
Network Working Group E. Nebel
Request For Comments: 1867 L. Masinter
Category: Experimental Xerox Corporation
 November 1995

 Form-based File Upload in HTML

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

1. Abstract

 Currently, HTML forms allow the producer of the form to request
 information from the user reading the form. These forms have proven
 useful in a wide variety of applications in which input from the user
 is necessary. However, this capability is limited because HTML forms
 don’t provide a way to ask the user to submit files of data. Service
 providers who need to get files from the user have had to implement
 custom user applications. (Examples of these custom browsers have
 appeared on the www-talk mailing list.) Since file-upload is a
 feature that will benefit many applications, this proposes an
 extension to HTML to allow information providers to express file
 upload requests uniformly, and a MIME compatible representation for
 file upload responses. This also includes a description of a
 backward compatibility strategy that allows new servers to interact
 with the current HTML user agents.

 The proposal is independent of which version of HTML it becomes a
 part.

2. HTML forms with file submission

 The current HTML specification defines eight possible values for the
 attribute TYPE of an INPUT element: CHECKBOX, HIDDEN, IMAGE,
 PASSWORD, RADIO, RESET, SUBMIT, TEXT.

 In addition, it defines the default ENCTYPE attribute of the FORM
 element using the POST METHOD to have the default value
 "application/x-www-form-urlencoded".

Nebel & Masinter Experimental [Page 1]

RFC 1867 Form-based File Upload in HTML November 1995

 This proposal makes two changes to HTML:

 1) Add a FILE option for the TYPE attribute of INPUT.
 2) Allow an ACCEPT attribute for INPUT tag, which is a list of
 media types or type patterns allowed for the input.

 In addition, it defines a new MIME media type, multipart/form-data,
 and specifies the behavior of HTML user agents when interpreting a
 form with ENCTYPE="multipart/form-data" and/or <INPUT type="file">
 tags.

 These changes might be considered independently, but are all
 necessary for reasonable file upload.

 The author of an HTML form who wants to request one or more files
 from a user would write (for example):

 <FORM ENCTYPE="multipart/form-data" ACTION="_URL_" METHOD=POST>

 File to process: <INPUT NAME="userfile1" TYPE="file">

 <INPUT TYPE="submit" VALUE="Send File">

 </FORM>

 The change to the HTML DTD is to add one item to the entity
 "InputType". In addition, it is proposed that the INPUT tag have an
 ACCEPT attribute, which is a list of comma-separated media types.

 ... (other elements) ...

 <!ENTITY % InputType "(TEXT | PASSWORD | CHECKBOX |
 RADIO | SUBMIT | RESET |
 IMAGE | HIDDEN | FILE)">
 <!ELEMENT INPUT - 0 EMPTY>
 <!ATTLIST INPUT
 TYPE %InputType TEXT
 NAME CDATA #IMPLIED -- required for all but submit and reset
 VALUE CDATA #IMPLIED
 SRC %URI #IMPLIED -- for image inputs --
 CHECKED (CHECKED) #IMPLIED
 SIZE CDATA #IMPLIED --like NUMBERS,
 but delimited with comma, not space
 MAXLENGTH NUMBER #IMPLIED
 ALIGN (top|middle|bottom) #IMPLIED
 ACCEPT CDATA #IMPLIED --list of content types
 >

Nebel & Masinter Experimental [Page 2]

https://tools.ietf.org/pdf/rfc1867

RFC 1867 Form-based File Upload in HTML November 1995

 ... (other elements) ...

3. Suggested implementation

 While user agents that interpret HTML have wide leeway to choose the
 most appropriate mechanism for their context, this section suggests
 how one class of user agent, WWW browsers, might implement file
 upload.

3.1 Display of FILE widget

 When a INPUT tag of type FILE is encountered, the browser might show
 a display of (previously selected) file names, and a "Browse" button
 or selection method. Selecting the "Browse" button would cause the
 browser to enter into a file selection mode appropriate for the
 platform. Window-based browsers might pop up a file selection window,
 for example. In such a file selection dialog, the user would have the
 option of replacing a current selection, adding a new file selection,
 etc. Browser implementors might choose let the list of file names be
 manually edited.

 If an ACCEPT attribute is present, the browser might constrain the
 file patterns prompted for to match those with the corresponding
 appropriate file extensions for the platform.

3.2 Action on submit

 When the user completes the form, and selects the SUBMIT element, the
 browser should send the form data and the content of the selected
 files. The encoding type application/x-www-form-urlencoded is
 inefficient for sending large quantities of binary data or text
 containing non-ASCII characters. Thus, a new media type,
 multipart/form-data, is proposed as a way of efficiently sending the
 values associated with a filled-out form from client to server.

3.3 use of multipart/form-data

 The definition of multipart/form-data is included in section 7 . A
 boundary is selected that does not occur in any of the data. (This
 selection is sometimes done probabilisticly.) Each field of the form
 is sent, in the order in which it occurs in the form, as a part of
 the multipart stream. Each part identifies the INPUT name within the
 original HTML form. Each part should be labelled with an appropriate
 content-type if the media type is known (e.g., inferred from the file
 extension or operating system typing information) or as
 application/octet-stream.

Nebel & Masinter Experimental [Page 3]

https://tools.ietf.org/pdf/rfc1867

RFC 1867 Form-based File Upload in HTML November 1995

 If multiple files are selected, they should be transferred together
 using the multipart/mixed format.

 While the HTTP protocol can transport arbitrary BINARY data, the
 default for mail transport (e.g., if the ACTION is a "mailto:" URL)
 is the 7BIT encoding. The value supplied for a part may need to be
 encoded and the "content-transfer-encoding" header supplied if the
 value does not conform to the default encoding. [See section 5 of
 RFC 1521 for more details.]

 The original local file name may be supplied as well, either as a
 ’filename’ parameter either of the ’content-disposition: form-data’
 header or in the case of multiple files in a ’content-disposition:
 file’ header of the subpart. The client application should make best
 effort to supply the file name; if the file name of the client’s
 operating system is not in US-ASCII, the file name might be
 approximated or encoded using the method of RFC 1522 . This is a
 convenience for those cases where, for example, the uploaded files
 might contain references to each other, e.g., a TeX file and its .sty
 auxiliary style description.

 On the server end, the ACTION might point to a HTTP URL that
 implements the forms action via CGI. In such a case, the CGI program
 would note that the content-type is multipart/form-data, parse the
 various fields (checking for validity, writing the file data to local
 files for subsequent processing, etc.).

3.4 Interpretation of other attributes

 The VALUE attribute might be used with <INPUT TYPE=file> tags for a
 default file name. This use is probably platform dependent. It might
 be useful, however, in sequences of more than one transaction, e.g.,
 to avoid having the user prompted for the same file name over and
 over again.

 The SIZE attribute might be specified using SIZE=width,height, where
 width is some default for file name width, while height is the
 expected size showing the list of selected files. For example, this
 would be useful for forms designers who expect to get several files
 and who would like to show a multiline file input field in the
 browser (with a "browse" button beside it, hopefully). It would be
 useful to show a one line text field when no height is specified
 (when the forms designer expects one file, only) and to show a
 multiline text area with scrollbars when the height is greater than 1
 (when the forms designer expects multiple files).

Nebel & Masinter Experimental [Page 4]

https://tools.ietf.org/pdf/rfc1867
https://tools.ietf.org/pdf/rfc1521#section-5
https://tools.ietf.org/pdf/rfc1521#section-5
https://tools.ietf.org/pdf/rfc1522

RFC 1867 Form-based File Upload in HTML November 1995

4. Backward compatibility issues

 While not necessary for successful adoption of an enhancement to the
 current WWW form mechanism, it is useful to also plan for a migration
 strategy: users with older browsers can still participate in file
 upload dialogs, using a helper application. Most current web browers,
 when given <INPUT TYPE=FILE>, will treat it as <INPUT TYPE=TEXT> and
 give the user a text box. The user can type in a file name into this
 text box. In addition, current browsers seem to ignore the ENCTYPE
 parameter in the <FORM> element, and always transmit the data as
 application/x-www-form-urlencoded.

 Thus, the server CGI might be written in a way that would note that
 the form data returned had content-type application/x-www-form-
 urlencoded instead of multipart/form-data, and know that the user was
 using a browser that didn’t implement file upload.

 In this case, rather than replying with a "text/html" response, the
 CGI on the server could instead send back a data stream that a helper
 application might process instead; this would be a data stream of
 type "application/x-please-send-files", which contains:

 * The (fully qualified) URL to which the actual form data should
 be posted (terminated with CRLF)
 * The list of field names that were supposed to be file contents
 (space separated, terminated with CRLF)
 * The entire original application/x-www-form-urlencoded form data
 as originally sent from client to server.

 In this case, the browser needs to be configured to process
 application/x-please-send-files to launch a helper application.

 The helper would read the form data, note which fields contained
 ’local file names’ that needed to be replaced with their data
 content, might itself prompt the user for changing or adding to the
 list of files available, and then repackage the data & file contents
 in multipart/form-data for retransmission back to the server.

 The helper would generate the kind of data that a ’new’ browser
 should actually have sent in the first place, with the intention that
 the URL to which it is sent corresponds to the original ACTION URL.
 The point of this is that the server can use the *same* CGI to
 implement the mechanism for dealing with both old and new browsers.

 The helper need not display the form data, but *should* ensure that
 the user actually be prompted about the suitability of sending the
 files requested (this is to avoid a security problem with malicious
 servers that ask for files that weren’t actually promised by the

Nebel & Masinter Experimental [Page 5]

https://tools.ietf.org/pdf/rfc1867

RFC 1867 Form-based File Upload in HTML November 1995

 user.) It would be useful if the status of the transfer of the files
 involved could be displayed.

5. Other considerations

5.1 Compression, encryption

 This scheme doesn’t address the possible compression of files. After
 some consideration, it seemed that the optimization issues of file
 compression were too complex to try to automatically have browsers
 decide that files should be compressed. Many link-layer transport
 mechanisms (e.g., high-speed modems) perform data compression over
 the link, and optimizing for compression at this layer might not be
 appropriate. It might be possible for browsers to optionally produce
 a content-transfer-encoding of x-compress for file data, and for
 servers to decompress the data before processing, if desired; this
 was left out of the proposal, however.

 Similarly, the proposal does not contain a mechanism for encryption
 of the data; this should be handled by whatever other mechanisms are
 in place for secure transmission of data, whether via secure HTTP or
 mail.

5.2 Deferred file transmission

 In some situations, it might be advisable to have the server validate
 various elements of the form data (user name, account, etc.) before
 actually preparing to receive the data. However, after some
 consideration, it seemed best to require that servers that wish to do
 this should implement this as a series of forms, where some of the
 data elements that were previously validated might be sent back to
 the client as ’hidden’ fields, or by arranging the form so that the
 elements that need validation occur first. This puts the onus of
 maintaining the state of a transaction only on those servers that
 wish to build a complex application, while allowing those cases that
 have simple input needs to be built simply.

 The HTTP protocol may require a content-length for the overall
 transmission. Even if it were not to do so, HTTP clients are
 encouraged to supply content-length for overall file input so that a
 busy server could detect if the proposed file data is too large to be
 processed reasonably and just return an error code and close the
 connection without waiting to process all of the incoming data. Some
 current implementations of CGI require a content-length in all POST
 transactions.

 If the INPUT tag includes the attribute MAXLENGTH, the user agent
 should consider its value to represent the maximum Content-Length (in

Nebel & Masinter Experimental [Page 6]

https://tools.ietf.org/pdf/rfc1867

RFC 1867 Form-based File Upload in HTML November 1995

 bytes) which the server will accept for transferred files. In this
 way, servers can hint to the client how much space they have
 available for a file upload, before that upload takes place. It is
 important to note, however, that this is only a hint, and the actual
 requirements of the server may change between form creation and file
 submission.

 In any case, a HTTP server may abort a file upload in the middle of
 the transaction if the file being received is too large.

5.3 Other choices for return transmission of binary data

 Various people have suggested using new mime top-level type
 "aggregate", e.g., aggregate/mixed or a content-transfer-encoding of
 "packet" to express indeterminate-length binary data, rather than
 relying on the multipart-style boundaries. While we are not opposed
 to doing so, this would require additional design and standardization
 work to get acceptance of "aggregate". On the other hand, the
 ’multipart’ mechanisms are well established, simple to implement on
 both the sending client and receiving server, and as efficient as
 other methods of dealing with multiple combinations of binary data.

5.4 Not overloading <INPUT>:

 Various people have wondered about the advisability of overloading
 ’INPUT’ for this function, rather than merely providing a different
 type of FORM element. Among other considerations, the migration
 strategy which is allowed when using <INPUT> is important. In
 addition, the <INPUT> field *is* already overloaded to contain most
 kinds of data input; rather than creating multiple kinds of <INPUT>
 tags, it seems most reasonable to enhance <INPUT>. The ’type’ of
 INPUT is not the content-type of what is returned, but rather the
 ’widget-type’; i.e., it identifies the interaction style with the
 user. The description here is carefully written to allow <INPUT
 TYPE=FILE> to work for text browsers or audio-markup.

5.5 Default content-type of field data

 Many input fields in HTML are to be typed in. There has been some
 ambiguity as to how form data should be transmitted back to servers.
 Making the content-type of <INPUT> fields be text/plain clearly
 disambiguates that the client should properly encode the data before
 sending it back to the server with CRLFs.

5.6 Allow form ACTION to be "mailto:"

 Independent of this proposal, it would be very useful for HTML
 interpreting user agents to allow a ACTION in a form to be a

Nebel & Masinter Experimental [Page 7]

https://tools.ietf.org/pdf/rfc1867

RFC 1867 Form-based File Upload in HTML November 1995

 "mailto:" URL. This seems like a good idea, with or without this
 proposal. Similarly, the ACTION for a HTML form which is received via
 mail should probably default to the "reply-to:" of the message.
 These two proposals would allow HTML forms to be served via HTTP
 servers but sent back via mail, or, alternatively, allow HTML forms
 to be sent by mail, filled out by HTML-aware mail recipients, and the
 results mailed back.

5.7 Remote files with third-party transfer

 In some scenarios, the user operating the client software might want
 to specify a URL for remote data rather than a local file. In this
 case, is there a way to allow the browser to send to the client a
 pointer to the external data rather than the entire contents? This
 capability could be implemented, for example, by having the client
 send to the server data of type "message/external-body" with
 "access-type" set to, say, "uri", and the URL of the remote data in
 the body of the message.

5.8 File transfer with ENCTYPE=x-www-form-urlencoded

 If a form contains <INPUT TYPE=file> elements but does not contain an
 ENCTYPE in the enclosing <FORM>, the behavior is not specified. It
 is probably inappropriate to attempt to URN-encode large quantities
 of data to servers that don’t expect it.

5.9 CRLF used as line separator

 As with all MIME transmissions, CRLF is used as the separator for
 lines in a POST of the data in multipart/form-data.

5.10 Relationship to multipart/related

 The MIMESGML group is proposing a new type called multipart/related.
 While it contains similar features to multipart/form-data, the use
 and application of form-data is different enough that form-data is
 being described separately.

 It might be possible at some point to encode the result of HTML forms
 (including files) in a multipart/related body part; this is not
 incompatible with this proposal.

5.11 Non-ASCII field names

 Note that mime headers are generally required to consist only of 7-
 bit data in the US-ASCII character set. Hence field names should be
 encoded according to the prescriptions of RFC 1522 if they contain
 characters outside of that set. In HTML 2.0, the default character

Nebel & Masinter Experimental [Page 8]

https://tools.ietf.org/pdf/rfc1867
https://tools.ietf.org/pdf/rfc1522

RFC 1867 Form-based File Upload in HTML November 1995

 set is ISO-8859-1, but non-ASCII characters in field names should be
 encoded.

6. Examples

 Suppose the server supplies the following HTML:

 <FORM ACTION="http://server.dom/cgi/handle"
 ENCTYPE="multipart/form-data"
 METHOD=POST>
 What is your name? <INPUT TYPE=TEXT NAME=submitter>
 What files are you sending? <INPUT TYPE=FILE NAME=pics>
 </FORM>

 and the user types "Joe Blow" in the name field, and selects a text
 file "file1.txt" for the answer to ’What files are you sending?’

 The client might send back the following data:

 Content-type: multipart/form-data, boundary=AaB03x

 --AaB03x
 content-disposition: form-data; name="field1"

 Joe Blow
 --AaB03x
 content-disposition: form-data; name="pics"; filename="file1.txt"
 Content-Type: text/plain

 ... contents of file1.txt ...
 --AaB03x--

 If the user also indicated an image file "file2.gif" for the answer
 to ’What files are you sending?’, the client might client might send
 back the following data:

 Content-type: multipart/form-data, boundary=AaB03x

 --AaB03x
 content-disposition: form-data; name="field1"

 Joe Blow
 --AaB03x
 content-disposition: form-data; name="pics"
 Content-type: multipart/mixed, boundary=BbC04y

 --BbC04y
 Content-disposition: attachment; filename="file1.txt"

Nebel & Masinter Experimental [Page 9]

https://tools.ietf.org/pdf/rfc1867

RFC 1867 Form-based File Upload in HTML November 1995

 Content-Type: text/plain

 ... contents of file1.txt ...
 --BbC04y
 Content-disposition: attachment; filename="file2.gif"
 Content-type: image/gif
 Content-Transfer-Encoding: binary

 ...contents of file2.gif...
 --BbC04y--
 --AaB03x--

7. Registration of multipart/form-data

 The media-type multipart/form-data follows the rules of all multipart
 MIME data streams as outlined in RFC 1521 . It is intended for use in
 returning the data that comes about from filling out a form. In a
 form (in HTML, although other applications may also use forms), there
 are a series of fields to be supplied by the user who fills out the
 form. Each field has a name. Within a given form, the names are
 unique.

 multipart/form-data contains a series of parts. Each part is expected
 to contain a content-disposition header where the value is "form-
 data" and a name attribute specifies the field name within the form,
 e.g., ’content-disposition: form-data; name="xxxxx"’, where xxxxx is
 the field name corresponding to that field. Field names originally in
 non-ASCII character sets may be encoded using the method outlined in
 RFC 1522 .

 As with all multipart MIME types, each part has an optional Content-
 Type which defaults to text/plain. If the contents of a file are
 returned via filling out a form, then the file input is identified as
 application/octet-stream or the appropriate media type, if known. If
 multiple files are to be returned as the result of a single form
 entry, they can be returned as multipart/mixed embedded within the
 multipart/form-data.

 Each part may be encoded and the "content-transfer-encoding" header
 supplied if the value of that part does not conform to the default
 encoding.

 File inputs may also identify the file name. The file name may be
 described using the ’filename’ parameter of the "content-disposition"
 header. This is not required, but is strongly recommended in any case
 where the original filename is known. This is useful or necessary in
 many applications.

Nebel & Masinter Experimental [Page 10]

https://tools.ietf.org/pdf/rfc1867
https://tools.ietf.org/pdf/rfc1521
https://tools.ietf.org/pdf/rfc1522

RFC 1867 Form-based File Upload in HTML November 1995

8. Security Considerations

 It is important that a user agent not send any file that the user has
 not explicitly asked to be sent. Thus, HTML interpreting agents are
 expected to confirm any default file names that might be suggested
 with <INPUT TYPE=file VALUE="yyyy">. Never have any hidden fields be
 able to specify any file.

 This proposal does not contain a mechanism for encryption of the
 data; this should be handled by whatever other mechanisms are in
 place for secure transmission of data, whether via secure HTTP, or by
 security provided by MOSS (described in RFC 1848).

 Once the file is uploaded, it is up to the receiver to process and
 store the file appropriately.

9. Conclusion

 The suggested implementation gives the client a lot of flexibility in
 the number and types of files it can send to the server, it gives the
 server control of the decision to accept the files, and it gives
 servers a chance to interact with browsers which do not support INPUT
 TYPE "file".

 The change to the HTML DTD is very simple, but very powerful. It
 enables a much greater variety of services to be implemented via the
 World-Wide Web than is currently possible due to the lack of a file
 submission facility. This would be an extremely valuable addition to
 the capabilities of the World-Wide Web.

Nebel & Masinter Experimental [Page 11]

https://tools.ietf.org/pdf/rfc1867
https://tools.ietf.org/pdf/rfc1848

RFC 1867 Form-based File Upload in HTML November 1995

Authors’ Addresses

 Larry Masinter
 Xerox Palo Alto Research Center
 3333 Coyote Hill Road
 Palo Alto, CA 94304

 Phone: (415) 812-4365
 Fax: (415) 812-4333
 EMail: masinter@parc.xerox.com

 Ernesto Nebel
 XSoft, Xerox Corporation
 10875 Rancho Bernardo Road, Suite 200
 San Diego, CA 92127-2116

 Phone: (619) 676-7817
 Fax: (619) 676-7865
 EMail: nebel@xsoft.sd.xerox.com

Nebel & Masinter Experimental [Page 12]

https://tools.ietf.org/pdf/rfc1867

RFC 1867 Form-based File Upload in HTML November 1995

A. Media type registration for multipart/form-data

Media Type name:
 multipart

Media subtype name:
 form-data

Required parameters:
 none

Optional parameters:
 none

Encoding considerations:
 No additional considerations other than as for other multipart types.

Published specification:
 RFC 1867

Security Considerations

 The multipart/form-data type introduces no new security
 considerations beyond what might occur with any of the enclosed
 parts.

References

[RFC 1521] MIME (Multipurpose Internet Mail Extensions) Part One:
 Mechanisms for Specifying and Describing the Format of
 Internet Message Bodies. N. Borenstein & N. Freed.
 September 1993.

[RFC 1522] MIME (Multipurpose Internet Mail Extensions) Part Two:
 Message Header Extensions for Non-ASCII Text. K. Moore.
 September 1993.

[RFC 1806] Communicating Presentation Information in Internet
 Messages: The Content-Disposition Header. R. Troost & S.
 Dorner, June 1995.

Nebel & Masinter Experimental [Page 13]

https://tools.ietf.org/pdf/rfc1867
https://tools.ietf.org/pdf/rfc1867

