..2)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this variable is the number of A, B, and S ports in this station or concentrator."
REFERENCE
"ANSI { fddiSMT 22 }"
::= { fddimibSMTEntry 9 }

fddimibSMTMasterCts OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of M Ports in a node. If the node is not a concentrator, the value of the variable is zero."
REFERENCE
"ANSI { fddiSMT 23 }"
::= { fddimibSMTEntry 10 }

fddimibSMTAvailablePaths OBJECT-TYPE
SYNTAX INTEGER (0..7)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value that indicates the PATH types available in the station.

The value is a sum. This value initially takes the value zero, then for each type of PATH that this node has available, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>Path</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>0</td>
</tr>
<tr>
<td>Secondary</td>
<td>1</td>
</tr>
<tr>
<td>Local</td>
<td>2</td>
</tr>
</tbody>
</table>

For example, a station having Primary and Local PATHs available would have a value of 5 (2**0 + 2**2)."
REFERENCE
"ANSI { fddiSMT 24 }"
::= { fddimibSMTEntry 11 }

fddimibSMTConfigCapabilities OBJECT-TYPE
SYNTAX INTEGER (0..3)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value that indicates the configuration capabilities of a node. The ‘Hold Available’ bit indicates the support of the optional Hold Function, which is controlled by fddiSMTConfigPolicy. The ‘CF-Wrap-AB’ bit indicates that the station has the capability of performing a wrap_ab (refer to ANSI SMT 9.7.2.2).

The value is a sum. This value initially takes the value zero, then for each of the configuration policies currently enforced on the node, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>holdAvailable</td>
<td>0</td>
</tr>
<tr>
<td>CF-Wrap-AB</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiSMT 25 }"
::= { fddimibSMTEntry 12 }

fddimibSMTConfigPolicy OBJECT-TYPE
SYNTAX INTEGER (0..1)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A value that indicates the configuration policies currently desired in a node. ‘Hold’ is one of the terms used for the Hold Flag, an optional ECM flag used to enable the optional Hold policy.

The value is a sum. This value initially takes the value zero, then for each of the configuration policies currently enforced on the node, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>configurationhold</td>
<td>0</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiSMT 26 }"
::= { fddimibSMTEntry 13 }

fddimibSMTConnectionPolicy OBJECT-TYPE
SYNTAX INTEGER (32768..65535)
ACCESS read-write
STATUS mandatory

DESCRIPTION
"A value representing the connection policies in effect in a node. A station sets the corresponding bit for each of the connection types that it rejects. The letter designations, X and Y, in the ‘rejectX-Y’ names have the following significance: X represents the PC-Type of the local PORT and Y represents the PC_Type of the adjacent PORT (PC_Neighbor). The evaluation of Connection-Policy (PC-Type, PC-Neighbor) is done to determine the setting of T-Val(3) in the PC-Signalling sequence (refer to ANSI 9.6.3). Note that Bit 15, (rejectM-M), is always set and cannot be cleared.

The value is a sum. This value initially takes the value zero, then for each of the connection policies currently enforced on the node, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>rejectA-A</td>
<td>0</td>
</tr>
<tr>
<td>rejectA-B</td>
<td>1</td>
</tr>
<tr>
<td>rejectA-S</td>
<td>2</td>
</tr>
<tr>
<td>rejectA-M</td>
<td>3</td>
</tr>
<tr>
<td>rejectB-A</td>
<td>4</td>
</tr>
<tr>
<td>rejectB-B</td>
<td>5</td>
</tr>
<tr>
<td>rejectB-S</td>
<td>6</td>
</tr>
<tr>
<td>rejectB-M</td>
<td>7</td>
</tr>
<tr>
<td>rejectS-A</td>
<td>8</td>
</tr>
<tr>
<td>rejectS-B</td>
<td>9</td>
</tr>
<tr>
<td>rejectS-S</td>
<td>10</td>
</tr>
<tr>
<td>rejectS-M</td>
<td>11</td>
</tr>
<tr>
<td>rejectM-A</td>
<td>12</td>
</tr>
<tr>
<td>rejectM-B</td>
<td>13</td>
</tr>
<tr>
<td>rejectM-S</td>
<td>14</td>
</tr>
<tr>
<td>rejectM-M</td>
<td>15</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiSMT 27 }"
::= { fddimibSMTEntry 14 }

fddimibSMTNotify OBJECT-TYPE
SYNTAX INTEGER (2..30)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The timer, expressed in seconds, used in the
Neighbor Notification protocol. It has a range of
2 seconds to 30 seconds, and its default value is
30 seconds (refer to ANSI SMT 8.2)."

REFERENCE
"ANSI { fddiSMT 29 }":= { fddimibSMTEntry 15 }

fddimibSMTStatRptPolicy OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-write
STATUS mandatory
DESCRIPTION
"If true, indicates that the node will generate
Status Reporting Frames for its implemented events
and conditions. It has an initial value of true.
This variable determines the value of the
SR_Enable Flag (refer to ANSI SMT 8.3.2.1)."

REFERENCE
"ANSI { fddiSMT 30 }":= { fddimibSMTEntry 16 }

fddimibSMTTraceMaxExpiration OBJECT-TYPE
SYNTAX FddiTimeMilli
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Reference Trace_Max (refer to ANSI SMT
9.4.4.2.2)."

REFERENCE
"ANSI { fddiSMT 31 }":= { fddimibSMTEntry 17 }

fddimibSMTBypassPresent OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A flag indicating if the station has a bypass on
its AB port pair."

REFERENCE
"ANSI { fddiSMT 34 }":= { fddimibSMTEntry 18 }

fddimibSMTECMState OBJECT-TYPE
SYNTAX INTEGER
 ec0(1), -- Out
fddimibSMTCFState OBJECT-TYPE
SYNTAX INTEGER {
 cf0(1), -- isolated
 cf1(2), -- local_a
 cf2(3), -- local_b
 cf3(4), -- local_ab
 cf4(5), -- local_s
 cf5(6), -- wrap_a
 cf6(7), -- wrap_b
 cf7(8), -- wrap_ab
 cf8(9), -- wrap_s
 cf9(10), -- c_wrap_a
 cf10(11), -- c_wrap_b
 cf11(12), -- c_wrap_s
 cf12(13) -- thru
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The attachment configuration for the station or concentrator (refer to ANSI SMT 9.7.2.2)."
REFERENCE
 "ANSI { fddiSMT 42 }"
::= { fddimibSMTEntry 20 }

fddimibSMTRemoteDisconnectFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "A flag indicating that the station was remotely
disconnected from the network as a result of receiving an fddiSMTAction, disconnect (refer to ANSI SMT 6.4.5.3) in a Parameter Management Frame. A station requires a Connect Action to rejoin and clear the flag (refer to ANSI SMT 6.4.5.2)."

REFERENCE
"ANSI { fddiSMT 44 }"
 ::= { fddimibSMTEntry 21 }

fddimibSMTStationStatus OBJECT-TYPE
SYNTAX INTEGER { concatenated(1), separated(2), thru(3) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current status of the primary and secondary paths within this station."
REFERENCE
"ANSI { fddiSMT 45 }"
 ::= { fddimibSMTEntry 22 }

fddimibSMTPeerWrapFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of the PeerWrapFlag in CFM (refer to ANSI SMT 9.7.2.4.4)."
REFERENCE
"ANSI { fddiSMT 46 }"
 ::= { fddimibSMTEntry 23 }

fddimibSMTTimeStamp OBJECT-TYPE
SYNTAX FddiTimeMilli
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of TimeStamp (refer to ANSI SMT 8.3.2.1)."
REFERENCE
"ANSI { fddiSMT 51 }"
 ::= { fddimibSMTEntry 24 }

fddimibSMTTransitionTimeStampl OBJECT-TYPE
SYNTAX FddiTimeMilli
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of TimeStamp (refer to ANSI SMT 8.3.2.1)."
"This variable assumes the value of TransitionTimeStamp (refer to ANSI SMT 8.3.2.1)."

REFERENCE

"ANSI { fddiSMT 52 }"
::= { fddimibSMTEntry 25 }

fddimibSMTStationAction OBJECT-TYPE
SYNTAX INTEGER {
 other(1), -- none of the following
 connect(2),
 disconnect(3),
 path-Test(4),
 self-Test(5),
 disable-a(6),
 disable-b(7),
 disable-m(8)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object, when read, always returns a value of other(1). The behavior of setting this variable to each of the acceptable values is as follows:

other(1): Results in an appropriate error.
connect(2): Generates a Connect signal to ECM to begin a connection sequence. See ANSI Ref 9.4.2.
disconnect(3): Generates a Disconnect signal to ECM. see ANSI Ref 9.4.2.
path-Test(4): Initiates a station Path_Test. The Path_Test variable (see ANSI Ref 9.4.1) is set to 'Testing'. The results of this action are not specified in this standard.
self-Test(5): Initiates a station Self_Test. The results of this action are not specified in this standard.
disable-a(6): Causes a PC_Disable on the A port if the A port mode is peer.
disable-b(7): Causes a PC_Disable on the B port if the B port mode is peer.
disable-m(8): Causes a PC_Disable on all M ports.

Attempts to set this object to all other values results in an appropriate error. The result of setting this variable to path-Test(4) or self-
Test(5) is implementation-specific.

REFERENCE
"ANSI { fddiSMT 60 }"
::= { fddimibSMTEntry 26 }

-- the MAC group
-- Implementation of the MAC Group is mandatory for all
-- systems which implement manageable FDDI subsystems.

fddimibMACNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of MAC implementations (across
all SMTs) on this network management application
entity. The value for this variable must remain
constant at least from one re-initialization of
the entity's network management system to the next
re-initialization."
::= { fddimibMAC 1 }

-- the MAC table

fddimibMACTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibMACEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of MAC entries. The number of entries
shall not exceed the value of fddimibMACNumber."
::= { fddimibMAC 2 }

fddimibMACEntry OBJECT-TYPE
SYNTAX FddimibMACEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A MAC entry containing information common to a
given MAC."
INDEX { fddimibMACSMTIndex, fddimibMACIndex }
::= { fddimibMACTable 1 }

FddimibMACEntry ::= SEQUENCE {
 fddimibMACSMTIndex
INTEGER,
fddimibMACIndex
INTEGER,
fddimibMACIfIndex
INTEGER,
fddimibMACFrameStatusFunctions
INTEGER,
fddimibMACTMaxCapability
FddiTimeNano,
fddimibMACTVXCapability
FddiTimeNano,
fddimibMACAvailablePaths
INTEGER,
fddimibMACCurrentPath
INTEGER,
fddimibMACUpstreamNbr
FddiMACLongAddressType,
fddimibMACDownstreamNbr
FddiMACLongAddressType,
fddimibMACOldUpstreamNbr
FddiMACLongAddressType,
fddimibMACOldDownstreamNbr
FddiMACLongAddressType,
fddimibMACDupAddressTest
INTEGER,
fddimibMACRequestedPaths
INTEGER,
fddimibMACDownstreamPORTType
INTEGER,
fddimibMACSMTAddress
FddiMACLongAddressType,
fddimibMACTReq
FddiTimeNano,
fddimibMACTNeg
FddiTimeNano,
fddimibMACTMax
FddiTimeNano,
fddimibMACTvxValue
FddiTimeNano,
fddimibMACFrameCts
Counter,
fddimibMACCopiedCts
Counter,
fddimibMACTransmitCts
Counter,
fddimibMACErrorCts
Counter,
fddimibMACLostCts
Counter,
 fddimibMACFrameErrorThreshold
 INTEGER,
 fddimibMACFrameErrorRatio
 INTEGER,
 fddimibMACRMTState
 INTEGER,
 fddimibMACDaFlag
 INTEGER,
 fddimibMACUnaDaFlag
 INTEGER,
 fddimibMACFrameErrorFlag
 INTEGER,
 fddimibMACMAUnitdataAvailable
 INTEGER,
 fddimibMACHardwarePresent
 INTEGER,
 fddimibMACMAUnitdataEnable
 INTEGER
 }

fddimibMACSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The value of the SMT index associated with this
 MAC."
::= { fddimibMACEntry 1 }

fddimibMACIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "Index variable for uniquely identifying the MAC
 object instances, which is the same as the
 corresponding resource index in SMT."
REFERENCE
 "ANSI { fddiMAC 34 }"
::= { fddimibMACEntry 2 }

fddimibMACIfIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the MIB-II ifIndex corresponding to this MAC. If none is applicable, 0 is returned."

REFERENCE
"MIB-II"
::= { fddimibMACEntry 3 }

fddimibMACFrameStatusFunctions OBJECT-TYPE
SYNTAX INTEGER (0..7)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the MAC’s optional Frame Status processing functions.

The value is a sum. This value initially takes the value zero, then for each function present, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>function</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>fs-repeating</td>
<td>0</td>
</tr>
<tr>
<td>fs-setting</td>
<td>1</td>
</tr>
<tr>
<td>fs-clearing</td>
<td>2</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiMAC 11 }"
::= { fddimibMACEntry 4 }

fddimibMACTMaxCapability OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the maximum time value of fddiMACTMax that this MAC can support."

REFERENCE
"ANSI { fddiMAC 13 }"
::= { fddimibMACEntry 5 }

fddimibMACTVXCapability OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the maximum time value of fddiMACTVxValue that this MAC can support."

REFERENCE
"ANSI { fddiMAC 14 }"
::= { fddimibMACEntry 6 }
fddimibMACAvailablePaths OBJECT-TYPE
SYNTAX INTEGER {0..7}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the paths available for this MAC (refer to ANSI SMT 9.7.7).

The value is a sum. This value initially takes the value zero, then for each type of PATH that this MAC has available, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>Path</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>0</td>
</tr>
<tr>
<td>Secondary</td>
<td>1</td>
</tr>
<tr>
<td>Local</td>
<td>2</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiMAC 22 }"
::= { fddimibMACEntry 7 }

fddimibMACCurrentPath OBJECT-TYPE
SYNTAX INTEGER {
 isolated(1),
 local(2),
 secondary(3),
 primary(4),
 concatenated(5),
 thru(6)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the Path into which this MAC is currently inserted (refer to ANSI 9.7.7)."
REFERENCE
"ANSI { fddiMAC 23 }"
::= { fddimibMACEntry 8 }

fddimibMACUpstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The MAC’s upstream neighbor’s long individual MAC address. It has an initial value of the SMT-Unknown-MAC Address and is only modified as
specified by the Neighbor Information Frame protocol (refer to ANSI SMT 7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 24 }"
::= { fddimibMACEntry 9 }

fddimibMACDownstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The MAC’s downstream neighbor’s long individual MAC address. It has an initial value of the SMT-Unknown-MAC Address and is only modified as specified by the Neighbor Information Frame protocol (refer to ANSI SMT 7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 25 }"
::= { fddimibMACEntry 10 }

fddimibMACOldUpstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The previous value of the MAC’s upstream neighbor’s long individual MAC address. It has an initial value of the SMT-Unknown-MAC Address and is only modified as specified by the Neighbor Information Frame protocol (refer to ANSI SMT 7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 26 }"
::= { fddimibMACEntry 11 }

fddimibMACOldDownstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The previous value of the MAC’s downstream neighbor’s long individual MAC address. It has an initial value of the SMT-Unknown-MAC Address and is only modified as specified by the Neighbor Information Frame protocol (refer to ANSI SMT 7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 27 }"
::= { fddimibMACEntry 12 }

fddimibMACDupAddressTest OBJECT-TYPE
SYNTAX INTEGER { none(1), pass(2), fail(3) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The Duplicate Address Test flag, Dup_Addr_Test
(refer to ANSI 8.2)."
REFERENCE
"ANSI { fddiMAC 29 }"
::= { fddimibMACEntry 13 }

fddimibMACRequestedPaths OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"List of permitted Paths which specifies the
Path(s) into which the MAC may be inserted (refer
to ansi SMT 9.7).

The value is a sum which represents the individual
paths that are desired. This value initially
takes the value zero, then for each type of PATH
that this node is, 2 raised to a power is added to
the sum. The powers are according to the
following table:

Path Power
local 0
secondary-alternate 1
primary-alternate 2
concatenated-alternate 3
secondary-preferred 4
primary-preferred 5
concatenated-preferred 6
thru 7 "
REFERENCE
"ANSI { fddiMAC 32 }"
::= { fddimibMACEntry 14 }

fddimibMACDownstreamPORTType OBJECT-TYPE
SYNTAX INTEGER { a(1), b(2), s(3), m(4), none(5) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the PC-Type of the first port that is
downstream of this MAC (the exit port)."
REFERENCE
"ANSI { fddiMAC 33 }"
::= { fddimibMACEntry 15 }

fddimibMACSMTAddress OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The 48-bit individual address of the MAC used for
SMT frames."
REFERENCE
"ANSI { fddiMAC 41 }"
::= { fddimibMACEntry 16 }

fddimibMACTReq OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is the T_Req_value passed to the
MAC. Without having detected a duplicate, the
time value of this variable shall assume the
maximum supported time value which is less than or
equal to the time value of fddiPATHMaxT-Req. When
a MAC has an address detected as a duplicate, it
may use a time value for this variable greater
than the time value of fddiPATHMaxLowerBound. A
station shall cause claim when the new T_Req may
cause the value of T_Neg to change in the claim
process, (i.e., time value new T_Req < T_Neg, or
old T_Req = T_Neg)."
REFERENCE
"ANSI { fddiMAC 51 }"
::= { fddimibMACEntry 17 }

fddimibMACTNeg OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"It is reported as a FddiTimeNano number."
REFERENCE
"ANSI { fddiMAC 52 }"
::= { fddimibMACEntry 18 }

fddimibMACTMax OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "This variable is the T_Max_value passed to the MAC. The time value of this variable shall assume the minimum supported time value which is greater than or equal to the time value of fddiPATHTMaxLowerBound"
REFERENCE
 "ANSI { fddiMAC 53 }"
::= { fddimibMACEntry 19 }

fddimibMACTvxValue OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "This variable is the TVX_value passed to the MAC. The time value of this variable shall assume the minimum supported time value which is greater than or equal to the time value of fddiPATHTVXLowerBound."
REFERENCE
 "ANSI { fddiMAC 54 }"
::= { fddimibMACEntry 20 }

fddimibMACFrameCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "A count of the number of frames received by this MAC (refer to ANSI MAC 7.5.1)."
REFERENCE
 "ANSI { fddiMAC 71 }"
::= { fddimibMACEntry 21 }

fddimibMACCopiedCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "A count that should as closely as possible match the number of frames addressed to (A bit set) and successfully copied into the station’s receive buffers (C bit set) by this MAC (refer to ANSI MAC 7.5). Note that this count does not include MAC
frames."
REFERENCE
"ANSI { fddiMAC 72 }"
::= { fddimibMACEntry 22 }

fddimibMACTransmitCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match
the number of frames transmitted by this MAC
(refer to ANSI MAC 7.5). Note that this count
does not include MAC frames."
REFERENCE
"ANSI { fddiMAC 73 }"
::= { fddimibMACEntry 23 }

fddimibMACErrorCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of frames that were
detected in error by this MAC that had not been
detected in error by another MAC (refer to ANSI
MAC 7.5.2)."
REFERENCE
"ANSI { fddiMAC 81 }"
::= { fddimibMACEntry 24 }

fddimibMACLostCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of instances that this MAC
detected a format error during frame reception
such that the frame was stripped (refer to ANSI
MAC 7.5.3)."
REFERENCE
"ANSI { fddiMAC 82 }"
::= { fddimibMACEntry 25 }

fddimibMACFrameErrorThreshold OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A threshold for determining when a MAC Condition report (see ANSI 8.3.1.1) shall be generated. Stations not supporting variable thresholds shall have a value of 0 and a range of (0..0)."

REFERENCE
"ANSI { fddiMAC 95 }"
::= { fddimibMACEntry 26 }

fddimibMACFrameErrorRatio OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is the value of the ratio,

 \[\frac{\text{delta fddiMACLostCts} + \text{delta fddiMACErrorCts}}{\text{delta fddiMACFrameCts} + \text{delta fddiMACLostCts}} \times 2^{16} \]

REFERENCE
"ANSI { fddiMAC 96 }"
::= { fddimibMACEntry 27 }

fddimibMACRMTState OBJECT-TYPE
SYNTAX INTEGER { rm0(1), -- Isolated
 rm1(2), -- Non_Op
 rm2(3), -- Ring_Op
 rm3(4), -- Detect
 rm4(5), -- Non_Op_Dup
 rm5(6), -- Ring_Op_Dup
 rm6(7), -- Directed
 rm7(8) -- Trace }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the current state of the RMT State Machine (refer to ANSI 10.3.2)."
REFERENCE
"ANSI { fddiMAC 111 }"
::= { fddimibMACEntry 28 }

fddimibMACDaFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The RMT flag Duplicate Address Flag, DA_Flag (refer to ANSI 10.2.1.2)."

REFERENCE
"ANSI { fddiMAC 112 }"
::= { fddimibMACEntry 29 }

fddimibMACUnaDaFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A flag, UNDA_Flag (refer to ANSI 8.2.2.1), set when the upstream neighbor reports a duplicate address condition. Cleared when the condition clears."

REFERENCE
"ANSI { fddiMAC 113 }"
::= { fddimibMACEntry 30 }

fddimibMACFrameErrorFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the MAC Frame Error Condition is present when set. Cleared when the condition clears and on station initialization."

REFERENCE
"ANSI { fddiMAC 114 }"
::= { fddimibMACEntry 31 }

fddimibMACMAUnitdataAvailable OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable shall take on the value of the MAC_Avail flag defined in RMT."

REFERENCE
"ANSI { fddiMAC 116 }"
::= { fddimibMACEntry 32 }

fddimibMACHardwarePresent OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the presence of
underlying hardware support for this MAC object. If the value of this object is false(2), the reporting of the objects in this entry may be handled in an implementation-specific manner.

REFERENCE
"ANSI { fddiMAC 117 }
 ::= { fddimibMACEntry 33 }

fddimibMACMAUnitdataEnable OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This variable determines the value of the MA_UNITDATA_Enable flag in RMT. The default and initial value of this flag is true(1)."

REFERENCE
"ANSI { fddiMAC 118 }
 ::= { fddimibMACEntry 34 }

-- the Enhanced MAC Counters group
-- Implementation of this Group is optional, but systems claiming support must implement all variables in this group

-- the MAC Counters table

fddimibMACCountersTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibMACCountersEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of MAC Counters entries. The number of entries shall not exceed the value of fddimibMACNumber."
 ::= { fddimibMACCounters 1 }

fddimibMACCountersEntry OBJECT-TYPE
SYNTAX FddimibMACCountersEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A MAC Counters entry containing information common to a given MAC."
INDEX { fddimibMACSMTIndex, fddimibMACIndex }
 ::= { fddimibMACCountersTable 1 }
FddimibMACCountersEntry ::=
 SEQUENCE {
 fddimibMACTokenCts
 Counter,
 fddimibMACTvxExpiredCts
 Counter,
 fddimibMACNotCopiedCts
 Counter,
 fddimibMACLateCts
 Counter,
 fddimibMACRingOpCts
 Counter,
 fddimibMACNotCopiedRatio
 INTEGER,
 fddimibMACNotCopiedFlag
 INTEGER,
 fddimibMACNotCopiedThreshold
 INTEGER
 }

fddimibMACTokenCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "A count that should as closely as possible match
 the number of times the station has received a
 token (total of non-restricted and restricted) on
 this MAC (see ANSI MAC 7.4). This count is
 valuable for determination of network load."

REFERENCE
 "ANSI { fddiMAC 74 }"
::= { fddimibMACCountersEntry 1 }

fddimibMACTvxExpiredCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "A count that should as closely as possible match
 the number of times that TVX has expired."

REFERENCE
 "ANSI { fddiMAC 83 }"
::= { fddimibMACCountersEntry 2 }

fddimibMACNotCopiedCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
fddimibMACCountersEntry 3

fddimibMACLateCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match the number of frames that were addressed to this MAC but were not copied into its receive buffers (see ANSI MAC 7.5). For example, this might occur due to local buffer congestion. Because of implementation considerations, this count may not match the actual number of frames not copied. It is not a requirement that this count be exact. Note that this count does not include MAC frames."
REFERENCE
"ANSI { fddiMAC 84 }"
::= { fddimibMACCountersEntry 3 }

fddimibMACRingOpCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of the number of times the ring has entered the 'Ring_Operational' state from the 'Ring Not Operational' state. This count is updated when a SM_MA_STATUS.Indication of a change in the Ring_Operational status occurs (refer to ANSI 6.1.4). Because of implementation considerations, this count may be less than the actual RingOp_Ct. It is not a requirement that this count be exact."
REFERENCE
"ANSI { fddiMAC 86 }"
::= { fddimibMACCountersEntry 4 }

fddimibMACNotCopiedRatio OBJECT-TYPE
SYNTAX INTEGER (0..65535)
"This variable is the value of the ratio:

\[
\frac{\text{delta fddiMACNotCopiedCts}}{\text{delta fddiMACCopiedCts} + \text{delta fddiMACNotCopiedCts}} \times 2^{16}
\]

REFERENCE

"ANSI \{ fddiMAC 105 \}"

::= { fddimibMACCountersEntry 6 }

fddimibMACNotCopiedFlag OBJECT-TYPE
SYNTAX INTEGER \{ true(1), false(2) \}
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Indicates that the Not Copied condition is present when read as true(1). Set to false(2) when the condition clears and on station initialization."

REFERENCE

"ANSI \{ fddiMAC 115 \}"

::= { fddimibMACCountersEntry 7 }

fddimibMACNotCopiedThreshold OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION

"A threshold for determining when a MAC condition report shall be generated. Stations not supporting variable thresholds shall have a value of 0 and a range of (0..0)."

REFERENCE

"ANSI \{ fddiMAC 103 \}"

::= { fddimibMACCountersEntry 8 }

-- the PATH group

-- Implementation of the PATH group is mandatory for all systems which implement manageable FDDI subsystems.

fddimibPATHNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
The total number of PATHs possible (across all SMTs) on this network management application entity. The value for this variable must remain constant at least from one re-initialization of the entity’s network management system to the next re-initialization.

```plaintext
::= { fddimibPATH 1 }
```

-- the PATH table

```plaintext
fddimibPATHTable OBJECT-TYPE
SYNTAX  SEQUENCE OF FddimibPATHEntry
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION
"A list of PATH entries. The number of entries shall not exceed the value of fddimibPATHNumber."
::= { fddimibPATH 2 }
```

```plaintext
fddimibPATHEntry OBJECT-TYPE
SYNTAX  FddimibPATHEntry
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION
"A PATH entry containing information common to a given PATH."
INDEX  { fddimibPATHSMTIndex, fddimibPATHIndex }
::= { fddimibPATHTable 1 }
```

```plaintext
FddimibPATHEntry ::= SEQUENCE {
  fddimibPATHSMTIndex
  INTEGER,
  fddimibPATHIndex
  INTEGER,
  fddimibPATHTVXLowerBound
  FddiTimeNano,
  fddimibPATHTMaxLowerBound
  FddiTimeNano,
  fddimibPATHMaxTReq
  FddiTimeNano
}
```

```plaintext
fddimibPATHSMTIndex OBJECT-TYPE
SYNTAX  INTEGER (1..65535)
ACCESS  read-only
STATUS  mandatory
```
fddimibPATHIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Index variable for uniquely identifying the primary, secondary and local PATH object instances. Local PATH object instances are represented with integer values 3 to 255."
REFERENCE
"ANSI { fddiPATH 11 }
 ::= { fddimibPATHEntry 2 }

fddimibPATHTVXLowerBound OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Specifies the minimum time value of fddiMACTvxValue that shall be used by any MAC that is configured in this path. The operational value of fddiMACTvxValue is managed by setting this variable. This variable has the time value range of:

0 < fddimibPATHTVXLowerBound < fddimibPATHMaxTReq
Changes to this variable shall either satisfy the time value relationship:

fddimibPATHTVXLowerBound <=
fddimibMACTVXCapability

of each of the MACs currently on the path, or be considered out of range. The initial value of fddimibPATHTVXLowerBound shall be 2500 nsec (2.5 ms)."
REFERENCE
"ANSI { fddiPATH 21 }
 ::= { fddimibPATHEntry 3 }

fddimibPATHTMaxLowerBound OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Specifies the minimum time value of fddiMACTMax that shall be used by any MAC that is configured in this path. The operational value of fddiMACTMax is managed by setting this variable. This variable has the time value range of:

fddimibPATHMaxTReq <= fddimibPATHMaxLowerBound

and an absolute time value range of:

10000nsec (10 msec) <= fddimibPATHMaxLowerBound

Changes to this variable shall either satisfy the time value relationship:

fddimibPATHMaxLowerBound < fddimibMACTMaxCapability

of each of the MACs currently on the path, or be considered out of range. The initial value of fddimibPATHMaxLowerBound shall be 165000 nsec (165 msec)."

REFERENCE
"ANSI { fddiPATH 22 }"
 ::= { fddimibPATHEntry 4 }

fddimibPATHMaxTReq OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Specifies the maximum time value of fddiMACT-Req that shall be used by any MAC that is configured in this path. The operational value of fddiMACT-Req is managed by setting this variable. This variable has the time value range of:

fddimibPATHTVXLowerBound < fddimibPATHMaxTReq <= fddimibPATHMaxLowerBound.

The default value of fddimibPATHMaxTReq is 165000 nsec (165 msec)."

REFERENCE
"ANSI { fddiPATH 23 }"
 ::= { fddimibPATHEntry 5 }
-- the PATH Configuration table

fddimibPATHConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibPATHConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table of Path configuration entries. This
table lists all the resources that may be in this
Path."
REFERENCE
"ANSI { fddiPATH 18 }"
 ::= { fddimibPATH 3 }

fddimibPATHConfigEntry OBJECT-TYPE
SYNTAX FddimibPATHConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of objects containing information
for a given PATH Configuration entry."
INDEX { fddimibPATHConfigSMTIndex,
 fddimibPATHConfigPATHIndex,
 fddimibPATHConfigTokenOrder }
 ::= { fddimibPATHConfigTable 1 }

FddimibPATHConfigEntry ::= SEQUENCE {
 fddimibPATHConfigSMTIndex INTEGER,
 fddimibPATHConfigPATHIndex INTEGER,
 fddimibPATHConfigTokenOrder INTEGER,
 fddimibPATHConfigResourceType INTEGER,
 fddimibPATHConfigResourceIndex INTEGER,
 fddimibPATHConfigCurrentPath INTEGER
}

fddimibPATHConfigSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the SMT index associated with this
::= { fddimibPATHConfigEntry 1 }

fddimibPATHConfigPATHIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the PATH resource index associated with this configuration entry."
::= { fddimibPATHConfigEntry 2 }

fddimibPATHConfigTokenOrder OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An object associated with Token order for this entry. Thus if the token passes resources a, b, c and d, in that order, then the value of this object for these resources would be 1, 2, 3 and 4 respectively."
::= { fddimibPATHConfigEntry 3 }

fddimibPATHConfigResourceType OBJECT-TYPE
SYNTAX INTEGER { mac(2), port(4) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The type of resource associated with this configuration entry."
::= { fddimibPATHConfigEntry 4 }

fddimibPATHConfigResourceIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the SMT resource index used to refer to the instance of this MAC or Port resource."
::= { fddimibPATHConfigEntry 5 }

fddimibPATHConfigCurrentPath OBJECT-TYPE
SYNTAX INTEGER {
 isolated(1), local(2), secondary(3), primary(4),
 concatenated(5), thru(6)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current insertion status for this resource on
this Path."
 ::= { fddimibPATHConfigEntry 6 }

-- the PORT group
-- Implementation of the PORT group is mandatory for all
-- systems which implement manageable FDDI subsystems.

fddimibPORTNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of PORT implementations (across
all SMTs) on this network management application
entity. The value for this variable must remain
constant at least from one re-initialization of
the entity's network management system to the next
re-initialization."
 ::= { fddimibPORT 1 }

-- the PORT table

fddimibPORTTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibPORTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of PORT entries. The number of entries
shall not exceed the value of fddimibPORTNumber."
 ::= { fddimibPORTTable 1 }

FddimibPORTEntry OBJECT-TYPE
SYNTAX FddimibPORTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A PORT entry containing information common to a
given PORT."
INDEX { fddimibPORTSMTIndex, fddimibPORTIndex }
 ::= { fddimibPORTTable 1 }

FddimibPORTEntry ::= SEQUENCE {
fddimibPORTSMTIndex
INTEGER,
fddimibPORTIndex
INTEGER,
fddimibPORTMyType
INTEGER,
fddimibPORTNeighborType
INTEGER,
fddimibPORTConnectionPolicies
INTEGER,
fddimibPORTMACIndicated
INTEGER,
fddimibPORTCurrentPath
INTEGER,
fddimibPORTRequestedPaths
OCTET STRING,
fddimibPORTMACPlacement
FddiResourceId,
fddimibPORTAvailablePaths
INTEGER,
fddimibPORTPMDClass
INTEGER,
fddimibPORTConnectionCapabilities
INTEGER,
fddimibPORTBSFlag
INTEGER,
fddimibPORTLCTFailCts
Counter,
fddimibPORTLerEstimate
INTEGER,
fddimibPORTlemRejectCts
Counter,
fddimibPORTlemCts
Counter,
fddimibPORTLerCutoff
INTEGER,
fddimibPORTLerAlarm
INTEGER,
fddimibPORTConnectState
INTEGER,
fddimibPORTPCMState
INTEGER,
fddimibPORTPCWithhold
INTEGER,
fddimibPORTLerFlag
INTEGER,
fddimibPORTHardwarePresent
INTEGER,
fddimibPORTAction
 INTEGER
}

fddimibPORTSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The value of the SMT index associated with this PORT."
::= { fddimibPORTEntry 1 }

fddimibPORTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "A unique value for each PORT within a given SMT, which is the same as the corresponding resource index in SMT. The value for each PORT must remain constant at least from one re-initialization of the entity’s network management system to the next re-initialization."
REFERENCE
 "ANSI { fddiPORT 29 }"
::= { fddimibPORTEntry 2 }

fddimibPORTMyType OBJECT-TYPE
SYNTAX INTEGER { a(1), b(2), s(3), m(4), none(5) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The value of the PORT’s PC_Type (refer to ANSI 9.4.1, and 9.6.3.2)."
REFERENCE
 "ANSI { fddiPORT 12 }"
::= { fddimibPORTEntry 3 }

fddimibPORTNeighborType OBJECT-TYPE
SYNTAX INTEGER { a(1), b(2), s(3), m(4), none(5) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The type of the remote PORT as determined in PCM. This variable has an initial value of none, and is only modified in PC_RCode(3)_Actions (refer to ANSI SMT 9.6.3.2)."
fddimibPORTConnectionPolicies OBJECT-TYPE
SYNTAX INTEGER (0..3)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A value representing the PORT’s connection
policies desired in the node. The value of pc-
mac-lct is a term used in the PC_MAC_LCT Flag (see
9.4.3.2). The value of pc-mac-loop is a term used
in the PC_MAC_Loop Flag.

The value is a sum. This value initially takes
the value zero, then for each PORT policy, 2
raised to a power is added to the sum. The powers
are according to the following table:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc-mac-lct</td>
<td>0</td>
</tr>
<tr>
<td>pc-mac-loop</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiPORT 14 }"
 ::= { fddimibPORTEntry 5 }

fddimibPORTMACIndicated OBJECT-TYPE
SYNTAX INTEGER {
tVal9FalseRVal9False(1),
tVal9FalseRVal9True(2),
tVal9TrueRVal9False(3),
tVal9TrueRVal9True(4)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The indications (T_Val(9), R_Val(9)) in PC-
Signalling, of the intent to place a MAC in the
output token path to a PORT (refer to ANSI SMT 9.6.3.2.)."

REFERENCE
"ANSI { fddiPORT 15 }"
 ::= { fddimibPORTEntry 6 }

fddimibPORTCurrentPath OBJECT-TYPE
SYNTAX INTEGER {
ce0(1), -- isolated
ce1(2), -- local
ce2(3), -- secondary
ce3(4), -- primary
ce4(5), -- concatenated
ce5(6) -- thru

ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the Path(s) into which this PORT is currently inserted."
REFERENCE "ANSI { fddiPORT 16 }")
 ::= { fddimibPORTEntry 7 }

fddimibPORTRequestedPaths OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (3))
ACCESS read-write
STATUS mandatory
DESCRIPTION "This variable is a list of permitted Paths where each list element defines the Port’s permitted Paths. The first octet corresponds to 'none’, the second octet to ‘tree’, and the third octet to 'peer’."
REFERENCE "ANSI { fddiPORT 17 }")
 ::= { fddimibPORTEntry 8 }

fddimibPORTMACPlacement OBJECT-TYPE
SYNTAX FddiResourceId -- INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the MAC, if any, whose transmit path exits the station via this PORT. The value shall be zero if there is no MAC associated with the PORT. Otherwise, the MACIndex of the MAC will be the value of the variable."
REFERENCE "ANSI { fddiPORT 18 }")
 ::= { fddimibPORTEntry 9 }

fddimibPORTAvailablePaths OBJECT-TYPE
SYNTAX INTEGER (0..7)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the Paths which are available to this Port. In the absence of faults, the A and B Ports will always have both the Primary and Secondary Paths available.

The value is a sum. This value initially takes the value zero, then for each type of PATH that this port has available, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>Path</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>0</td>
</tr>
<tr>
<td>Secondary</td>
<td>1</td>
</tr>
<tr>
<td>Local</td>
<td>2</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiPORT 19 }"
::= { fddimibPORTEntry 10 }

fddimibPORTPMDClass OBJECT-TYPE
SYNTAX INTEGER {
 multimode(1),
 single-mode1(2),
 single-mode2(3),
 sonet(4),
 low-cost-fiber(5),
 twisted-pair(6),
 unknown(7),
 unspecified(8)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the type of PMD entity associated with this port."
REFERENCE
"ANSI { fddiPORT 22 }"
::= { fddimibPORTEntry 11 }

fddimibPORTConnectionCapabilities OBJECT-TYPE
SYNTAX INTEGER (0..3)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value that indicates the connection capabilities of the port. The pc-mac-lct bit indicates that the station has the capability of setting the PC_MAC_LCT Flag. The pc-mac-loop bit
indicates that the station has the capability of setting the PC_MAC_Loop Flag (refer to ANSI 9.4.3.2).

The value is a sum. This value initially takes the value zero, then for each capability that this port has, 2 raised to a power is added to the sum. The powers are according to the following table:

<table>
<thead>
<tr>
<th>capability</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc-mac-lct</td>
<td>0</td>
</tr>
<tr>
<td>pc-mac-loop</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCE
"ANSI { fddiPORT 23 }": (fddimibPORTEntry 12)

fddimibPORTBSFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of the BS_Flag (refer to ANSI SMT 9.4.3.3)."
REFERENCE
"ANSI { fddiPORT 33 }": (fddimibPORTEntry 13)

fddimibPORTLCTFailCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of the consecutive times the link confidence test (LCT) has failed during connection management (refer to ANSI 9.4.1)."
REFERENCE
"ANSI { fddiPORT 42 }": (fddimibPORTEntry 14)

fddimibPORTLerEstimate OBJECT-TYPE
SYNTAX INTEGER (4..15)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A long term average link error rate. It ranges from 10**-4 to 10**-15 and is reported as the absolute value of the base 10 logarithm (refer to ANSI SMT 9.4.7.5.)."
REFERENCE

"ANSI { fddiPORT 51 }"
::= { fddimibPORTEntry 15 }

fddimibPORTlemRejectCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A link error monitoring count of the times that a
link has been rejected."
REFERENCE
"ANSI { fddiPORT 52 }"
::= { fddimibPORTEntry 16 }

fddimibPORTlemCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The aggregate link error monitor error count, set
to zero only on station initialization."
REFERENCE
"ANSI { fddiPORT 53 }"
::= { fddimibPORTEntry 17 }

fddimibPORTerCutoff OBJECT-TYPE
SYNTAX INTEGER (4..15)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The link error rate estimate at which a link
connection will be broken. It ranges from 10**-4
to 10**-15 and is reported as the absolute value
of the base 10 logarithm (default of 7)."
REFERENCE
"ANSI { fddiPORT 58 }"
::= { fddimibPORTEntry 18 }

fddimibPORTerAlarm OBJECT-TYPE
SYNTAX INTEGER (4..15)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The link error rate estimate at which a link
connection will generate an alarm. It ranges from
10**-4 to 10**-15 and is reported as the absolute
value of the base 10 logarithm of the estimate
fddimibPORTConnectState OBJECT-TYPE
SYNTAX INTEGER {
 disabled(1),
 connecting(2),
 standby(3),
 active(4)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An indication of the connect state of this PORT
and is equal to the value of Connect_State (refer
to ANSI 9.4.1)"
REFERENCE
"ANSI { fddiPORT 61 }"
::= { fddimibPORTEntry 20 }

fddimibPORTPCMState OBJECT-TYPE
SYNTAX INTEGER {
 pc0(1), -- Off
 pc1(2), -- Break
 pc2(3), -- Trace
 pc3(4), -- Connect
 pc4(5), -- Next
 pc5(6), -- Signal
 pc6(7), -- Join
 pc7(8), -- Verify
 pc8(9), -- Active
 pc9(10) -- Maint
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The state of this Port’s PCM state machine refer
to ANSI SMT 9.6.2)."
REFERENCE
"ANSI { fddiPORT 62 }"
::= { fddimibPORTEntry 21 }

fddimibPORTPCWithhold OBJECT-TYPE
SYNTAX INTEGER {
 none(1),
 m-m(2),
...
otherincompatible(3),
pathnotavailable(4)
}

ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of PC_Withhold (refer to ANSI SMT 9.4.1)."
REFERENCE
"ANSI { fddiPORT 63 }"
::= { fddimibPORTEntry 22 }

fddimibPORTLerFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The condition becomes active when the value of fddiPORTLerEstimate is less than or equal to fddiPORTLerAlarm. This will be reported with the Status Report Frames (SRF) (refer to ANSI SMT 7.2.7 and 8.3)."
REFERENCE
"ANSI { fddiPORT 64 }"
::= { fddimibPORTEntry 23 }

fddimibPORTHardwarePresent OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the presence of underlying hardware support for this Port object. If the value of this object is false(2), the reporting of the objects in this entry may be handled in an implementation-specific manner."
REFERENCE
"ANSI { fddiPORT 65 }"
::= { fddimibPORTEntry 24 }

fddimibPORTAction OBJECT-TYPE
SYNTAX INTEGER {
 other(1), -- none of the following
 maintPORT(2),
 enablePORT(3),
 disablePORT(4),
 startPORT(5),
 stopPORT(6)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Causes a Control signal to be generated with a control_action of 'Signal' and the 'variable' parameter set with the appropriate value (i.e., PC_Maint, PC_Enable, PC_Disable, PC_Start, or PC_Stop) (refer to ANSI 9.4.2)."

REFERENCE
"ANSI { fddiPORT 70 }
::= { fddimibPORTEntry 25 }

END

5. Acknowledgements

This document was produced by the IETF FDDI MIB working group:

Hossein Alaee, 3Com Corporation
Haggar Alsaleh, Bell Northern Research
William Anderson, Mitre Corporation
Alan Apt, Addison-Wesley
Mary Artibee, Silicon Graphics
Karen Auerbach, Epilogue Technologies
Doug Bagnall, Apollo/Hewlett Packard
Chet Birger, Coral Network Corporation
Pablo Brenner, Fibronics
Howard Brown, Cabletron
Jack Brown, US Army Computer Engineering Center
Eric Brunner
Jeff Case, The University of Tennessee
Tammy Chan, Fibercom
Asheem Chandna, AT&T
Cho Y. Chang, Apollo/Hewlett Packard
Chris Chiotasso, Fibronics
Paul Ciarfella, Digital Equipment Corporation
John Cook, Chipcom
Don Coolidge, Silicon Graphics
Burt Cyr, Unisys
James R. Davin, Massachusetts Institute of Technology
Nabil Damouny
Nadya El-Afandi, Network Systems Corporation
Hunaid Engineer, Cray Research
Jeff Fitzgerald, Fibercom
Richard Fox, Synoptics
Stan Froyd, ACC
Debbie Futcher, U.S. Naval Surface Warfare Center
Joseph Golio, Cray Research
Jeremy Greene, Coral
Peter Hayden, Digital Equipment Corporation
Scott Hiles, U.S. Naval Surface Warfare Center
Greg Jones, Data General
Satish Joshi, SynOptics Communications
Jayant Kadambi, AT&T Bell Labs
Joanna Karwowska, Data General
Frank Kastenholz, Interlan
Jim Kinder, Fibercom
Christopher Kolb, PSI
Cheryl Krupczak, NCR
Peter Lin, Vitalink
Then Liu
John R. LoVerso, Concurrent Computer Corporation
Ron Mackey, Distributed Systems International, Inc.
Gary Malkin, Proteon
Bruce McClure, Synernetics
Keith McCloaghrie, Hughes Lan Systems
Donna McMaster, SynOptics
John O’Hara, Massachusetts Institute of Technology
Luc Pariseau, Digital Equipment Corporation
Dave Perkins, SynOptics Communications
James E. Reeves, SynOptics Communications
Jim Reindstedler, Ungermann-Bass
Radhi Renous, Fibronics
Sal Ricci, AT&T/NCR
Anil Rijsinghani, Digital Equipment Corporation
Bob Rolla, Synernetics
Nelson Ronkin, Synernetics
Milt Roselinsky, CMC
Jon Saperia, Digital Equipment Corporation
Greg Satz, cisco Systems
Steven Senum, Network Systems Corporation
Jim Sheridan, IBM Corporation
Jeffrey Schiller, MIT
Dror Shindelman, Fibronics
Mark Sleeper, Sparta
Lou Steinberg, IBM Corporation
Larry Stefani, Digital Equipment Corporation
Mary Jane Strohl, Apollo/Hewlett Packard
Sally Tarquinio, Mitre Corporation
Kaj Tesink, Bellcore
Ian Thomas, Chipcom
Dean Throop, Data General
Bill Townsend, Xylogics
Ahmet H. Tuncay, SynOptics Communications
Mike Turico, Motorola
Chris VandenBerg, ACC
Sudhanshu Verma, Hewlett Packard
Joe Vermeulen, UNISYS
David Waiteman, BBN
Bert Williams, Synernetics
Mark Wood, Distributed Systems International, Inc.
Y. C. Yang
Denis Yaro, Sun Microsystems
Jeff Young, Cray Research

The author gratefully acknowledges the labors of Judi Talley and David Reid of SNMP Research, Inc. for their editorial assistance in the preparation of this document.

6. References

7. Security Considerations

Security issues are not discussed in this memo.

8. Authors’ Addresses

Jeffrey D. Case
The University of Tennessee
Department of Computer Science
107 Ayres Hall
Knoxville, Tennessee 37996

and

SNMP Research, Incorporated
3001 Kimberlin Heights Road
Knoxville, Tennessee 37920

Phone: (615) 974-5067 or (615) 573-1434
EMail: case@CS.UTK.EDU

Anil Rijsinghani
Digital Equipment Corporation
295 Foster Street
Littleton, MA 01460-1123

Phone: (508) 952-3520
EMail: anil@levers.enet.dec.com