DNS Resolver MIB Extensions

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1. Introduction .. 1
2. The SNMPv2 Network Management Framework 2
2.1 Object Definitions .. 2
3. Overview .. 2
3.1 Resolvers .. 3
3.2 Name Servers ... 3
3.3 Selected Objects .. 4
3.4 Textual Conventions 4
4. Definitions ... 5
5. Acknowledgements ... 30
6. References ... 30
7. Security Considerations 32
8. Authors’ Addresses .. 32

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes a set of extensions which instrument DNS resolver functions. This memo was produced by the DNS working group.

With the adoption of the Internet-standard Network Management Framework [4,5,6,7], and with a large number of vendor implementations of these standards in commercially available products, it became possible to provide a higher level of effective network management in TCP/IP-based internets than was previously available. With the growth in the use of these standards, it has become possible to consider the management of other elements of the infrastructure beyond the basic TCP/IP protocols. A key element of
the TCP/IP infrastructure is the DNS.

Up to this point there has been no mechanism to integrate the management of the DNS with SNMP-based managers. This memo provides the mechanisms by which IP-based management stations can effectively manage DNS resolver software in an integrated fashion.

We have defined DNS MIB objects to be used in conjunction with the Internet MIB to allow access to and control of DNS resolver software via SNMP by the Internet community.

2. The SNMPv2 Network Management Framework

The SNMPv2 Network Management Framework consists of four major components. They are:

- RFC 1442 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management.
- STD 17, RFC 1213 defines MIB-II, the core set of managed objects for the Internet suite of protocols.
- RFC 1445 which defines the administrative and other architectural aspects of the framework.
- RFC 1448 which defines the protocol used for network access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

2.1. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

3. Overview

In theory, the DNS world is pretty simple. There are two kinds of entities: resolvers and name servers. Resolvers ask questions. Name servers answer them. The real world, however, is not so simple.
Implementors have made widely differing choices about how to divide DNS functions between resolvers and servers. They have also constructed various sorts of exotic hybrids. The most difficult task in defining this MIB was to accommodate this wide range of entities without having to come up with a separate MIB for each.

We divided up the various DNS functions into two, non-overlapping classes, called "resolver functions" and "name server functions." A DNS entity that performs what we define as resolver functions contains a resolver, and therefore must implement the MIB groups required of all resolvers which are defined in this module. Some resolvers also implement "optional" functions such as a cache, in which case they must also implement the cache group contained in this MIB. A DNS entity which implements name server functions is considered to be a name server, and must implement the MIB groups required for name servers which are defined in a separate module. If the same piece of software performs both resolver and server functions, we imagine that it contains both a resolver and a server and would thus implement both the DNS Server and DNS Resolver MIBs.

3.1. Resolvers

In our model, a resolver is a program (or piece thereof) which obtains resource records from servers. Normally it does so at the behest of an application, but may also do so as part of its own operation. A resolver sends DNS protocol queries and receives DNS protocol replies. A resolver neither receives queries nor sends replies. A full service resolver is one that knows how to resolve queries: it obtains the needed resource records by contacting a server authoritative for the records desired. A stub resolver does not know how to resolve queries: it sends all queries to a local name server, setting the "recursion desired" flag to indicate that it hopes that the name server will be willing to resolve the query. A resolver may (optionally) have a cache for remembering previously acquired resource records. It may also have a negative cache for remembering names or data that have been determined not to exist.

3.2. Name Servers

A name server is a program (or piece thereof) that provides resource records to resolvers. All references in this document to "a name server" imply "the name server’s role"; in some cases the name server’s role and the resolver’s role might be combined into a single program. A name server receives DNS protocol queries and sends DNS protocol replies. A name server neither sends queries nor receives replies. As a consequence, name servers do not have caches. Normally, a name server would expect to receive only those queries to which it could respond with authoritative information. However, if a
name server receives a query that it cannot respond to with purely authoritative information, it may choose to try to obtain the necessary additional information from a resolver which may or may not be a separate process.

3.3. Selected Objects

Many of the objects included in this memo have been created from information contained in the DNS specifications [1,2], as amended and clarified by subsequent host requirements documents [3]. Other objects have been created based on experience with existing DNS management tools, expected operational needs, the statistics generated by existing DNS implementations, and the configuration files used by existing DNS implementations. These objects have been ordered into groups as follows:

- Resolver Configuration Group
- Resolver Counter Group
- Resolver Lame Delegation Group
- Resolver Cache Group
- Resolver Negative Cache Group
- Resolver Optional Counter Group

This information has been converted into a standard form using the SNMPv2 SMI defined in [9]. For the most part, the descriptions are influenced by the DNS related RFCs noted above. For example, the descriptions for counters used for the various types of queries of DNS records are influenced by the definitions used for the various record types found in [2].

3.4. Textual Conventions

Several conceptual data types have been introduced as a textual conventions in the DNS Server MIB document and have been imported into this MIB module. These additions will facilitate the common understanding of information used by the DNS. No changes to the SMI or the SNMP are necessary to support these conventions.

Readers familiar with MIBs designed to manage entities in the lower layers of the Internet protocol suite may be surprised at the number of non-enumerated integers used in this MIB to represent values such as DNS RR class and type numbers. The reason for this choice is simple: the DNS itself is designed as an extensible protocol,
allowing new classes and types of resource records to be added to the protocol without recoding the core DNS software. Using non-enumerated integers to represent these data types in this MIB allows the MIB to accommodate these changes as well.

4. Definitions

DNS-RESOLVER-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, IpAddress, Counter32, Integer32
 FROM SNMPv2-SMI
 TEXTUAL-CONVENTION, RowStatus, DisplayString
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 dns, DnsName, DnsNameAsIndex, DnsClass, DnsType, DnsQClass,
 DnsQType, DnsTime, DnsOpCode, DnsRespCode
 FROM DNS-SERVER-MIB;

-- DNS Resolver MIB

dnsResMIB MODULE-IDENTITY
 LAST-UPDATED "9401282250Z"
 ORGANIZATION "IETF DNS Working Group"
 CONTACT-INFO
 " Rob Austein
 Postal: Epilogue Technology Corporation
 268 Main Street, Suite 283
 North Reading, MA 10864
 US
 Tel: +1 617 245 0804
 Fax: +1 617 245 8122
 E-Mail: sra@epilogue.com

 Jon Saperia
 Postal: Digital Equipment Corporation
 110 Spit Brook Road
 ZKO1-3/H18
 Nashua, NH 03062-2698
 US
 Tel: +1 603 881 0480
 Fax: +1 603 881 0120
 E-Mail: saperia@zko.dec.com"

DESCRIPTION
 "The MIB module for entities implementing the client (resolver) side of the Domain Name System (DNS) protocol."
::= { dns 2 }

dnsResMIBObjects OBJECT IDENTIFIER ::= { dnsResMIB 1 }

-- (Old-style) groups in the DNS resolver MIB.

dnsResConfig OBJECT IDENTIFIER ::= { dnsResMIBObjects 1 }
dnsResCounter OBJECT IDENTIFIER ::= { dnsResMIBObjects 2 }
dnsResLameDelegation OBJECT IDENTIFIER ::= { dnsResMIBObjects 3 }
dnsResCache OBJECT IDENTIFIER ::= { dnsResMIBObjects 4 }
dnsResNCache OBJECT IDENTIFIER ::= { dnsResMIBObjects 5 }
dnsResOptCounter OBJECT IDENTIFIER ::= { dnsResMIBObjects 6 }

-- Resolver Configuration Group

dnsResConfigImplementIdent OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The implementation identification string for the resolver software in use on the system, for example; 'RES-2.1'."
::= { dnsResConfig 1 }

dnsResConfigService OBJECT-TYPE
SYNTAX INTEGER { recursiveOnly(1),
iterativeOnly(2),
recursiveAndIterative(3) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Kind of DNS resolution service provided:
recursiveOnly(1) indicates a stub resolver.
iterativeOnly(2) indicates a normal full service resolver.
recursiveAndIterative(3) indicates a full-service resolver which performs a mix of recursive and iterative queries."
::= { dnsResConfig 2 }

dnsResConfigMaxCnames OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION "Limit on how many CNAMEs the resolver should allow
before deciding that there's a CNAME loop. Zero means
that resolver has no explicit CNAME limit."
REFERENCE "RFC-1035 section 7.1."
 ::= { dnsResConfig 3 }

-- DNS Resolver Safety Belt Table

dnsResConfigSbeltTable OBJECT-TYPE
 SYNTAX SEQUENCE OF DnsResConfigSbeltEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "Table of safety belt information used by the resolver
when it hasn't got any better idea of where to send a
query, such as when the resolver is booting or is a stub
resolver."
 ::= { dnsResConfig 4 }

dnsResConfigSbeltEntry OBJECT-TYPE
 SYNTAX DnsResConfigSbeltEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "An entry in the resolver's Sbelt table.
Rows may be created or deleted at any time by the DNS
resolver and by SNMP SET requests. Whether the values
changed via SNMP are saved in stable storage across
'reset' operations is implementation-specific."
INDEX { dnsResConfigSbeltAddr,
 dnsResConfigSbeltSubTree,
 dnsResConfigSbeltClass }
 ::= { dnsResConfigSbeltTable 1 }

DnsResConfigSbeltEntry ::=
SEQUENCE
 { dnsResConfigSbeltAddr
 IpAddress,
 dnsResConfigSbeltName
 DnsName,
 dnsResConfigSbeltRecursion
 INTEGER,
 dnsResConfigSbeltPref
 INTEGER,
 dnsResConfigSbeltSubTree
}
DnsNameAsIndex,
dnsResConfigSbeltClass
 DnsClass,
dnsResConfigSbeltStatus
 RowStatus
}

dnsResConfigSbeltAddr OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The IP address of the Sbelt name server identified by
 this row of the table."
::= { dnsResConfigSbeltEntry 1 }

dnsResConfigSbeltName OBJECT-TYPE
SYNTAX DnsName
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The DNS name of a Sbelt nameserver identified by this
row of the table. A zero-length string indicates that
the name is not known by the resolver."
::= { dnsResConfigSbeltEntry 2 }

dnsResConfigSbeltRecursion OBJECT-TYPE
SYNTAX INTEGER { iterative(1),
 recursive(2),
 recursiveAndIterative(3) }
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "Kind of queries resolver will be sending to the name
server identified in this row of the table:

iterative(1) indicates that resolver will be directing
iterative queries to this name server (RD bit turned
off).

recursive(2) indicates that resolver will be directing
recursive queries to this name server (RD bit turned
on).

recursiveAndIterative(3) indicates that the resolver
will be directing both recursive and iterative queries
to the server identified in this row of the table."
::= { dnsResConfigSbeltEntry 3 }
dnsResConfigSbeltPref OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This value identifies the preference for the name server
identified in this row of the table. The lower the
value, the more desirable the resolver considers this
server."
::= { dnsResConfigSbeltEntry 4 }

dnsResConfigSbeltSubTree OBJECT-TYPE
SYNTAX DnsNameAsIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Queries sent to the name server identified by this row
of the table are limited to those for names in the name
subtree identified by this variable. If no such
limitation applies, the value of this variable is the
name of the root domain (a DNS name consisting of a
single zero octet)."
::= { dnsResConfigSbeltEntry 5 }

dnsResConfigSbeltClass OBJECT-TYPE
SYNTAX DnsClass
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The class of DNS queries that will be sent to the server
identified by this row of the table."
::= { dnsResConfigSbeltEntry 6 }

dnsResConfigSbeltStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Row status column for this row of the Sbelt table."
::= { dnsResConfigSbeltEntry 7 }

dnsResConfigUpTime OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the resolver has a persistent state (e.g., a
process), this value will be the time elapsed since it
started. For software without persistent state, this value will be 0."

\[::=\{\text{dnsResConfig} 5\}\]

dnsResConfigResetTime OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION "If the resolver has a persistent state (e.g., a process) and supports a 'reset' operation (e.g., can be told to re-read configuration files), this value will be the time elapsed since the last time the resolver was 'reset.' For software that does not have persistence or does not support a 'reset' operation, this value will be zero."

\[::=\{\text{dnsResConfig} 6\}\]

dnsResConfigReset OBJECT-TYPE
SYNTAX INTEGER { other(1),
reset(2),
initializing(3),
running(4) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION "Status/action object to reinitialize any persistent resolver state. When set to reset(2), any persistent resolver state (such as a process) is reinitialized as if the resolver had just been started. This value will never be returned by a read operation. When read, one of the following values will be returned:
other(1) - resolver in some unknown state;
initializing(3) - resolver (re)initializing;
running(4) - resolver currently running."

\[::=\{\text{dnsResConfig} 7\}\]

-- Resolver Counters Group

-- Resolver Counter Table

dnsResCounterByOpcodeTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsResCounterByOpcodeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Table of the current count of resolver queries and
answers.
::= { dnsResCounter 3 }

dnsResCounterByOpcodeEntry OBJECT-TYPE
SYNTAX DnsResCounterByOpcodeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Entry in the resolver counter table. Entries are indexed by DNS OpCode."
INDEX { dnsResCounterByOpcodeCode }
::= { dnsResCounterByOpcodeTable 1 }

DnsResCounterByOpcodeEntry ::=
SEQUENCE {
 dnsResCounterByOpcodeCode DnsOpCode,
 dnsResCounterByOpcodeQueries Counter32,
 dnsResCounterByOpcodeResponses Counter32
}

dnsResCounterByOpcodeCode OBJECT-TYPE
SYNTAX DnsOpCode
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index to this table. The OpCodes that have already been defined are found in RFC-1035."
REFERENCE
"RFC-1035 section 4.1.1."
::= { dnsResCounterByOpcodeEntry 1 }

dnsResCounterByOpcodeQueries OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of queries that have sent out by the resolver since initialization for the OpCode which is the index to this row of the table."
::= { dnsResCounterByOpcodeEntry 2 }

Austein & Saperia
[Page 11]
DESCRIPTION
"Total number of responses that have been received by the
resolver since initialization for the OpCode which is
the index to this row of the table."
::= { dnsResCounterByOpcodeEntry 3 }

-- Resolver Response Code Counter Table

dnsResCounterByRcodeTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsResCounterByRcodeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Table of the current count of responses to resolver
queries."
::= { dnsResCounter 4 }

dnsResCounterByRcodeEntry OBJECT-TYPE
SYNTAX DnsResCounterByRcodeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Entry in the resolver response table. Entries are
indexed by DNS response code."
INDEX { dnsResCounterByRcodeCode }
::= { dnsResCounterByRcodeTable 1 }

DnsResCounterByRcodeEntry ::= SEQUENCE {
 dnsResCounterByRcodeCode
 DnsRespCode,
 dnsResCounterByRcodeResponses
 Counter32
}

dnsResCounterByRcodeCode OBJECT-TYPE
SYNTAX DnsRespCode
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index to this table. The Response Codes that have
already been defined are found in RFC-1035."
REFERENCE
"RFC-1035 section 4.1.1."
::= { dnsResCounterByRcodeEntry 1 }
dnsResCounterByRcodeResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of responses the resolver has received for the response code value which identifies this row of the table."
 ::= { dnsResCounterByRcodeEntry 2 }

-- Additional DNS Resolver Counter Objects

dnsResCounterNonAuthDataResps OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests made by the resolver for which a non-authoritative answer (cached data) was received."
 ::= { dnsResCounter 5 }

dnsResCounterNonAuthNoDataResps OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests made by the resolver for which a non-authoritative answer - no such data response (empty answer) was received."
 ::= { dnsResCounter 6 }

dnsResCounterMartians OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of responses received which were received from servers that the resolver does not think it asked."
 ::= { dnsResCounter 7 }

dnsResCounterRecdResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of responses received to all queries."
 ::= { dnsResCounter 8 }
dnsResCounterUnparseResps OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of responses received which were unparseable."
 ::= { dnsResCounter 9 }

dnsResCounterFallbacks OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of times the resolver had to fall back to its seat belt information."
 ::= { dnsResCounter 10 }

-- Lame Delegation Group

dnsResLameDelegationOverflows OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of times the resolver attempted to add an entry to the Lame Delegation table but was unable to for some reason such as space constraints."
 ::= { dnsResLameDelegation 1 }

-- Lame Delegation Table

dnsResLameDelegationTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsResLameDelegationEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Table of name servers returning lame delegations.

A lame delegation has occurred when a parent zone delegates authority for a child zone to a server that appears not to think that it is authoritative for the child zone in question."
 ::= { dnsResLameDelegation 2 }

dnsResLameDelegationEntry OBJECT-TYPE
SYNTAX DnsResLameDelegationEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Entry in lame delegation table. Only the resolver may
create rows in this table. SNMP SET requests may be used
to delete rows."
INDEX { dnsResLameDelegationSource,
 dnsResLameDelegationName,
 dnsResLameDelegationClass }
::= { dnsResLameDelegationTable 1 }

DnsResLameDelegationEntry ::=
SEQUENCE {
 dnsResLameDelegationSource IpAddress,
 dnsResLameDelegationName DnsNameAsIndex,
 dnsResLameDelegationClass DnsClass,
 dnsResLameDelegationCounts Counter32,
 dnsResLameDelegationStatus RowStatus
}

dnsResLameDelegationSource OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Source of lame delegation."
::= { dnsResLameDelegationEntry 1 }

dnsResLameDelegationName OBJECT-TYPE
SYNTAX DnsNameAsIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "DNS name for which lame delegation was received."
::= { dnsResLameDelegationEntry 2 }

dnsResLameDelegationClass OBJECT-TYPE
SYNTAX DnsClass
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "DNS class of received lame delegation."
::= { dnsResLameDelegationEntry 3 }

Austein & Saperia [Page 15]
dnsResLameDelegationCounts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "How many times this lame delegation has been received."
::= { dnsResLameDelegationEntry 4 }

dnsResLameDelegationStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION "Status column for the lame delegation table. Since only
the agent (DNS resolver) creates rows in this table, the
only values that a manager may write to this variable
are active(1) and destroy(6)."
::= { dnsResLameDelegationEntry 5 }

-- Resolver Cache Group

dnsResCacheStatus OBJECT-TYPE
SYNTAX INTEGER { enabled(1), disabled(2), clear(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION "Status/action for the resolver’s cache.

enabled(1) means that the use of the cache is allowed.
Query operations can return this state.

disabled(2) means that the cache is not being used.
Query operations can return this state.

Setting this variable to clear(3) deletes the entire contents of
the resolver’s cache, but does not otherwise change the resolver’s state. The status
will retain its previous value from before the clear operation (i.e.,
enabled(1) or disabled(2)). The value of clear(3) can NOT be returned by a query operation."
::= { dnsResCache 1 }

dnsResCacheMaxTTL OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Maximum Time-To-Live for RRs in this cache. If the resolver does not implement a TTL ceiling, the value of this field should be zero."

::= { dnsResCache 2 }

dnsResCacheGoodCaches OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of RRs the resolver has cached successfully."
::= { dnsResCache 3 }

dnsResCacheBadCaches OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of RRs the resolver has refused to cache because they appear to be dangerous or irrelevant. E.g., RRs with suspiciously high TTLs, unsolicited root information, or that just don’t appear to be relevant to the question the resolver asked."
::= { dnsResCache 4 }

-- Resolver Cache Table

dnsResCacheRRTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsResCacheRREntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table contains information about all the resource records currently in the resolver’s cache."
::= { dnsResCache 5 }

dnsResCacheRREntry OBJECT-TYPE
SYNTAX DnsResCacheRREntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in the resolvers’s cache. Rows may be created only by the resolver. SNMP SET requests may be used to delete rows."
INDEX { dnsResCacheRRName,
 dnsResCacheRRClass,
 dnsResCacheRRType,
 dnsResCacheRRIndex }
::= { dnsResCacheRRTable 1 }

DnsResCacheRREntry ::= SEQUENCE {
 dnsResCacheRRName DnsNameAsIndex,
 dnsResCacheRRClass DnsClass,
 dnsResCacheRRType DnsType,
 dnsResCacheRRTTL DnsTime,
 dnsResCacheRRElapsedTTL DnsTime,
 dnsResCacheRRSource IpAddress,
 dnsResCacheRRData OCTET STRING,
 dnsResCacheRRStatus RowStatus,
 dnsResCacheRRIndex Integer32,
 dnsResCacheRRPrettyName DnsName
}

dnsResCacheRRName OBJECT-TYPE
SYNTAX DnsNameAsIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Owner name of the Resource Record in the cache which is identified in this row of the table. As described in RFC-1034, the owner of the record is the domain name were the RR is found."
REFERENCE
 "RFC-1034 section 3.6."
::= { dnsResCacheRREntry 1 }

dnsResCacheRRClass OBJECT-TYPE
SYNTAX DnsClass
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "DNS class of the Resource Record in the cache which is identified in this row of the table."
::= { dnsResCacheRREntry 2 }
dnsResCacheRRType OBJECT-TYPE
SYNTAX DnsType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"DNS type of the Resource Record in the cache which is identified in this row of the table."
::= { dnsResCacheRREntry 3 }

dnsResCacheRRTTL OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Time-To-Live of RR in DNS cache. This is the initial TTL value which was received with the RR when it was originally received."
::= { dnsResCacheRREntry 4 }

dnsResCacheRRElapsedTTL OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Elapsed seconds since RR was received."
::= { dnsResCacheRREntry 5 }

dnsResCacheRRSource OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Host from which RR was received, 0.0.0.0 if unknown."
::= { dnsResCacheRREntry 6 }

dnsResCacheRRData OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"RDATA portion of a cached RR. The value is in the format defined for the particular DNS class and type of the resource record."
REFERENCE
"RFC-1035 section 3.2.1."
::= { dnsResCacheRREntry 7 }
dnsResCacheRRStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Status column for the resolver cache table. Since only the agent (DNS resolver) creates rows in this table, the only values that a manager may write to this variable are active(1) and destroy(6)."
 ::= { dnsResCacheRREntry 8 }

dnsResCacheRRIndex OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A value which makes entries in the table unique when the other index values (dnsResCacheRRName, dnsResCacheRRClass, and dnsResCacheRRType) do not provide a unique index."
 ::= { dnsResCacheRREntry 9 }

dnsResCacheRRPrettyName OBJECT-TYPE
SYNTAX DnsName
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Name of the RR at this row in the table. This is identical to the dnsResCacheRRName variable, except that character case is preserved in this variable, per DNS conventions."
REFERENCE
"RFC-1035 section 2.3.3."
 ::= { dnsResCacheRREntry 10 }

-- Resolver Negative Cache Group

dnsResNCacheStatus OBJECT-TYPE
SYNTAX INTEGER { enabled(1), disabled(2), clear(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Status/action for the resolver’s negative response cache. enabled(1) means that the use of the negative response cache is allowed. Query operations can return this state."
disabled(2) means that the negative response cache is not being used. Query operations can return this state.

Setting this variable to clear(3) deletes the entire contents of the resolver's negative response cache. The status will retain its previous value from before the clear operation (i.e., enabled(1) or disabled(2)). The value of clear(3) can NOT be returned by a query operation."

::= { dnsResNCache 1 }

dnsResNCacheMaxTTL OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-write
STATUS current
DESCRIPTION "Maximum Time-To-Live for cached authoritative errors. If the resolver does not implement a TTL ceiling, the value of this field should be zero."

::= { dnsResNCache 2 }

dnsResNCacheGoodNCaches OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of authoritative errors the resolver has cached successfully."

::= { dnsResNCache 3 }

dnsResNCacheBadNCaches OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of authoritative errors the resolver would have liked to cache but was unable to because the appropriate SOA RR was not supplied or looked suspicious."

REFERENCE
"RFC-1034 section 4.3.4."

::= { dnsResNCache 4 }

-- Resolver Negative Cache Table

dnsResNCacheErrMsgTable OBJECT-TYPE
SYNTAX SEQUENCE OF DnsResNCacheErrMsgEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The resolver’s negative response cache. This table contains information about authoritative errors that have been cached by the resolver."

::= { dnsResNCache 5 }

dnsResNCacheErrEntry OBJECT-TYPE
SYNTAX DnsResNCacheErrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the resolver’s negative response cache table. Only the resolver can create rows. SNMP SET requests may be used to delete rows."
INDEX { dnsResNCacheErrQName,
dnsResNCacheErrQClass,
dnsResNCacheErrQType,
dnsResNCacheErrIndex }

::= { dnsResNCacheErrTable 1 }

DnsResNCacheErrEntry ::= SEQUENCE {
 dnsResNCacheErrQName DnsNameAsIndex,
dnsResNCacheErrQClass DnsQClass,
dnsResNCacheErrQType DnsQType,
dnsResNCacheErrTTL DnsTime,
dnsResNCacheErrElapsedTTL DnsTime,
dnsResNCacheErrSource IpAddress,
dnsResNCacheErrActionCode INTEGER,
dnsResNCacheErrStatus RowStatus,
dnsResNCacheErrIndex Integer32,
dnsResNCacheErrPrettyName DnsName
}

dnsResNCacheErrQName OBJECT-TYPE
SYNTAX DnsNameAsIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"QNAME associated with a cached authoritative error."
REFERENCE
"RFC-1034 section 3.7.1."
 ::= { dnsResNCacheErrEntry 1 }

dnsResNCacheErrQClass OBJECT-TYPE
SYNTAX DnsQClass
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"DNS QCLASS associated with a cached authoritative error."
 ::= { dnsResNCacheErrEntry 2 }

dnsResNCacheErrQType OBJECT-TYPE
SYNTAX DnsQType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"DNS QTYPE associated with a cached authoritative error."
 ::= { dnsResNCacheErrEntry 3 }

dnsResNCacheErrTTL OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Time-To-Live of a cached authoritative error at the time of the error, it should not be decremented by the number of seconds since it was received. This should be the TTL as copied from the MINIMUM field of the SOA that accompanied the authoritative error, or a smaller value if the resolver implements a ceiling on negative response cache TTLs."
REFERENCE
"RFC-1034 section 4.3.4."
 ::= { dnsResNCacheErrEntry 4 }

dnsResNCacheErrElapsedTTL OBJECT-TYPE
SYNTAX DnsTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Elapsed seconds since authoritative error was received."
 ::= { dnsResNCacheErrEntry 5 }

dnsResNCacheErrSource OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Host which sent the authoritative error, 0.0.0.0 if
 unknown."
 ::= { dnsResNCacheErrEntry 6 }

dnsResNCacheErrCode OBJECT-TYPE
 SYNTAX INTEGER { nonexistantName(1), noData(2), other(3) }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The authoritative error that has been cached:
 nonexistantName(1) indicates an authoritative name error
 (RCODE = 3).
 noData(2) indicates an authoritative response with no
 error (RCODE = 0) and no relevant data.
 other(3) indicates some other cached authoritative
 error. At present, no such errors are known to exist."
 ::= { dnsResNCacheErrEntry 7 }

dnsResNCacheErrStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Status column for the resolver negative response cache
 table. Since only the agent (DNS resolver) creates rows
 in this table, the only values that a manager may write
 to this variable are active(1) and destroy(6)."
 ::= { dnsResNCacheErrEntry 8 }

dnsResNCacheErrIndex OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A value which makes entries in the table unique when the
 other index values (dnsResNCacheErrQName, dnsResNCacheErrQClass, and dnsResNCacheErrQType) do not
 provide a unique index."
 ::= { dnsResNCacheErrEntry 9 }

Austein & Saperia [Page 24]
dnsResNCacheErrPrettyName OBJECT-TYPE
SYNTAX DnsName
MAX-ACCESS read-only
STATUS current
DESCRIPTION "QNAME associated with this row in the table. This is identical to the dnsResNCacheErrQName variable, except that character case is preserved in this variable, per DNS conventions."
REFERENCE "RFC-1035 section 2.3.3."
::= { dnsResNCacheErrEntry 10 }

-- Resolver Optional Counters Group

dnsResOptCounterReferals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of responses which were received from servers redirecting query to another server."
::= { dnsResOptCounter 1 }

dnsResOptCounterRetrans OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number requests retransmitted for all reasons."
::= { dnsResOptCounter 2 }

dnsResOptCounterNoResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of queries that were retransmitted because of no response."
::= { dnsResOptCounter 3 }

dnsResOptCounterRootRetrans OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of queries that were retransmitted that were to
root servers.
 ::= { dnsResOptCounter 4 }

dnsResOptCounterInternals OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests internally generated by the
resolver."
 ::= { dnsResOptCounter 5 }

dnsResOptCounterInternalTimeOuts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of requests internally generated which timed
out."
 ::= { dnsResOptCounter 6 }

-- SNMPv2 groups.

dnsResMIBGroups OBJECT IDENTIFIER ::= { dnsResMIB 2 }

dnsResConfigGroup OBJECT-GROUP
OBJECTS { dnsResConfigImplementIdent,
 dnsResConfigService,
 dnsResConfigMaxCnames,
 dnsResConfigSbeltAddr,
 dnsResConfigSbeltName,
 dnsResConfigSbeltRecursion,
 dnsResConfigSbeltPref,
 dnsResConfigSbeltSubTree,
 dnsResConfigSbeltClass,
 dnsResConfigSbeltStatus,
 dnsResConfigUpTime,
 dnsResConfigResetTime }
STATUS current
DESCRIPTION "A collection of objects providing basic configuration
information for a DNS resolver implementation."
 ::= { dnsResMIBGroups 1 }

dnsResCounterGroup OBJECT-GROUP
OBJECTS { dnsResCounterByOpcodeCode,
 dnsResCounterByOpcodeQueries,

dnsResCounterByOpcodeResponses,
dnsResCounterByRcodeCode,
dnsResCounterByRcodeResponses,
dnsResCounterNonAuthDataResps,
dnsResCounterNonAuthNoDataResps,
dnsResCounterMartians,
dnsResCounterRecdResponses,
dnsResCounterUnparseResps,
dnsResCounterFallbacks

\textbf{STATUS} current

\textbf{DESCRIPTION}
"A collection of objects providing basic instrumentation of a DNS resolver implementation."

::= { dnsResMIBGroups 2 }

dnsResLameDelegationGroup OBJECT-GROUP

OBJECTS { dnsResLameDelegationOverflows,
dnsResLameDelegationSource,
dnsResLameDelegationName,
dnsResLameDelegationClass,
dnsResLameDelegationCounts,
dnsResLameDelegationStatus }

\textbf{STATUS} current

\textbf{DESCRIPTION}
"A collection of objects providing instrumentation of 'lame delegation' failures."

::= { dnsResMIBGroups 3 }

dnsResCacheGroup OBJECT-GROUP

OBJECTS { dnsResCacheStatus,
dnsResCacheMaxTTL,
dnsResCacheGoodCaches,
dnsResCacheBadCaches,
dnsResCacheRRName,
dnsResCacheRRClass,
dnsResCacheRRType,
dnsResCacheRRTTL,
dnsResCacheRRElapsedTTL,
dnsResCacheRRSource,
dnsResCacheRRData,
dnsResCacheRRStatus,
dnsResCacheRRIndex,
dnsResCacheRRPrettyName }

\textbf{STATUS} current

\textbf{DESCRIPTION}
"A collection of objects providing access to and control of a DNS resolver's cache."
::= { dnsResMIBGroups 4 }

dnsResNCacheGroup OBJECT-GROUP
OBJECTS { dnsResNCacheStatus,
 dnsResNCacheMaxTTL,
 dnsResNCacheGoodNCaches,
 dnsResNCacheBadNCaches,
 dnsResNCacheErrQName,
 dnsResNCacheErrQClass,
 dnsResNCacheErrQType,
 dnsResNCacheErrTTL,
 dnsResNCacheErrElapsedTTL,
 dnsResNCacheErrSource,
 dnsResNCacheErrCode,
 dnsResNCacheErrStatus,
 dnsResNCacheErrIndex,
 dnsResNCacheErrPrettyName }

STATUS current
DESCRIPTION "A collection of objects providing access to and control of a DNS resolver's negative response cache."

::= { dnsResMIBGroups 5 }

dnsResOptCounterGroup OBJECT-GROUP
OBJECTS { dnsResOptCounterReferals,
 dnsResOptCounterRetrans,
 dnsResOptCounterNoResponses,
 dnsResOptCounterRootRetrans,
 dnsResOptCounterInternals,
 dnsResOptCounterInternalTimeOuts }

STATUS current
DESCRIPTION "A collection of objects providing further instrumentation applicable to many but not all DNS resolvers."

::= { dnsResMIBGroups 6 }

-- Compliances.

dnsResMIBCompliances OBJECT IDENTIFIER ::= { dnsResMIB 3 }

dnsResMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for agents implementing the DNS resolver MIB extensions."

MODULE -- This MIB module
MANDATORY-GROUPS { dnsResConfigGroup, dnsResCounterGroup }
GROUP dnsResCacheGroup
DESCRIPTION
"The resolver cache group is mandatory for resolvers that implement a cache."
GROUP dnsResNCacheGroup
DESCRIPTION
"The resolver negative cache group is mandatory for resolvers that implement a negative response cache."
GROUP dnsResLameDelegationGroup
DESCRIPTION
"The lame delegation group is unconditionally optional."
GROUP dnsResOptCounterGroup
DESCRIPTION
"The optional counters group is unconditionally optional."
OBJECT dnsResConfigMaxCnames
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
OBJECT dnsResConfigSbeltName
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
OBJECT dnsResConfigSbeltRecursion
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
OBJECT dnsResConfigSbeltPref
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
OBJECT dnsResConfigReset
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
OBJECT dnsResCacheStatus
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
OBJECT dnsResCacheMaxTTL
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
OBJECT dnsResNCacheStatus
MIN-ACCESS read-only
DESCRIPTION
"This object need not be writable."
5. Acknowledgements

This document is the result of work undertaken by the DNS working group. The authors would particularly like to thank the following people for their contributions to this document: Philip Almquist, Frank Kastenholz (FTP Software), Joe Peck (DEC), Dave Perkins (SynOptics), Win Treese (DEC), and Mimi Zohar (IBM).

6. References

7. Security Considerations

Security issues are not discussed in this memo.

8. Authors’ Addresses

Rob Austein
Epilogue Technology Corporation
268 Main Street, Suite 283
North Reading, MA 01864
USA

Phone: +1-617-245-0804
Fax: +1-617-245-8122
EMail: sra@epilogue.com

Jon Saperia
Digital Equipment Corporation
110 Spit Brook Road
ZK01-3/H18
Nashua, NH 03062-2698
USA

Phone: +1-603-881-0480
Fax: +1-603-881-0120
EMail: saperia@zko.dec.com