DNS Server MIB Extensions

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1. Introduction .. 1
2. The SNMPv2 Network Management Framework 2
 2.1 Object Definitions 2
3. Overview .. 2
 3.1 Resolvers ... 3
 3.2 Name Servers .. 3
 3.3 Selected Objects 4
 3.4 Textual Conventions 4
4. Definitions ... 5
5. Acknowledgements .. 28
6. References ... 28
7. Security Considerations 29
8. Authors’ Addresses 30

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes a set of extensions which instrument DNS name server functions. This memo was produced by the DNS working group.

With the adoption of the Internet-standard Network Management Framework \[4,5,6,7\], and with a large number of vendor implementations of these standards in commercially available products, it became possible to provide a higher level of effective network management in TCP/IP-based internets than was previously available. With the growth in the use of these standards, it has become possible to consider the management of other elements of the infrastructure beyond the basic TCP/IP protocols. A key element of
the TCP/IP infrastructure is the DNS.

Up to this point there has been no mechanism to integrate the management of the DNS with SNMP-based managers. This memo provides the mechanisms by which IP-based management stations can effectively manage DNS name server software in an integrated fashion.

We have defined DNS MIB objects to be used in conjunction with the Internet MIB to allow access to and control of DNS name server software via SNMP by the Internet community.

2. The SNMPv2 Network Management Framework

The SNMPv2 Network Management Framework consists of four major components. They are:

- RFC 1442 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management.
- STD 17, RFC 1213 defines MIB-II, the core set of managed objects for the Internet suite of protocols.
- RFC 1445 which defines the administrative and other architectural aspects of the framework.
- RFC 1448 which defines the protocol used for network access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

2.1. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

3. Overview

In theory, the DNS world is pretty simple. There are two kinds of entities: resolvers and name servers. Resolvers ask questions. Name servers answer them. The real world, however, is not so simple.
Implementors have made widely differing choices about how to divide DNS functions between resolvers and servers. They have also constructed various sorts of exotic hybrids. The most difficult task in defining this MIB was to accommodate this wide range of entities without having to come up with a separate MIB for each.

We divided up the various DNS functions into two, non-overlapping classes, called "resolver functions" and "name server functions." A DNS entity that performs what we define as resolver functions contains a resolver, and therefore must implement the MIB groups required of all resolvers which are defined in a separate MIB Module. A DNS entity which implements name server functions is considered to be a name server, and must implement the MIB groups required for name servers in this module. If the same piece of software performs both resolver and server functions, we imagine that it contains both a resolver and a server and would thus implement both the DNS Server and DNS Resolver MIBs.

3.1. Resolvers

In our model, a resolver is a program (or piece thereof) which obtains resource records from servers. Normally it does so at the behest of an application, but may also do so as part of its own operation. A resolver sends DNS protocol queries and receives DNS protocol replies. A resolver neither receives queries nor sends replies. A full service resolver is one that knows how to resolve queries: it obtains the needed resource records by contacting a server authoritative for the records desired. A stub resolver does not know how to resolve queries: it sends all queries to a local name server, setting the "recursion desired" flag to indicate that it hopes that the name server will be willing to resolve the query. A resolver may (optionally) have a cache for remembering previously acquired resource records. It may also have a negative cache for remembering names or data that have been determined not to exist.

3.2. Name Servers

A name server is a program (or piece thereof) that provides resource records to resolvers. All references in this document to "a name server" imply "the name server’s role"; in some cases the name server’s role and the resolver’s role might be combined into a single program. A name server receives DNS protocol queries and sends DNS protocol replies. A name server neither sends queries nor receives replies. As a consequence, name servers do not have caches. Normally, a name server would expect to receive only those queries to which it could respond with authoritative information. However, if a name server receives a query that it cannot respond to with purely authoritative information, it may choose to try to obtain the
necessary additional information from a resolver which may or may not be a separate process.

3.3. Selected Objects

Many of the objects included in this memo have been created from information contained in the DNS specifications [1,2], as amended and clarified by subsequent host requirements documents [3]. Other objects have been created based on experience with existing DNS management tools, expected operational needs, the statistics generated by existing DNS implementations, and the configuration files used by existing DNS implementations. These objects have been ordered into groups as follows:

- Server Configuration Group
- Server Counter Group
- Server Optional Counter Group
- Server Zone Group

This information has been converted into a standard form using the SNMPv2 SMI defined in [9]. For the most part, the descriptions are influenced by the DNS related RFCs noted above. For example, the descriptions for counters used for the various types of queries of DNS records are influenced by the definitions used for the various record types found in [2].

3.4. Textual Conventions

Several conceptual data types have been introduced as a textual conventions in this DNS MIB document. These additions will facilitate the common understanding of information used by the DNS. No changes to the SMI or the SNMP are necessary to support these conventions.

Readers familiar with MIBs designed to manage entities in the lower layers of the Internet protocol suite may be surprised at the number of non-enumerated integers used in this MIB to represent values such as DNS RR class and type numbers. The reason for this choice is simple: the DNS itself is designed as an extensible protocol, allowing new classes and types of resource records to be added to the protocol without recoding the core DNS software. Using non-enumerated integers to represent these data types in this MIB allows the MIB to accommodate these changes as well.
4. Definitions

DNS-SERVER-MIB DEFINITIONS ::= BEGIN

IMPORTS
mib-2
FROM RFC-1213
MODULE-IDENTITY, OBJECT-TYPE, OBJECT-IDENTITY,
IpAddress, Counter32, Gauge32
FROM SNMPv2-SMI
TEXTUAL-CONVENTION, RowStatus, DisplayString, TruthValue
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF;

dns OBJECT-IDENTITY
STATUS current
DESCRIPTION
"The OID assigned to DNS MIB work by the IANA."
::= { mib-2 32 }

dnsServMIB MODULE-IDENTITY
LAST-UPDATED "9401282251Z"
ORGANIZATION "IETF DNS Working Group"
CONTACT-INFO
"Rob Austein
Postal: Epilogue Technology Corporation
268 Main Street, Suite 283
North Reading, MA 10864
US
Tel: +1 617 245 0804
Fax: +1 617 245 8122
E-Mail: sra@epilogue.com

Jon Saperia
Postal: Digital Equipment Corporation
110 Spit Brook Road
ZKO1-3/H18
Nashua, NH 03062-2698
US
Tel: +1 603 881 0480
Fax: +1 603 881 0120
Email: saperia@zko.dec.com"
DESCRIPTION
"The MIB module for entities implementing the server side
of the Domain Name System (DNS) protocol."
::= { dns 1 }
dnsServMIBObjects OBJECT IDENTIFIER ::= { dnsServMIBObjects 1 }

-- (Old-style) groups in the DNS server MIB.

dnsServConfig OBJECT IDENTIFIER ::= { dnsServMIBObjects 1 }
dnsServCounter OBJECT IDENTIFIER ::= { dnsServMIBObjects 2 }
dnsServOptCounter OBJECT IDENTIFIER ::= { dnsServMIBObjects 3 }
dnsServZone OBJECT IDENTIFIER ::= { dnsServMIBObjects 4 }

-- Textual conventions

DnsName ::= TEXTUAL-CONVENTION
-- A DISPLAY-HINT would be nice, but difficult to express.
STATUS current
DESCRIPTION
"A DNS name is a sequence of labels. When DNS names are
displayed, the boundaries between labels are typically
indicated by dots (e.g. ‘Acme’ and ‘COM’ are labels in
the name ‘Acme.COM’). In the DNS protocol, however, no
such separators are needed because each label is encoded
as a length octet followed by the indicated number of
octets of label. For example, ‘Acme.COM’ is encoded as
‘M’, 0 } (the final 0 is the length of the name of the
root domain, which appears implicitly at the end of any
DNS name). This MIB uses the same encoding as the DNS
protocol.

A DnsName must always be a fully qualified name. It is
an error to encode a relative domain name as a DnsName
without first making it a fully qualified name."
REFERENCE
"RFC-1034 section 3.1."
SYNTAX OCTET STRING (SIZE (0..255))

DnsNameAsIndex ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This textual convention is like a DnsName, but is used
as an index component in tables. Alphabetic characters
in names of this type are restricted to uppercase: the
characters ‘a’ through ‘z’ are mapped to the characters
‘A’ through ‘Z’. This restriction is intended to make
the lexical ordering imposed by SNMP useful when applied
to DNS names.

Note that it is theoretically possible for a valid DNS
name to exceed the allowed length of an SNMP object identifier, and thus be impossible to represent in tables in this MIB that are indexed by DNS name. Sampling of DNS names in current use on the Internet suggests that this limit does not pose a serious problem in practice."

REFERENCE
"RFC-1034 section 3.1, RFC-1448 section 4.1."

SYNTAX DnsName

DnsClass ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "2d"
 STATUS current
 DESCRIPTION
 "This data type is used to represent the class values which appear in Resource Records in the DNS. A 16-bit unsigned integer is used to allow room for new classes of records to be defined. Existing standard classes are listed in the DNS specifications."

REFERENCE
"RFC-1035 section 3.2.4."

SYNTAX INTEGER (0..65535)

DnsType ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "2d"
 STATUS current
 DESCRIPTION
 "This data type is used to represent the type values which appear in Resource Records in the DNS. A 16-bit unsigned integer is used to allow room for new record types to be defined. Existing standard types are listed in the DNS specifications."

REFERENCE
"RFC-1035 section 3.2.2."

SYNTAX INTEGER (0..65535)

DnsQClass ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "2d"
 STATUS current
 DESCRIPTION
 "This data type is used to represent the QClass values which appear in Resource Records in the DNS. A 16-bit unsigned integer is used to allow room for new QClass records to be defined. Existing standard QClasses are listed in the DNS specification."

REFERENCE
"RFC-1035 section 3.2.5."

SYNTAX INTEGER (0..65535)
DnsQType ::= TEXTUAL-CONVENTION
DISPLAY-HINT "2d"
STATUS current
DESCRIPTION
"This data type is used to represent the QType values which appear in Resource Records in the DNS. A 16-bit unsigned integer is used to allow room for new QType records to be defined. Existing standard QTypes are listed in the DNS specification."
REFERENCE
"RFC-1035 section 3.2.3."
SYNTAX INTEGER (0..65535)

DnsTime ::= TEXTUAL-CONVENTION
DISPLAY-HINT "4d"
STATUS current
DESCRIPTION
"DnsTime values are 32-bit unsigned integers which measure time in seconds."
REFERENCE
"RFC-1035."
SYNTAX Gauge32

DnsOpCode ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This textual convention is used to represent the DNS OPCODE values used in the header section of DNS messages. Existing standard OPCODE values are listed in the DNS specifications."
REFERENCE
"RFC-1035 section 4.1.1."
SYNTAX INTEGER (0..15)

DnsRespCode ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type is used to represent the DNS RCODE value in DNS response messages. Existing standard RCODE values are listed in the DNS specifications."
REFERENCE
"RFC-1035 section 4.1.1."
SYNTAX INTEGER (0..15)
-- Server Configuration Group

dnsServConfigImplementIdent OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The implementation identification string for the DNS server software in use on the system, for example; 'FNS-2.1'"
 ::= { dnsServConfig 1 }

dnsServConfigRecurs OBJECT-TYPE
SYNTAX INTEGER { available(1),
 restricted(2),
 unavailable(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This represents the recursion services offered by this name server. The values that can be read or written are:

available(1) - performs recursion on requests from clients.

restricted(2) - recursion is performed on requests only from certain clients, for example; clients on an access control list.

unavailable(3) - recursion is not available."
 ::= { dnsServConfig 2 }

dnsServConfigUpTime OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the server has a persistent state (e.g., a process), this value will be the time elapsed since it started. For software without persistent state, this value will be zero."
 ::= { dnsServConfig 3 }

dnsServConfigResetTime OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the server has a persistent state (e.g., a process) and supports a 'reset' operation (e.g., can be told to re-read configuration files), this value will be the time elapsed since the last time the name server was 'reset.' For software that does not have persistence or does not support a 'reset' operation, this value will be zero."

 ::= { dnsServConfig 4 }

dnsServConfigReset OBJECT-TYPE
SYNTAX INTEGER { other(1), reset(2), initializing(3), running(4) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Status/action object to reinitialize any persistant name server state. When set to reset(2), any persistant name server state (such as a process) is reinitialized as if the name server had just been started. This value will never be returned by a read operation. When read, one of the following values will be returned:
other(1) - server in some unknown state;
initializing(3) - server (re)initializing;
running(4) - server currently running."

 ::= { dnsServConfig 5 }

-- Server Counter Group

dnsServCounterAuthAns OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of queries which were authoritatively answered."

 ::= { dnsServCounter 2 }

dnsServCounterAuthNoNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of queries for which 'authoritative no such name' responses were made."

 ::= { dnsServCounter 3 }
dnsServCounterAuthNoDataResps OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of queries for which 'authoritative no such data'
 (empty answer) responses were made."
 ::= { dnsServCounter 4 }

dnsServCounterNonAuthDatas OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of queries which were non-authoritatively
 answered (cached data)."
 ::= { dnsServCounter 5 }

dnsServCounterNonAuthNoDatas OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of queries which were non-authoritatively
 answered with no data (empty answer)."
 ::= { dnsServCounter 6 }

dnsServCounterReferrals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests that were referred to other servers."
 ::= { dnsServCounter 7 }

dnsServCounterErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests the server has processed that were
 answered with errors (RCODE values other than 0 and 3)."
REFERENCE "RFC-1035 section 4.1.1."
 ::= { dnsServCounter 8 }

dnsServCounterRelNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests received by the server for names that
are only 1 label long (text form - no internal dots)."
::= { dnsServCounter 9 }
dnsServCounterReqRefusals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of DNS requests refused by the server."
::= { dnsServCounter 10 }
dnsServCounterReqUnparses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests received which were unparseable."
::= { dnsServCounter 11 }
dnsServCounterOtherErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests which were aborted for other (local)
server errors."
::= { dnsServCounter 12 }
-- DNS Server Counter Table
dnsServCounterTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsServCounterEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Counter information broken down by DNS class and type."
::= { dnsServCounter 13 }
dnsServCounterEntry OBJECT-TYPE
SYNTAX DnsServCounterEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains count information for each DNS class
and type value known to the server. The index allows management software to to create indices to the table to get the specific information desired, e.g., number of queries over UDP for records with type value ‘A’ which came to this server. In order to prevent an uncontrolled expansion of rows in the table; if dnsServCounterRequests is 0 and dnsServCounterResponses is 0, then the row does not exist and 'no such' is returned when the agent is queried for such instances."

INDEX
{ dnsServCounterOpCode,
 dnsServCounterQClass,
 dnsServCounterQType,
 dnsServCounterTransport }
::= { dnsServCounterTable 1 }

DnsServCounterEntry ::= SEQUENCE {
 dnsServCounterOpCode
 DnsOpCode,
 dnsServCounterQClass
 DnsClass,
 dnsServCounterQType
 DnsType,
 dnsServCounterTransport
 INTEGER,
 dnsServCounterRequests
 Counter32,
 dnsServCounterResponses
 Counter32
}

dnsServCounterOpCode OBJECT-TYPE
SYNTAX DnsOpCode
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The DNS OPCODE being counted in this row of the table."
::= { dnsServCounterEntry 1 }

dnsServCounterQClass OBJECT-TYPE
SYNTAX DnsClass
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The class of record being counted in this row of the table."
::= { dnsServCounterEntry 2 }
dnsServCounterQType OBJECT-TYPE
SYNTAX DnsType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The type of record which is being counted in this row in
the table."
::= { dnsServCounterEntry 3 }

dnsServCounterTransport OBJECT-TYPE
SYNTAX INTEGER { udp(1), tcp(2), other(3) }
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A value of udp(1) indicates that the queries reported on
this row were sent using UDP.

A value of tcp(2) indicates that the queries reported on
this row were sent using TCP.

A value of other(3) indicates that the queries reported
on this row were sent using a transport that was neither
TCP nor UDP."
::= { dnsServCounterEntry 4 }

dnsServCounterRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests (queries) that have been recorded in
this row of the table."
::= { dnsServCounterEntry 5 }

dnsServCounterResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of responses made by the server since
initialization for the kind of query identified on this
row of the table."
::= { dnsServCounterEntry 6 }
-- Server Optional Counter Group

-- The Server Optional Counter Group is intended for those systems
-- which make distinctions between the different sources of the DNS
-- queries as defined below.
--
-- Objects in this group are implemented on servers which distinguish
-- between queries which originate from the same host as the server,
-- queries from one of an arbitrary group of hosts that are on an
-- access list defined by the server, and queries from hosts that do
-- not fit either of these descriptions.
--
-- The objects found in the Server Counter group are totals. Thus if
-- one wanted to identify, for example, the number of queries from
-- 'remote' hosts which have been given authoritative answers, one
-- would subtract the current values of ServOptCounterFriendsAuthAns
-- and ServOptCounterSelfAuthAns from servCounterAuthAns.
--
-- The purpose of these distinctions is to allow for implementations
-- to group queries and responses on this basis. One way in which
-- servers may make these distinctions is by looking at the source IP
-- address of the DNS query. If the source of the query is 'your
-- own' then the query should be counted as 'yourself' (local host).
-- If the source of the query matches an 'access list,' the query
-- came from a friend. What constitutes an 'access list' is
-- implementation dependent and could be as simple as a rule that all
-- hosts on the same IP network as the DNS server are classed
-- 'friends.'
--
-- In order to avoid double counting, the following rules apply:
--
-- 1. No host is in more than one of the three groups defined above.
-- 2. All queries from the local host are always counted in the
-- 'yourself' group regardless of what the access list, if any,
-- says.
-- 3. The access list should not define 'your friends' in such a way
-- that it includes all hosts. That is, not everybody is your
-- 'friend.'

dnsServOptCounterSelfAuthAns OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests the server has processed which
originated from a resolver on the same host for which
there has been an authoritative answer."
::= { dnsServOptCounter 1 }

dnsServOptCounterSelfAuthNoNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests the server has processed which
originated from a resolver on the same host for which
there has been an authoritative no such name answer
given."
::= { dnsServOptCounter 2 }

dnsServOptCounterSelfAuthNoDataResps OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests the server has processed which
originated from a resolver on the same host for which
there has been an authoritative no such data answer
(empty answer) made."
::= { dnsServOptCounter 3 }

dnsServOptCounterSelfNonAuthDatas OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests the server has processed which
originated from a resolver on the same host for which a
non-authoritative answer (cached data) was made."
::= { dnsServOptCounter 4 }

dnsServOptCounterSelfNonAuthNoDatas OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests the server has processed which
originated from a resolver on the same host for which a
'non-authoritative, no such data' response was made
(empty answer)."
::= { dnsServOptCounter 5 }

dnsServOptCounterSelfReferrals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of queries the server has processed which originated from a resolver on the same host and were referred to other servers."
::= { dnsServOptCounter 6 }

dnsServOptCounterSelfErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests the server has processed which originated from a resolver on the same host which have been answered with errors (RCODEs other than 0 and 3)."
REFERENCE
"RFC-1035 section 4.1.1."
::= { dnsServOptCounter 7 }

dnsServOptCounterSelfRelNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests received for names that are only 1 label long (text form - no internal dots) the server has processed which originated from a resolver on the same host."
::= { dnsServOptCounter 8 }

dnsServOptCounterSelfReqRefusals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of DNS requests refused by the server which originated from a resolver on the same host."
::= { dnsServOptCounter 9 }

dnsServOptCounterSelfReqUnparses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests received which were unparseable and which originated from a resolver on the same host."
::= { dnsServOptCounter 10 }
dnsServOptCounterSelfOtherErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of requests which were aborted for other (local) server errors and which originated on the same host."
 ::= { dnsServOptCounter 11 }

dnsServOptCounterFriendsAuthAns OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of queries originating from friends which were authoritatively answered. The definition of friends is a locally defined matter."
 ::= { dnsServOptCounter 12 }

dnsServOptCounterFriendsAuthNoNames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of queries originating from friends, for which authoritative 'no such name' responses were made. The definition of friends is a locally defined matter."
 ::= { dnsServOptCounter 13 }

dnsServOptCounterFriendsAuthNoDataResps OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of queries originating from friends for which authoritative no such data (empty answer) responses were made. The definition of friends is a locally defined matter."
 ::= { dnsServOptCounter 14 }

dnsServOptCounterFriendsNonAuthDatas OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of queries originating from friends which were non-authoritatively answered (cached data). The definition of friends is a locally defined matter."
::= { dnsServOptCounter 15 }

dnsServOptCounterFriendsNonAuthNoDatas OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of queries originating from friends which were
non-authoritatively answered with no such data (empty
answer)."
::= { dnsServOptCounter 16 }

dnsServOptCounterFriendsReferrals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests which originated from friends that
were referred to other servers. The definition of
friends is a locally defined matter."
::= { dnsServOptCounter 17 }

dnsServOptCounterFriendsErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests the server has processed which
originated from friends and were answered with errors
(RCODE values other than 0 and 3). The definition of
friends is a locally defined matter."
REFERENCE
"RFC-1035 section 4.1.1."
::= { dnsServOptCounter 18 }

dnsServOptCounterFriendsRelNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests received for names from friends that
are only 1 label long (text form - no internal dots) the
server has processed."
::= { dnsServOptCounter 19 }

dnsServOptCounterFriendsReqRefusals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of DNS requests refused by the server which were
received from ‘friends’.”
::= { dnsServOptCounter 20 }

dnsServOptCounterFriendsReqUnparses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests received which were unparseable and
which originated from ‘friends’.”
::= { dnsServOptCounter 21 }

dnsServOptCounterFriendsOtherErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of requests which were aborted for other (local)
server errors and which originated from ‘friends’.”
::= { dnsServOptCounter 22 }

-- Server Zone Group
-- DNS Management Zone Configuration Table
-- This table contains zone configuration information.
dnsServZoneTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsServZoneEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Table of zones for which this name server provides
information. Each of the zones may be loaded from stable
storage via an implementation-specific mechanism or may
be obtained from another name server via a zone transfer.
If name server doesn’t load any zones, this table is
empty.”
::= { dnsServZone 1 }

dnsServZoneEntry OBJECT-TYPE
SYNTAX DnsServZoneEntry
MAX-ACCESS not-accessible
"An entry in the name server zone table. New rows may be added either via SNMP or by the name server itself."

DnsServZoneEntry ::= SEQUENCE {
 dnsServZoneName DnsNameAsIndex,
 dnsServZoneClass DnsClass,
 dnsServZoneLastReloadSuccess DnsTime,
 dnsServZoneLastReloadAttempt DnsTime,
 dnsServZoneLastSourceAttempt IpAddress,
 dnsServZoneStatus RowStatus,
 dnsServZoneSerial Counter32,
 dnsServZoneCurrent TruthValue,
 dnsServZoneLastSourceSuccess IpAddress
}

dnsServZoneName OBJECT-TYPE
SYNTAX DnsNameAsIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "DNS name of the zone described by this row of the table.
This is the owner name of the SOA RR that defines the top of the zone. This is name is in uppercase:
characters ‘a’ through ‘z’ are mapped to ‘A’ through ‘Z’
in order to make the lexical ordering useful."
::= { dnsServZoneEntry 1 }

Austein & Saperia

DNS class of the RRs in this zone."
::= { dnsServZoneEntry 2 }

dnsServZoneLastReloadSuccess OBJECT-TYPE
 SYNTAX DnsTime
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Elapsed time in seconds since last successful reload of
 this zone."
 ::= { dnsServZoneEntry 3 }

dnsServZoneLastReloadAttempt OBJECT-TYPE
 SYNTAX DnsTime
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Elapsed time in seconds since last attempted reload of
 this zone."
 ::= { dnsServZoneEntry 4 }

dnsServZoneLastSourceAttempt OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "IP address of host from which most recent zone transfer
 of this zone was attempted. This value should match the
 value of dnsServZoneSourceSuccess if the attempt was
 successful. If zone transfer has not been attempted
 within the memory of this name server, this value should
 be 0.0.0.0."
 ::= { dnsServZoneEntry 5 }

dnsServZoneStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of the information represented in this row of
 the table."
 ::= { dnsServZoneEntry 6 }

dnsServZoneSerial OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Zone serial number (from the SOA RR) of the zone
represented by this row of the table. If the zone has not been successfully loaded within the memory of this name server, the value of this variable is zero.

 ::= { dnsServZoneEntry 7 }

dnsServZoneCurrent OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Whether the server's copy of the zone represented by this row of the table is currently valid. If the zone has never been successfully loaded or has expired since it was last successfully loaded, this variable will have the value false(2), otherwise this variable will have the value true(1)."
 ::= { dnsServZoneEntry 8 }

dnsServZoneLastSourceSuccess OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"IP address of host which was the source of the most recent successful zone transfer for this zone. If unknown (e.g., zone has never been successfully transferred) or irrelevant (e.g., zone was loaded from stable storage), this value should be 0.0.0.0."
 ::= { dnsServZoneEntry 9 }

-- DNS Zone Source Table

dnsServZoneSrcTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsServZoneSrcEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table is a list of IP addresses from which the server will attempt to load zone information using DNS zone transfer operations. A reload may occur due to SNMP operations that create a row in dnsServZoneTable or a SET to object dnsServZoneReload. This table is only used when the zone is loaded via zone transfer."
 ::= { dnsServZone 2 }

dnsServZoneSrcEntry OBJECT-TYPE
SYNTAX DnsServZoneSrcEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the name server zone source table."
INDEX { dnsServZoneSrcName,
 dnsServZoneSrcClass,
 dnsServZoneSrcAddr }
::= { dnsServZoneSrcTable 1 }

DnsServZoneSrcEntry ::= SEQUENCE {
 dnsServZoneSrcName DnsNameAsIndex,
 dnsServZoneSrcClass DnsClass,
 dnsServZoneSrcAddr IpAddress,
 dnsServZoneSrcStatus RowStatus
}

dnsServZoneSrcName OBJECT-TYPE
SYNTAX DnsNameAsIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"DNS name of the zone to which this entry applies."
::= { dnsServZoneSrcEntry 1 }

dnsServZoneSrcClass OBJECT-TYPE
SYNTAX DnsClass
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"DNS class of zone to which this entry applies."
::= { dnsServZoneSrcEntry 2 }

dnsServZoneSrcAddr OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"IP address of name server host from which this zone
might be obtainable."
::= { dnsServZoneSrcEntry 3 }

dnsServZoneSrcStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of the information represented in this row of
the table."
 ::= { dnsServZoneSrcEntry 4 }

-- SNMPv2 groups.
dnsServMIBGroups OBJECT IDENTIFIER ::= { dnsServMIB 2 }
dnsServConfigGroup OBJECT-GROUP
 OBJECTS { dnsServConfigImplementIdent,
 dnsServConfigRecurs,
 dnsServConfigUpTime,
 dnsServConfigResetTime,
 dnsServConfigReset }
 STATUS current
DESCRIPTION
"A collection of objects providing basic configuration
control of a DNS name server."
 ::= { dnsServMIBGroups 1 }
dnsServCounterGroup OBJECT-GROUP
 OBJECTS { dnsServCounterAuthAns,
 dnsServCounterAuthNoNames,
 dnsServCounterAuthNoDataResps,
 dnsServCounterNonAuthDatas,
 dnsServCounterNonAuthNoDatas,
 dnsServCounterReferrals,
 dnsServCounterErrors,
 dnsServCounterRelNames,
 dnsServCounterReqRefusals,
 dnsServCounterReqUnparses,
 dnsServCounterOtherErrors,
 dnsServCounterOpCode,
 dnsServCounterQClass,
 dnsServCounterQType,
 dnsServCounterTransport,
 dnsServCounterRequests,
 dnsServCounterResponses }
 STATUS current
DESCRIPTION
"A collection of objects providing basic instrumentation
of a DNS name server."
 ::= { dnsServMIBGroups 2 }
dnsServOptCounterGroup OBJECT-GROUP
OBJECTS { dnsServOptCounterSelfAuthAns,
 dnsServOptCounterSelfAuthNoNames,
 dnsServOptCounterSelfAuthNoDataResps,
 dnsServOptCounterSelfNonAuthDatas,
 dnsServOptCounterSelfNonAuthNoDatas,
 dnsServOptCounterSelfReferrals,
 dnsServOptCounterSelfErrors,
 dnsServOptCounterSelfRelNames,
 dnsServOptCounterSelfReqRefusals,
 dnsServOptCounterSelfReqUnparses,
 dnsServOptCounterSelfOtherErrors,
 dnsServOptCounterFriendsAuthAns,
 dnsServOptCounterFriendsAuthNoNames,
 dnsServOptCounterFriendsAuthNoDataResps,
 dnsServOptCounterFriendsNonAuthDatas,
 dnsServOptCounterFriendsNonAuthNoDatas,
 dnsServOptCounterFriendsReferrals,
 dnsServOptCounterFriendsErrors,
 dnsServOptCounterFriendsRelNames,
 dnsServOptCounterFriendsReqRefusals,
 dnsServOptCounterFriendsReqUnparses,
 dnsServOptCounterFriendsOtherErrors }

STATUS current
DESCRIPTION "A collection of objects providing extended
 instrumentation of a DNS name server."
 ::= { dnsServMIBGroups 3 }

dnsServZoneGroup OBJECT-GROUP
OBJECTS { dnsServZoneName,
 dnsServZoneClass,
 dnsServZoneLastReloadSuccess,
 dnsServZoneLastReloadAttempt,
 dnsServZoneLastSourceAttempt,
 dnsServZoneLastSourceSuccess,
 dnsServZoneStatus,
 dnsServZoneSerial,
 dnsServZoneCurrent,
 dnsServZoneSrcName,
 dnsServZoneSrcClass,
 dnsServZoneSrcAddr,
 dnsServZoneSrcStatus }

STATUS current
DESCRIPTION "A collection of objects providing configuration control
 of a DNS name server which loads authoritative zones."
 ::= { dnsServMIBGroups 4 }
-- Compliances.

dnsServMIBCompliances OBJECT IDENTIFIER ::= { dnsServMIB 3 }

dnsServMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for agents implementing the DNS
 name server MIB extensions."
 MODULE -- This MIB module
 MANDATORY-GROUPS { dnsServConfigGroup, dnsServCounterGroup }
 GROUP dnsServOptCounterGroup
 DESCRIPTION "The server optional counter group is unconditionally
 optional."
 GROUP dnsServZoneGroup
 DESCRIPTION "The server zone group is mandatory for any name server
 that acts as an authoritative server for any DNS zone."
 OBJECT dnsServConfigRecurs
 MIN-ACCESS read-only
 DESCRIPTION "This object need not be writable."
 OBJECT dnsServConfigReset
 MIN-ACCESS read-only
 DESCRIPTION "This object need not be writable."
 ::= { dnsServMIBCompliances 1 }

END
5. Acknowledgements

This document is the result of work undertaken by the DNS working group. The authors would particularly like to thank the following people for their contributions to this document: Philip Almquist, Frank Kastenholz (FTP Software), Joe Peck (DEC), Dave Perkins (SynOptics), Win Treese (DEC), and Mimi Zohar (IBM).

6. References

Security issues are not discussed in this memo.
8. Authors' Addresses

Rob Austein
Epilogue Technology Corporation
268 Main Street, Suite 283
North Reading, MA 01864
USA

Phone: +1-617-245-0804
Fax: +1-617-245-8122
EMail: sra@epilogue.com

Jon Saperia
Digital Equipment Corporation
110 Spit Brook Road
ZK01-3/H18
Nashua, NH 03062-2698
USA

Phone: +1-603-881-0480
Fax: +1-603-881-0120
EMail: saperia@zko.dec.com