Definitions of Managed Objects for the Fourth Version of the
Border Gateway Protocol (BGP-4) using SMIv2

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

1. Introduction

This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it describes managed objects used for managing the
Border Gateway Protocol Version 4 or lower [1, 2].

2. The SNMPv2 Network Management Framework

The SNMPv2 Network Management Framework consists of four major
components. They are:

- **RFC 1442** which defines the SMI, the mechanisms used for describing
 and naming objects for the purpose of management.

- STD 17, **RFC 1213** defines MIB-II, the core set of managed objects
 for the Internet suite of protocols.

- **RFC 1445** which defines the administrative and other architectural
 aspects of the framework.

- **RFC 1448** which defines the protocol used for network access to
 managed objects.

The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
3. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

4. Overview

These objects are used to control and manage a BGP-4 implementation.

Apart from a few system-wide scalar objects, this MIB is broken into three tables: the BGP Peer Table, the BGP Received Path Attribute Table, and the BGP-4 Received Path Attribute Table. The BGP Peer Table contains information about state and current activity of connections with the BGP peers. The Received Path Attribute Table contains path attributes received from all peers running BGP version 3 or less. The BGP-4 Received Path Attribute Table contains path attributes received from all BGP-4 peers. The actual attributes used in determining a route are a subset of the received attribute tables after local routing policy has been applied.

5. Definitions

BGP4-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
IpAddress, Integer32, Counter32, Gauge32
FROM SNMPv2-SMI
mib-2
FROM RFC1213-MIB;

bgp MODULE-IDENTITY
LAST-UPDATED "9405050000Z"
ORGANIZATION "IETF BGP Working Group"
CONTACT-INFO
" John Chu (Editor)
Postal: IBM Corp.
P.O.Box 218
Yorktown Heights, NY 10598
US
bgpVersion OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Vector of supported BGP protocol version numbers. Each peer negotiates the version from this vector. Versions are identified via the string of bits contained within this object. The first octet contains bits 0 to 7, the second octet contains bits 8 to 15, and so on, with the most significant bit referring to the lowest bit number in the octet (e.g., the MSB of the first octet refers to bit 0). If a bit, i, is present and set, then the version (i+1) of the BGP is supported."
 ::= { bgp 1 }

bgpLocalAs OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The local autonomous system number."
 ::= { bgp 2 }

-- BGP Peer table. This table contains, one entry per BGP peer, information about the BGP peer.

bgpPeerTable OBJECT-TYPE
SYNTAX SEQUENCE OF BgpPeerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"BGP peer table. This table contains, one entry per BGP peer, information about the connections with BGP peers."
 ::= { bgp 3 }
bgpPeerEntry OBJECT-TYPE
SYNTAX BgpPeerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Entry containing information about the connection with a BGP peer."
INDEX { bgpPeerRemoteAddr }
::= { bgpPeerTable 1 }

BgpPeerEntry ::= SEQUENCE {
 bgpPeerIdentifier IpAddress,
 bgpPeerState INTEGER,
 bgpPeerAdminStatus INTEGER,
 bgpPeerNegotiatedVersion Integer32,
 bgpPeerLocalAddr IpAddress,
 bgpPeerLocalPort INTEGER,
 bgpPeerRemoteAddr IpAddress,
 bgpPeerRemotePort INTEGER,
 bgpPeerRemoteAs INTEGER,
 bgpPeerInUpdates Counter32,
 bgpPeerOutUpdates Counter32,
 bgpPeerInTotalMessages Counter32,
 bgpPeerOutTotalMessages Counter32,
 bgpPeerLastError OCTET STRING,
 bgpPeerFsmEstablishedTransitions Counter32,
 bgpPeerFsmEstablishedTime Gauge32,
 bgpPeerConnectRetryInterval INTEGER,
 bgpPeerHoldTime INTEGER,
 bgpPeerKeepAlive

bgpPeerState OBJECT-TYPE
SYNTAX INTEGER {
 idle(1),
 connect(2),
 active(3),
 opensent(4),
 openconfirm(5),
 established(6)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The BGP peer connection state."
 ::= { bgpPeerEntry 2 }

bgpPeerAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
 stop(1),
 start(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The desired state of the BGP connection. A transition from ‘stop’ to ‘start’ will cause the BGP Start Event to be generated."
A transition from ‘start’ to ‘stop’ will cause the BGP Stop Event to be generated. This parameter can be used to restart BGP peer connections. Care should be used in providing write access to this object without adequate authentication.

::= { bgpPeerEntry 3 }

bgpPeerNegotiatedVersion OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The negotiated version of BGP running between the two peers."
::= { bgpPeerEntry 4 }

bgpPeerLocalAddr OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The local IP address of this entry’s BGP connection."
::= { bgpPeerEntry 5 }

bgpPeerLocalPort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The local port for the TCP connection between the BGP peers."
::= { bgpPeerEntry 6 }

bgpPeerRemoteAddr OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The remote IP address of this entry’s BGP peer."
::= { bgpPeerEntry 7 }

bgpPeerRemotePort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The remote port for the TCP connection between the BGP peers. Note that the objects bgpPeerLocalAddr, bgpPeerLocalPort, bgpPeerRemoteAddr and bgpPeerRemotePort provide the appropriate reference to the standard MIB TCP connection table."
::= { bgpPeerEntry 8 }

bgpPeerRemoteAs OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The remote autonomous system number."
::= { bgpPeerEntry 9 }

bgpPeerInUpdates OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of BGP UPDATE messages received on this connection. This object should be initialized to zero (0) when the connection is established."
::= { bgpPeerEntry 10 }

bgpPeerOutUpdates OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of BGP UPDATE messages transmitted on this connection. This object should be initialized to zero (0) when the connection is established."
::= { bgpPeerEntry 11 }

bgpPeerInTotalMessages OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of messages received from the remote peer on this connection. This object should be initialized to zero
when the connection is established."
 ::= { bgpPeerEntry 12 }

bgpPeerOutTotalMessages OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of messages transmitted to
 the remote peer on this connection. This
 object should be initialized to zero when
 the connection is established."
 ::= { bgpPeerEntry 13 }

bgpPeerLastError OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (2))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The last error code and subcode seen by this
 peer on this connection. If no error has
 occurred, this field is zero. Otherwise, the
 first byte of this two byte OCTET STRING
 contains the error code, and the second byte
 contains the subcode."
 ::= { bgpPeerEntry 14 }

bgpPeerFsmEstablishedTransitions OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of times the BGP FSM
 transitioned into the established state."
 ::= { bgpPeerEntry 15 }

bgpPeerFsmEstablishedTime OBJECT-TYPE
 SYNTAX Gauge32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This timer indicates how long (in
 seconds) this peer has been in the
 Established state or how long
 since this peer was last in the
 Established state. It is set to zero when
 a new peer is configured or the router is
 booted."
::= { bgpPeerEntry 16 }

bgpPeerConnectRetryInterval OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Time interval in seconds for the ConnectRetry timer. The suggested value for this timer is 120 seconds."
::= { bgpPeerEntry 17 }

bgpPeerHoldTime OBJECT-TYPE
SYNTAX INTEGER (0 | 3..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Time interval in seconds for the Hold Timer established with the peer. The value of this object is calculated by this BGP speaker by using the smaller of the value in bgpPeerHoldTimeConfigured and the Hold Time received in the OPEN message. This value must be at least three seconds if it is not zero (0) in which case the Hold Timer has not been established with the peer, or, the value of bgpPeerHoldTimeConfigured is zero (0)."
::= { bgpPeerEntry 18 }

bgpPeerKeepAlive OBJECT-TYPE
SYNTAX INTEGER (0 | 1..21845)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Time interval in seconds for the KeepAlive timer established with the peer. The value of this object is calculated by this BGP speaker such that, when compared with bgpPeerHoldTime, it has the same proportion as what bgpPeerKeepAliveConfigured has when compared with bgpPeerHoldTimeConfigured. If the value of this object is zero (0), it indicates that the KeepAlive timer has not been established with the peer, or, the value of bgpPeerKeepAliveConfigured is zero (0)."
::= { bgpPeerEntry 19 }

bgpPeerHoldTimeConfigured OBJECT-TYPE
SYNTAX INTEGER (0 | 3..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Time interval in seconds for the Hold Time configured for this BGP speaker with this peer. This value is placed in an OPEN message sent to this peer by this BGP speaker, and is compared with the Hold Time field in an OPEN message received from the peer when determining the Hold Time (bgpPeerHoldTime) with the peer. This value must not be less than three seconds if it is not zero (0) in which case the Hold Time is NOT to be established with the peer. The suggested value for this timer is 90 seconds."
::= { bgpPeerEntry 20 }

bgpPeerKeepAliveConfigured OBJECT-TYPE
SYNTAX INTEGER (0 | 1..21845)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Time interval in seconds for the KeepAlive timer configured for this BGP speaker with this peer. The value of this object will only determine the KEEPALIVE messages’ frequency relative to the value specified in bgpPeerHoldTimeConfigured; the actual time interval for the KEEPALIVE messages is indicated by bgpPeerKeepAlive. A reasonable maximum value for this timer would be configured to be one third of that of bgpPeerHoldTimeConfigured. If the value of this object is zero (0), no periodical KEEPALIVE messages are sent to the peer after the BGP connection has been established. The suggested value for this timer is 30 seconds."
::= { bgpPeerEntry 21 }
bgpPeerMinASOriginationInterval OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Time interval in seconds for the MinASOriginationInterval timer.
The suggested value for this timer is 15 seconds."
::= { bgpPeerEntry 22 }

bgpPeerMinRouteAdvertisementInterval OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Time interval in seconds for the MinRouteAdvertisementInterval timer.
The suggested value for this timer is 30 seconds."
::= { bgpPeerEntry 23 }

bgpPeerInUpdateElapsedTime OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Elapsed time in seconds since the last BGP UPDATE message was received from the peer. Each time bgpPeerInUpdates is incremented, the value of this object is set to zero (0)."
::= { bgpPeerEntry 24 }

bgpIdentifier OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The BGP Identifier of local system."
::= { bgp 4 }
-- Received Path Attribute Table. This table contains,
-- one entry per path to a network, path attributes
-- received from all peers running BGP version 3 or
-- less. This table is deprecated.

bgpRcvdPathAttrTable OBJECT-TYPE
SYNTAX SEQUENCE OF BgpPathAttrEntry
MAX-ACCESS not-accessible
STATUS obsolete
DESCRIPTION
"The BGP Received Path Attribute Table
contains information about paths to
destination networks received from all
peers running BGP version 3 or less."
 ::= { bgp 5 }

bgpPathAttrEntry OBJECT-TYPE
SYNTAX BgpPathAttrEntry
MAX-ACCESS not-accessible
STATUS obsolete
DESCRIPTION
"Information about a path to a network."
INDEX { bgpPathAttrDestNetwork,
 bgpPathAttrPeer }
 ::= { bgpRcvdPathAttrTable 1 }

BgpPathAttrEntry ::= SEQUENCE {
 bgpPathAttrPeer
 IpAddress,
 bgpPathAttrDestNetwork
 IpAddress,
 bgpPathAttrOrigin
 INTEGER,
 bgpPathAttrASPath
 OCTET STRING,
 bgpPathAttrNextHop
 IpAddress,
 bgpPathAttrInterASMetric
 Integer32
}

bgpPathAttrPeer OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The IP address of the peer where the path
information was learned."
::= { bgpPathAttrEntry 1 }

bgpPathAttrDestNetwork OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
 "The address of the destination network."
::= { bgpPathAttrEntry 2 }

bgpPathAttrOrigin OBJECT-TYPE
SYNTAX INTEGER {
 1gip,-- networks are interior
 2egp,-- networks learned via EGP
 3incomplete -- undetermined
}
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
 "The ultimate origin of the path information."
::= { bgpPathAttrEntry 3 }

bgpPathAttrASPath OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (2..255))
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
 "The set of ASs that must be traversed to
 reach the network. This object is
 probably best represented as SEQUENCE OF
 INTEGER. For SMI compatibility, though,
 it is represented as OCTET STRING. Each
 AS is represented as a pair of octets
 according to the following algorithm:

 first-byte-of-pair = ASNumber / 256;
 second-byte-of-pair = ASNumber & 255;"
::= { bgpPathAttrEntry 4 }

bgpPathAttrNextHop OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
 "The address of the border router that
 should be used for the destination
 network."
::= { bgpPathAttrEntry 5 }
bgpPathAttrInterASMetric OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The optional inter-AS metric. If this attribute has not been provided for this route, the value for this object is 0."
 ::= { bgpPathAttrEntry 6 }

-- BGP-4 Received Path Attribute Table. This table contains, one entry per path to a network, path attributes received from all peers running BGP-4.
bgp4PathAttrTable OBJECT-TYPE
SYNTAX SEQUENCE OF Bgp4PathAttrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The BGP-4 Received Path Attribute Table contains information about paths to destination networks received from all BGP4 peers."
 ::= { bgp 6 }

bgp4PathAttrEntry OBJECT-TYPE
SYNTAX Bgp4PathAttrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a path to a network."
INDEX { bgp4PathAttrIpAddrPrefix, bgp4PathAttrIpAddrPrefixLen, bgp4PathAttrPeer }
 ::= { bgp4PathAttrTable 1 }

Bgp4PathAttrEntry ::= SEQUENCE {
 bgp4PathAttrPeer
 IpAddress,
 bgp4PathAttrIpAddrPrefixLen
 INTEGER,
 bgp4PathAttrIpAddrPrefix
 IpAddress,
 bgp4PathAttrOrigin
 INTEGER,
 bgp4PathAttrASPathSegment
 SEQUENCE OF INTEGER
}
OCTET STRING,
bgp4PathAttrNextHop
IpAddress,
bgp4PathAttrMultiExitDisc
INTEGER,
bgp4PathAttrLocalPref
INTEGER,
bgp4PathAttrAtomicAggregate
INTEGER,
bgp4PathAttrAggregatorAS
INTEGER,
bgp4PathAttrAggregatorAddr
IpAddress,
bgp4PathAttrCalcLocalPref
INTEGER,
bgp4PathAttrBest
INTEGER,
bgp4PathAttrUnknown
OCTET STRING

bgp4PathAttrPeer OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The IP address of the peer where the path
information was learned."
::= { bgp4PathAttrEntry 1 }

bgp4PathAttrIpAddrPrefixLen OBJECT-TYPE
SYNTAX INTEGER (0..32)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Length in bits of the IP address prefix
in the Network Layer Reachability
Information field."
::= { bgp4PathAttrEntry 2 }

bgp4PathAttrIpAddrPrefix OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An IP address prefix in the Network Layer
Reachability Information field. This object
is an IP address containing the prefix with length specified by
bgp4PathAttrIpAddrPrefixLen.
Any bits beyond the length specified by bgp4PathAttrIpAddrPrefixLen are zeroed."

::= { bgp4PathAttrEntry 3 }

bgp4PathAttrOrigin OBJECT-TYPE
SYNTAX INTEGER {
 igp(1),-- networks are interior
egp(2),-- networks learned
 -- via EGP
incomplete(3) -- undetermined
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The ultimate origin of the path information."

::= { bgp4PathAttrEntry 4 }

bgp4PathAttrASPathSegment OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (2..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The sequence of AS path segments. Each AS path segment is represented by a triple
<type, length, value>.

The type is a 1-octet field which has two possible values:
 1 AS_SET: unordered set of ASs a route in the UPDATE message has traversed
 2 AS_SEQUENCE: ordered set of ASs a route in the UPDATE message has traversed.

The length is a 1-octet field containing the number of ASs in the value field.

The value field contains one or more AS numbers, each AS is represented in the octet string as a pair of octets according to the following algorithm:
first-byte-of-pair = ASNumber / 256;
second-byte-of-pair = ASNumber & 255;

::= { bgp4PathAttrEntry 5 }

bgp4PathAttrNextHop OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The address of the border router that
should be used for the destination
network."
::= { bgp4PathAttrEntry 6 }

bgp4PathAttrMultiExitDisc OBJECT-TYPE
SYNTAX INTEGER (-1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This metric is used to discriminate
between multiple exit points to an
adjacent autonomous system. A value of -1
indicates the absence of this attribute."
::= { bgp4PathAttrEntry 7 }

bgp4PathAttrLocalPref OBJECT-TYPE
SYNTAX INTEGER (-1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The originating BGP4 speaker’s degree of
preference for an advertised route. A
value of -1 indicates the absence of this
attribute."
::= { bgp4PathAttrEntry 8 }

bgp4PathAttrAtomicAggregate OBJECT-TYPE
SYNTAX OBJECT { lessSpecificRrouteNotSelected(1),
lessSpecificRouteSelected(2) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Whether or not the local system has
selected a less specific route without
selecting a more specific route."
::= { bgp4PathAttrEntry 9 }
bgp4PathAttrAggregatorAS OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The AS number of the last BGP4 speaker that
 performed route aggregation. A value of zero (0) indicates the absence of this
 attribute."
 ::= { bgp4PathAttrEntry 10 }

bgp4PathAttrAggregatorAddr OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The IP address of the last BGP4 speaker
 that performed route aggregation. A value
 of 0.0.0.0 indicates the absence of this
 attribute."
 ::= { bgp4PathAttrEntry 11 }

bgp4PathAttrCalcLocalPref OBJECT-TYPE
 SYNTAX INTEGER (-1..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The degree of preference calculated by the
 receiving BGP4 speaker for an advertised
 route. A value of -1 indicates the
 absence of this attribute."
 ::= { bgp4PathAttrEntry 12 }

bgp4PathAttrBest OBJECT-TYPE
 SYNTAX INTEGER {
 false(1),-- not chosen as best route
 true(2) -- chosen as best route
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An indication of whether or not this route
 was chosen as the best BGP4 route."
 ::= { bgp4PathAttrEntry 13 }

bgp4PathAttrUnknown OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..255))
 MAX-ACCESS read-only
STATUS current
DESCRIPTION
"One or more path attributes not understood
by this BGP4 speaker. Size zero (0)
indicates the absence of such
attribute(s). Octets beyond the maximum
size, if any, are not recorded by this
object."
::= { bgp4PathAttrEntry 14 }

-- Traps.

bgpTraps OBJECT IDENTIFIER ::= { bgp 7 }

bgpEstablished NOTIFICATION-TYPE
OBJECTS { bgpPeerLastError,
 bgpPeerState }
STATUS current
DESCRIPTION
"The BGP Established event is generated when
the BGP FSM enters the ESTABLISHED state."
::= { bgpTraps 1 }

bgpBackwardTransition NOTIFICATION-TYPE
OBJECTS { bgpPeerLastError,
 bgpPeerState }
STATUS current
DESCRIPTION
"The BGPBackwardTransition Event is generated
when the BGP FSM moves from a higher numbered
state to a lower numbered state."
::= { bgpTraps 2 }

END
6. Acknowledgements

We would like to acknowledge the assistance of all the members of the Interconnectivity Working Group, and particularly the following individuals:

Yakov Rekhter, IBM
Rob Coltun, University of Maryland
Guy Almes, ANS
Jeff Honig, Cornell Theory Center
Marshall T. Rose, Dover Beach Consulting, Inc.
Dennis Ferguson, ANS
Mike Mathis, PSC
John Krawczyk, Wellfleet Communications Inc.
Curtis Villamizar, ANS
Dave LeRoy, Pencom Systems
Paul Traina, cisco Systems
Andrew Partan, UUNET
Robert Snyder, cisco Systems
Dimitry Haskin, Wellfleet Communications Inc.
Peder Chr Norgaard, Telebit Communications A/S
Joel Halpern, Network Systems Corporation

7. References

8. Security Considerations

Security issues are not discussed in this memo.
9. Authors’ Addresses

Steven Willis
Wellfleet Communications Inc.
15 Crosby Drive
Bedford, MA 01730

Phone: (617) 275-2400
EMail: swillis@wellfleet.com

John Burruss
Wellfleet Communications Inc.
15 Crosby Drive
Bedford, MA 01730

Phone: (617) 275-2400
EMail: jburress@wellfleet.com

John Chu
IBM Corp.
P.O.Box 218
Yorktown Heights, NY 10598

Phone: (914) 945-3156
EMail: jychu@watson.ibm.com