IEEE 802.5 Station Source Routing MIB using SMIv2

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1. Introduction ... 1
2. The SNMPv2 Network Management Framework 2
2.1 Object Definitions 2
3. Overview .. 2
3.1 Source Routing ... 2
3.2 Relationship to RFC 1748 3
3.3 Relationship to RFC 1525 3
3.4 Static Source Routes 4
3.5 Destinations on the Local Ring 4
4. Definitions .. 4
5. Acknowledgements 8
6. References ... 8
7. Security Considerations 9
8. Authors’ Addresses 10

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects used by IEEE 802.5 end-stations for managing source routes on a Token Ring network where IEEE source-routing is in use. IEEE source-routing is described in 802.5 Token Ring Access Method and Physical Layer Specifications [8] and related ISO publications [9, 10, 11].

This memo is an incremental update to RFC 1748 [6]. It is documented separately from the RFC 1748 solely due to the latter’s maturity within the Internet standardization process.
2. The SNMPv2 Network Management Framework

The SNMPv2 Network Management Framework consists of four major components. They are:

- **RFC 1442** [1] which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management.

- **STD 17, RFC 1213** [2] defines MIB-II, the core set of managed objects for the Internet suite of protocols.

- **RFC 1445** [3] which defines the administrative and other architectural aspects of the framework.

- **RFC 1448** [4] which defines the protocol used for network access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

2.1. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

3. Overview

This memo defines a single table: the 802.5 Station Source Routing Table, which contains the source routes known by an end-station on an IEEE 802.5 Token Ring network in which IEEE source-routing is in use.

3.1. Source Routing

Source routing extends the 802.5 protocol [8] by assigning a unique ring number to each ring within the extended LAN, and a bridge number to each source routing bridge’s connection to a ring. A Routing Information Field (RIF) must be included in frames which need to traverse multiple rings. The format of the RIF is:
The format of the Routing Control (RC) field is:

```
+---------------+---------------+
|b b b l l l l l|d f f f 0 0 0 0|
```

^ ^ ^ ^
| | | +-- Max frame length*
Explorer indicator --+ | | Length of RIF field ---+-- Direction to use RDs

* Note that the length of the Maximum frame length subfield
has recently been extended to 6 bits.

The format of each Routing Descriptor (RD) field is:

```
+---------------+---------------+
|r r r r r r r r r i i i i|
```

^ <----- ring number ----> <------
bridge number --+

3.2. Relationship to RFC 1748

RFC 1748 [6], the IEEE 802.5 MIB, defines managed objects used for interfaces to IEEE 802.5 Token Ring subnetworks. This memo is an incremental update to RFC 1748, and is documented independently solely due to the maturity of the definitions contained within RFC 1748.

3.3. Relationship to RFC 1525

RFC 1525 [7] defines the MIB objects specific to source-routing and SRT bridges. This memo defines the MIB objects specific to source-routing for source-routing end-stations.
3.4. Static Source Routes

It is unclear how many, if any, existing systems allow the creation or deletion of "static" 802.5 source routes by network management. However, SNMPv2 SMI defines that the MAX-ACCESS clause as specifying the maximal level of access which makes "protocol sense". Thus, this memo provides support for static source routes through the dot5SrRouteStatus object, but the conformance statements allow for stations which do not support static source routes, by requiring that compliant agents only need provide read-access to dot5SrRouteStatus.

3.5. Destinations on the Local Ring

Entries should be included in the dot5SrRouteTable for destination MAC addresses which are on the same ring as the instrumented 802.5 interface. For such entries, dot5SrRouteDescr has the value of the zero-length string, and dot5SrRouteControl has the corresponding value.

4. Definitions

TOKENRING-STATION-SR-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE FROM SNMPv2-SMI
 TEXTUAL-CONVENTION, RowStatus, MacAddress FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
 mib-2, ifIndex FROM RFC1213-MIB;

dot5SrMIB MODULE-IDENTITY
 LAST-UPDATED "9412161000Z"
 ORGANIZATION "IETF Interfaces MIB Working Group"
 CONTACT-INFO
 "Keith McCloghrie
 Postal: Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 US

 Phone: +1 408 526 5260
 Email: kzm@cisco.com"
 DESCRIPTION
 "The MIB module for managing source routes in
 end-stations on IEEE 802.5 Token Ring networks."
 ::= { mib-2 42 }
dot5SrMIBObjects OBJECT IDENTIFIER ::= { dot5SrMIB 1 }

SourceRoute ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "lx:"
 STATUS current
 DESCRIPTION "Represents a Source Route, containing an embedded sequence of bridge and ring ID’s, as used by 802.5 Source Routing."
 SYNTAX OCTET STRING (SIZE(0..30))

The 802.5 Station Source Route Table

--

dot5SrRouteTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dot5SrRouteEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The table of source-routing routes. This represents the 802.5 RIF database."
 ::= { dot5SrMIBObjects 1 }

Dot5SrRouteEntry OBJECT-TYPE
 SYNTAX Dot5SrRouteEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "Information on a specific route.

An entry is created whenever a ‘Single Path Explorer’ or an ‘All Paths Explorer’ discovers a route to a neighbor not currently in the table, or whenever an ‘All Paths Explorer’ discovers a better (e.g., shorter) route than the route currently stored in the table. This is done on behalf of any network layer client.

The ifIndex value in the INDEX clause refers to the value of MIB-II’s ifIndex object for the interface on which the route is in effect."

INDEX { ifIndex, dot5SrRouteDestination }
 ::= { dot5SrRouteTable 1 }

Dot5SrRouteEntry ::= SEQUENCE {
dot5SrRouteDestination OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The destination of this route."
::= { dot5SrRouteEntry 2 }

dot5SrRouteControl OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(2))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of Routing Control field for this route."
::= { dot5SrRouteEntry 3 }

dot5SrRouteDescr OBJECT-TYPE
SYNTAX SourceRoute
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The embedded sequence of bridge and ring ID's for this route. For destinations on the local ring, the value of this object is the zero-length string."
::= { dot5SrRouteEntry 4 }

dot5SrRouteStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this row. Values of the instances of dot5SrRouteControl and dot5SrRouteDescr can be modified while the row’s status is ‘active.”
::= { dot5SrRouteEntry 5 }
RFC 1749 802.5 Station Source Routing MIB using SMIv2 December 1994

-- conformance information

dot5SrConformance OBJECT IDENTIFIER ::= { dot5SrMIB 2 }
dot5SrGroups OBJECT IDENTIFIER ::= { dot5SrConformance 1 }
dot5SrCompliances OBJECT IDENTIFIER ::= { dot5SrConformance 2 }

-- compliance statements

dot5SrCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMPv2 entities
which implement the IEEE 802.5 Station Source Route
MIB."

MODULE -- this module
MANDATORY-GROUPS { dot5SrRouteGroup }

OBJECT dot5SrRouteStatus
SYNTAX INTEGER { active(1) } -- subset of values
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only the 'active'
value need be supported."

OBJECT dot5SrRouteControl
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dot5SrRouteDescr
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

::= { dot5SrCompliances 1 }

-- units of conformance

dot5SrRouteGroup OBJECT-GROUP
OBJECTS { dot5SrRouteControl,
dot5SrRouteDescr,
dot5SrRouteStatus
}
STATUS current
DESCRIPTION

"A collection of objects providing for the management of source routes in stations on IEEE 802.5 source-routing networks."

::= { dot5SrGroups 1 }

END

5. Acknowledgements

The need for this MIB module was agreed upon by the members of the IETF Interfaces Working Group, and the definitions were derived from experience with enterprise-specific MIBs presented to the Working Group.

6. References

7. Security Considerations

Security issues are not discussed in this memo.
8. Authors’ Addresses

Keith McCloghrie
cisco Systems, Inc.
170 West Tasman Drive,
San Jose CA 95134-1706.
Phone: (408) 526-5260
EMail: kzm@cisco.com

Fred Baker
cisco Systems, Inc.
519 Lado Drive
Santa Barbara, CA 93111
Phone: (805) 681-0115
EMail: fred@cisco.com

Eric B. Decker
cisco Systems, Inc.
1525 O’Brien Dr.
Menlo Park, California 94025
Phone: (415) 688-8241
EMail: cire@cisco.com