AppleTalk Management Information Base II

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing AppleTalk networks.

RFC 1243 defines a set of MIB objects for managing the lower layers of the AppleTalk protocol stack, up to the Network layer. This memo defines additional objects that exist in the AppleTalk portion of the MIB. These objects provide for the management of the transport and session layers of the AppleTalk protocol stack, as well as extensions to the lower layers. This is achieved in an upwardly-compatible fashion.

Table of Contents

1. The Network Management Framework 2
2. Additions and Changes 3
2.1 New Groups .. 3
2.2 Additional Variables 3
2.2.1 AARP Additions 3
2.2.2 ATPort Additions 3
2.2.3 DDP Addition 3
2.2.4 RTMP Additions 4
2.2.5 KIP Addition 4
2.2.6 ZIP Additions 4
2.2.7 NBP Additions 4
2.2.8 ATEcho Additions 4
2.3 Deprecations .. 4
2.4 Changes .. 5
3. Objects ... 6
1. The Network Management Framework

The Internet-standard Network Management Framework consists of three components. They are:

STD 16/RFC 1155 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management.

STD 16/RFC 1212 defines a more concise description mechanism, which is wholly consistent with the SMI.

RFC 1156 which defines MIB-I, the core set of managed objects for the Internet suite of protocols. STD 17/RFC 1213 defines MIB-II, an evolution of MIB-I based on implementation experience and new operational requirements.

STD 15/RFC 1157 which defines the SNMP, the protocol used for network access to managed objects.
The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

2. Additions and Changes

This MIB includes additions and changes to RFC 1243. These changes are outlined in the following sections.

2.1. New Groups

The following groups are introduced in this MIB:

- DDP Router
- RTMP Stub
- ZIP Router
- ATP
- PAP
- ASP
- ADSP
- ATPortPtoP
- Per Port Counters

2.2. Additional Variables

Many variables, mostly counters, were added to groups that existed in RFC 1243. These variables are listed in the following sections.

2.2.1. AARP Additions

aarpStatus
aarpLookups
aarpHits

2.2.2. ATPort Additions

atportNetFrom
atportZoneFrom
atportInPkts
atportOutPkts
atportHome
atportCurrentZone
atportConflictPhysAddr
atportZoneTable

2.2.3. DDP Addition

ddpListenerTable
2.2.4. RTMP Additions

rtmpInDataPkts
rtmpOutDataPkts
rtmpInRequestPkts
rtmpNextIREqualChanges
rtmpNextIRLessChanges
rtmpRouteDeletes
rtmpRoutingTableOverflows

2.2.5. KIP Addition

kipFrom

2.2.6. ZIP Additions

zipNetInfoTable
zipInErrors

2.2.7. NBP Additions

nbpAddress
nbpSocket
nbpEnumerator
nbpInLookUpRequests
nbpInLookUpReplies
nbpInBroadcastRequests
nbpInForwardRequests
nbpOutLookUpReplies
nbpRegistrationFailures
nbpInErrors

2.2.8. ATEcho Additions

atechoOutRequests
atechoInReplies

2.3. Deprecations

The following variables have been deprecated in this version of the MIB:

llapInPkts
llapOutPkts
llapInNoHandlers
llapInErrors
These llap variables were duplicated in the interfaces table of MIB-II.

2.4. Changes

The IMPORTS list has been updated to reflect the current SNMP documents.

New textual conventions have been defined.

Hyphens have been removed from enumeration strings.

Variables used as INDEXes to new tables have ACCESS not-accessible. This is because the values of the INDEX variables are contained in the object identifier for any of the other variables in the table; therefore, it does not need to be explicitly available as data.

The atportNetConfig and atportZoneConfig variables have been changed from read-only to read-write.

The atportZone variable has been renamed to atportZoneDefault, and its DESCRIPTION clause has been clarified.

The atportType, atportStatus, and kipType variables have had more values added to their enumeration lists.

The DDP group has been split into two groups; one includes variables that any AppleTalk node would implement and the other includes variables only a router would implement.

The rtmpState variable now includes another enumeration, invalid(5), which is used when deleting rows.

The variables rtmpRangeStart, rtmpRangeEnd, rtmpNextHop, rtmpType, rtmpPort, and rtmpHops have been changed from read-write to read-only.

The ZIP Group has been renamed the ZIP End Node Group.

The DESCRIPTION clause for zipZoneIndex has been clarified.

The variables zipZoneName, zipZoneNetStart, and zipZoneNetEnd have been changed from read-write to read-only.

The nbpIndex variable has been changed from read-only to read-write.

The nbpObject, nbpType, and nbpZone variables now suggest that the agent reregister its service when any of these variables is changed.
The nbpState variable includes new enumerations.

3. Objects

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type.

The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity.

The encoding of an object type is simply how that object type is represented using the object type’s syntax. Implicitly tied to the notion of an object type’s syntax and encoding is how the object type is represented when being transmitted on the network.

The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP.

3.1. Format of Definitions

Section 5 contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [9].

4. Overview

AppleTalk is a protocol suite which features an open peer-to-peer architecture that runs over a variety of transmission media. AppleTalk is defined in [10]. This protocol suite interoperates with the IP protocol suite through various encapsulation methods. As large AppleTalk networks are built that coexist with large IP networks, a method to manage the AppleTalk networks with SNMP becomes necessary. This MIB defines managed objects to be used for managing AppleTalk networks.
4.1. Structure of MIB

The objects are arranged into the following groups:

- LLAP
- AARP
- ATPort
- DDP
- DDP Router
- RTMP
- RTMP Stub
- KIP
- ZIP Router
- ZIP End Node
- NBP
- ATEcho
- ATP
- PAP
- ASP
- ADSP
- ATPortPtoP
- Per Port Counters

These groups are the basic unit of conformance. If the semantics of a group is applicable to an implementation, then it must implement all objects in that group. For example, a managed agent must implement the KIP group if and only if it implements the KIP protocol.

These groups are defined to provide a method for managed agents to know which objects they must implement.

4.2. The LocalTalk Link Access Protocol Group

The LocalTalk Link Access Protocol (LLAP) is a medium-speed data-link protocol designed for low cost and plug-and-play operation. The LLAP group is designed to manage all interfaces on a managed device that use this protocol.

4.3. The AppleTalk Address Resolution Protocol Group

The AppleTalk Address Resolution Protocol (AARP) is used to map between AppleTalk node addresses, used by the Datagram Delivery Protocol, and the addresses of the underlying data link layer. The AARP table allows for management of the Address Mapping Table on the managed device.
4.4. The AppleTalk Port Group

An AppleTalk Port is a logical connection to a network over which AppleTalk packets can be transmitted. The "network" could be a tunnel, backbone network, point-to-point link, etc, as well as a native AppleTalk network. This group allows the management of the configuration of these AppleTalk ports.

4.5. The Datagram Delivery Protocol Group

The Datagram Delivery Protocol (DDP) is the network-layer protocol that is responsible for the socket-to-socket delivery of datagrams over the AppleTalk Internet. This group manages the DDP layer on the managed device.

The DDP group contains statistical counters for the DDP protocol, and a table describing the DDP sockets that have protocol handlers registered.

4.6. The Datagram Delivery Protocol Router Group

Some variables relevant to the Datagram Delivery Protocol (DDP) are only applicable to AppleTalk routers. These variables are included in this group.

4.7. The Routing Table Maintenance Protocol Group

The Routing Table Maintenance Protocol (RTMP) is used by AppleTalk routers to create and maintain the routing tables that dictate the process of forwarding datagrams on the AppleTalk internet. The RTMP group manages the RTMP protocol as well as the routing tables generated by this protocol.

4.8. The Routing Table Maintenance Protocol Stub Group

The RTMP Stub process is implemented by end nodes in order to maintain information about the routers on their networks. The variables in this group apply to both routers and end nodes. This group manages the RTMP stub process.

4.9. The Kinetics Internet Protocol Group

The Kinetics Internet Protocol (KIP) is a protocol for encapsulating and routing AppleTalk datagrams over an IP internet. This name is historical. The KIP group manages the KIP routing protocol as well as the routing tables generated by this protocol.
4.10. The Zone Information Protocol Router Group

The Zone Information Protocol (ZIP) is used to maintain a mapping between networks and zone names to facilitate the name lookup process performed by the Name Binding Protocol. Some variables relevant to the Zone Information Protocol (ZIP) are only applicable to AppleTalk routers. These variables are included in this group.

4.11. The Zone Information Protocol End Node Group

The ZIP End Node group manages the variables relevant to the Zone Information Protocol (ZIP) that are applicable to both routers and end nodes.

4.12. The Name Binding Protocol Group

The Name Binding Protocol (NBP) is a transport-level protocol that is used to convert human readable service names into the numeric AppleTalk network addresses needed for communicating across the AppleTalk network. The NBP group manages this protocol and the NBP services that exist on the managed device.

4.13. The AppleTalk Echo Protocol Group

The AppleTalk Echo Protocol is a transport-level protocol used to test and verify the status of the AppleTalk internet. The AtEcho group manages this protocol.

The AppleTalk Transaction Protocol (ATP) is a transport-level protocol that is defined to support transaction based communications. The ATP group manages this protocol.

4.15. The Printer Access Protocol Group

The Printer Access Protocol (PAP) is a session-level protocol that enables communications between workstations and print servers. The PAP group manages this protocol.

4.16. The AppleTalk Session Protocol Group

The AppleTalk Session Protocol (ASP) is a session-level protocol that enables sequences of communications to occur. ASP uses the services of the AppleTalk Transaction Protocol (ATP), but extends these services into the session layer. The ASP group manages this protocol.
4.17. The AppleTalk Data Stream Protocol Group

The AppleTalk Data Stream Protocol (ADSP) is a session-level protocol that provides symmetric, connection-oriented, full-duplex communication between two sockets on the AppleTalk internet. In addition, ADSP handles flow-control and reliability. The ADSP group manages this protocol.

4.18. The AppleTalk Port Point to Point Group

The AppleTalk Port Point to Point Group manages ports that have one or more associated point-to-point connections.

4.19. The Per Port Counters Group

The Per Port Counters Group contains a set of counters which are deemed useful on a per port basis.

4.20. Textual Conventions

New data types are introduced as textual conventions in this MIB document. These textual conventions enhance the readability of the specification and can ease comparison with other specifications if appropriate. It should be noted that the introduction of these textual conventions has no effect on either the syntax or the semantics of any managed objects. The use of this is merely an artifact of the explanatory method used. Objects defined in terms of this method are always encoded by means of the rules that define the primitive type. Hence, no changes to the SMI or the SNMP are necessary to accommodate these textual conventions which are adopted merely for the convenience of readers and writers in pursuit of the elusive goal of clear, concise, and unambiguous MIB documents.

The new data types are:

\[
\text{ATNetworkNumber ::= OCTET STRING (SIZE (2))}
\]

\[
\text{DdpNodeAddress ::= OCTET STRING (SIZE (3))}
\]

\[
\text{DdpSocketAddress ::= OCTET STRING (SIZE (3))}
\]
5. Definitions

APPLETALK-MIB DEFINITIONS ::= BEGIN

IMPORTS
 Counter, IpAddress, TimeTicks
FROM RFC1155-SMI
 DisplayString, mib-2
FROM RFC1213-MIB
 OBJECT-TYPE
FROM RFC-1212;

-- This MIB module uses the extended OBJECT-TYPE macro as defined in RFC-1212.

-- The following reference is used in this MIB:
-- [Inside AppleTalk]
-- This refers to Gursharan S. Sidhu, Richard F. Andrews, and
-- Alan B. Oppenheimer, Inside AppleTalk, Second Edition,

-- AppleTalk MIB

appletalk OBJECT IDENTIFIER ::= { mib-2 13 }

ATNetworkNumber ::= -- 2 octets of net number
 -- in network byte order
 OCTET STRING (SIZE (2))

DdpNodeAddress ::= -- 2 octets of net number
 -- in network byte order,
 -- 1 octet of node number
 OCTET STRING (SIZE (3))

DdpSocketAddress ::= -- 2 octets of net number
 -- in network byte order,
 -- 1 octet of node number,
-- 1 octet of socket number
-- (0..255)
OCTET STRING (SIZE (4))

ATName ::= -- 0 to 32 octets of AppleTalk
-- ASCII [Inside AppleTalk]
OCTET STRING (SIZE (0..32))

llap OBJECT IDENTIFIER ::= { appletalk 1 }
aarp OBJECT IDENTIFIER ::= { appletalk 2 }
atport OBJECT IDENTIFIER ::= { appletalk 3 }
ddp OBJECT IDENTIFIER ::= { appletalk 4 }
rtmp OBJECT IDENTIFIER ::= { appletalk 5 }
kip OBJECT IDENTIFIER ::= { appletalk 6 }
zipRouter OBJECT IDENTIFIER ::= { appletalk 7 }
nbp OBJECT IDENTIFIER ::= { appletalk 8 }
atecho OBJECT IDENTIFIER ::= { appletalk 9 }
atp OBJECT IDENTIFIER ::= { appletalk 10 }
pap OBJECT IDENTIFIER ::= { appletalk 11 }
asp OBJECT IDENTIFIER ::= { appletalk 12 }
adsp OBJECT IDENTIFIER ::= { appletalk 13 }
atportptop OBJECT IDENTIFIER ::= { appletalk 14 }
rtmpStub OBJECT IDENTIFIER ::= { appletalk 16 }
zipEndNode OBJECT IDENTIFIER ::= { appletalk 17 }
perPort OBJECT IDENTIFIER ::= { appletalk 18 }

-- The LLAP Group
--
-- Implementation of this group is mandatory for all
-- entities that implement LLAP
--
-- Notes for the interfaces group
--
-- When implementing the Interfaces Group of MIB-II, it is
-- suggested that the following values be used for any
-- LocalTalk interfaces:
-- ifMtu: 600
-- ifSpeed: 230000
-- ifPhysAddress: the one octet node number for the
-- particular interface
--
-- Note also that LLAP control packets should not be
-- included in the Interfaces Group packet or octet
-- counters.
llapTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LlapEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The list of LLAP entries."
 ::= { llap 1 }

llapEntry OBJECT-TYPE
 SYNTAX LlapEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An LLAP entry containing objects for the LocalTalk
 Link Access Protocol for a particular LocalTalk
 interface.

 As an example, an instance of the llapOutPkts object
 might be named llapOutPkts.1"
 INDEX { llapIfIndex }
 ::= { llapTable 1 }

LlapEntry ::= SEQUENCE {
 llapIfIndex INTEGER,
 llapInPkts Counter,
 llapOutPkts Counter,
 llapInNoHandlers Counter,
 llapInLengthErrors Counter,
 llapInErrors Counter,
 llapCollisions Counter,
 llapDefers Counter,
 llapNoDataErrors Counter,
 llapRandomCTSErrors Counter,
 llapFCSErrors Counter
}

llapIfIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The LLAP interface to which this entry pertains.
 The interface identified by a particular value of
 this index is the same interface as identified
 by the same value of ifIndex."
 ::= { llapEntry 1 }
llapInPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS deprecated
DESCRIPTION
"The total number of good data packets received on this LocalTalk interface."
::= { llapEntry 2 }

-- this object has been deprecated because it duplicates the
-- sum of the MIB-II variables ifInUcastPkts and
-- ifInNUcastPkts

llapOutPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS deprecated
DESCRIPTION
"The total number of data packets transmitted on this LocalTalk interface."
::= { llapEntry 3 }

-- this object has been deprecated because it duplicates the
-- sum of the MIB-II variables ifOutUcastPkts and
-- ifOutNUcastPkts

llapInNoHandlers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS deprecated
DESCRIPTION
"The total number of good packets received on this LocalTalk interface for which there was no protocol handler."
::= { llapEntry 4 }

llapInLengthErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets received on this LocalTalk interface whose actual length did not match the length in the header."
::= { llapEntry 5 }
-- this object has been deprecated because it duplicates the
-- MIB-II variable ifInErrors

llapInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS deprecated
DESCRIPTION
"The total number of packets containing errors received
on this LocalTalk interface."
::= { llapEntry 6 }

llapCollisions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of collisions assumed on this
LocalTalk interface due to the lack of a lapCTS reply."
::= { llapEntry 7 }

llapDefers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times this LocalTalk interface
deferred to other packets."
::= { llapEntry 8 }

llapNoDataErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times this LocalTalk interface
received a lapRTS packet and expected a data packet,
but did not receive any data packet."
::= { llapEntry 9 }

llapRandomCTSErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times this LocalTalk interface
received a lapCTS packet that was not solicited by a
lapRTS packet."
::= { llapEntry 10 }

llapFCSErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times this LocalTalk interface
received a packet with an FCS (Frame Check Sequence)
error."
::= { llapEntry 11 }

-- The AARP Group
--
-- Implementation of this group is mandatory for all entities
-- that implement AARP

aarpTable OBJECT-TYPE
SYNTAX SEQUENCE OF AarpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The AppleTalk Address Translation Table contains an
equivalence of AppleTalk Network Addresses to the link
layer physical address."
::= { aarpTable 1 }

AarpEntry ::= SEQUENCE {
aarpIfIndex INTEGER,
aarpPhysAddress OCTET STRING,
aarpNetAddress DdpNodeAddress,
aarpStatus INTEGER
}

Waldbusser & Frisa [Page 16]
aarpIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The interface on which this entry’s equivalence is effective. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex."
 ::= { aarpEntry 1 }

aarpPhysAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The media-dependent physical address."
 ::= { aarpEntry 2 }

aarpNetAddress OBJECT-TYPE
SYNTAX DdpNodeAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The AppleTalk Network Address corresponding to the media-dependent physical address."
 ::= { aarpEntry 3 }

aarpStatus OBJECT-TYPE
SYNTAX INTEGER {
 valid(1),
 invalid(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this AARP entry. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the aarpTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant aarpStatus object."
::= { aarpEntry 4 }

aarpLookups OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the AARP cache for this entity was searched."
 ::= { aarp 2 }

aarpHits OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times an entry was searched for and found in the AARP cache for this entity."
 ::= { aarp 3 }

-- The ATPort Group
--
-- Implementation of this group is mandatory for all entities that implement AppleTalk ports
--
-- Note that to be compliant with this group, all variables that have read-write access must be implemented as read-write.

atportTable OBJECT-TYPE
SYNTAX SEQUENCE OF AtportEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of AppleTalk ports for this entity."
 ::= { atport 1 }

atportEntry OBJECT-TYPE
SYNTAX AtportEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The description of one of the AppleTalk ports on this entity.

As an example, an instance of the atportNetFrom object might be named atportNetFrom.2"
INDEX { atportIndex }
::= { atportTable 1 }

AtportEntry ::= SEQUENCE {
atportIndex INTEGER,
atportDescr DisplayString,
atportType INTEGER,
atportNetStart ATNetworkNumber,
atportNetEnd ATNetworkNumber,
atportNetAddress DdpNodeAddress,
atportStatus INTEGER,
atportNetConfig INTEGER,
atportZoneConfig INTEGER,
atportZoneDefault ATName,
atportIfIndex INTEGER,
atportNetFrom DdpNodeAddress,
atportZoneFrom DdpNodeAddress,
atportInPkts Counter,
atportOutPkts Counter,
atportHome INTEGER,
atportCurrentZone ATName,
atportConflictPhysAddr OCTET STRING
}

atportIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A unique value for each AppleTalk port.
Its value is between 1 and the total number of
AppleTalk ports. The value for each port must
remain constant at least from the re-initialization
of the entity’s network management system to the
next re-initialization."
::= (atportEntry 1)

atportDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A text string containing information about the
port. This string is intended for presentation
to a human; it must not contain anything but printable
ASCII characters."
::= (atportEntry 2)
Several objects throughout the MIB key off of atportType to
determine the format of OCTET STRING addresses of peers.
The address formats are as follows:
- localtalk, ethertalk1, ethertalk2, tokentalk, iptalk,
- fddtalk, smdstalk, arctalk, and virtual take the
 format of DdpNodeAddress
- serialPPP: null OCTET STRING
- serialNonstandard: vendor specific
- aurp: see AURP MIB to determine format
- frameRelay: 32 bit DLCI in network byte order
 - (OCTET STRING (SIZE 4))
- x25: X121Address (see RFC 1382)
- ip: IP address (OCTET STRING (SIZE 4))
- osi: NSAP (OCTET STRING (SIZE 3..20))
- decnetIV: 6 bit area, 10 bit host in network byte order
 - (OCTET STRING (SIZE 2))
- arap: ???
- nonAppleTalk3Com: based on ifType
- ipx: 32 bit network number in network byte order
 followed by datalink address of host
- arns: 32 bit ARNS header
- hdlc: DdpNodeAddress or null OCTET STRING

atportType OBJECT-TYPE
SYNTAX INTEGER {
 other(1), -- none of the following
 localtalk(2),
 ethertalk1(3),
 ethertalk2(4),
 tokentalk(5),
 iptalk(6),
 serialPPP(7),
 serialNonstandard(8),
 virtual(9), -- an internal interface
 fddtalk(10),
 arctalk(11),
 smdstalk(12),
 aurp(13),
 frameRelay(14),
 x25(15),
 ip(16),
 osi(17),
 decnetIV(18),
 arap(19),
 isdnInThePacketMode(20),
 nonAppleTalk3Com(21),
 ipx(22),
 arns(23),
hdlc(24)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The type of port, distinguished by the protocol immediately below DDP in the protocol stack."
::= { atportEntry 3 }

atportNetStart OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The first AppleTalk network address in the range configured for this port. If this port is not a native AppleTalk port, this object shall have the value of two octets of zero."
::= { atportEntry 4 }

atportNetEnd OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The last AppleTalk network address in the range configured for this port. If the network to which this AppleTalk port is connected is a non-extended network, or if it is not a native AppleTalk port, the value for atportNetEnd shall be two octets of zero."
::= { atportEntry 5 }

atportNetAddress OBJECT-TYPE
SYNTAX DdpNodeAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The AppleTalk network address configured for this port. In addition, this value may be used as a hint for an initial node number used during node-finding. If this port is not a native AppleTalk port, this object shall have the value of three octets of zero."
::= { atportEntry 6 }

atportStatus OBJECT-TYPE
SYNTAX INTEGER {
 routing(1), --this port is fully configured & routing
unconfigured(2),
off(3),
invalid(4),
endNode(5), -- this port is acting as an end node
offDueToConflict(6), -- port is off due to
 -- configuration conflict
other(7) -- none of the states defined above
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The configuration status of this port.

Setting this object to the value invalid(4) has the
effect of invalidating the corresponding entry in the
atportTable. That is, it effectively disassociates the
mapping identified with said entry. It is an
implementation-specific matter as to whether the agent
removes an invalidated entry from the table.
Accordingly, management stations must be prepared to
receive from agents tabular information corresponding
to entries not currently in use. Proper
interpretation of such entries requires examination
of the relevant atportStatus object."
::= { atportEntry 7 }

atportNetConfig OBJECT-TYPE
SYNTAX INTEGER {
 conflictOrientedSeed(1), -- use configured network
 -- range even if it conflicts with another
 -- AppleTalk device
generated(2), -- acquire from another AppleTalk device
guessed(3), -- generate a "random" network range
unconfigured(4), -- no other value applies
conflictAverseSeed(5), -- use configured network
 -- range, but don’t come up if it conflicts
softSeed(6) -- attempt to use configured network
 -- range, but use network range from another
 -- router if our configuration conflicts
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of the network information for this port.
If this port is not a native AppleTalk port, this
object shall have the value unconfigured(4)."
::= { atportEntry 8 }
atportZoneConfig OBJECT-TYPE
SYNTAX INTEGER {
 conflictOrientedSeed(1), -- use configured zone
 -- information even if it conflicts with
 -- another AppleTalk device
 garnered(2), -- acquire from another AppleTalk device
 guessed(3), -- generate "random" zone information
 unconfigured(4), -- no other value applies
 conflictAverseSeed(5), -- use configured zone
 -- information, but don’t come up if it
 -- conflicts
 softSeed(6) -- attempt to use configured zone
 -- information, but use zone information
 -- from another router if our configuration
 -- conflicts
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of the zone information for this port.
If this port is not a native AppleTalk port, this
object shall have the value unconfigured(4)."
::= { atportEntry 9 }

atportZoneDefault OBJECT-TYPE
SYNTAX ATName
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The name of the default zone for this port. If
this port only has one zone, that zone is
represented here. If this port is not a native
AppleTalk port, this object shall contain an octet
string of zero length.

When this value is changed in a router, the router
must send a zipNotify packet on the associated
network."
::= { atportEntry 10 }

atportIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The physical interface associated with this
AppleTalk port. The interface identified by a
particular value of this index is the same interface
as identified by the same value of ifIndex.
::= { atportEntry 11 }

atportNetFrom OBJECT-TYPE
SYNTAX DdpNodeAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"When atportNetConfig is set to garnered(2), this
variable contains the DDP address of an entity from
which the AppleTalk network number was garnered.
When atportNetConfig is set to
conflictOrientedSeed(1), conflictAverseSeed(5),
or softSeed(6), this variable contains the DDP
address of an entity which confirmed or supplied our
AppleTalk network number, for example by replying to
a ZIP GetNetInfo request.

If atportNetConfig is set to guessed(3) or
unconfigured(4), or if the entity has not received
any network number confirmation, this variable
should be set to three octets of zero."
::= { atportEntry 12 }

atportZoneFrom OBJECT-TYPE
SYNTAX DdpNodeAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"When atportZoneConfig is set to garnered(2), this
variable contains the DDP address of an entity from
which the AppleTalk zone list was garnered.

When atportZoneConfig is set to
conflictOrientedSeed(1), conflictAverseSeed(5), or
softSeed(6), this variable contains the DDP address
of an entity which confirmed or supplied our
AppleTalk zone information, for example by replying
to a ZIP GetNetInfo request or a ZIP Query.

If atportZoneConfig is set to guessed(3) or
unconfigured(4), or if the entity has not received
any zone confirmation, this variable should be set
to three octets of zero."
::= { atportEntry 13 }
atportInPkts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of packets received by this entity on this port."
 ::= { atportEntry 14 }

atportOutPkts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of packets transmitted by this entity on this port."
 ::= { atportEntry 15 }

atportHome OBJECT-TYPE
 SYNTAX INTEGER {
 home(1),
 notHome(2)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "An indication of whether or not the entity is homed on this port, that is to say, a port on which the entity could perform NBP registrations for services that it chooses to advertise."
 ::= { atportEntry 16 }

atportCurrentZone OBJECT-TYPE
 SYNTAX ATName
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The current zone for the port. In general, this is the zone name in which services on this port will be registered. If this port is not a native AppleTalk port, this object shall contain an octet string of zero length. Note that modifications to this object do not affect the nbpTable."
 ::= { atportEntry 17 }

atportConflictPhysAddr OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-only
STATUS mandatory
DESCRIPTION
"The link-layer address of a device which caused this entity to set atportStatus to offDueToConflict(6). If this address is not available, or if the entity has not set atportStatus to offDueToConflict, this object shall be a zero length OCTET STRING."
::= { atportEntry 18 }

-- The atportZoneTable stores information about the zones associated with each port. The default zone for each port is stored in the port’s atportZoneDefault variable; all other zones for the port are listed in this table. If a port only has one zone, it should be stored in the port’s atportZoneDefault variable, and this table should be empty.

-- One of the indexes for this table is atportZoneName.
-- Even though AppleTalk zone name matches are case-insensitive, this table will store zone names regardless of case. SNMP Get, GetNext and Set operations are performed on these (potentially) mixed case strings according to the normal SNMP rules with the following caveat: in processing a SET request, the agent shall perform a case-insensitive search and a case-sensitive search. If the case-insensitive search matches and the case-sensitive search does not match, the "equivalent" zone name exists in another entry with a different capitalization and the SET request shall fail due to the name being inconsistent (SNMPv1 should return a genErr.) This insures that only one version of a zone name will appear in each agent, at the expense of forcing a management station to query using that exact name.

atportZoneTable OBJECT-TYPE
SYNTAX SEQUENCE OF AtportZoneEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of zone information for non-default zones on ports."
::= { atport 2 }

atportZoneEntry OBJECT-TYPE
SYNTAX AtportZoneEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"An entry of zone information for a port.

As an example, an instance of the atportZoneStatus
object might be named
atportZoneStatus.2.8.84.119.105.108.105.103.104.116"
INDEX { atportZonePort, atportZoneName }
::= { atportZoneTable 1 }

AtportZoneEntry ::= SEQUENCE {
atportZonePort INTEGER,
atportZoneName ATName (SIZE (1..32)),
atportZoneStatus INTEGER
}

atportZonePort OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An integer representing the port to which this zone
belongs. The port identified by a particular value
of this object is the same port as identified by the
same value of atportIndex."
::= { atportZoneEntry 1 }

atportZoneName OBJECT-TYPE
SYNTAX ATName (SIZE (1..32))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A zone name configured for the AppleTalk port
referred to in the corresponding entry of
atportZonePort.

When this value is changed in a router, the router
must send a zipNotify packet on the associated
network."
::= { atportZoneEntry 2 }

atportZoneStatus OBJECT-TYPE
SYNTAX INTEGER {
valid(1),
invalid(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this zone entry.

Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the atportZoneTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant atportZoneStatus object."

::= { atportZoneEntry 3 }

-- The DDP Group
--
-- Implementation of this group is mandatory for all
-- entities that implement DDP
--
-- This group consists of DDP variables that would be
-- implemented by either a router or an end node. The
-- following variables are included:
-- ddpOutRequests
-- ddpOutShorts
-- ddpOutLongs
-- ddpInReceives
-- ddpInLocalDatagrams
-- ddpNoProtocolHandlers
-- ddpTooShortErrors
-- ddpTooLongErrors
-- ddpShortDDPErrors
-- ddpChecksumErrors
-- ddpListenerTable
--
-- Note that the variables in this group are not numbered
-- sequentially. This was done so that it was not necessary
-- to deprecate variables from RFC 1243.

ddpOutRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of DDP datagrams which were supplied to DDP by local DDP clients in requests for
transmission. Note that this counter does not include any datagrams counted in ddpForwRequests.

::= { ddp 1 }

ddpOutShorts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The total number of short DDP datagrams which were transmitted from this entity."
::= { ddp 2 }

ddpOutLongs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The total number of long DDP datagrams which were transmitted from this entity."
::= { ddp 3 }

ddpInReceives OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The total number of input datagrams received by DDP, including those received in error."
::= { ddp 4 }

ddpInLocalDatagrams OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The total number of input DDP datagrams for which this entity was their final DDP destination."
::= { ddp 6 }

ddpNoProtocolHandlers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The total number of DDP datagrams addressed to this entity that were addressed to an upper layer protocol
for which no protocol handler existed.
::= { ddp 7 }

```
ddpTooShortErrors
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams dropped because the received data length was less than the data length specified in the DDP header or the received data length was less than the length of the expected DDP header."
::= { ddp 9 }
```

```
ddpTooLongErrors
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams dropped because they exceeded the maximum DDP datagram size."
::= { ddp 10 }
```

```
ddpShortDDPErrors
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams dropped because this entity was not their final destination and their type was short DDP."
::= { ddp 12 }
```

```
ddpChecksumErrors
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams for which this DDP entity was their final destination, and which were dropped because of a checksum error."
::= { ddp 14 }
```

```
ddpListenerTable
SYNTAX SEQUENCE OF DdpListenerEntry
ACCESS not-accessible
```
STATUS mandatory
DESCRIPTION
"The ddpListenerTable stores information for each
DDP socket that has a listener."
 ::= { ddp 15 }

ddpListenerEntry OBJECT-TYPE
SYNTAX DdpListenerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"This ddpListenerEntry contains information about a
particular socket that has a socket listener.

As an example, an instance of the ddpListenerStatus
object might be named ddpListenerStatus.0.80.220.1"
INDEX { ddpListenerAddress }
 ::= { ddpListenerTable 1 }

DdpListenerEntry ::= SEQUENCE {
 ddpListenerAddress DdpSocketAddress,
 ddpListenerInPkts Counter,
 ddpListenerStatus INTEGER
}

ddpListenerAddress OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DDP address that this socket listener is bound
to. If this socket listener isn’t bound to a
particular address, for instance if it is intended
for all interfaces, this object shall have the value
of three octets of zero followed by one octet of
socket number. The socket number must not equal
zero."
 ::= { ddpListenerEntry 1 }

ddpListenerInPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets received for this listener."
 ::= { ddpListenerEntry 2 }
ddpListenerStatus OBJECT-TYPE
 SYNTAX INTEGER {
 valid(1),
 invalid(2)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The status of this socket listener. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the ddpListenerTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant ddpListenerStatus object."
 ::= { ddpListenerEntry 3 }

-- The DDP Router Group
--
-- Implementation of this group is required for all routers
-- which implement DDP
--
-- This group consists of DDP variables that only a router
-- would implement. The following variables are included:
-- ddpForwRequests
-- ddpOutNoRoutes
-- ddpBroadcastErrors
-- ddpHopCountErrors
-- ddpForwardingTable
--
-- Note that the variables in this group are not numbered
-- sequentially. This was done so that variables from
-- RFC 1243 did not need to be deprecated.

ddpForwRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of input datagrams for which this entity was not their final DDP destination, as a result of
which an attempt was made to find a route to forward them to that final destination."
 ::= { ddp 5 }

ddpOutNoRoutes OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of DDP datagrams dropped because a route could not be found to their final destination."
 ::= { ddp 8 }

ddpBroadcastErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams dropped because this entity was not their final destination and they were addressed to the link level broadcast."
 ::= { ddp 11 }

ddpHopCountErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams dropped because this entity was not their final destination and their hop count would exceed 15."
 ::= { ddp 13 }

-- The ddpForwardingTable is a read-only table which shows the next hop that a datagram will take when being routed to a specific network. If a manager wishes to change data in this table via SNMP, he must change it in the MIB for the routing protocol itself (by incrementing hop counts, etc), rather than in this table. This table is derived by the managed entity from the information it receives from the routing protocols that it supports.
--
-- This table also shows the routing table from which the next hop was derived. When a MIB is written for an AppleTalk routing protocol, it should include the definition of an object identifier which will be used in the ddpForwardingProto variable defined here. (For example, a value for RIMP is defined as { ddp-forw-proto-oids 1 })
To look for a specific net N in this table, it is suggested that the management station perform a get-next query for ddpForwardingNetEnd.(N-1). This will retrieve the correct row if it exists in the table.

ddpForwardingTable OBJECT-TYPE
SYNTAX SEQUENCE OF DdpForwardingEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table of forwarding entries for DDP. This table contains a route for each AppleTalk network currently known to the entity."
 ::= { ddp 16 }

ddpForwardingEntry OBJECT-TYPE
SYNTAX DdpForwardingEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A forwarding entry for a particular AppleTalk network. As an example, an instance of the ddpForwardingPort object might be named ddpForwardingPort.0.90"
INDEX { ddpForwardingNetEnd }
 ::= { ddpForwardingTable 1 }

DdpForwardingEntry ::= SEQUENCE {
 ddpForwardingNetEnd ATNetworkNumber,
 ddpForwardingNetStart ATNetworkNumber,
 ddpForwardingNextHop OCTET STRING,
 ddpForwardingProto OBJECT IDENTIFIER,
 ddpForwardingModifiedTime TimeTicks,
 ddpForwardingUseCounts Counter,
 ddpForwardingPort INTEGER
}

ddpForwardingNetEnd OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The last network number in the network range matched by this forwarding entry. This will not be zero even if this corresponds to a non-extended
ddpForwardingNetStart OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The first network number in the network range matched by this forwarding entry."
::= { ddpForwardingEntry 1 }

ddpForwardingNextHop OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The next hop in the route to this entry’s destination network. The format of this address can be determined by examining the atportType corresponding to this entry."
::= { ddpForwardingEntry 2 }

ddpForwardingProto OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The routing mechanism by which this route was learned."
::= { ddpForwardingEntry 3 }

ddpForwardingModifiedTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the time of the last modification to this entry. The initial value of ddpForwardingModified time shall be the value of sysUpTime at the time the entry is created."
::= { ddpForwardingEntry 4 }

ddpForwardingUseCounts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this entry has been used to route a packet to the destination network. Note that this counter is not cleared when the corresponding ddpForwardingNextHop variable changes."

::= { ddpForwardingEntry 6 }

ddpForwardingPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The AppleTalk port through which ddpForwardingNextHop is reached. The interface identified by a particular value of this variable is the same interface as identified by the same value of atportIndex."

::= { ddpForwardingEntry 7 }

ddpForwProtoOids OBJECT IDENTIFIER ::= { ddp 17 }

-- The value to be assigned to ddpForwardingProto when the routing protocol is RTMP.
rtmpRoutingProto OBJECT IDENTIFIER ::= { ddpForwProtoOids 1 }

-- The value to be assigned to ddpForwardingProto when the routing protocol is KIP.
kipRoutingProto OBJECT IDENTIFIER ::= { ddpForwProtoOids 2 }

ddpForwardingTableOverflows OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the entity attempted to add an entry to the forwarding table but failed due to overflow."

::= { ddp 18 }

-- The RTMP Group
--
-- Implementation of this group is required for all routers
-- which implement RTMP

rtmpTable OBJECT-TYPE
SYNTAX SEQUENCE OF RtmpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "A list of Routing Table Maintenance Protocol entries for this entity."
::= { rtmp 1 }

rtmpEntry OBJECT-TYPE
SYNTAX RtmpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "The route entry to a particular network range.
 As an example, an instance of the rtmpPort object might be named rtmpPort.0.80"
INDEX { rtmpRangeStart }
::= { rtmpTable 1 }

RtmpEntry ::= SEQUENCE {
 rtmpRangeStart ATNetworkNumber,
 rtmpRangeEnd ATNetworkNumber,
 rtmpNextHop OCTET STRING,
 rtmpType INTEGER,
 rtmpPort INTEGER,
 rtmpHops INTEGER,
 rtmpState INTEGER
}

rtmpRangeStart OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The first DDP network address in the network range to which this routing entry pertains. This is a two octet DDP network address in network byte order."
::= { rtmpEntry 1 }

rtmpRangeEnd OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The last DDP network address in the network range to which this routing entry pertains. This is a two octet DDP network address in network byte order. If the network to which this routing entry pertains is
a non-extended network, the value for rtmpRangeEnd shall be two octets of zero.
::= { rtmpEntry 2 }

rtmpNextHop OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The next internet router in the route to this entry’s destination network. The format of this address can be determined by examining the atportType corresponding to this entry."
::= { rtmpEntry 3 }

rtmpType OBJECT-TYPE
SYNTAX INTEGER {
other(1),
appletalk(2),
serialPPP(3),
serialNonstandard(4)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The type of network over which this route points."
::= { rtmpEntry 4 }

rtmpPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The AppleTalk port over which this route points. The interface identified by a particular value of this variable is the same interface as identified by the same value of atportIndex."
::= { rtmpEntry 5 }

rtmpHops OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of hops required to reach the destination network to which this routing entry pertains."
::= { rtmpEntry 6 }
rtmpState OBJECT-TYPE
SYNTAX INTEGER {
 good(1),
 suspect(2),
 badZero(3),
 badOne(4),
 invalid(5)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of the information contained in this
route entry.

Setting this object to the value invalid(5) has the
effect of invalidating the corresponding entry in
the rtmpTable. That is, it effectively
disassociates the mapping identified with said
entry. It is an implementation-specific matter as
to whether the agent removes an invalidated entry
from the table. Accordingly, management stations
must be prepared to receive from agents tabular
information corresponding to entries not currently
in use. Proper interpretation of such entries
requires examination of the relevant rtmpState
object."
 ::= { rtmpEntry 7 }

rtmpInDataPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of good RTMP data packets
received by this entity."
 ::= { rtmp 2 }

rtmpOutDataPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of RTMP packets sent by this
entity."
 ::= { rtmp 3 }

rtmpInRequestPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of good RTMP Request packets received by this entity."
::= { rtmp 4 }

rtmpNextIREqualChanges OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of times RTMP changes the Next Internet Router in a routing entry because the hop count advertised in a routing tuple was equal to the current hop count for a particular network."
::= { rtmp 5 }

rtmpNextIRLessChanges OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of times RTMP changes the Next Internet Router in a routing entry because the hop count advertised in a routing tuple was less than the current hop count for a particular network."
::= { rtmp 6 }

rtmpRouteDeletes OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of times RTMP deletes a route because it was aged out of the table. This can help to detect routing problems."
::= { rtmp 7 }

rtmpRoutingTableOverflows OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times RTMP attempted to add a route to the RTMP table but failed due to lack of space."
::= { rtmp 8 }
-- The RTMP Stub Group
--
-- Implementation of this group is mandatory for all
-- entities that implement RTMP
--
-- It is intended that this group be implemented by routers
-- and end nodes.

rtmpOutRequestPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of RTMP Request packets sent
by this entity."
 ::= { rtmpStub 1 }

rtmpInVersionMismatches OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of RTMP packets received by
this entity that were rejected due to a version
mismatch."
 ::= { rtmpStub 2 }

rtmpInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of RTMP packets received by
this entity that were rejected for an error other
than version mismatch."
 ::= { rtmpStub 3 }

-- The KIP Group
--
-- Implementation of this group is mandatory for all
-- entities that implement KIP

kipTable OBJECT-TYPE
SYNTAX SEQUENCE OF KipEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of routing information for KIP networks."
::= { kip 1 }

kipEntry OBJECT-TYPE
SYNTAX KipEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry in the routing table for KIP networks.

As an example, an instance of the kipCore object
might be named kipCore.0.80"
INDEX { kipNetStart }
::= { kipTable 1 }

KipEntry ::= SEQUENCE {
 kipNetStart ATNetworkNumber,
 kipNetEnd ATNetworkNumber,
 kipNextHop IpAddress,
 kipHopCount INTEGER,
 kipBCastAddr IpAddress,
 kipCore INTEGER,
 kipType INTEGER,
 kipState INTEGER,
 kipShare INTEGER,
 kipFrom IpAddress
}

kipNetStart OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The first AppleTalk network address in the range
for this routing entry. This address is a two octet
DDP network address in network byte order."
::= { kipEntry 1 }

kipNetEnd OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The last AppleTalk network address in the range for
this routing entry. This address is a two octet DDP
network address in network byte order. If the
network to which this AppleTalk port is connected is
a non-extended network, the value for kipNetEnd
shall be two octets of zero.
::= { kipEntry 2 }

kipNextHop OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The IP address of the next hop in the route to this entry’s destination network."
::= { kipEntry 3 }

kipHopCount OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The number of hops required to reach the destination network to which this entry pertains."
::= { kipEntry 4 }

kipBcastAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The form of the IP address used to broadcast on this network."
::= { kipEntry 5 }

kipCore OBJECT-TYPE
SYNTAX INTEGER {
 core(1),
 notcore(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of kipNextHop as a core gateway."
::= { kipEntry 6 }

kipType OBJECT-TYPE
SYNTAX INTEGER {
 kipRouter(1),
 net(2),
 host(3),
 other(4),
 async(5)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The type of the entity that this route points to."
::= { kipEntry 7 }

kipState OBJECT-TYPE
SYNTAX INTEGER {
 configured(1), -- this entry is not aged
 learned(2),
 invalid(3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The state of this network entry.

Setting this object to the value invalid(3) has the effect of invalidating the corresponding entry in the kipTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant kipState object."
::= { kipEntry 8 }

kipShare OBJECT-TYPE
SYNTAX INTEGER {
 shared(1),
 private(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"If the information in this entry is propagated to other routers as part of the AA routing protocol, the value of this variable is equal to shared(1). Otherwise its value is private(2)."
::= { kipEntry 9 }

kipFrom OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The IP address from which the routing entry was
learned via the AA protocol. If this entry was not
created via the AA protocol, it should contain IP
address 0.0.0.0."
 ::= { kipEntry 10 }

-- The ZIP Router Group

-- Implementation of this group is required for all routers
-- which implement ZIP

-- This group consists of ZIP variables that would be
-- implemented by a router.

zipTable OBJECT-TYPE
SYNTAX SEQUENCE OF ZipEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of zone information for reachable
AppleTalk networks."
 ::= { zipRouter 1 }

zipEntry OBJECT-TYPE
SYNTAX ZipEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An entry of zone information for a particular zone
and network combination.

As an example, an instance of the zipZoneState object
might be named zipZoneState.0.80.4"
INDEX { zipZoneNetStart, zipZoneIndex }
 ::= { zipTable 1 }

ZipEntry ::= SEQUENCE {
 zipZoneName ATName,
 zipZoneIndex INTEGER,
 zipZoneNetStart ATNetworkNumber,
 zipZoneNetEnd ATNetworkNumber,
 zipZoneState INTEGER,
 zipZoneFrom OCTET STRING,
 zipZonePort INTEGER
}
zipZoneName OBJECT-TYPE
SYNTAX AIName
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The zone name of this entry. This is stored in
Mac ASCII format. If the full zone list for the
entry is not known, the value for zipZoneName shall
be a zero length octet string."
::= { zipEntry 1 }

zipZoneIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An integer that is unique to the zipZoneName that
is present in this entry. For any given zone name,
every zipEntry that has an equal zone name will have
the same zipZoneIndex. When a zone name is
discovered which is not currently in the table, it
will be assigned an index greater than any
previously assigned index."
::= { zipEntry 2 }

zipZoneNetStart OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The network that starts the range for this entry.
This address is a two octet DDP network address in
network byte order."
::= { zipEntry 3 }

zipZoneNetEnd OBJECT-TYPE
SYNTAX ATNetworkNumber
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The network that ends the range for this entry.
This address is a two octet DDP network address in
network byte order. If the network to which this
zip entry pertains is a non-extended network, the
value for zipZoneNetEnd shall be two octets of
zero."
::= { zipEntry 4 }
zipZoneState OBJECT-TYPE
 SYNTAX INTEGER {
 valid(1),
 invalid(2)
 } ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The state of this zip entry.

 Setting this object to the value invalid(2) has the
effect of invalidating the corresponding entry in
the zipTable. That is, it effectively
disassociates the mapping identified with said
entry. It is an implementation-specific matter as
to whether the agent removes an invalidated entry
from the table. Accordingly, management stations
must be prepared to receive from agents tabular
information corresponding to entries not currently
in use. Proper interpretation of such entries
requires examination of the relevant zipZoneState
object."

::= { zipEntry 5 }

zipZoneFrom OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The address from which this zone name to network
 number mapping was learned. The format of this
 address can be determined by examining the
 atportType corresponding to this entry. When this
 mapping is learned from the entity itself, this
 object shall have the value of three
 octets of zero."

::= { zipEntry 6 }

zipZonePort OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The AppleTalk port through which this zone name to
 network number mapping was learned. The interface
 identified by a particular value of this variable is
 the same interface as identified by the same value
 of atportIndex."
::= { zipEntry 7 }

zipInZipQueries OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of ZIP Queries received by this entity."
 ::= (zipRouter 2)

zipInZipReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of ZIP Replies received by this entity."
 ::= (zipRouter 3)

zipInZipExtendedReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of ZIP Extended Replies received by this entity."
 ::= (zipRouter 4)

zipZoneConflictErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of times a conflict has been detected between this entity’s zone information and another entity’s zone information."
 ::= (zipRouter 5)

zipInObsoletes OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of ZIP Takedown or ZIP Bringup packets received by this entity. Note that as the ZIP Takedown and ZIP Bringup packets have been obsoleted, the receipt of one of these packets indicates that a node sent it in error."
 ::= (zipRouter 6)
-- The zipRouterNetInfoTable is used to record information
-- about zipGetNetInfo and zipGetNetInfo Reply packets that
-- were received on each port for a router. This table
-- augments the atportTable.

zipRouterNetInfoTable OBJECT-TYPE
SYNTAX SEQUENCE OF ZipRouterNetInfoEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of Net Info packets received by each port
on this entity."
::= { zipRouter 7 }

zipRouterNetInfoEntry OBJECT-TYPE
SYNTAX ZipRouterNetInfoEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The description of the Net Info packets received on
a particular port on this entity. One such entry
shall exist for each atport on this router entity.

As an example, an instance of the zipInGetNetInfos
object might be named zipInGetNetInfos.2"
INDEX { atportIndex }
::= { zipRouterNetInfoTable 1 }

ZipRouterNetInfoEntry ::= SEQUENCE {
 zipInGetNetInfos Counter,
 zipOutGetNetInfoReplies Counter,
 zipZoneOutInvalids Counter,
 zipAddressInvalids Counter
}

zipInGetNetInfos OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ZIP GetNetInfo packets received on
this port by this entity."
::= { zipRouterNetInfoEntry 1 }

zipOutGetNetInfoReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ZIP GetNetInfo Reply packets sent out
this port by this entity."
::= { zipRouterNetInfoEntry 2 }

zipZoneOutInvalids OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this entity has sent a ZIP
GetNetInfo Reply with the zone invalid bit set in
response to a GetNetInfo Request with an invalid
zone name."
::= { zipRouterNetInfoEntry 3 }

zipAddressInvalids OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this entity had to broadcast a
ZIP GetNetInfo Reply because the GetNetInfo Request
had an invalid address."
::= { zipRouterNetInfoEntry 4 }

-- The ZIP End Node Group
--
-- Implementation of this group is mandatory for all entities
-- that implement ZIP
--
-- This group consists of ZIP variables that would be
-- implemented by either a router or an end node.
--
-- The zipNetInfoTable is used to record information about
-- zipGetNetInfo and zipGetNetInfo Reply packets that were
-- received on each port of an entity. This table augments
-- the atportTable.

zipNetInfoTable OBJECT-TYPE
SYNTAX SEQUENCE OF ZipNetInfoEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of Net Info packets received by each port
on this entity."
::= { zipEndNode 1 }
zipNetInfoEntry OBJECT-TYPE
SYNTAX ZipNetInfoEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The description of the Net Info packets received on
a particular port on this entity. One such entry
shall exist for each atport on this entity.

As an example, an instance of the zipOutGetNetInfos
object might be named zipOutGetNetInfos.2"
INDEX { atportIndex }
::= { zipNetInfoTable 1 }

ZipNetInfoEntry ::= SEQUENCE {
zipOutGetNetInfos Counter,
zipInGetNetInfoReplies Counter,
zipZoneInInvalids Counter
}

zipOutGetNetInfos OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ZIP GetNetInfo packets sent out this
port by this entity."
::= { zipNetInfoEntry 1 }

zipInGetNetInfoReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ZIP GetNetInfo Reply packets received
on this port by this entity."
::= { zipNetInfoEntry 2 }

zipZoneInInvalids OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this entity has received a ZIP
GetNetInfo Reply with the zone invalid bit set
because the corresponding GetNetInfo Request had an
invalid zone name."
::= { zipNetInfoEntry 3 }
zipInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ZIP packets received by this entity that were rejected for any error."
::= { zipEndNode 2 }

-- The NBP Group

-- Implementation of this group is mandatory for all entities that implement NBP

nbpTable OBJECT-TYPE
SYNTAX SEQUENCE OF NbpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of NBP services registered on this entity."
::= { nbp 1 }

nbpEntry OBJECT-TYPE
SYNTAX NbpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The description of an NBP service registered on this entity.

As an example, an instance of the nbpZone object might be named nbpZone.2"
INDEX { nbpIndex }
::= { nbpTable 1 }

NbpEntry ::= SEQUENCE {
 nbpIndex INTEGER,
 nbpObject ATName (SIZE (1..32)),
 nbpType ATName (SIZE (1..32)),
 nbpZone ATName,
 nbpState INTEGER,
 nbpAddress DdpSocketAddress,
 nbpEnumerator INTEGER (0..255)
}

nbpIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The index of this NBP entry. This index is unique with respect to the indexes of all other NBP entries, and shall remain constant throughout the lifetime of this object."
 ::= { nbpEntry 1 }

nbpObject OBJECT-TYPE
SYNTAX ATName (SIZE (1..32))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The name of the service described by this entity. When this variable is changed, the entity should perform an NBP registration using the new nbpObject."
 ::= { nbpEntry 2 }

nbpType OBJECT-TYPE
SYNTAX ATName (SIZE (1..32))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The type of the service described by this entity. When this variable is changed, the entity should perform an NBP registration using the new nbpType."
 ::= { nbpEntry 3 }

nbpZone OBJECT-TYPE
SYNTAX ATName
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The zone the service described by this entity is registered in. This must be the actual zone name, without any wildcard characters. When this variable is changed, the entity should perform an NBP registration using the new nbpZone."
 ::= { nbpEntry 4 }

nbpState OBJECT-TYPE
SYNTAX INTEGER {
 valid(1),
 registering(2), -- attempting to register the service registrationFailed(3),
 invalid(4)
 }
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The state of this NBP entry.
When the registration for an entry in the nbpTable fails, it is an implementation-specific matter as to how long the entry will remain in the registrationFailed(3) state before moving to the invalid(4) state. Note that the entry may pass immediately from the registrationFailed state to the invalid state.

Setting this object to the value invalid(4) has the effect of invalidating the corresponding entry in the nbpTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant nbpState object."

 ::= { nbpEntry 5 }

nbpAddress OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The DDP network, node, and socket number of this entity. If this is unspecified, for instance if the registration is on all ports of a multiport device, this object shall have the value of three octets of zero, followed by one octet of socket number."

 ::= { nbpEntry 6 }

nbpEnumerator OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The enumerator assigned to this entity."

 ::= { nbpEntry 7 }

nbpInLookUpRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP LookUp Requests received."
::= { nbp 2 }
nbpInLookUpReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP LookUp Replies received."
::= { nbp 3 }
nbpInBroadcastRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP Broadcast Requests received."
::= { nbp 4 }
nbpInForwardRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP Forward Requests received."
::= { nbp 5 }
nbpOutLookUpReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP LookUp Replies sent."
::= { nbp 6 }
nbpRegistrationFailures OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this node experienced a failure in attempting to register an NBP entity."
::= { nbp 7 }
nbpInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP packets received by this entity
that were rejected for any error."
 ::= { nbp 8 }

-- The ATEcho Group
--
-- Implementation of this group is mandatory for all
-- entities that implement ATEcho

atechoRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of AppleTalk Echo requests received."
 ::= { atecho 1 }

atechoReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of AppleTalk Echo replies sent."
 ::= { atecho 2 }

atechoOutRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of AppleTalk Echo requests sent."
 ::= { atecho 3 }

atechoInReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of AppleTalk Echo replies received."
 ::= { atecho 4 }
RFC 1742

AppleTalk MIB II

January 1995

-- The ATP Group

-- Implementation of this group is mandatory for all entities
-- that implement ATP

atpInPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ATP packets received by this entity."
::= { atp 1 }

atpOutPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ATP packets sent by this entity."
::= { atp 2 }

atpRequestRetransmissions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times that a timeout occurred and a
Transaction Request packet needed to be
retransmitted by this host."
::= { atp 3 }

atpResponseRetransmissions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times a timeout was detected and a
Transaction Response packet needed to be
retransmitted by this host."
::= { atp 4 }

atpReleaseTimerExpiredCounts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the release timer expired, as a
result of which a Request Control Block had to be
atpRetryCountExceededs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the retry count was exceeded, and an error was returned to the client of ATP."
 ::= { atp 5 }

atpListenerTable OBJECT-TYPE
SYNTAX SEQUENCE OF AtpListenerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The atpListenerTable stores information for each ATP socket that has a listener."
 ::= { atp 6 }

AtpListenerEntry ::= SEQUENCE {
 atpListenerAddress DdpSocketAddress,
 atpListenerStatus INTEGER
}

atpListenerAddress OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The DDP address that this socket listener is bound to. If this socket listener isn’t bound to a particular address, for instance if it is intended for all interfaces, this object shall have the value
of three octets of zero followed by one octet of
socket number."
 ::= { atpListenerEntry 1 }

atpListenerStatus OBJECT-TYPE
 SYNTAX INTEGER {
 valid(1),
 invalid(2)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The status of this socket.
 Setting this object to the value invalid(2) has the
effect of invalidating the corresponding entry in
the atpListenerTable. That is, it effectively
disassociates the mapping identified with said
entry. It is an implementation-specific matter as
to whether the agent removes an invalidated entry
from the table. Accordingly, management stations
must be prepared to receive from agents tabular
information corresponding to entries not currently
in use. Proper interpretation of such entries
requires examination of the relevant
atpListenerStatus object."
 ::= { atpListenerEntry 2 }

-- The PAP group
--
-- Implementation of this group is mandatory for all entities
-- that implement PAP

papInOpenConns OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of PAP Open Connection requests received
 by this entity."
 ::= { pap 1 }

papOutOpenConns OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
"The number of PAP Open Connection requests sent by
this entity."
::= { pap 2 }

papInDatas OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of PAP Data messages received by
this entity."
::= { pap 3 }

papOutDatas OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of PAP Data messages sent by
this entity."
::= { pap 4 }

papInCloseConns OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of PAP Close Connection requests
received by this entity."
::= { pap 5 }

papOutCloseConns OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of PAP Close Connection requests sent by
this entity."
::= { pap 6 }

papTickleTimeoutCloses OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the PAP entity on this node
closed a connection because it didn’t receive a
Tickle message before its timer expired."
::= { pap 7 }

papServerTable OBJECT-TYPE
SYNTAX SEQUENCE OF PapServerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of servers on this entity that are accessible through the Printer Access Protocol."
::= { pap 8 }

papServerEntry OBJECT-TYPE
SYNTAX PapServerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of information about a particular PAP server's configuration and performance. As an example, an instance of the papServerStatus object might be named papServerStatus.1"
INDEX { papServerIndex }
::= { papServerTable 1 }

PapServerEntry ::= SEQUENCE {
 papServerIndex INTEGER,
 papServerListeningSocket DdpSocketAddress,
 papServerStatus DisplayString,
 papServerCompletedJobs Counter,
 papServerBusyJobs INTEGER,
 papServerFreeJobs INTEGER,
 papServerAuthenticationFailures Counter,
 papServerAccountingFailures Counter,
 papServerGeneralFailures Counter,
 papServerState INTEGER,
 papServerLastStatusMsg DisplayString
}

papServerIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An unique value for each Printer Access Protocol Server."
::= { papServerEntry 1 }
papServerListeningSocket OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
 "The Server Listening Socket that this PAP server is
listening on."
 ::= { papServerEntry 2 }

papServerStatus OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The status string of this server. This is the
message as it would appear in a PAP Status Reply
from this server."
 ::= { papServerEntry 3 }

papServerCompletedJobs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of jobs that have been accepted and
successfully executed by this server."
 ::= { papServerEntry 4 }

papServerBusyJobs OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The number of GetNextJob calls that have accepted
and are currently executing a job."
 ::= { papServerEntry 5 }

papServerFreeJobs OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The minimum number of GetNextJob calls that are
currently waiting for a job."
 ::= { papServerEntry 6 }
papServerAuthenticationFailures OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this PAP server rejected a job because the job was not correctly authenticated."
::= { papServerEntry 7 }

papServerAccountingFailures OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this PAP server rejected a job because the job did not fit some accounting rule, such as exceeding a quota."
::= { papServerEntry 8 }

papServerGeneralFailures OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this PAP server rejected a job for some reason other than authentication or accounting failures."
::= { papServerEntry 9 }

papServerState OBJECT-TYPE
SYNTAX INTEGER {
 valid(1),
 invalid(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The state of this PAP Server entry.

 Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the papServerTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently
in use. Proper interpretation of such entries requires examination of the relevant papServerState object.

\[
\text{ ::= (papServerEntry 10)}
\]

\[
papServerLastStatusMsg \text{ OBJECT-TYPE}
\]
\[
\text{ SYNTHAX DisplayString} \\
\text{ ACCESS read-only} \\
\text{ STATUS mandatory} \\
\text{ DESCRIPTION}
\]
\[
"\text{The last status message that was transmitted by this server.}" \\
\text{ ::= (papServerEntry 11)}
\]

-- The ASP Group
--
-- Implementation of this group is mandatory for all entities that implement ASP

\[
aspInputTransactions \text{ OBJECT-TYPE}
\]
\[
\text{ SYNTHAX Counter} \\
\text{ ACCESS read-only} \\
\text{ STATUS mandatory} \\
\text{ DESCRIPTION}
\]
\[
"\text{The number of ASP requests and replies received by this entity. Note that this is not necessarily the number of packets containing ASP transactions.}" \\
\text{ ::= (asp 1)}
\]

\[
aspOutputTransactions \text{ OBJECT-TYPE}
\]
\[
\text{ SYNTHAX Counter} \\
\text{ ACCESS read-only} \\
\text{ STATUS mandatory} \\
\text{ DESCRIPTION}
\]
\[
"\text{The number of ASP requests and replies sent by this entity. Note that this is not necessarily the number of packets containing ASP transactions.}" \\
\text{ ::= (asp 2)}
\]

\[
aspInOpenSessions \text{ OBJECT-TYPE}
\]
\[
\text{ SYNTHAX Counter} \\
\text{ ACCESS read-only} \\
\text{ STATUS mandatory} \\
\text{ DESCRIPTION}
\]
\[
"\text{The number of ASP Open Session requests and replies received by this entity.}" \\
\text{ ::= (asp 3)}
\]
aspOutOpenSessions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of ASP Open Session requests and replies
 sent by this entity."
 ::= { asp 4 }

aspInCloseSessions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of ASP Close Session requests and replies
 received by this entity."
 ::= { asp 5 }

aspOutCloseSessions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of ASP Close Session requests and replies
 sent by this entity."
 ::= { asp 6 }

aspNoMoreSessionsErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of times an error condition was returned
 because this server implementation could not support
 another session."
 ::= { asp 7 }

aspTickleTimeOutCloses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of times the ASP entity on this node
 closed a connection because it didn’t receive any
 messages from the remote end before its timer
 expired."
 ::= { asp 8 }
aspConnTable OBJECT-TYPE
SYNTAX SEQUENCE OF AspConnEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of ASP connections on this entity."
 ::= { asp 9 }

aspConnEntry OBJECT-TYPE
SYNTAX AspConnEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of information describing an ASP connection."

As an example, an instance of the aspConnState object
might be named
aspConnState.0.80.220.135.0.80.239.119.12"
INDEX { aspConnLocalAddress, aspConnRemoteAddress,
aspConnID }
 ::= { aspConnTable 1 }

AspConnEntry ::= SEQUENCE {
 aspConnLocalAddress DdpSocketAddress,
 aspConnRemoteAddress DdpSocketAddress,
 aspConnID INTEGER (1..255),
 aspConnLastReqNum INTEGER (1..65535),
 aspConnServerEnd INTEGER,
 aspConnState INTEGER
}

aspConnLocalAddress OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The local address of this ASP connection."
 ::= { aspConnEntry 1 }

aspConnRemoteAddress OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The remote address of this ASP connection. If
this entry is in the listening mode, this object
shall have a value of four octets of zero."
 ::= { aspConnEntry 2 }
aspConnID OBJECT-TYPE
SYNTAX INTEGER (1..255)
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The remote Connection ID of this ASP connection. If this entry is in the listening mode, this object shall have a value of zero."
::= { aspConnEntry 3 }

aspConnLastReqNum OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The last request number on this ASP connection. If this entry is in the listening mode, this object shall have a value of zero."
::= { aspConnEntry 4 }

aspConnServerEnd OBJECT-TYPE
SYNTAX INTEGER {
 sss(1), -- Server Session Socket
 wss(2), -- Workstation Session Socket
 sls(3) -- Server Listening Socket
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Specifies what mode the local session end is in."
::= { aspConnEntry 5 }

aspConnState OBJECT-TYPE
SYNTAX INTEGER {
 open(1),
 closed(2),
 invalid(3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The state of this ASP connection. Setting this object to the value invalid(3) has the effect of invalidating the corresponding entry in the aspConnTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table."
Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant aspConnState object."

 ::= { aspConnEntry 6 }

-- The ADSP Group
--
-- Implementation of this group is mandatory for all entities
-- that implement ADSP

adspInPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ADSP packets received by this entity."
 ::= { adsp 1 }

adspOutPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ADSP packets sent by this entity."
 ::= { adsp 2 }

adspInOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of data octets contained in ADSP packets received by this entity. Note that this does not include EOM bits."
 ::= { adsp 3 }

adspOutOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of data octets contained in ADSP packets sent by this entity. Note that this does not include EOM bits."
::= { adsp 4 }

adspInDataPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of ADSP data packets this entity has received."
 ::= { adsp 5 }

adspOutDataPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of ADSP data packets this entity has sent."
 ::= { adsp 6 }

adspTimeoutErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the ADSP on this entity detected an expired connection timer."
 ::= { adsp 7 }

adspTimeoutCloseErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the ADSP on this entity closed a connection because of too many timeouts."
 ::= { adsp 8 }

adspConnTable OBJECT-TYPE
SYNTAX SEQUENCE OF AdspConnEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of ADSP connections on this entity."
 ::= { adsp 9 }

adspConnEntry OBJECT-TYPE
SYNTAX AdspConnEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of information describing an ADSP connection.
As an example, an instance of the adspConnState object
might be named
adspConnState.0.80.220.7.0.80.239.142.31231"
INDEX { adspConnLocalAddress, adspConnRemoteAddress,
adspConnLocalConnID }
 ::= { adspConnTable 1 }

AdspConnEntry ::= SEQUENCE {
adspConnLocalAddress DdpSocketAddress,
adspConnLocalConnID INTEGER (0..65535),
adspConnRemoteAddress DdpSocketAddress,
adspConnRemoteConnID INTEGER (0..65535),
adspConnState INTEGER
}

adspConnLocalAddress OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The local DDP address of this ADSP connection."
 ::= { adspConnEntry 1 }

adspConnLocalConnID OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The local Connection ID of this ADSP connection. If
this entry specifies an ADSP listener, this value
shall be zero."
 ::= { adspConnEntry 2 }

adspConnRemoteAddress OBJECT-TYPE
SYNTAX DdpSocketAddress
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The remote DDP address of this ADSP connection. If
this entry specifies an ADSP listener, this value
shall be zero."
 ::= { adspConnEntry 3 }

adspConnRemoteConnID OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
 "The remote Connection ID of this ADSP connection. If this entry specifies an ADSP listener, this value shall be zero."
 ::= { adspConnEntry 4 }

adspConnState OBJECT-TYPE
SYNTAX INTEGER{
 open(1),
 localHalfOpen(2),
 remoteHalfOpen(3),
 listening(4),
 closed(5),
 invalid(6)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
 "The state of this ADSP connection. The state is open if both ends are established. If only one end is established, then the state is half-open. If neither end is established, then the state is closed. If an ADSP server is listening on a socket and is not yet connected, its state is set to listening, and the adspConnRemoteAddress, adspConnRemoteSocket, adspConnRemoteConnID, and adspConnRemoteWindowSize are all set to zero.

Setting this object to the value invalid(6) has the effect of invalidating the corresponding entry in the adspConnTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant adspConnState object."
 ::= { adspConnEntry 5 }
-- The ATPortPtoP Group
--
-- Implementation of this group is mandatory for all entities
-- that implement AppleTalk point-to-point links

atportPtoPTable OBJECT-TYPE
SYNTAX SEQUENCE OF AtportPtoPEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "A list of AppleTalk point-to-point connections for
this entity."
::= { atportptop 1 }

atportPtoPEntry OBJECT-TYPE
SYNTAX AtportPtoPEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "The description of one of the AppleTalk
point-to-point connections on this entity.

As an example, an instance of the
atportPtoPRemoteAddress object might be named
atportPtoPRemoteAddress.2"
INDEX { atportPtoPIndex }
::= { atportPtoPTable 1 }

AtportPtoPEntry ::= SEQUENCE {
atportPtoPIndex INTEGER,
atportPtoPProtocol OBJECT IDENTIFIER,
atportPtoPRemoteName DisplayString,
atportPtoPRemoteAddress OCTET STRING,
atportPtoPPortIndex INTEGER,
atportPtoPStatus INTEGER
}

atportPtoPIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
 "A unique value for each AppleTalk point-to-point
connection. Its value is between 1 and the total
number of AppleTalk point-to-point connections. The
value for each connection must remain constant at
least from the re-initialization of the entity’s
network management system to the next
atportPtoPProtocol OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The protocol type used over the point-to-point connection."
::= { atportPtoPEntry 2 }

atportPtoPRemoteName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A text string containing the network node name of the entity at the other end of the point-to-point link. If the name is unknown or undefined, then this string is zero length."
::= { atportPtoPEntry 3 }

atportPtoPRemoteAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The network address of the entity at the other end of the point-to-point link in network byte order. The format of this address can be determined by examining the atportType corresponding to this entry. If the address is unknown or undefined, then this string is zero length."
::= { atportPtoPEntry 4 }

atportPtoPPortIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The AppleTalk port associated with this point-to-point connection. The interface identified by a particular value of this index is the same interface as identified by the same value of atportIndex."
::= { atportPtoPEntry 5 }
atportPtoPStatus OBJECT-TYPE
SYNTAX INTEGER {
 valid(1),
 invalid(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this entry in the atportPtoPTable. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the atportPtoPTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant atportPtoPStatus object."
 ::= { atportPtoPEntry 6 }

atportPtoPPProtoOids OBJECT IDENTIFIER ::= { atportptop 2 } -- A list of values to be used for the atportPtoPPProtocol -- variable. -- When new protocols are defined, their oids may be defined -- in separate MIB documents in different branches of the tree.
pToPProtoOther OBJECT IDENTIFIER ::= { atportPtoPPProtoOids 1 } pToPProtoAurp OBJECT IDENTIFIER ::= { atportPtoPPProtoOids 2 } pToPProtoCaymanUdp OBJECT IDENTIFIER ::= { atportPtoPPProtoOids 3 } pToPProtoAtkvmsDecnetIV OBJECT IDENTIFIER ::= { atportPtoPPProtoOids 4 } pToPProtoLiaisonUdp OBJECT IDENTIFIER ::= { atportPtoPPProtoOids 5 } pToPProtoIpx OBJECT IDENTIFIER ::= { atportPtoPPProtoOids 6 } pToPProtoShivaIp OBJECT IDENTIFIER ::= { atportPtoPPProtoOids 7 }
-- The Per Port Counters Group
--
-- Implementation of this group is optional.

perPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF PerPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of per-port statistics for this entity."
::= { perPort 1 }

perPortEntry OBJECT-TYPE
SYNTAX PerPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The statistics available for a particular port on
this entity.

As an example, an instance of the perPortAarpInProbes
object might be named perPortAarpInProbes.2"
INDEX { atportIndex }
::= { perPortTable 1 }

PerPortEntry ::= SEQUENCE {
 perPortAarpInProbes Counter,
 perPortAarpOutProbes Counter,
 perPortAarpInReqs Counter,
 perPortAarpOutReqs Counter,
 perPortAarpInRsps Counter,
 perPortAarpOutRsps Counter,
 perPortDdpInReceives Counter,
 perPortDdpInLocalDatagrams Counter,
 perPortDdpNoProtocolHandlers Counter,
 perPortDdpTooShortErrors Counter,
 perPortDdpTooLongErrors Counter,
 perPortDdpChecksumErrors Counter,
 perPortDdpForwRequests Counter,
 perPortRtmpInDataPkts Counter,
 perPortRtmpOutDataPkts Counter,
 perPortRtmpInRequestPkts Counter,
 perPortRtmpRouteDeletes Counter,
 perPortZipInZipQueries Counter,
 perPortZipInZipReplies Counter,
 perPortZipInZipExtendedReplies Counter,
 perPortZipZoneConflictErrors Counter,
 perPortZipInErrors Counter,
}
perPortNbpInLookUpRequests Counter,
perPortNbpInLookUpReplies Counter,
perPortNbpInBroadcastRequests Counter,
perPortNbpInForwardRequests Counter,
perPortNbpOutLookUpReplies Counter,
perPortNbpRegistrationFailures Counter,
perPortNbpInErrors Counter,
perPortEchoRequests Counter,
perPortEchoReplies Counter

}\n
perPortAarpInProbes OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AARP Probe packets received
by this entity on this port."
::= { perPortEntry 1 }

perPortAarpOutProbes OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AARP Probe packets sent by
this entity on this port."
::= { perPortEntry 2 }

perPortAarpInReqs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AARP Request packets received
by this entity on this port."
::= { perPortEntry 3 }

perPortAarpOutReqs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AARP Request packets sent by
this entity on this port."
::= { perPortEntry 4 }
perPortAarpInRsps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AARP Response packets received by this entity on this port."
 ::= { perPortEntry 5 }

perPortAarpOutRsps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AARP Response packets sent by this entity on this port."
 ::= { perPortEntry 6 }

perPortDdpInReceives OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input datagrams received by DDP on this port, including those received in error."
 ::= { perPortEntry 7 }

perPortDdpInLocalDatagrams OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams on this port for which this entity was their final DDP destination."
 ::= { perPortEntry 8 }

perPortDdpNoProtocolHandlers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of DDP datagrams addressed to this entity on this port that were addressed to an upper layer protocol for which no protocol handler existed."
 ::= { perPortEntry 9 }
perPortDdpTooShortErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams on this port dropped because the received data length was less than the data length specified in the DDP header or the received data length was less than the length of the expected DDP header." ::= { perPortEntry 10 }

perPortDdpTooLongErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams on this port dropped because they exceeded the maximum DDP datagram size." ::= { perPortEntry 11 }

perPortDdpChecksumErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input DDP datagrams on this port for which this DDP entity was their final destination, and which were dropped because of a checksum error." ::= { perPortEntry 12 }

perPortDdpForwRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of input datagrams on this port for which this entity was not their final DDP destination, as a result of which an attempt was made to find a route to forward them to that final destination." ::= { perPortEntry 13 }

perPortRtmpInDataPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only

Waldbusser & Frisa

[Page 78]
STATUS mandatory
DESCRIPTION
 "A count of the number of good RTMP data packets received by this entity on this port."
 ::= { perPortEntry 14 }

perPortRtmpOutDataPkts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A count of the number of RTMP packets sent by this entity on this port."
 ::= { perPortEntry 15 }

perPortRtmpInRequestPkts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A count of the number of good RTMP Request packets received by this entity on this port."
 ::= { perPortEntry 16 }

perPortRtmpRouteDeletes OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A count of the number of times RTMP deletes a route on this port because it was aged out of the table."
 ::= { perPortEntry 17 }

perPortZipInZipQueries OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of ZIP Queries received by this entity on this port."
 ::= { perPortEntry 18 }

perPortZipInZipReplies OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
"The number of ZIP Replies received by this entity on this port."
::= { perPortEntry 19 }

perPortZipInZipExtendedReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ZIP Extended Replies received by this entity on this port."
::= { perPortEntry 20 }

perPortZipZoneConflictErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times a conflict has been detected on this port between this entity’s zone information and another entity’s zone information."
::= { perPortEntry 21 }

perPortZipInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ZIP packets received by this entity on this port that were rejected for any error."
::= { perPortEntry 22 }

perPortNbpInLookUpRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP LookUp Requests received on this port."
::= { perPortEntry 23 }

perPortNbpInLookUpReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP LookUp Replies received on this
perPortNbpInBroadcastRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP Broadcast Requests received on this port."
 ::= { perPortEntry 24 }

perPortNbpInForwardRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP Forward Requests received on this port."
 ::= { perPortEntry 25 }

perPortNbpOutLookUpReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP LookUp Replies sent on this port."
 ::= { perPortEntry 26 }

perPortNbpRegistrationFailures OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this node experienced a failure in attempting to register an NBP entity on this port."
 ::= { perPortEntry 28 }

perPortNbpInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of NBP packets received by this entity on this port that were rejected for any error."
 ::= { perPortEntry 29 }
perPortEchoRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of AppleTalk Echo requests received on this port."
 ::= { perPortEntry 30 }

perPortEchoReplies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of AppleTalk Echo replies received on this port."
 ::= { perPortEntry 31 }

END

6. Acknowledgments

This document was produced by the IETF AppleTalk-IP Working Group.

In addition, the contribution of the following individuals is also acknowledged:

Greg Bruell, Wellfleet
Phil Budne, Shiva
Robert Jeckell, 3Com
Greg Merrell, DEC
Greg Minshall, Novell, Inc.
Bob Morgan, Stanford University
Brad Parker, FCR
Marshall T. Rose, Dover Beach Consulting
Wayne Tackabury, Cayman
Jonathan Wenocur, Shiva
7. References

Security Considerations

Security issues are not discussed in this memo.

9. Authors’ Addresses

Steven Waldbusser
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

Phone: 412-268-6628
EMail: waldbusser@cmu.edu

Karen Frisa
FORE Systems, Inc.
174 Thorn Hill Road
Warrendale, PA 15086-7535

Phone: 412-772-6541
EMail: kfrisa@fore.com