
Network Working Group M. Chatel
Request for Comments: 1919 Consultant
Category: Informational March 1996

 Classical versus Transparent IP Proxies

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 Many modern IP security systems (also called "firewalls" in the
 trade) make use of proxy technology to achieve access control. This
 document explains "classical" and "transparent" proxy techniques and
 attempts to provide rules to help determine when each proxy system
 may be used without causing problems.

Table of Contents

 1. Background . 2
 2. Direct communication (without a proxy) 3
 2.1 . Direct connection example 3
 2.2 . Requirements of direct communication 5
 3. Classical application proxies 5
 3.1 . Classical proxy session example 6
 3.2 . Characteristics of classical proxy configurations . . . 12
 3.2.1 . IP addressing and routing requirements 12
 3.2.2 . IP address hiding 14
 3.2.3 . DNS requirements 14
 3.2.4 . Software requirements 15
 3.2.5 . Impact of a classical proxy on packet filtering . . . 15
 3.2.6 . Interconnection of conflicting IP networks 16
 4. Transparent application proxies 19
 4.1 . Transparent proxy connection example 20
 4.2 . Characteristics of transparent proxy configurations . . 26
 4.2.1 . IP addressing and routing requirements 26
 4.2.2 . IP address hiding 28
 4.2.3 . DNS requirements 28
 4.2.4 . Software requirements 29
 4.2.5 . Impact of a transparent proxy on packet filtering . . 30
 4.2.6 . Interconnection of conflicting IP networks 31
 5. Comparison chart of classical and transparent proxies . . 31
 6. Improving transparent proxies 32
 7. Security Considerations 34

Chatel Informational [Page 1]

RFC 1919 Classical versus Transparent IP Proxies March 1996

 8. Acknowledgements . 34
 9. References . 35

1. Background

 An increasing number of organizations use IP security systems to
 provide specific access control when crossing network security
 perimeters. These systems are often deployed at the network boundary
 between two organizations (which may be part of the same "official"
 entity), or between an organization’s network and a large public
 internetwork such as the Internet.

 Some people believe that IP firewalls will become commodity products.
 Others believe that the introduction of IPv6 and of its improved
 security capabilities will gradually make firewalls look like stopgap
 solutions, and therefore irrelevant to the computer networking scene.
 In any case, it is currently important to examine the impact of
 inserting (and removing) a firewall at a network boundary, and to
 verify whether specific types of firewall technologies may have
 different effects on typical small and large IP networks.

 Current firewall designs usually rely on packet filtering, proxy
 technology, or a combination of both. Packet filtering (although hard
 to configure correctly in a security sense) is now a well documented
 technology whose strengths and weaknesses are reasonably understood.
 Proxy technology, on the other hand, has been deployed a lot but
 studied little. Furthermore, many recent firewall products support a
 capability called "transparent proxying". This type of feature has
 been subject to much more marketing attention than actual technical
 analysis by the networking community.

 It must be remembered that the Internet’s growth and success is
 strongly related to its "open" nature. An Internet which would have
 been segmented from the start with firewalls, packet filters, and
 proxies may not have become what it is today. This type of discussion
 is, however, outside the scope of this document, which just attempts
 to provide an understandable description of what are network proxies,
 and of what are the differences, strengths, and weaknesses of
 "classical" and "transparent" network proxies. Within the context of
 this document, a "classical" proxy is the older (some would say old-
 fashioned) type of proxy of the two.

 Also note that in this document, the word "connection" is used for an
 application session that uses TCP, while the word "session" refers to
 an application dialog that may use UDP or TCP.

Chatel Informational [Page 2]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

2. Direct communication (without a proxy)

 In the "normal" Internet world, systems do not use proxies and simply
 use normal TCP/IP to communicate with each other. It is important
 (for readers who may not be familiar with this) to take a quick look
 at the operations involved, in order to better understand what is the
 exact use of a proxy.

 2.1 Direct connection example

 Let’s take a familiar network session and describe some details of
 its operation. We will look at what happens when a user on a
 client system "c.dmn1.com" sets up an FTP connection to the server
 system "s.dmn2.com". The client system’s IP address is
 c1.c2.c3.c4, the server’s IP address is s1.s2.s3.s4.

 +---------------+ +----------+ +---------------+
 | | / IP \ | |
 | c.dmn1.com |----+ network(s) +----| s.dmn2.com |
 | (c1.c2.c3.c4) | \ / | (s1.s2.s3.s4) |
 +---------------+ +----------+ +---------------+

 The user starts an instance of an FTP client program on the client
 system "c.dmn1.com", and specifies that the target system is
 "s.dmn2.com". On command-line systems, the user typically types:

 ftp s.dmn2.com

 The client system needs to convert the server’s name to an IP
 address (if the user directly specified the server by address,
 this step is not needed).

 Converting the server name to an IP address requires work to be
 performed which ranges between two extremes:

 a) the client system has this name in its hosts file, or has
 local DNS caching capability and successfully retrieves the
 name of the server system in its cache. No network activity
 is performed to convert the name to an IP address.

 b) the client system, in combination with DNS name servers,
 generate DNS queries that eventually propagate close to the
 root of the DNS tree and back down the server’s DNS branch.
 Eventually, a DNS server which is authoritative for the
 server system’s domain is queried and returns the IP
 address associated with "s.dmn2.com" (depending on the case,
 it may return this to the client system directly or to an

Chatel Informational [Page 3]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 intermediate name server). Ultimately, the client system
 obtains a valid IP address for s.dmn2.com. For simplicity,
 we assume the server has only one IP address.

 +---------------+ +--------+ +---------------+
 | | / IP \ | |
 | c.dmn1.com |---+ network(s) +---| s.dmn2.com |
 | (c1.c2.c3.c4) | \ / | (s1.s2.s3.s4) |
 +---------------+ +--------+ +---------------+
 A | / \
 | | address for / \
 | | s.dmn2.com? / \
 | | / \
 | | / \
 | | +--------+ s.dmn2.com? +--------+
 | +---->| DNS |------------->| DNS |
 | | server | | server |
 +--------| X |<-------------| Y |
 s1.s2.s3.s4 +--------+ s1.s2.s3.s4 +--------+

 Once the client system knows the IP address of the server system,
 it attempts to establish a connection to the standard FTP
 "control" TCP port on the server (port 21). For this to work, the
 client system must have a valid route to the server’s IP address,
 and the server system must have a valid route to the client’s IP
 address. All intermediate devices that behave like IP gateways
 must have valid routes for both the client and the server. If
 these devices perform packet filtering, they must ALL allow the
 specific type of traffic required between C and S for this
 specific application.

 +---------------+ +---------------+
 | c.dmn1.com | | s.dmn2.com |
 | (c1.c2.c3.c4) | | (s1.s2.s3.s4) |
 +---------------+ +---------------+
 | | | |
 | | route to S route to C | |
 | V V |
 | |
 | A | A
 | | route to C | | route to S
 | | | |
 | | C S C | |
 +----+ <-- +----+ --> +----+ <-- +----+
 | G1 |--------| Gx |--------| Gy |---------| Gn |
 +----+ --> +----+ <-- +----+ --> +----+
 S C S

Chatel Informational [Page 4]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 The actual application work for the FTP session between the client
 and server is done with a bidirectional flow of TCP packets
 between the client’s and server’s IP addresses.

 The FTP protocol uses a slightly complex protocol and TCP
 connection model which is, luckily, not important to the present
 discussion. This allows slightly shortening this document...

 2.2 Requirements of direct communication

 Based on the preceding discussion, it is possible to say that the
 following is required for a direct session between a client and
 server to be successful:

 a) If the client uses the NAME of the server to reference it,
 the client must either have a hardcoded name-to-address
 binding for the server, or it must be able to resolve the
 server name (typically using DNS). In the case of DNS, this
 implies that the client and server must be part of the same
 DNS architecture or tree.

 b) The client and server must be part of the same internetwork:
 the client must have a valid IP route towards the server,
 the server must have a valid IP route towards the client,
 and all intermediate IP gateways must have valid routes
 towards the client and server ("IP gateway" is the RFC
 standard terminology; people often use the term "IP router"
 in computer rooms).

 c) If there are devices on the path between the client and
 server that perform packet filtering, all these devices must
 permit the forwarding of packets between the IP address of
 the client and the IP address of the server, at least for
 packets that fit the protocol model of the FTP application
 (TCP ports used, etc.).

3. Classical application proxies

 A classical application proxy is a special program that knows one (or
 more) specific application protocols. Most application protocols are
 not symetric; one end is considered to be a "client", one end is a
 "server".

 A classical application proxy implements both the "client" and
 "server" parts of an application protocol. In practice, it only needs
 to implement enough of the client and server protocols to accomplish
 the following:

Chatel Informational [Page 5]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 a) accept client sessions and appear to them as a server;

 b) receive from a client the name or address of the final target
 server (this needs to be passed over the "client-proxy" session
 in a way that is application-specific);

 c) setup a session to the final server and appear to be a client
 from the server’s point of view;

 d) relay requests, responses, and data between the client and
 server;

 e) perform access controls according to the proxy’s design
 criteria (the main goal of the proxy, after all).

 The functional goal of the proxy is to relay application data between
 clients and servers that may not have direct IP connectivity. The
 security goal of the proxy is to do checks and types of access
 controls that typical client and server software do not support or
 implement.

 The following information will make it clear that classical proxies
 can offer many hidden benefits to the security-conscious network
 designer, at the cost of deploying client software with proxy
 capabilities or of educating the users on proxy use.

 Client software issues are now easier to handle, given the increasing
 number of popular client applications (for Web, FTP, etc.) that offer
 proxy support. Designers developing new protocols are also more
 likely to plan proxy capability from the outset, to ensure their
 protocols can cross the many existing large corporate firewalls that
 are based at least in part on classical proxy technology.

 3.1 Classical proxy session example

 We will repeat our little analysis of an FTP session. This time,
 the FTP session is passing through a "classical" application proxy
 system. As is often the case (although not required), we will
 assume that the proxy system has two IP addresses, two network
 interfaces, and two DNS names.

 The proxy system is running a special program which knows how to
 behave like an FTP client on one side, and like an FTP server on
 the other side. This program is what people call the "proxy". We
 will assume that the proxy program is listening to incoming
 requests on the standard FTP control port (21/tcp), although this
 is not always the case in practice.

Chatel Informational [Page 6]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 +---------------+ +----------+
 | | / IP \
 | c.dmn1.com |----+ network(s) +----------+
 | (c1.c2.c3.c4) | \ / |
 +---------------+ +----------+ +-----------------+
 | (p1.p2.p3.p4) |
 | proxy1.dmn3.com |
 | |
 | proxy2.dmn4.com |
 | (p5.p6.p7.p8) |
 +---------------+ +----------+ +-----------------+
 | | / IP \ |
 | s.dmn2.com |----+ network(s) +----------+
 | (s1.s2.s3.s4) | \ /
 +---------------+ +----------+

 The user starts an instance of an FTP client program on the client
 system "c.dmn1.com", and MUST specify that the target system is
 "proxy1.dmn3.com". On command-line systems, the user typically
 types:

 ftp proxy1.dmn3.com

 The client system needs to convert the proxy’s name to an IP
 address (if the user directly specified the proxy by address, this
 step is not needed).

 Converting the proxy name to an IP address requires work to be
 performed which ranges between two extremes:

 a) the client system has this name in its hosts file, or has
 local DNS caching capability and successfully retrieves the
 name of the proxy system in its cache. No network activity
 is performed to convert the name to an IP address.

 b) the client system, in combination with DNS name servers,
 generate DNS queries that eventually propagate close to the
 root of the DNS tree and back down the proxy’s DNS branch.
 Eventually, a DNS server which is authoritative for the
 proxy system’s domain is queried and returns the IP
 address associated with "proxy1.dmn3.com" (depending on the
 case, it may return this to the client system directly or
 to an intermediate name server). Ultimately, the client
 system obtains a valid IP address for proxy1.dmn3.com.

Chatel Informational [Page 7]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 +---------------+ +--------+
 | | / IP \
 | c.dmn1.com |--------+ network(s) +------------+
 | (c1.c2.c3.c4) | \ / |
 +---------------+ +--------+ +-----------------+
 A | / \ | (p1.p2.p3.p4) |
 | | address for / \ | proxy1.dmn3.com |
 | | proxy1.dmn3.com? / \ | ... |
 | | / \ +-----------------+
 | | / \
 | | / \
 | | +--------+ proxy1.dmn3.com? +--------+
 | +-------->| DNS |------------------>| DNS |
 | | server | | server |
 +------------| X |<------------------| Y |
 p1.p2.p3.p4 +--------+ p1.p2.p3.p4 +--------+

 Once the client system knows the IP address of the proxy system,
 it attempts to establish a connection to the standard FTP
 "control" TCP port on the proxy (port 21). For this to work, the
 client system must have a valid route to the proxy’s IP address,
 and the proxy system must have a valid route to the client’s IP
 address. All intermediate devices that behave like IP gateways
 must have valid routes to both the client and the proxy. If these
 devices perform packet filtering, they must ALL allow the specific
 type of traffic required between C and P1 for this specific
 application (FTP).

 Finally, the proxy system must accept this incoming connection,
 based on the client’s IP address (the purpose of the proxy is
 generally to do access control, after all).

 +---------------+ | ... |
 | c.dmn1.com | | proxy1.dmn3.com |
 | (c1.c2.c3.c4) | | (p1.p2.p3.p4) |
 +---------------+ +-----------------+
 | | | |
 | | route to P1 route to C | |
 | V V |
 | |
 | A | A
 | | route to C | | route to P1
 | | | |
 | | C P1 C | |
 +----+ <-- +----+ --> +----+ <-- +----+
 | G1 |--------| Gx |--------| Gy |---------| Gn |
 +----+ --> +----+ <-- +----+ --> +----+
 P1 C P1

Chatel Informational [Page 8]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 The actual application work for the FTP session between the client
 and proxy is done with a bidirectional flow of TCP packets between
 the client’s and proxy’s IP addresses.

 For this to work, the proxy FTP application MUST fully support the
 FTP protocol and look identical to an FTP server from the client’s
 point of view.

 Once the client<->proxy session is established, the final target
 server name must be passed to the proxy, since, when using a
 "classical" application proxy, a way MUST be defined for the proxy
 to determine the final target system. This can be achieved in
 three ways:

 a) The client system supplies the name or address of the final
 target system to the proxy in a method that is compatible
 with the specific application protocol being used (in our
 example, FTP). This is generally considered to be the main
 problem with classical proxies, since for each application
 being proxied, a method must be defined for passing the
 name or address of the final target system. This method
 must be compatible with every variant of client application
 that implements the protocol (i.e. the target-passing
 method must fit within the MINIMUM functionalities required
 by the specific application protocol).

 For the FTP protocol, the generally popular method for
 passing the final server name to the proxy is as follows:

 When the proxy prompts the FTP client for a username, the
 client specifies a string of the form:

 target_username@target_system_name
 or
 target_username@target_ip_address

 The proxy will then know what is the final target system.
 The target_username (and the password supplied by the
 client) will be forwarded "as is" by the proxy to the final
 target system.

 A well-known example of an FTP proxy that behaves in this way
 is the "ftp-gw" program which is part of the Trusted
 Information System’s firewall toolkit, available by anonymous
 FTP at ftp.tis.com. Several commercial firewalls also support
 this de-facto standard.

Chatel Informational [Page 9]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 b) If there is only one possible final destination, the proxy
 may be configured to know this destination in advance.
 Since the IP address of the client system is known when the
 proxy must make this decision, the proxy can (if required)
 select a different destination based on the IP address of
 the client.

 c) The client software may also support capabilities that allow
 it to present to the user the illusion of a direct session
 (the user just specifies the final target system, and the
 client software automatically handles the problem of
 reaching to the proxy system and passing the name or address
 of the final target system in whatever mutually-acceptable
 form).

 A well-known example of a system that provides modified
 client software, proxy software, and that provides the
 illusion of transparency is NEC’s SOCKS system, available by
 anonymous FTP at ftp.nec.com.

 Alternatively, several FTP client applications support the
 "username@destination_host" de-facto standard implemented
 (for example) by the "ftp-gw" proxy application.

 Once the FTP proxy application knows the name or IP address of the
 target system, it can choose to do two things:

 a) Setup a session to the final target system, the more
 frequent case.

 b) Decide (based on some internal configuration data) that it
 cannot reach the final target system directly, but must go
 through another proxy. This is rare today, but may become
 temporarily common due to the current shortage of IP
 network numbers which encourages organizations to deploy
 "hidden" network numbers which are already assigned
 elsewhere. Sessions between systems which have the same
 IP network number but which belong to different actual
 networks may require going through two proxy systems.
 This is discussed in more detail in section 3.2.6 ,
 "Interconnection of conflicting IP networks".

 If the FTP proxy decides to connect directly to the target system,
 and what it has is the target system name, it will need to convert
 the target system name into an IP address. If this process
 involves DNS resolution, something like the following will happen:

Chatel Informational [Page 10]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 +-----------------+
 | proxy1.dmn3.com |
 | (p1.p2.p3.p4) | +--------+
 | | / IP \
 | proxy2.dmn4.com |--------+ network(s) +------------+
 | (p5.p6.p7.p8) | \ / |
 +-----------------+ +--------+ +---------------+
 A | / \ | (s1.s2.s3.s4) |
 | | address for / \ | s.dmn2.com |
 | | s.dmn2.com? / \ | |
 | | / \ +---------------+
 | | / \
 | | / \
 | | +--------+ s.dmn2.com? +--------+
 | +-------->| DNS |------------------>| DNS |
 | | server | | server |
 +------------| X |<------------------| Y |
 s1.s2.s3.s4 +--------+ s1.s2.s3.s4 +--------+

 Once the proxy system knows the IP address of the server system,
 it attempts to establish a connection to the standard FTP
 "control" TCP port on the server (port 21). For this to work, the
 proxy system must have a valid route to the server’s IP address,
 and the server system must have a valid route to at least one of
 the proxy’s IP address. All intermediate devices that behave like
 IP gateways must have valid routes to both the proxy and the
 server. If these devices perform packet filtering, they must ALL
 allow the specific type of traffic required between the proxy and
 S for this specific application.

Chatel Informational [Page 11]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 +-----------------+
 | proxy1.dmn3.com |
 | (p1.p2.p3.p4) |
 | | +----------------+
 | proxy2.dmn4.com | | s.dmn2.com |
 | (p5.p6.p7.p8) | | (s1.s2.s3.s4) |
 +-----------------+ +----------------+
 | | | |
 | | route to S route to P2 | |
 | V V |
 | |
 | A | A
 | | route to P2 | | route to S
 | | | |
 | | P2 S P2 | |
 +----+ <-- +----+ --> +----+ <-- +----+
 | G1 |--------| Gx |--------| Gy |---------| Gn |
 +----+ --> +----+ <-- +----+ --> +----+
 S P2 S

 The actual FTP application work between the proxy and server is
 done with a bidirectional flow of TCP packets between the proxy’s
 and server’s IP addresses.

 What actually happens BETWEEN THE CLIENT AND SERVER? They both
 send replies and responses to the proxy, which forwards data to
 the "other" end. When one party opens a data connection and sends
 a PORT command to the proxy, the proxy allocates its own data
 connection and sends its PORT command to the "other" end. The
 proxy also copies data across the connections created in this way.

 3.2 Characteristics of classical proxy configurations

 Several IP internetworks may be linked using only classical proxy
 technology. It is currently popular to link two specific IP
 internetworks in this way: the Internet and some organization’s
 "private" IP network. Such a proxy-based link is often the key
 component of a firewall.

 When this is done, several benefits and problems are introduced
 for network administrators and users.

 3.2.1 IP addressing and routing requirements.

 The proxy system must be able to address all client and server
 systems to which it may provide service. It must also know
 valid IP routes to all these client and server systems.

Chatel Informational [Page 12]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 Client and server systems must be able to address the proxy
 system, and must know a valid IP route to the proxy system. If
 the proxy system has several IP addresses (and often, several
 physical network interfaces), the client and server systems
 need only to be able to access ONE of the proxy system’s IP
 addresses.

 Note that client and server systems that use the proxy for
 communication DO NOT NEED valid IP addressing or routing
 information for systems that they reach through the proxy.

 In this sense, it can be said that systems separated by a
 classical proxy are isolated from each other in an IP
 addressing sense and in an IP routing sense.

 On the other hand, the classical proxy system (if running a
 standard TCP/IP software stack) needs to have a single coherent
 view of IP addressing and routing. If such a proxy system
 interconnects two IP networks and two systems use the same IP
 network/subnetwork number (one system on each network), the
 proxy will only be able to address one of the systems.

 This restriction can be removed by chaining classical proxies
 (this is described later in section 3.2.6 , "Interconnection of
 conflicting IP networks").

 Using a classical proxy for interconnection of IP
 internetworks, it is also possible, with care, to achieve a
 desirable "fail-safe" feature: no valid routing entries need to
 exist for an internetwork which should be reached only through
 the proxy (routing updates that could add such entries shout be
 BLOCKED). If the proxy suddenly starts to behave like an IP
 router, only one-way attacks become possible.

 In other words, assume an attacker has control of the remote
 internetwork and has found a way to cause the proxy to route IP
 packets, or has found a way to physically bypass the proxy.

 The attacker may inject packets, but the attacked internal
 systems will be unable to reply to those packets. This
 certainly does not make attacks infeasible (as exemplified by
 certain holiday-period events in recent years), but it still
 makes attacks more difficult.

Chatel Informational [Page 13]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 3.2.2 IP address hiding

 Application "sessions" that go through a classical proxy are
 actually made of two complete sessions:

 a) a session between the client and the proxy
 b) a session between the proxy and the server

 A device on the path sees only the client<->proxy traffic or
 the proxy<->server traffic, depending where it is located. If
 the two sessions actually pass through the same physical
 network, a device on that network may see both traffics, but
 may have difficulty establishing the relationship between the
 two sessions (depending on the specific application and
 activity level of the network).

 A by-product of a classical proxy’s behavior is commonly known
 as "address hiding". Equipments on some side of a classical
 proxy cannot easily determine what are the IP addresses used on
 another side of the proxy.

 Address hiding is generally viewed as a Good Thing, since one
 of the purposes of deploying proxies is to disclose as little
 information about an internetwork as possible.

 People who are in charge of gathering network statistics, and
 who do not have access to the proxy system’s reports (if any)
 may consider address hiding to be a Bad Thing, since the proxy
 obscures the actual client/server relationships where the proxy
 was inserted. All IP activity originates and terminates on the
 proxy itself (or appears to do so).

 In the same way, server software that accepts connections that
 have gone through a classical proxy do not see the IP address
 of the incoming client, unless this information is included in
 the application protocol (and even if it is, in many cases, the
 proxy will replace this information with its own address for
 the protocol to be consistent). This makes server access
 control unusable if it is based on client IP address checks.

 3.2.3 DNS requirements

 In most classical-proxy configurations, client systems pass the
 desired server name (or address) to the proxy system WITHOUT
 INTERPRETING IT. Because of this, the client system DOES NOT
 REQUIRE to be able to resolve the name of the server system in
 order to access it through a classical proxy. It only needs to
 be able to resolve the name of the proxy (if referencing the

Chatel Informational [Page 14]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 proxy system by name).

 Because of this, it can be said that a classical proxy system
 can offer DNS isolation. If two IP internetworks use completely
 separate DNS trees (each with their own DNS root servers),
 client software in one IP internetwork may still reference a
 server name in the other IP internetwork by passing its name to
 the classical proxy.

 The classical proxy itself will not be able alone to resolve
 DNS names in both environments (if running standard DNS
 resolution software), since it will need to point to one or the
 other of the two DNS "universes".

 A well-known technique called "split-brain DNS" can be used to
 relax this restriction somewhat, but such a technique
 ultimately involves prioritizing one DNS environment over
 another. If a DNS query can return a valid answer in both
 environments, only one of the answers will be found by the
 proxy.

 3.2.4 Software requirements

 A classical proxy application is a fairly simple piece of
 software, often simpler than either a real client
 implementation or a real server implementation. Such a program
 may run on any system that supports normal TCP/IP connections,
 and often does not require "system" or "superuser" privilege.

 Classical proxy connections have no impact on normal server
 software; the proxy looks like a normal client in most respects
 except for its IP address and its "group" nature. All
 connections from the network on the other side of the proxy
 appear to come from the proxy, which poses problems if access
 control by client system is desired.

 Normal client software may access a classical proxy if the user
 is willing or able to go through the extra steps necessary to
 indicate the final server to the proxy (whatever they are).
 Alternatively, modified (or newer) client software may be used
 that knows how to negotiate transparently with the proxy.

 3.2.5 Impact of a classical proxy on packet filtering

 If packet filtering is needed around a classical proxy, the
 packet filtering rules tend to be simplified, since the only
 traffic needed and allowed will originate from or terminate on
 the proxy (in an IP sense).

Chatel Informational [Page 15]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 If the proxy starts behaving like an IP router, or if it is
 physically bypassed, such filtering rules, if deployed
 generally within an IP internetwork, will tend to prevent any
 direct traffic flow between the "internal" internetwork and
 "external" internetworks that are supposed to be only reachable
 through the application proxy.

 3.2.6 Interconnection of conflicting IP networks

 By chaining classical proxies, it is possible to achieve some
 interconnection of IP networks that have a high level of
 conflict. In practice, this type of setup resolves IP
 addressing conflicts much better than DNS conflicts. But DNS
 conflicts are currently less of a problem because the DNS
 "address space" is almost infinitely large (has anybody
 calculated the possible DNS address space based on the RFC-
 standard maximum host name length?).

 Even though RFC 1597 was never more than an informational RFC,
 many organizations have been quietly following its suggestions,
 for lack of an easier solution. Now assume two organizations
 each use class A network number 10 on their network. Suddenly,
 they need to interconnect. What can they do?

 First possibility: one side changes network number (not as hard
 as people think if properly planned, but this still represents
 some work)

 Second possibility: they merge the two numbers by renumbering
 partially on each side to remove conflicts (actually harder to
 do, but has the political advantage that both sides have to do
 some work)

 Third possibility: they communicate through chained classical
 proxies:

 +--------+ +--------+ +--------+ +--------+
 / Org. 1 \ | Proxy | | Proxy | / Org. 2 \
 + dmn1.com +---+ system +---+ system +---+ dmn2.com +
 \ net 10 / | 1 | | 2 | \ net 10 /
 +--------+ +--------+ +--------+ +--------+

 Both proxy 1 and 2 are standard systems running normal TCP/IP
 software stacks. Their configuration is not typical, however:

Chatel Informational [Page 16]

https://tools.ietf.org/pdf/rfc1919
https://tools.ietf.org/pdf/rfc1597

RFC 1919 Classical versus Transparent IP Proxies March 1996

 a) The link between proxy 1 and proxy 2 may use any IP
 network number that is not used (or not needed) on
 either side. Nothing on Org.1 and Org.2’s networks
 need to have an IP route to this network.

 b) Proxy 1 has an IP route for network 10 that points to
 Organization 1’s network, and does DNS resolution
 (if required) using dmn1.com’s name servers.

 c) Proxy 2 has an IP route for network 10 that points to
 Organization 2’s network, and does DNS resolution
 (if required) using dmn2.com’s name servers.

 d) Proxy 1 and proxy 2 only require a host IP route to
 each other for communication.

 e) For this to be convenient, the classical proxy
 applications must support the automatic selection of
 a destination based on the client IP address.

 f) On proxy system 1, the proxy software treats incoming
 sessions from proxy system 2 in the normal way: the
 "client" (proxy system 2) will be prompted in an
 application-specific way for the final destination.
 However, incoming sessions from Org.1 addresses are
 immediately and automatically forwarded to proxy
 system 2.

 Proxy system 2 is configured similarly (that is,
 connections coming from proxy 1 are prompted for a
 target server name, connections from Org.2 addresses
 are immediately and automatically forwarded to
 proxy 1.

 From a user’s point of view, the behavior of such a chained
 proxy system is not very different from a single classical
 application proxy:

 a) A user on a client system with address 10.1.2.3
 on Org.1’s network wishes to do an anonymous FTP to
 "server.dmn2.com".

 b) The user starts an FTP towards proxy 1. Proxy 1 sees
 an incoming connection from an address in network 10,
 so it immediately relays the connection to proxy 2.

 c) Proxy 2 sees a connection coming from proxy 1, so it
 prompts the client. The user sees the username prompt

Chatel Informational [Page 17]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 and types (assuming FTP proxies that behave like TIS’s
 ftp-gw):

 anonymous@server.dmn2.com

 This will be resolved IN THE CONTEXT OF Org. 2’S
 NETWORK. The user can then complete the dialog and
 use the FTP connection.

 d) Note that this setup will work even if the client and
 server have the EXACT SAME IP ADDRESS (10.1.2.3 in
 our example).

 If the proxy applications support selecting another
 proxy based on the destination supplied by the client,
 and if DNS domains are unique, more than two conflicting
 IP networks can be linked in this way! Here is an
 example configuration:

 a) Four IP networks that all use network 10 are linked
 by four proxy systems. The four proxy systems share a
 common, private IP network number and physical link
 (LAN or WAN).

 b) A user on organization 1’s network wishes to access
 a server on network 3. The user connects to its local
 proxy (proxy 1) and supplies that target system name.

 c) Proxy 1 determines, based on a configuration rule,
 that the target system name is reachable by using
 proxy 3. So it connects to proxy 3 and passes the
 target system name.

 d) Proxy 3 determines that the target system name is
 local (to itself) and connects to it directly.

 Security Implications of chained proxies

 Obviously, when such "chained" configurations are built,
 access control rules and logging based on a
 final-client/final-server combination are difficult to
 enforce, since the first proxy in the chain sees a
 final-client/proxy relationship and the last proxy in
 the chain sees a proxy/final-server relationship.

 Doing better than this requires that the proxies be
 capable of passing the "original-client" and

Chatel Informational [Page 18]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 "final-destination" information back and forth in the
 proxy chain for access control and/or logging purposes.
 This requires the proxies to trust each other, and
 requires the network path to be trusted (forging this
 information becomes an excellent attack).

 Even if these problems were to be solved reliably, the
 original goal of the proxy chains was to solve an IP
 and possibly a DNS conflict. The "original-client" and
 "final-destination" values may not have the same
 meaning everywhere in the overall setup. Tagging the
 information with a "universe-name" may help, assuming
 it is possible to define unique universe names in the
 first place. Obviously this topic requires more study.

4. Transparent application proxies

 The most visible problem of classical application proxies is the need
 for proxy-capable client programs and/or user education so that users
 know how to use the proxies.

 When somebody thought of modifying proxies in such a way that normal
 user procedures and normal client applications would still be able to
 take advantage of the proxies, the transparent proxy was born.

 A transparent application proxy is often described as a system that
 appears like a packet filter to clients, and like a classical proxy
 to servers. Apart from this important concept, transparent and
 classical proxies can do similar access control checks and can offer
 an equivalent level of security/robustness/performance, at least as
 far as the proxy itself is concerned.

 The following information will make it clear that small organizations
 that wish to use proxy technology for protection, that wish to rely
 entirely on one proxy system for network perimeter security, that
 want a minimal (or zero) impact on user procedures, and that do not
 wish to bother with proxy-capable clients will tend to prefer
 transparent proxy technology.

 Organizations with one or more of the following characteristics may
 prefer deploying classical proxy technology:

 a) own a substantial internal IP router network, and wish to
 avoid adding "external" routes on the network
 b) wish to deploy "defence in depth", such as internal firewalls,
 packet filtering on the internal network
 c) wish to keep their DNS environment fully isolated from the
 "other side" of their proxy system, or that fear that their

Chatel Informational [Page 19]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 internal DNS servers may be vulnerable to data-driven attacks
 d) use some IP networks that are in conflict with the "other side"
 of their proxy system
 e) wish to use proxy applications that are easily portable
 to different operating system types and/or versions
 f) wish to deploy multiple proxy systems interconnecting them
 to the SAME remote network without introducing dynamic
 routing for external routes on the internal network

 4.1 Transparent proxy connection example

 Let us go through an FTP sesssion again, through a "transparent"
 proxy this time. We assume that the proxy system has two IP
 addresses, two network interfaces, and two DNS names.

 The proxy system is running a special program which knows how to
 behave like an FTP client on one side, and like an FTP server on
 the other side. This program is what people call the "proxy". This
 program, being a transparent proxy, also has a very special
 relationship with the TCP/IP implementation of the proxy system.
 This relationship may be built in several ways, we will describe
 only one such possible way.

 We will assume that the proxy program is listening to incoming
 requests on the standard FTP control port (21/tcp), although this
 is not always the case in practice.

 +---------------+ +----------+
 | | / IP \
 | c.dmn1.com |----+ network(s) +----------+
 | (c1.c2.c3.c4) | \ / |
 +---------------+ +----------+ +-----------------+
 | (p1.p2.p3.p4) |
 | proxy1.dmn3.com |
 | |
 | proxy2.dmn4.com |
 | (p5.p6.p7.p8) |
 +---------------+ +----------+ +-----------------+
 | | / IP \ |
 | s.dmn2.com |----+ network(s) +----------+
 | (s1.s2.s3.s4) | \ /
 +---------------+ +----------+

Chatel Informational [Page 20]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 The user starts an instance of an FTP client program on the client
 system "c.dmn1.com", and specifies a destination of "s.dmn2.com",
 just like if it was reachable directly. On command-line systems,
 the user typically types:

 ftp s.dmn2.com

 The client system needs to convert the server’s name to an IP
 address (if the user directly specified the server by address,
 this step is not needed).

 Converting the server name to an IP address requires work to be
 performed which ranges between two extremes:

 a) the client system has this name in its hosts file, or has
 local DNS caching capability and successfully retrieves the
 name of the proxy system in its cache. No network activity
 is performed to convert the name to an IP address.

 b) the client system, in combination with DNS name servers,
 generate DNS queries that eventually propagate close to the
 root of the DNS tree and back down the server’s DNS branch.
 Eventually, a DNS server which is authoritative for the
 server system’s domain is queried and returns the IP
 address associated with "s.dmn2.com" (depending on the
 case, it may return this to the client system directly or
 to an intermediate name server). Ultimately, the client
 system obtains a valid IP address for s.dmn2.com.

Chatel Informational [Page 21]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 +---------------+ +--------+
 | | / IP \
 | c.dmn1.com |--------+ network(s) +------------+
 | (c1.c2.c3.c4) | \ / |
 +---------------+ +--------+ +-----------------+
 A | / | (p1.p2.p3.p4) |
 | | address for / +-----+ | proxy system |
 | | s.dmn2.com? / / \ | (p5.p6.p7.p8) |
 | | / / \ +-----------------+
 | | / / \ |
 | | / / s.dmn2.com? | |
 | | +--------+ / | +--------+
 | +-------->| DNS |--+ +-------+ | / IP \
 | | server | / \ | + network(s) +
 +------------| X |<---+ + | \ /
 s1.s2.s3.s4 +--------+ s1.s2.s3.s4| | +--------+
 | | |
 | + |
 | \ +--------+
 + +->| DNS |
 \ | server |
 +----| Y |
 +--------+

 NOTE: In practice, DNS servers that are authoritative for
 s.dmn2.com are highly likely to be located on the OTHER
 side of the proxy system. This means that DNS queries
 from the inside to the outside MUST be able to cross the
 proxy system. If the proxy system wishes to provide
 "address hiding", it must make these DNS queries
 (originating from the inside) appear to come from the
 proxy itself. This can be achieved by using a BIND-based
 DNS server (which has some proxy capabilities) or some
 simpler DNS proxy program. For full RFC compliance,
 the proxy system must be able to relay TCP-based queries
 just like UDP-based queries, since some client systems
 are rumored to ONLY use TCP for DNS queries.

 The proxy system must be able to detect and block several
 classes of attacks based on DNS which (if nothing else)
 may cause denial of service:

 a) attempts from the outside to return corrupt cache
 entries to an internal DNS server
 b) attempts to return DNS bindings which have no
 relationship to the actual DNS query (some DNS
 servers are vulnerable to this). The attacker’s goal
 may be to prime the cache of internal DNS servers with

Chatel Informational [Page 22]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 interesting entries, including entries for internal
 DNS names that point to external IP addresses...
 c) data-driven stuff similar in style to the "syslog
 buffer overrun" type attacks.

 Once the client system knows the IP address of the server system,
 it attempts to establish a connection to the standard FTP
 "control" TCP port on the server (port 21). For this to work, the
 client system must have a valid route for the server’s IP address
 THAT LEADS TO THE PROXY SYSTEM, and the proxy system must have a
 valid route for the client’s IP address and the server’s IP
 address. All intermediate devices that behave like IP gateways
 must have valid routes for the client, the server, and usually the
 proxy. If these devices perform packet filtering, they must ALL
 allow the specific type of traffic required between C and S for
 this specific application.

 A
 route to S |
 |
 +-----------------+
 +---------------+ | (p5.p6.p7.p8) |
 | c.dmn1.com | | proxy system |
 | (c1.c2.c3.c4) | | (p1.p2.p3.p4) |
 +---------------+ +-----------------+
 | | | |
 | | route to S route to C | |
 | V V |
 | |
 | A | A
 | | route to C | | route to S
 | | | |
 | | C S C | |
 +----+ <-- +----+ --> +----+ <-- +----+
 | G1 |--------| Gx |--------| Gy |---------| Gn |
 +----+ --> +----+ <-- +----+ --> +----+
 S C S

 At the start of the FTP session, a TCP packet with a source
 address of C and a destination address of S travels to the proxy
 system, expecting to cross it just like a normal IP gateway.

 This is when the transparent proxy shows its magic:

 The proxy’s TCP/IP software stack sees this incoming packets (and
 subsequent ones) for a destination address that is NOT one of its
 own addresses. Based on some criteria (a configuration file, for

Chatel Informational [Page 23]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 example), it decides NOT to forward or drop the packet (which are
 the only two choices an RFC-standard TCP/IP implementation would
 have). The proxy system accepts the packet as if it was directed
 to one of its own IP addresses.

 In our example, the incoming packet is a TCP packet. Since
 standard TCP/IP stacks store both a LOCAL and REMOTE IP address
 field for each TCP connection, the transparent proxy may set the
 LOCAL IP address field to the IP address that the client wants to
 reach (s1.s2.s3.s4 in our example). The standard TCP/IP stack
 probably needs to be modified to do this. UDP examples, although
 not connection-based, could be handled in similar ways.

 Once this is done, the actual FTP proxy application is invoked
 since an incoming connection to TCP port 21 has occurred. It can
 determine what is the final target destination instantly, since
 the LOCAL IP address field of the connection contains the target
 server’s IP address. There is no need for the proxy application
 to ask the client what is the final target system.

 Since the FTP proxy application knows the IP address of the target
 system, it can choose to do two things:

 a) Setup a session to the final target system, the more
 frequent case.

 b) Decide (based on some internal configuration data) that it
 cannot reach the final target system directly, but must go
 through a "classical" proxy. This seems technically
 feasible, although no real transparent proxy system is
 known to offer this capability. The actual value of such
 a feature (if available) would need to be studied.

 If the FTP proxy decides to connect directly to the target system,
 it has the target system’s IP address. It may choose to do a
 reverse lookup on the target IP address to obtain a target system
 name (possibly needed for access control). If this process
 involves DNS resolution, something like the following will happen:

Chatel Informational [Page 24]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 +-----------------+
 | proxy1.dmn3.com |
 | (p1.p2.p3.p4) | +--------+
 | | / IP \
 | proxy2.dmn4.com |--------+ network(s) +------------+
 | (p5.p6.p7.p8) | \ / |
 +-----------------+ +--------+ +---------------+
 A | / \ | (s1.s2.s3.s4) |
 | | name for / \ | s.dmn2.com |
 | | s1.s2.s3.s4? / \ | |
 | | / \ +---------------+
 | | / \
 | | / \
 | | +--------+ s1.s2.s3.s4? +--------+
 | +-------->| DNS |------------------>| DNS |
 | | server | | server |
 +------------| X |<------------------| Y |
 s.dmn2.com +--------+ s.dmn2.com +--------+

 Once this is done and if the connection is allowed, the proxy
 attempts to establish a connection to the standard FTP "control"
 TCP port on the target server (port 21), using a technique
 identical to a "classical" proxy. For this to work, the proxy
 system must have a valid route to the server’s IP address, and the
 server system must have a valid route to at least one of the
 proxy’s IP address. All intermediate devices that behave like IP
 gateways must have valid routes to both the proxy and the server.
 If these devices perform packet filtering, they must ALL allow the
 specific type of traffic required between the proxy and S for this
 specific application.

Chatel Informational [Page 25]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 +-----------------+
 | proxy1.dmn3.com |
 | (p1.p2.p3.p4) |
 | | +----------------+
 | proxy2.dmn4.com | | s.dmn2.com |
 | (p5.p6.p7.p8) | | (s1.s2.s3.s4) |
 +-----------------+ +----------------+
 | | | |
 | | route to S route to P2 | |
 | V V |
 | |
 | A | A
 | | route to P2 | | route to S
 | | | |
 | | P2 S P2 | |
 +----+ <-- +----+ --> +----+ <-- +----+
 | G1 |--------| Gx |--------| Gy |---------| Gn |
 +----+ --> +----+ <-- +----+ --> +----+
 S P2 S

 The rest of the transparent proxy’s operation is very similar to
 what would happen with a classical proxy.

 4.2 Characteristics of transparent proxy configurations

 Transparent proxy technology can be used to build the key
 component of a "firewall", in a way quite similar to the way
 classical proxy technology may be used. Several important details
 of the architecture must be different, however.

 4.2.1 IP addressing and routing requirements

 The transparent proxy system must be able to address all client
 and server systems to which it may provide service. It must
 also know valid IP routes to all these client and server
 systems.

 Server systems must be able to address the proxy system, and
 must know a valid IP route to the proxy system. If the proxy
 system has several IP addresses (and often, several physical
 network interfaces), the server systems need only to be able to
 access ONE of the proxy system’s IP addresses.

 Client systems MUST HAVE valid IP addressing and routing
 information for systems that they reach through the proxy. For
 example, in the common case where a transparent proxy is being
 used to interconnect a private network and the Internet, the

Chatel Informational [Page 26]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 private network will effectively need to use a default route
 that points to the transparent proxy system. This is a specific
 need of transparent proxy configurations.

 Interconnecting two internetworks with multiple transparent
 proxies (for load sharing or fail-over) can be accomplished by
 using different techniques from what would be done for
 classical proxies:

 a) with multiple classical proxies to the same remote
 network, clients can be configured to access different
 proxies manually, or DNS-based techniques, such as
 DNS load-balancing may be used to make clients
 access a different proxy at different times.

 b) with multiple transparent proxies to the same remote
 network, the internal network must be able to provide
 dynamic routing towards the proxies (routing updates
 may need to be supplied by the proxies themselves).
 Client systems (depending on topology) may not need
 to see the route changes, but internal backbone
 routers probably do.

 It is clear that internetworks linked by a transparent proxy
 cannot be fully isolated from each other in an IP addressing
 and routing sense. The network on which client systems are
 located must have effective valid routing entries to the remote
 internetwork; these routing entries must point to the proxy.

 The transparent proxy system (if running a vaguely standard
 TCP/IP software stack) needs to have a single coherent view of
 IP addressing and routing. If a proxy system interconnects two
 IP networks and two systems use the same IP network/subnetwork
 number (one system on each internetwork), the proxy will only
 be able to address one of the systems. Even if the proxy is
 able to manage multiple conflicting IP universes (if, for
 example, one instance of a complete TCP/IP stack and its data
 structures is bound to each of the proxy network interfaces),
 the client systems will still have a problem: Why should it
 send packets with this network number to the proxy since this
 network number exists also on the internal internetwork?

 Chaining transparent proxies does not seem at first glance to
 solve IP conflicts like it does for classical proxies.

 From a "security" fail-safe point of view, the transparent
 proxy has an undesirable characteristic: the network being
 protected must have valid routing entries to the remote

Chatel Informational [Page 27]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 network(s). If the proxy fails (starts behaving like a non-
 filtering IP router) or is physically bypassed, it is likely
 that the internal network will be immediately able to reply to
 "attacker" packets. The attacker does not need to modify
 routing tables or to spoof internal IP addresses.

 This is important for organizations that do not wish to place
 ALL their confidence and protection into a proxy system (for
 whatever reason).

 4.2.2 IP address hiding

 Application "sessions" that go through a transparent proxy are
 actually made of two complete sessions:

 a) a session between the client and the address of the
 server, the session being "intercepted" by the proxy
 b) a session between the proxy and the server

 A device on the path sees either the client<->server traffic or
 the proxy<->server traffic, depending where it is located. The
 client<-"server" traffic is actually generated by the
 transparent proxy. The two sessions SHOULD NEVER pass through
 the same physical network, since in that case (due to the
 routing requirements) a total bypass of the proxy at the IP
 routing level may easily occur without being detectable.

 Like classical proxies, transparent proxies accomplish a form
 of IP address hiding. Client IP addresses are hidden from the
 servers, since the servers see a session being initiated by the
 proxy. Server IP addresses are NOT hidden from the clients
 however, so that the illusion of transparency may be
 maintained.

 This difference implies that internal (client-side) network
 statistics at the IP level will accurately reflect what outside
 destinations are being accessed. This can be useful for
 analyzing traffic patterns.

 4.2.3 DNS requirements

 In transparent proxy configurations, client systems MUST be
 able to resolve server names belonging to remote networks. This
 is critical since the proxy will determine the target server
 from the destination IP address of the packets arriving from
 the client. Because of this, the "client" internetwork needs to
 have some form of DNS interconnection to the remote network. If
 internal client and name server IP addresses must be hidden

Chatel Informational [Page 28]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 from the outside, these DNS queries must also be proxied.

 Of course, remote host name/address relationships may be stored
 locally on the client systems, but it is well known that such
 an approach does not scale...

 Because of this, it can be said that a transparent proxy system
 cannot offer DNS isolation. If two IP internetworks use
 completely separate DNS trees (each with their own DNS root
 servers), client software in one IP internetwork will not have
 a way of finding name/address relationships in the "other" DNS
 tree, and this information must be obtained in order to pass
 the desired address to the transparent proxy.

 The classical proxy itself (if running standard DNS resolution
 software) will not be able alone to resolve DNS names in both
 environments, since it will need to point to one or the other
 of the two DNS "universes". Running multiple instances of DNS
 resolution software can allow the proxy to do this, however.

 Because of the requirement placed on some form of DNS
 communication through the proxy, it is critical for the proxy
 to be able to protect ITSELF, internal clients, and internal
 name servers from data-driven attacks at the DNS level.

 4.2.4 Software requirements

 The big advantage of transparent proxies is that normal client
 software may access remote servers with no modifications and no
 changes to user procedures.

 The transparent proxy application itself may not need to be
 more complicated than a classical proxy application.

 However, the proxy TCP/IP software stack cannot be a fully-
 standard (well, today’s standard at least) TCP/IP stack, and
 requires specific extensions:

 a) the ability to specify ranges of IP addresses that
 do not belong to the proxy itself, but for which
 "intercept" processing will occur: if packets arrive
 at the proxy with a destination IP address in those
 ranges, the IP stack will not forward or drop the
 packets; it will pass them up to application layers.

 b) This mechanism requires that applications may obtain
 both the IP address from which the packets come, and
 the address to which the packets were going. Typical

Chatel Informational [Page 29]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 IP stacks should already have the fields available
 to store the info; it is a matter of updating them
 properly for these "intercepted" packets.

 c) In the case of "intercepted" TCP packets, the TCP
 stack must support establishing TCP connections
 where the "local" IP address is not one of the
 proxy’s IP address.

 Any TCP/IP software implementation should be modifiable to
 perform these tasks. If a standard API becomes widely available
 to drive these extensions, and if this API is generally
 implemented, transparent proxies may become "portable"
 applications.

 Until this occurs, it must be assumed that implementors have
 chosen different ways of accomplishing these functions, so that
 today’s transparent proxy applications cannot be fully
 portable. It also remains to be seen how much work is needed to
 propagate these "extensions" to IPV6 software stacks.

 4.2.5 Impact of a transparent proxy on packet filtering

 The nature of a transparent proxy’s functionality makes it
 difficult to deploy good packet filtering on the "inside" (or
 client-side) of the proxy. The proxy will "masquerade" as all
 the external systems. Because of this, internal packet filters
 WILL TYPICALLY NEED TO ALLOW IP traffic between internal and
 external IP addresses.

 Depending on the actual security policy of the network, it may
 be possible to do filtering based on protocol type and/or on
 TCP bits (to filter based on connection setup direction), but
 filtering that blocks external IP addresses CANNOT be deployed.

 If the proxy starts behaving like an IP router, or if
 physically bypassed, the practical limitations imposed on
 internal packet filtering imply that a lot of direct traffic
 between the inside and outside network will be allowed to flow.
 Furthermore, as we have seen previously, the internal network
 will have valid routing entries for external network numbers
 that point to the proxy. If multiple proxies have been
 deployed, the internal network may even HAVE TO TRUST routing
 updates generated by the proxy.

 In general, if an internal network wishes to communicate with
 an external network through a transparent proxy, it MUST BE
 FUNDAMENTALLY DESIGNED TO COMMUNICATE DIRECTLY with that

Chatel Informational [Page 30]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 external network. This is true at the IP addressing level, at
 the IP routing level, and at the DNS level. A proxy security
 failure in this type of environment is likely to result in
 immediate, total, and undetected accessibility of the internal
 network by the external network.

 4.2.6 Interconnection of conflicting IP networks

 Unlike classical proxies, transparent proxies do not readily
 seem useful in solving IP addressing conflicts.

 If two internetworks use the same network number(s), systems
 and routers in each internetwork will have valid routes to
 these network numbers. If these routes are changed to point to
 a transparent proxy, traffic that is meant to stay within the
 same internetwork would start to flow towards the proxy. The
 proxy will not be able to distinguish reliably between traffic
 between systems of the same internetwork, and traffic which is
 meant to cross the proxy.

 A possible solution to this problem is described in section 6
 of this document, "Improving transparent proxies".

5. Comparison chart of classical and transparent proxies

 For those who do not like longish discussions of technical details,
 here is a one-page summary of the strengths/weaknesses/differences of
 classical and transparent proxies:

 | Issue | Classical Proxy | Transparent Proxy |
 |-------------------+---------------------+----------------------|
 | IP addressing | systems/gateways on | systems/gateways on |
 | | each network need | the "client" network |
 | | to address the proxy| need to address the |
 | | | remote networks |
 | | | |
 | IP routing | systems/gateways on | systems/gateways on |
 | | each network need a | the "client" network |
 | | valid routing entry | also need routing |
 | | for the proxy | entries for remote |
 | | | entries |
 | | | |
 | IP address hiding | systems on each side| systems on the |
 | | of the proxy are | "client" side are |
 | | hidden from each | hidden from the |
 | | other | other sides |
 | | | |

Chatel Informational [Page 31]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

DNS	full isolation	resolution of outside
	possible	names by inside
		systems is required
Proxy software	runs on standard	requires special
requirements	TCP/IP stack;	TCP/IP stack;
	can be portable	not 100% portable
Client software	requires proxy-	nothing more than for
requirements	capable software	a direct connection
	or user education	
User requirements	must use proxy-	nothing more than for
	capable software or	a direct connection
	know how to use the	
	proxy	
Packet filtering	can filter out	cannot filter out
	"external" addresses	"external" addresses
IP address	can be done with	no obvious way to
conflict	chained proxies that	get this to work
resolution	support auto-connect	
 --

6. Improving transparent proxies

 The main issues with transparent proxies seem to revolve around the
 need to force "client" systems to directly access external addresses.
 To some people, this characteristic makes a transparent proxy look
 too much like a complicated packet filter. Can this problem be
 solved?

 The first possibility that comes to mind is to use the flexibility of
 the DNS protocol to build new tricks. If we restrict the "internal"
 clients so that they MUST ALWAYS use DNS to resolve external host
 names AND THAT THEY MUST NEVER store permanent copies of external
 host addresses, the following technique would become theoretically
 possible (this is a very painful restriction, by the way):

 a) arrange for all internal queries for external DNS names to
 go to the transparent proxy system (this can be done in a
 number of ways).

 b) arrange for a routing entry to exist for a class A network
 number that is not used on the internal network. This IMPLIES
 that the internal network may not be part of the Internet. This
 routing entry will point to the transparent proxy system. For

Chatel Informational [Page 32]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 the purpose of our discussion, this special network number will
 be X.0.0.0.

 c) when an internal system generates a query for an external
 address, the query (if no answer is cached on the internal
 network) will reach the proxy system. Assuming the query is to
 obtain the IP address corresponding to a domain name, the proxy
 will go through the following algorithm:

 - try to find a valid binding for this external domain name in
 its local cache

 - if not found, it will ITSELF launch an external DNS query
 for the domain name. When (and if) it receives a valid reply,
 it creates a local cache entry containing:

 Time To Live of the reply
 Expiry Time of the cache entry (based on the current time)
 External domain name
 External IP address
 Dynamically allocated IP address of the form X.x1.x2.x3.

 and returns to the client the dynamically allocated IP address
 in the range X.0.0.0, NOT THE REAL ONE.

 - the client may (or may not) store the IP address returned in
 its cache, and will then attempt to connect to the
 dynamically allocated IP address. This traffic will arrive at
 the proxy because of the routing setup.

 - The transparent proxy intercepts the traffic and can identify
 the actual desired target it should connect to based on the
 dynamically allocated IP address supplied by the client.

 Such an approach, if workable, could improve many characteristics of
 transparent proxies and may even make transparent proxies capable of
 handling IP network number conflicts.

 However, the algorithm above leaves many difficult questions
 unsolved. Here is a list (by no means exhaustive) of these questions:

 a) What is the percentage of client DNS resolver and DNS server
 implementations that conform to the RFC specifications in their
 handling of the Time-To-Live field?

 b) How should the proxy handle other types of DNS queries for
 external domain names (inverse queries, queries for other
 resource record types)?

Chatel Informational [Page 33]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

 c) A client program may perform a DNS query once for an external
 name and then use the response for a long time (a large file
 transfer, or a permanent management session, for example).
 Should the proxy update the Expiry Time of cache entries based
 on the passing IP traffic, and if so, using what algorithm?

 d) What new types of attacks would such a system introduce or
 make possible?

 e) What data structures and resources (memory, disk) would be
 needed for an efficient implementation if the proxy must sustain
 a high rate of DNS queries for external names, and where a large
 number of different external names are referenced? The class A
 network number is used basically to reference cache entries.
 Would a 24-bit address space be sufficient for practical use?

 f) What happens with the cache (and the functionality) if the proxy
 crashes or reboots?

 Such a system would probably exhibit two types of intermittent
 failures:

 a) a client system is still using the result of an external name
 query (some X.x1.x2.x3 address dynamically allocated by the
 proxy), but this binding no longer exists in the proxy’s cache.
 The client attempts a connection to this address, which fails.

 b) a client’s name cache contains a binding for X.x1.x2.x3, but the
 proxy has already reused this address for a different external
 host name. The client attempts a connection to this address,
 sees no obvious errors, but reaches a different system from the
 expected one.

 If somebody has ever implemented such a scheme, information and live
 experience in deploying it would be useful to the IP networking
 community.

7. Security Considerations

 Most of this document is concerned with security implications of
 classical and transparent proxy technology.

8. Acknowledgements

 I could not have written this document without the support of Digital
 Equipment Corporation for whom I work as a consultant.

Chatel Informational [Page 34]

https://tools.ietf.org/pdf/rfc1919

RFC 1919 Classical versus Transparent IP Proxies March 1996

9. References

 [1] Cheswick, W., Bellovin, S., "Firewalls and Internet Security:
 Repelling the Wily Hacker", Addison-Wesley, 1994.

 [2] Chapman, B., Zwicky, E., "Building Internet Firewalls",
 O’Reilly and Associates, Inc., September 1995.

 [3] Comer, D., "Internetworking with TCP/IP volume 1: Principles,
 Protocols, and Architecture", Prentice-Hall, 1991.

 [4] Comer, D., Stevens, D., "Internetworking with TCP/IP volume 2:
 "Design, Implementation, and Internals", Prentice-Hall, 1991.

 [5] Postel, J., and J. Reynolds, "File Transfer Protocol (FTP)",
 STD 9, RFC 959 , USC/Information Sciences Institute, October
 1985.

 [6] Huitema, C., "An experiment in DNS Based IP Routing", RFC 1383 ,
 INRIA, December 1992.

 [7] Rekhter Y., Moskowitz B., Karrenberg D., de Groot, G.,
 "Address Allocation for Private Internets", RFC 1597 ,
 IBM Corp., Chrysler Corp, RIPE NCC, March 1994.

 [8] The TIS firewall toolkit’s documentation, available on
 Trusted Information System’s anonymous FTP site, ftp.tis.com.

 [9] Many discussions in the last 18 months on the firewalls-digest
 mailing list maintained by Great Circle Associates. The
 archives of the list are maintained at ftp.greatcircle.com.

Author’s Address

 Marc Chatel
 9, avenue Jean Monnet
 74940 ANNECY-LE-VIEUX
 FRANCE

 EMail: mchatel@pax.eunet.ch
 or at Digital Equipment:
 Marc.Chatel@aeo.mts.dec.com

Chatel Informational [Page 35]

https://tools.ietf.org/pdf/rfc1919
https://tools.ietf.org/pdf/rfc959
https://tools.ietf.org/pdf/rfc1383
https://tools.ietf.org/pdf/rfc1597

