Definitions of Managed Objects for Data Link Switching using SMIv2

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This specification defines an extension to the Management Information Base (MIB) for use with SNMP-based network management. In particular, it defines objects for configuring, monitoring, and controlling Data Link Switches (DLSw) [1].

This memo specifies a MIB module in a manner that is both compliant to the SNMPv2 SMI [2], and semantically identical to the SNMPv1 definitions [3].

Table of Contents

1.0 The SNMPv2 Network Management Framework 2
1.1 Object Definitions 2
2.0 Overview .. 2
2.1 Relation to Interface Group (RFC 1573) [8] 2
2.2 Relation to Underlying DLC Layer 3
2.3 Relation to SDLC MIB (RFC 1747) 3
2.4 DLSw MIB Structure 4
 2.4.1 Compliance ... 4
2.5 DLSw MIB Usage .. 5
 2.5.1 Cooperative DLSw nodes 5
 2.5.2 Setting capabilities exchange-related objects 5
2.5.3 Examples of Tasks Using This MIB 6
3.0 Definitions ... 11
4.0 Acknowledgements .. 89
5.0 References ... 89
6.0 Security Considerations 90
1.0 The SNMPv2 Network Management Framework

The SNMP Network Management Framework presently consists of three major components. They are:

- RFC 1902 [2] which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

1.1 Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

2.0 Overview

This memo identifies the set of objects for configuring, monitoring, and controlling Data Link Switches.

2.1 Relation to Interface Group (RFC 1573) [8]

- ifIndex is used as the index into dlswIfTable, which shows and controls the interfaces that DLSw is active on.

- Local entries in the MAC address and NetBIOS (NB) name caches can point to an ifEntry to indicate the interface through which DLSw can reach that MAC address or NB name. See the objects dlswDirMacLocation and dlswDirNBLocation.

- Local entries in the circuit table use ifIndex to indicate the interface through which DLSw is connected to the local end station.
See the object dlswCircuitS1Index.

- ifIndex is the primary index into dlswSdlcLsTable, which lists the SDLC stations DLSw is serving.

2.2 Relation to Underlying DLC Layer

The DLSw MIB does not duplicate the information in the MIBs for the DLC layer underneath it. Instead, each circuit table entry contains a pointer to a conceptual row in an underlying enterprise-specific or standard DLC MIB.

Using the 802.2 LLC management as an example, the following rules should be considered when developing new DLSw related DLC MIBs, and when implementing the interactions between DLSw MIB and DLC MIBs:

- The referenced row should represent the local LLC-2 (and/or LLC-1, if supported) link station that DLSw is using. In the current 802.2 LLC MIB draft, this might be a row of one of the tables llcCcAdminTable, llcCcOperTable, or llcCcStatsTable.

A circuit using local LLC services will therefore have dlswCircuitS1DlcType = llc, and dlswCircuitS1Dlc = pointer to an LLC MIB table row.

- Because DLSw is the user of LLC services, it is generally preferable to initiate administrative actions using the DLSw MIB and allow DLSw to control LLC directly, rather than starting with LLC MIB administrative actions. For example, a hung circuit should be disconnected by setting dlswCircuitState, as opposed to setting llcCcAdminStatus to disable the LLC part of the circuit. Similarly, setting bits in dlswIfSapList will cause row creation in llcSapOperTable as well as set the necessary DLSw-LLC relationship.

2.3 Relation to SDLC MIB (RFC 1747)

The general comments stated in 2.2, "Relation to Underlying DLC Layer" apply to the SDLC MIB. The following apply if the DLSw MIB is implemented in a product that also implements RFC 1747 [9]:

- The row referenced from dlswCircuitS1Dlc should represent the local SDLC link station that DLSw is using. This might be a row of one of the tables sdlcLSAdminTable, sdlcLSOperTable, or sdlcLSStatsTable.

A circuit using local SDLC services will therefore have dlswCircuitS1DlcType = sdlc, and dlswCircuitS1Dlc = OID of one of these table rows.
o dlswSdlcLsTable uses the same indices that are used to index link station information in RFC 1747. This table provides a mapping between this native SDLC addressing (interface, link station address) and the addressing used in the DLSw domain (local MAC and SAP).

2.4 DLSw MIB Structure

See 3.0, "Definitions" on page 11 for a diagram outlining the DLSw MIB structure. The following groups of objects are included:

- **dlswNode** Objects related to this DLSw node’s configuration, monitoring and control.
- **dlswTConn** Objects relating to transport connections to this DLSw’s partner nodes.
- **dlswInterface** Objects configured for this DLSw relating to its local interfaces.
- **dlswDirectory** Objects reflecting this DLSw’s view of where end-station resources (MAC addresses and NetBIOS names) are located.
- **dlswCircuit** Objects showing the end-station connections that DLSw currently has established, or that are coming up or have gone down.
- **dlswSDLC** Objects configured for this DLSw’s SDLC-attached end stations.

2.4.1 Compliance

The MIB provides the following compliance statements:

- **dlswCoreCompliance** Defines the minimum support required of all implementations. Note that for this and the other compliance statements, NetBIOS-related objects are grouped separately because the DLSw Version 1 Standard [1] does not require NetBIOS support.
- **dlswTConnTCPCompliance** Defines the minimum support required of implementations that use TCP as a transport protocol.
- **dlswDirCompliance** Defines the minimum support required of implementations that support some sort of
directory function.

dlswDirLocateCompliance Defines the minimum support required of implementations that support a directory function and also support the ordered retrieval of the entries that match a given resource.

dlswSdlcCompliance Defines the minimum support required of implementations that support SDLC-attached end stations.

2.5 DLSw MIB Usage

2.5.1 Cooperative DLSw nodes

To reduce the size of the MIB, thus the amount of data that each agent needs to keep, the information that usually could be made available in two partner nodes (e.g., information exchanged between them) is only defined in the MIB as the info received. That is, there are no objects defined for the info sent. In order to form the complete picture of the state of a resource, the manager needs to retrieve info from multiple DLSw nodes. An example is that the SAP list, NETBIOS list and MAC list are kept at the receiving end of a DLSw capabilities exchange (the sender does not save what it sent to each partner).

Note well: The DLSw protocol does not specify a technique for a manager to correlate the transport address of the partner managed DLSw node and the transport address that the management protocol uses.

2.5.2 Setting capabilities exchange-related objects

This MIB supports changes to DLSw variables whose change should be reported to DLSw partner nodes in a "run-time" capabilities exchange. Since a DLSw node normally unicasts these capabilities messages to all its active partners, frequent changes to these variables can result in excessive network traffic. To avoid this problem, developers of network management applications using this MIB should try to group all such changes in a few SNMP SET requests, and should send them in bulk. Agent developers should implement a technique to group a number of changes into a single capabilities exchange message. One possible approach is to send a run-time capabilities message only if no capabilities-related changes have been received for a pre-defined period of time.
2.5.3 Examples of Tasks Using This MIB

2.5.3.1 Configuring DLSw to actively connect to a specific TCP/IP partner

Create a conceptual row in dlswTConnConfigTable with: Index = the highest the managed station has used so far + 1; TDomain = dlswTCPDomain; LocalTAddr = this node’s DLSw IP address; RemoteTAddr = the partner’s DLSw IP address; EntryType = individual; SetupType = activePersistent. Note that determining the index to use may require dumping the TConnConfigTable, but this will not typically be a large table. If the DLSw node rejects the row creation due to index collision, the management station should increment its index value and try again.

2.5.3.2 Configuring DLSw to passively accept any partner

Create a conceptual row in dlswTConnConfigTable as above but with: RemoteTAddr = 0; EntryType = global; SetupType = passive. Every individual transport connection accepted as a result of this global row will inherit the configuration values from this row.

To prevent a specific remote node from being passively accepted as a partner, create another row with: RemoteTAddr = that node’s IP address; EntryType = individual; SetupType = excluded.

2.5.3.3 Configuring DLSw to allow or connect to a group of partners

Define a conceptual row in dlswTConnConfigTable as above but with: EntryType = group; GroupDefinition = pointer to an enterprise-specific representation of a group. For example, a group definition might consist of an IP address value and mask, or a multicast IP address. Every individual transport connection accepted as a result of this group row will inherit the configuration values from this row.

When a group is created that has some overlap with entries where EntryType = individual (there will always be this overlap when a global row exists), the DLSw node must use the configured rows using a "most specific match wins" rule. That is, the entry in TConnConfigTable with the remote address most nearly matching an incoming connection should be used to provide the values for the new connection. For equal matches, the choice of TConnConfigTable entry is up to the DLSw node implementation. Note that the management station should never create two TConnConfig rows with duplicate remote addressing values.
2.5.3.4 Identifying the protocol level of a partner DLSw

If the partner DLSw has implemented at least the AIW Version 1 DLSw Standard [1], the AIW version and release number for the DLSw protocol is accessible from dlswTConnOperPartnerVersion. If TConnOperPartnerVersion is a string of zero length but the TConnOperState = 'connected' state (i.e., is not still performing capabilities exchange), the partner DLSw can be assumed to be an RFC 1434+ node.

2.5.3.5 Recycling a transport connection

Quiesce or forcibly disconnect the transport connection by setting TConnOperState to 'quiescing' or 'disconnecting', and monitor until it moves to the 'disconnected' state or the TConnOper row disappears. The row may disappear because implementations are not required to maintain transport connection information after a transport connection has gone down.

The action required to re-activate the transport connection depends on the value of TConnConfigSetupType for the relevant TConnConfig row. ActivePermanent connections will attempt to come back automatically. Passive connections must be re-established from the remote partner. ActiveOnDemand connections will be re-established by this node, but only after some end-station operation triggers a circuit setup attempt.

2.5.3.6 Investigating why a transport connection went down

TConnOperDiscTime and TConnOperDiscReason provide the vital information of the time and the cause of the disconnection of a transport connection and TConnOperDiscActiveCir indicates whether end users may have been affected. This MIB does not specify the duration that an agent must make this information available after the disconnection of a transport connection occurs. Manager should try the agent of the partner DLSw, if such information is not available in one DLSw node. Additional information might come from the MIB for the transport protocol (e.g., TCP or LLC). dlswTConnStat* and dlswTConnConfigOpens give a more general picture of transport connection activity, but can’t give specific reasons for problems.

2.5.3.7 Changing the configuration of an active transport connection

Follow this sequence of management protocol set operations:

1. Use TConnOperConfigIndex to locate the TConnConfig entry that governs the configuration of the transport connection.
2. Change the rowStatus of that conceptual row to notInService. This prevents the transport connection from being connected automatically if TConnConfigSetupType = activePersistent.

3. Quiesce or forcibly disconnect the transport connection by setting TConnOperState to 'quiescing' or 'disconnecting', and monitor until it moves to the 'disconnected' state or the TConnOper row disappears.

4. Change the values of TConnConfig variables as desired.

5. Change the rowStatus of the TConnConfig conceptual row to active. TConnConfigSetupType will subsequently control whether this node will actively seek to re-establish the transport connection, or will wait.

2.5.3.8 Checking configuration validity for an active transport connection

Use TConnOperConfigIndex to identify the row of TConnConfig for the transport connection. If TConnConfigLastModifyTime is greater than TConnOperConnectTime, then one or more of the variables in the TConnConfig row may not be valid for the current state of the active transport connection. This is an exception condition and will not normally be the case.

2.5.3.9 Configuring the interfaces and SAPs DLSw will use

To add DLSw end-station support (not transport connection support) to an interface, create a conceptual row for that ifIndex in the dlswIfTable. For many products, you will specify the same single virtual segment number for all interfaces. Indicate the list of SAPs to be supported by that interface - this could be all 0xFFs if the product has some automatic SAP opening function.

To open or close a SAP to DLSw on an existing interface, simply set or reset the appropriate bit in dlswIfSapList in the table row for that interface.

2.5.3.10 Configuring static MAC address (or NetBIOS name) cache entries

It is common to configure a few static directory entries to preload in the caches of the DLSw nodes and reduce the need for broadcast searches. The following example adds entries to the MAC cache to indicate that a specific MAC address is reachable through two different remote partners:

1. The manager retrieves dlswDirMacCacheNextIndex to get an index assignment from the DLSw node. The DLSw node ensures that the retrieved index will not be reused.
2. The manager creates a conceptual row in dlswDirMacTable with:
 Index = the retrieved index; Mac = the MAC address; Mask = all
 0xFF's; EntryType = userConfiguredPublic; LocationType = remote;
 Location = OID for dlswTConnConfigEntry of the 1st partner; Status
 = unknown (recommended for new entries).
3. The manager repeats the preceding 2 steps and creates a second row
 using Index = second index retrieved; Location = OID for
 dlswTConnConfigEntry of the 2nd partner.

Note that the DLSw node is not obligated to use newly created
directory entries in the order in which they were created. It is
recommended that entries be used in most-specific match first order,
I.e., an entry with a Mask of all 0xFFs should take precedence over
one with a "partial wildcard". The relative order of static versus
dynamic entries and of "equal length" matches is up to the DLSw
implementation.

The dlswDirStat objects can be used to get an idea of the success
rate for a particular static caching scheme.

2.5.3.11 Seeing where the directory indicates a given resource is

To retrieve all directory information related to a given resource (in
this example, a NetBIOS name), the management station should:
1. Retrieve dlswDirLocateNBLocation in the dlswDirLocateNBTable entry
 where NBName = the fully-specified NetBIOS name without wildcards;
 NBMatch = 1.
2. Use the returned value (i.e., OID) to retrieve the contents of the
dlswDirNBEntry itself.
3. Repeat the previous two steps with NBMatch = 2, 3, ..., until the
 end of dlswDirLocateNBTable is reached.

The DLSw node conveys the precedence relationship of the different
matching directory entries by the order in which it returns their
OIDs.

2.5.3.12 Investigating circuit bringup failure

Circuit bringup takes place in two stages: explorer flows to locate
the target resource (MAC address or NetBIOS name); and establishing
the circuit itself. To determine the success of explorer flows, have
the origin end station initiate a link establishment to the target,
and look later for cache entries for the target MAC address or
NetBIOS name. The dlswTConn*ex* counters also give some visibility
to which transport connections are being used to look for resources.
Once circuit establishment is started, an entry of dlswCircuitTable
for the two MAC/SAP addresses involved is created.
dlswCircuitEntryTime, StateTime, and State may provide useful information about intermediate states the circuit is reaching before becoming disconnected again.

2.5.3.13 Investigating the failure of an established circuit

The variables dlswCircuitDiscReason* in the dlswCircuitTable provide the key information of the cause of the disconnection of circuits. In addition, the underlying DLC MIBs may provide information at the link station level, and some clues (e.g., DISC or FRMR counters) at the SAP or interface level.

2.5.3.14 Seeing circuit-level traffic statistics

Locate the relevant dlswCircuitEntry and follow dlswCircuitS1Dlc to a link station-level table entry in the underlying DLC MIB. Move to the corresponding link station’s statistics table in the DLC MIB to get counters of frames, bytes, etc. for this circuit.

2.5.3.15 Cutting down the flow of DLSw-related traps

Set some or all of the dlswTrapCntl* objects to the value of ‘disabled’ or ‘partial’.
3.0 Definitions

--- ***
-- The structure of the DLSw MIB (t: indicates table):
-- DLSw MIB
-- |-- Node Group
-- | |-- Node Identity
-- | |-- Node Operational Related
-- | |-- Node Resource
--
-- |-- Transport Connection Group
-- | |-- Statistics
-- | |t- Transport Connection Configuration
-- | |t- Transport Connection Operation
-- | | |-- capabilities
-- | | |-- Supported SAP List
-- | | |-- statistics
-- | | | |-- transport connection itself
-- | | | |-- traffic over the transport connection
-- | | | |-- directory search activities
-- | | | |-- search filtered statistics
-- | | | |-- circuits over the transport connection
-- | |-- Transport Specific
-- | |-- Tcp
-- | |t- Transport Connection Config (Tcp Specific)
-- | |t- Transport Connection Operation (Tcp Specific)
--
-- |-- Interface Group
-- |t- interfaces that DLSw is active on.
--
-- |-- Directory Group
-- | |-- Statistics
-- | | |-- Directory Cache
-- | | |t- Directory of MAC addresses
-- | | |t- Directory of NETBIOS names
-- | | |-- Locate
-- | | |t- Directory of Locate MAC
-- | | |t- Directory of Locate NETBIOS
--
-- |-- Circuit Group
-- | |-- Statistics
-- | |t- Circuits
--
-- |t- Virtual and non-LAN end stations
-- |t- SDLC end station
--
--- ***
Terminology:

(1) **DLSw:**
A device which provides data link switching function.

Sometimes it is referred as a DLSw or DLSw node.

Local DLSw: The DLSw that the DLSw SNMP Agent is running on.

Partner DLSw (or DLSw partner): A DLSw node that is "transport
connected" with the local DLSw. Sometimes the term "DLSw
partners" is used to indicate the two ends of a transport
connection.

(2) **TCP Connection:**

Full-duplex (-capable) association defined by a pair of
(IP address, port) pairs, running the TCP protocol. The port
addresses in RFC 1795 define two TCP connections between
a pair of DLSw nodes, each being used to send data in a
single direction.

Local: This end of TCP connection

Foreign: Remote end of TCP connection

(3) **Transport Connection:**

It is a generic term for a full-duplex reliable connection
between DLSw nodes. This term is used to refer to the
association between DLSw nodes without being concerned
about whether TCP is the protocol or whether there are
one or two TCP connection.

(Note: for two TCP connections, the transport connection is
opened if and only if both TCP connections are operational.
Also note: sometimes race conditions will occur, but the
condition should only be temporary.)

(4) **Data Link:**

An instance of OSI layer-2 procedures for exchanging information
using either connection-oriented (e.g., LLC-2) or connectionless
(e.g., LLC-1) services. A DLSw node or pair of partner nodes
switches data traffic from stations of one data link to
stations of another data link. Data link switching is
transparent to end stations.

Source: the end station which sends a message.

Destination: the end station which receives a message.

(This DLSw role is with respect to a give message)

(5) **Circuit:**

End-to-end association of two DLC entities through one or
two DLSw nodes. A circuit is the concatenation of two
"data links", optionally with an intervening transport connection.

Origin: the end station which initiates the circuit.

Target: the end station which receives the initiation.

(6) Link Station:

It is one end of an LLC-2 connection. It performs error recovery procedure, retries, and various timers.

DLSw terminates LLC-2 connection at each end of DLSw nodes, thus, keepAlive and error recovery on LLC-2 connections are kept to each side of LAN and do not flow through the WAN.

A link station is substantiated when SABME is sent/received.

All link stations have circuits, but not all circuits have link stations.

Key assumptions are:

(1) The MIB is designed to manage a single DLSw entity.

(2) A DLSw may support various types of transport connections.

- This DLSw MIB module does not restrict the possibility to have, at any given moment, more than one "transport connection" defined or active between two DLSw’s.

- However, current DLSw architecture does not provide a mechanism, e.g., DLSw host name, to prevent two transport connections of different types between the same two DLSw’s.

(3) This MIB assumes that interface MIB is implemented. ifIndex is used in this MIB module.

(4) This MIB assumes that the SDLC MIB (or an equivalent enterprise specific MIB) is implemented, since SDLC-specific objects are not duplicated here.

(5) This MIB assumes that the LLC-2 MIB (or an equivalent enterprise specific MIB) is implemented, since LLC-related objects are not duplicated here.

(6) All MACs, SAPs, Ring numbers, ... are in non-canonical form. That is, the most significant bit will be transmitted first.

DLSW-MIB DEFINITIONS ::= BEGIN

IMPORTS
DisplayString, RowStatus,
RowPointer, TruthValue,
TEXTUAL-CONVENTION FROM SNMPv2-TC
Counter32, Gauge32, TimeTicks,
OBJECT-TYPE, MODULE-IDENTITY,
NOTIFICATION-TYPE FROM SNMPv2-SMI
MODULE-COMPLIANCE, OBJECT-GROUP,
NOTIFICATION-GROUP FROM SNMPv2-CONF
ifIndex FROM IF-MIB
sdICLSAddress FROM SNA-SDLC-MIB;

dlsw MODULE-IDENTITY
LAST-UPDATED "9606040900Z"
ORGANIZATION "AIW DLSw MIB RIGLET and IETF DLSw MIB Working Group"
CONTACT-INFO
"David D. Chen
IBM Corporation
800 Park, Highway 54
Research Triangle Park, NC 27709-9990
Tel: 1 919 254 6182
E-mail: dchen@vnet.ibm.com"

DESCRIPTION
"This MIB module contains objects to manage Data Link Switches."
::= { mib-2 46 }

dlswMIB OBJECT IDENTIFIER ::= { dlsw 1 }
dlswDomains OBJECT IDENTIFIER ::= { dlsw 2 }

-- ***
-- Textual convention definitions
-- ***

NBName ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Represents a single qualified NetBIOS name, which can include
'don’t care' and 'wildcard’ characters to represent a number
of real NetBIOS names. If an individual character position in
the qualified name contains a '?’, the corresponding character
position in a real NetBIOS name is a 'don’t care’. If the
qualified name ends in '*' or **', the remainder of a real NetBIOS
name is a 'don’t care’. '*' is only considered a wildcard if it
appears at the end of a name."
SYNTAX OCTET STRING (SIZE (0..16))

MacAddressNC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "1x:
STATUS current
DESCRIPTION
"Represents an 802 MAC address represented in
non-canonical format. That is, the most significant bit will be transmitted first. If this information is not available, the value is a zero length string.

SYNTAX OCTET STRING (SIZE (0 | 6))

TAddress ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Denotes a transport service address. For dlswTCPDomain, a TAddress is 4 octets long, containing the IP-address in network-byte order."
SYNTAX OCTET STRING (SIZE (0..255))

EndStationLocation ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Representing the location of an end station related to the managed DLSw node."
SYNTAX INTEGER {
 other (1),
 internal (2), -- local virtual MAC address
 remote (3), -- via DLSw partner
 local (4) -- locally attached
}

DlcType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Representing the type of DLC of an end station, if applicable."
SYNTAX INTEGER {
 other (1), -- not assigned yet
 na (2), -- not applicable
 llc (3), -- 802.2 Logical Link Control
 sdlc (4), -- SDLC
 qllc (5) -- QLLC
}

LFSize ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The largest size of the INFO field (including DLC header, not including any MAC-level or framing octets). 64 valid values as defined by the IEEE 802.1D Addendum are acceptable."
SYNTAX INTEGER {
 lfs516(516), lfs635(635), lfs754(754), lfs873(873), lfs993(993), lfs1112(1112), lfs1231(1231),
null OBJECT IDENTIFIER ::= { 0 0 }

-- ***
-- DLSw Transport Domain definitions
-- ***

-- DLSw over TCP
dlswTCPDomain OBJECT IDENTIFIER ::= { dlswDomains 1 }
-- for an IP address of length 4:
--
-- octets contents encoding
-- 1-4 IP-address network-byte order
--
DlswTCPAddress ::= TEXTUAL-CONVENTION
DISPLAY-HINT "1d.1d.1d.1d"
STATUS current
DESCRIPTION "Represents the IP address of a DLSw which uses
TCP as a transport protocol."
SYNTAX OCTET STRING (SIZE (4))
The DLSw MIB module contains an object part and a conformance part.

Object part is organized in the following groups:

1. dlswNode -- information about this DLSw
2. dlswTConn -- about adjacent DLSw partners
3. dlswInterface -- about which interfaces DLSw is active on
4. dlswDirectory -- about any directory of local/remote resources
5. dlswCircuit -- about established circuits.
6. dlswSdlc -- about SDLC data link switched devices

```
dlswNode        OBJECT IDENTIFIER ::= { dlswMIB 1 }
dlswTConn       OBJECT IDENTIFIER ::= { dlswMIB 2 }
dlswInterface   OBJECT IDENTIFIER ::= { dlswMIB 3 }
dlswDirectory   OBJECT IDENTIFIER ::= { dlswMIB 4 }
dlswCircuit     OBJECT IDENTIFIER ::= { dlswMIB 5 }
dlswSdlc        OBJECT IDENTIFIER ::= { dlswMIB 6 }  -- SDLC

-- *******************************************************************
-- THE NODE GROUP
-- *******************************************************************

-- DLSw Node Identity

-- dlswNodeVersion OBJECT-TYPE
SYNTAX     OCTET STRING (SIZE (2))
MAX-ACCESS read-only
STATUS     current
DESCRIPTION
"This value identifies the particular version of the DLSw
standard supported by this DLSw. The first octet is a
hexadecimal value representing the DLSw standard Version
number of this DLSw, and the second is a hexadecimal value
representing the DLSw standard Release number. This
information is reported in DLSw Capabilities Exchange."
REFERENCE
"DLSW: Switch-to-Switch Protocol RFC 1795"
::= { dlswNode 1 }

dlswNodeVendorID OBJECT-TYPE
SYNTAX     OCTET STRING (SIZE (3))
MAX-ACCESS read-only
STATUS     current
DESCRIPTION
"The value identifies the manufacturer’s IEEE-assigned
organizationally Unique Identifier (OUI) of this DLSw.
This information is reported in DLSw Capabilities
Exchange."
REFERENCE
```
"DLSW: Switch-to-Switch Protocol RFC 1795"
::= { dlswNode 2 }

dlswNodeVersionString OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This string gives product-specific information about
this DLSw (e.g., product name, code release and fix level).
This flows in Capabilities Exchange messages."
REFERENCE
"DLSW: Switch-to-Switch Protocol RFC 1795"
::= { dlswNode 3 }

-- ---
-- DLSw Code Capability
-- ---
dlswNodeStdPacingSupport OBJECT-TYPE
SYNTAX INTEGER {
 none (1), -- does not support DLSw
 -- Standard pacing scheme
 adaptiveRcvWindow (2), -- the receive window size
 -- varies
 fixedRcvWindow (3) -- the receive window size
 -- remains constant
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Circuit pacing, as defined in the DLSw Standard, allows each
of the two DLSw nodes on a circuit to control the amount
of data the other is permitted to send to them. This object
reflects the level of support the DLSw node has for this
protocol. (1) means the node has no support for the standard
circuit pacing flows; it may use RFC 1434+ methods only, or
a proprietary flow control scheme. (2) means the node supports
the standard scheme and can vary the window sizes it grants as
a data receiver. (3) means the node supports the standard
scheme but never varies its receive window size."
::= { dlswNode 4 }

-- DLSw Node Operational Objects
--
dlswNodeStatus OBJECT-TYPE
SYNTAX INTEGER {
 active (1),
inactive (2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The status of the DLSw part of the system. Changing the value from active to inactive causes DLSw to take the following actions - (1) it disconnects all circuits through all DLSw partners, (2) it disconnects all transport connections to all DLSw partners, (3) it disconnects all local DLC connections, and (4) it stops processing all DLC connection set-up traffic. Since these are destructive actions, the user should query the circuit and transport connection tables in advance to understand the effect this action will have. Changing the value from inactive to active causes DLSw to come up in its initial state, i.e., transport connections established and ready to bring up circuits."
::= { dlswNode 5 }

dlswNodeUpTime OBJECT-TYPE
SYNTAX TimeTicks
UNITS "hundredths of a second"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The amount of time (in hundredths of a second) since the DLSw portion of the system was last re-initialized. That is, if dlswState is in the active state, the time the dlswState entered the active state. It will remain zero if dlswState is in the inactive state."
::= { dlswNode 6 }

dlswNodeVirtualSegmentLFSize OBJECT-TYPE
SYNTAX LFSize
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The largest frame size (including DLC header and info field but not any MAC-level or framing octets) this DLSw can forward on any path through itself. This object can represent any box-level frame size forwarding restriction (e.g., from the use of fixed-size buffers). Some DLSw implementations will have no such restriction.

This value will affect the LF size of circuits during circuit creation. The LF size of an existing circuit can be found in
the RIF (Routing Information Field)."
DEFVAL { lfs65535 }
::= { dlswNode 7 }

-- ...
-- NETBIOS Resources
-- ...

dlswNodeResourceNBExclusivity OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of true indicates that the NetBIOS Names
configured in dlswDirNBTable are the only ones accessible
via this DLSw.

If a node supports sending run-time capabilities exchange
messages, changes to this object should cause that action.
It is up to the implementation exactly when to start the
run-time capabilities exchange."
::= { dlswNode 8 }

-- ...
-- MAC Address List
-- ...

dlswNodeResourceMacExclusivity OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of true indicates that the MAC addresses
configured in the dlswDirMacTable are the only ones accessible via this DLSw.

If a node supports sending run-time capabilities exchange
messages, changes to this object should cause that action.
It is up to the implementation exactly when to start the
run-time capabilities exchange."
::= { dlswNode 9 }

-- ***
-- TRANSPORT CONNECTION (aka: PARTNER DLSW)
-- ***
-- Transport Connection Statistics Objects
-- ---

dlwTConnStat OBJECT IDENTIFIER ::= { dlswTConn 1 }

dlwTConnStatActiveConnections OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of transport connections that are not in 'disconnected' state."
 ::= { dlswTConnStat 1 }

dlwTConnStatCloseIdles OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times transport connections in this node exited the connected state with zero active circuits on the transport connection."
 ::= { dlswTConnStat 2 }

dlwTConnStatCloseBusys OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times transport connections in this node exited the connected state with some non-zero number of active circuits on the transport connection. Normally this means the transport connection failed unexpectedly."
 ::= { dlswTConnStat 3 }

-- ---

-- Transport Connection Configuration Table
-- ---

dlwTConnConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswTConnConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table defines the transport connections that will be initiated or accepted by this DLSw. Structure of masks allows wildcard definition for a collection of transport connections by a conceptual row. For a specific transport connection, there may
be multiple of conceptual rows match the
transport address. The ‘best’ match will
the one to determine the characteristics
of the transport connection."

::= { dlswTConn 2 }

dlswTConnConfigEntry OBJECT-TYPE
SYNTAX DlswTConnConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Each conceptual row defines a collection of
transport connections."
INDEX { dlswTConnConfigIndex }
::= { dlswTConnConfigTable 1 }

DlswTConnConfigEntry ::= SEQUENCE {
 dlswTConnConfigIndex INTEGER,
 dlswTConnConfigTDomain OBJECT IDENTIFIER,
 dlswTConnConfigLocalTAddr TAddress,
 dlswTConnConfigRemoteTAddr TAddress,
 dlswTConnConfigLastModifyTime TimeTicks,
 dlswTConnConfigEntryType INTEGER,
 dlswTConnConfigGroupDefinition RowPointer,
 dlswTConnConfigSetupType INTEGER,
 dlswTConnConfigSapList OCTET STRING,
 dlswTConnConfigAdvertiseMacNB TruthValue,
 dlswTConnConfigInitCirRecvWndw INTEGER,
 dlswTConnConfigOpens Counter32,
 dlswTConnConfigRowStatus RowStatus
}

dlswTConnConfigIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index to the conceptual row of the table.
Negative numbers are not allowed. There
are objects defined that point to conceptual
rows of this table with this index value.
Zero is used to denote that no corresponding
row exists.

Index values are assigned by the agent, and
should not be reused but should continue to
increase in value."
::= { dlswTConnConfigEntry 1 }
dlswTConnConfigTDomain OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The object identifier which indicates the transport
domain of this conceptual row."
 ::= { dlswTConnConfigEntry 2 }

dlswTConnConfigLocalTAddr OBJECT-TYPE
SYNTAX TAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The local transport address for this conceptual row
of the transport connection definition."
 ::= { dlswTConnConfigEntry 3 }

dlswTConnConfigRemoteTAddr OBJECT-TYPE
SYNTAX TAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The remote transport address. Together with
dlswTConnConfigEntryType and dlswTConnConfigGroupDefinition,
the object instance of this conceptual row identifies a
collection of the transport connections that will be
either initiated by this DLSw or initiated by a partner
DLSw and accepted by this DLSw."
 ::= { dlswTConnConfigEntry 4 }

dlswTConnConfigLastModifyTime OBJECT-TYPE
SYNTAX TimeTicks
UNITS "hundredths of a second"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The time (in hundredths of a second) since the value of
any object in this conceptual row except for
dlswTConnConfigOpens was last changed. This value
may be compared to dlswTConnOperConnectTime to
determine whether values in this row are completely
valid for a transport connection created using
this row definition."
 ::= { dlswTConnConfigEntry 5 }

dlswTConnConfigEntryType OBJECT-TYPE
SYNTAX INTEGER

individual (1),
global (2),
group (3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The object instance signifies the type of entry in the
associated conceptual row. The value of ‘individual’
means that the entry applies to a specific partner DLSw
node as identified by dlswTConnConfigRemoteTAddr and
dlswTConnConfigTDomain. The value of ‘global’
means that the entry applies to all partner DLSw nodes
of the TDomain. The value of ‘group’ means that the entry
applies to a specific set of DLSw nodes in the TDomain.
Any group definitions are enterprise-specific and are pointed
to by dlswTConnConfigGroupDefinition. In the cases of
‘global’ and ‘group’, the value in dlswTConnConfigRemoteTAddr
may not have any significance."
::= { dlswTConnConfigEntry 6 }

dlswTConnConfigGroupDefinition OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"For conceptual rows of ‘individual’ and ‘global’ as
specified in dlswTConnConfigEntryType, the instance
of this object is ‘0.0’. For conceptual rows of
‘group’, the instance points to the specific
group definition."
::= { dlswTConnConfigEntry 7 }

dlswTConnConfigSetupType OBJECT-TYPE

SYNTAX INTEGER {
 other (1),
 activePersistent (2),
 activeOnDemand (3),
 passive (4),
 excluded (5)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This value of the instance of a conceptual row
identifies the behavior of the collection of
transport connections that this conceptual row
defines. The value of activePersistent, activeOnDemand
and passive means this DLSw will accept any transport
connections, initiated by partner DLSw nodes, which
are defined by this conceptual row. The value of
activePersistent means this DLSw will also initiate
the transport connections of this conceptual row and
retry periodically if necessary. The value of
activeOnDemand means this DLSw will initiate a
transport connection of this conceptual row, if
there is a directory cache hits. The value of
other is implementation specific. The value of exclude
means that the specified node is not allowed to be
a partner to this DLSw node. To take a certain
conceptual row definition out of service, a value of
notInService for dlswTConnConfigRowStatus should be
used."
DEFVAL { passive }
::= { dlswTConnConfigEntry 8 }
dlswTConnConfigSapList OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(16))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The SAP list indicates which SAPs are advertised to
the transport connection defined by this conceptual
row. Only SAPs with even numbers are represented,
in the form of the most significant bit of the first
octet representing the SAP 0, the next most significant
bit representing the SAP 2, to the least significant
bit of the last octet representing the SAP 254. Data
link switching is allowed for those SAPs which have
one in its corresponding bit, not allowed otherwise.
The whole SAP list has to be changed together. Changing
the SAP list affects only new circuit establishments
and has no effect on established circuits.

This list can be used to restrict specific partners
from knowing about all the SAPs used by DLSw on all its
interfaces (these are represented in dlswIfSapList for
each interface). For instance, one may want to run NetBIOS
with some partners but not others.

If a node supports sending run-time capabilities exchange
messages, changes to this object should cause that action.
When to start the run-time capabilities exchange is
implementation-specific.
The DEFVAL below indicates support for SAPs 0, 4, 8, and C."
DEFVAL { 'AA000000000000000000000000000000'H }
::= { dlswTConnConfigEntry 9 }

dlswTConnConfigAdvertiseMacNB OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The value of true indicates that any defined local MAC addresses and NetBIOS names will be advertised to a partner node via initial and (if supported) run-time capabilities exchange messages. The DLSw node should send the appropriate exclusivity control vector to accompany each list it sends, or to represent that the node is explicitly configured to have a null list.

The value of false indicates that the DLSw node should not send a MAC address list or NetBIOS name list, and should also not send their corresponding exclusivity control vectors."
DEFVAL { true }
::= { dlswTConnConfigEntry 10 }

dlswTConnConfigInitCirRecvWndw OBJECT-TYPE
SYNTAX INTEGER (0..65535)
UNITS "SSP messages"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The initial circuit receive pacing window size, in the unit of SSP messages, to be used for future transport connections activated using this table row. The managed node sends this value as its initial receive pacing window in its initial capabilities exchange message. Changing this value does not affect the initial circuit receive pacing window size of currently active transport connections. If the standard window pacing scheme is not supported, the value is zero.

A larger receive window value may be appropriate for partners that are reachable only via physical paths that have longer network delays."
DEFVAL { 1 }
::= { dlswTConnConfigEntry 11 }

dlswTConnConfigOpens OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of times transport connections entered
connected state according to the definition of
this conceptual row."
::= { dlswTConnConfigEntry 12 }

dlswTConnConfigRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used by the manager to create
or delete the row entry in the dlswTConnConfigTable
following the RowStatus textual convention. The value
of notInService will be used to take a conceptual
row definition out of use."
::= { dlswTConnConfigEntry 13 }

-- ---
-- Transport Connection Operation Table
-- ---
-- (1) At most one transport connection can be connected between
-- this DLSw and one of its DLSw partners at a given time.
-- (2) Multiple transport types are supported.
-- (3) Since the entries may be reused, dlswTConnOperEntryTime
-- needs to be consulted for the possibility of counter reset.
-- ---

dlswTConnOperTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswTConnOperEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of transport connections. It is optional but
desirable for the agent to keep an entry for some
period of time after the transport connection is
disconnected. This allows the manager to capture
additional useful information about the connection, in
particular, statistical information and the cause of the
disconnection."
::= { dlswTConn 3 }

dlswTConnOperEntry OBJECT-TYPE
SYNTAX DlswTConnOperEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
INDEX { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr } ::= { dlswTConnOperTable 1 }

DlswTConnOperEntry ::= SEQUENCE {
 dlswTConnOperTDomain OBJECT IDENTIFIER,
 dlswTConnOperLocalTAddr TAddress,
 dlswTConnOperRemoteTAddr TAddress,
 dlswTConnOperEntryTime TimeTicks,
 dlswTConnOperConnectTime TimeTicks,
 dlswTConnOperState INTEGER,
 dlswTConnOperConfigIndex INTEGER,
 dlswTConnOperFlowCntlMode INTEGER,
 dlswTConnOperPartnerVersion OCTET STRING,
 dlswTConnOperPartnerVendorID OCTET STRING,
 dlswTConnOperPartnerVersionStr DisplayString,
 dlswTConnOperPartnerInitPacingWndw INTEGER,
 dlswTConnOperPartnerSapList OCTET STRING,
 dlswTConnOperPartnerNBE excl TruthValue,
 dlswTConnOperPartnerMacExcl TruthValue,
 dlswTConnOperPartnerNBInfo INTEGER,
 dlswTConnOperPartnerMacInfo INTEGER,
 dlswTConnOperDiscTime TimeTicks,
 dlswTConnOperDiscReason INTEGER,
 dlswTConnOperDiscActiveCir INTEGER,
 dlswTConnOperInDataPkts Counter32,
 dlswTConnOperOutDataPkts Counter32,
 dlswTConnOperInDataOctets Counter32,
 dlswTConnOperOutDataOctets Counter32,
 dlswTConnOperInCntlPkts Counter32,
 dlswTConnOperOutCntlPkts Counter32,
 dlswTConnOperCURexSents Counter32,
 dlswTConnOperICRexRcvds Counter32,
 dlswTConnOperCURexRcvds Counter32,
 dlswTConnOperICRexSents Counter32,
 dlswTConnOperNQexSents Counter32,
 dlswTConnOperNRexRcvds Counter32,
 dlswTConnOperNQexRcvds Counter32,
 dlswTConnOperNRexSents Counter32,
dlswTConnOperCirCreates Counter32,
dlswTConnOperCircuits Gauge32

dlswTConnOperTDomain OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The object identifier indicates the transport domain
of this transport connection."
::= { dlswTConnOperEntry 1 }

dlswTConnOperLocalTAddr OBJECT-TYPE
SYNTAX TAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The local transport address for this transport connection. This value could be different from dlswTConnConfigLocalAddr, if the value of the latter were changed after this transport connection was established."
::= { dlswTConnOperEntry 2 }

dlswTConnOperRemoteTAddr OBJECT-TYPE
SYNTAX TAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The remote transport address of this transport connection."
::= { dlswTConnOperEntry 3 }

dlswTConnOperEntryTime OBJECT-TYPE
SYNTAX TimeTicks
UNITS "hundredths of a second"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The amount of time (in hundredths of a second) since this transport connection conceptual row was created."
::= { dlswTConnOperEntry 4 }

-- ...
-- DLSw Transport Connection Operational Objects
-- ...

dlswTConnOperConnectTime OBJECT-TYPE
SYNTAX TimeTicks
UNITS "hundredths of a second"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The amount of time (in hundredths of a second) since this transport connection last entered the 'connected' state. A value of zero means this transport connection has never been established."
::= { dlswTConnOperEntry 5 }

dlswTConnOperState OBJECT-TYPE
SYNTAX INTEGER {
 connecting (1),
 initCapExchange (2),
 connected (3),
 quiescing (4),
 disconnecting (5),
 disconnected (6)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The state of this transport connection. The transport connection enters 'connecting' state when DLSw makes a connection request to the transport layer. Once initial Capabilities Exchange is sent, the transport connection enters 'initCapExchange' state. When partner capabilities have been determined and the transport connection is ready for sending CanUReach (CUR) messages, it moves to the 'connected' state. When DLSw is in the process of bringing down the connection, it is in the 'disconnecting' state. When the transport layer indicates one of its connections is disconnected, the transport connection moves to the 'disconnected' state.

Whereas all of the values will be returned in response to a management protocol retrieval operation, only two values may be specified in a management protocol set operation: 'quiescing' and 'disconnecting'. Changing the value to 'quiescing' prevents new circuits from being established, and will cause a transport disconnect when the last circuit on the connection goes away. Changing the value to 'disconnecting' will force off all circuits immediately and bring the connection to 'disconnected' state."
::= { dlswTConnOperEntry 6 }

dlswTConnOperConfigIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of dlswTConnConfigIndex of the dlswTConnConfigEntry that governs the configuration information used by this dlswTConnOperEntry. The manager can therefore normally examine both configured and operational information for this transport connection.

This value is zero if the corresponding dlswTConnConfigEntry was deleted after the creation of this dlswTConnOperEntry. If some fields in the former were changed but the conceptual row was not deleted, some configuration information may not be valid for this operational transport connection. The manager can compare dlswTConnOperConnectTime and dlswTConnConfigLastModifyTime to determine if this condition exists."

::= { dlswTConnOperEntry 7 }

-- ..
-- Transport Connection Characteristics
-- ..

dlswTConnOperFlowCntlMode OBJECT-TYPE
SYNTAX INTEGER { undetermined (1),
 pacing (2), -- DLSw standard flow control
 other (3) -- non-DLSw standard flow control
 }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The flow control mechanism in use on this transport connection. This value is undetermined (1) before the mode of flow control can be established on a new transport connection (i.e., after CapEx is sent but before Capex or other SSP control messages have been received). Pacing (2) indicates that the standard RFC 1795 pacing mechanism is in use. Other (3) may be either the RFC 1434+ xBusy mechanism operating to a back-level DLSw, or a vendor-specific flow control method. Whether it is xBusy or not can be inferred from dlswTConnOperPartnerVersion."

::= { dlswTConnOperEntry 8 }

-- ..

dlswTConnOperPartnerVersion OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 2))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This value identifies which version (first octet) and release (second octet) of the DLSw standard is supported by this partner DLSw. This information is obtained from a DLSw capabilities exchange message received from the partner DLSw. A string of zero length is returned before a Capabilities Exchange message is received, or if one is never received. A conceptual row with a dlswTConnOperState of ‘connected’ but a zero length partner version indicates that the partner is a non-standard DLSw partner.

If an implementation chooses to keep dlswTConnOperEntries in the ‘disconnected’ state, this value should remain unchanged."

REFERENCE
"DLSW: Switch-to-Switch Protocol RFC 1795"
::= { dlswTConnOperEntry 9 }

dlswTConnOperPartnerVendorID OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 3))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This value identifies the IEEE-assigned organizationally Unique Identifier (OUI) of the maker of this partner DLSw. This information is obtained from a DLSw capabilities exchange message received from the partner DLSw. A string of zero length is returned before a Capabilities Exchange message is received, or if one is never received.

If an implementation chooses to keep dlswTConnOperEntries in the ‘disconnected’ state, this value should remain unchanged."
::= { dlswTConnOperEntry 10 }

dlswTConnOperPartnerVersionStr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..253))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This value identifies the particular product version (e.g., product name, code level, fix level) of this partner DLSw. The format of the actual version string is vendor-specific. This information is obtained from a DLSw capabilities exchange message received from the partner DLSw. A string of zero length is returned before a Capabilities Exchange message is received, if one is never received, or if one is received but it does not contain a version string.

Chen, et. al. Standards Track [Page 32]
RFC 2024 DLSw MIB using SMIv2 October 1996

If an implementation chooses to keep dlswTConnOperEntrys in the ‘disconnected’ state, this value should remain unchanged.

REFERENCE
"DLSW: Switch-to-Switch Protocol RFC 1795"
::= { dlswTConnOperEntry 11 }

dlswTConnOperPartnerInitPacingWndw OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of the partner initial receive pacing window. This is our initial send pacing window for all new circuits on this transport connection, as modified and granted by the first flow control indication the partner sends on each circuit. This information is obtained from a DLSw capabilities exchange message received from the partner DLSw. A value of zero is returned before a Capabilities Exchange message is received, or if one is never received.

If an implementation chooses to keep dlswTConnOperEntrys in the ‘disconnected’ state, this value should remain unchanged."

REFERENCE
"DLSW: Switch-to-Switch Protocol RFC 1795"
::= { dlswTConnOperEntry 12 }

-- ...

dlswTConnOperPartnerSapList OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 16))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Supported SAP List received in the capabilities exchange message from the partner DLSw. This list has the same format described for dlswTConnConfigSapList. A string of zero length is returned before a Capabilities Exchange message is received, or if one is never received.

If an implementation chooses to keep dlswTConnOperEntrys in the ‘disconnected’ state, this value should remain unchanged."
::= { dlswTConnOperEntry 13 }

dlswTConnOperPartnerNBExcl OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of true signifies that the NetBIOS names received from this partner in the NetBIOS name list in its capabilities exchange message are the only NetBIOS names reachable by that partner. 'False' indicates that other NetBIOS names may be reachable. 'False' should be returned before a Capabilities Exchange message is received, if one is never received, or if one is received without a NB Name Exclusivity CV.

If an implementation chooses to keep dlswTConnOperEntries in the 'disconnected' state, this value should remain unchanged."

::= { dlswTConnOperEntry 14 }

dlswTConnOperPartnerMacExcl OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of true signifies that the MAC addresses received from this partner in the MAC address list in its capabilities exchange message are the only MAC addresses reachable by that partner. 'False' indicates that other MAC addresses may be reachable. 'False' should be returned before a Capabilities Exchange message is received, if one is never received, or if one is received without a MAC Address Exclusivity CV.

If an implementation chooses to keep dlswTConnOperEntries in the 'disconnected' state, this value should remain unchanged."

::= { dlswTConnOperEntry 15 }

dlswTConnOperPartnerNBInfo OBJECT-TYPE
SYNTAX INTEGER {
 none (1), -- none is kept
 partial (2), -- partial list is kept
 complete (3), -- complete list is kept
 notApplicable (4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"It is up to this DLSw whether to keep either none, some, or all of the NetBIOS name list that was received in the capabilities exchange message sent by this partner DLSw. This object identifies how much information was kept by this DLSw. These names are stored as userConfigured remote entries in dlswDirNBTable. A value of (4), notApplicable, should be returned before a Capabilities Exchange message is received, or if one is never received.
If an implementation chooses to keep dlswTConnOperEntrys in
the 'disconnected' state, this value should remain unchanged.

::= { dlswTConnOperEntry 16 }

dlswTConnOperPartnerMacInfo OBJECT-TYPE
SYNTAX INTEGER {
none (1), -- none is kept
partial (2), -- partial list is kept
complete (3), -- complete list is kept
notApplicable (4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"It is up to this DLSw whether to keep either none, some,
or all of the MAC address list that was received in the
capabilities exchange message sent by this partner DLSw.
This object identifies how much information was kept by
this DLSw. These names are stored as userConfigured
remote entries in dlswDirMACTable.
A value of (4), notApplicable, should be returned before
a Capabilities Exchange message is received, or if one is
never received.

If an implementation chooses to keep dlswTConnOperEntrys in
the 'disconnected' state, this value should remain unchanged.

::= { dlswTConnOperEntry 17 }

-- ...
-- Information about the last disconnect of this transport connection.
-- These objects make sense only for implementations that keep
-- transport connection information around after disconnection.
-- ...
dlswTConnOperDiscTime OBJECT-TYPE
SYNTAX TimeTicks
UNITs "hundredths of a second"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The amount of time (in hundredths of a second) since the
dlswTConnOperState last entered 'disconnected' state."
::= { dlswTConnOperEntry 18 }
dlswTConnOperDiscReason OBJECT-TYPE
SYNTAX INTEGER {
other (1),
capExFailed (2),
transportLayerDisc (3),
operatorCommand (4),
lastCircuitDiscd (5),
protocolError (6)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object signifies the reason that either prevented the transport connection from entering the connected state, or caused the transport connection to enter the disconnected state."
::= { dlswTConnOperEntry 19 }

dlswTConnOperDiscActiveCir OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of circuits active (not in DISCONNECTED state) at the time the transport connection was last disconnected. This value is zero if the transport connection has never been connected."
::= { dlswTConnOperEntry 20 }

-- ...
-- Transport Connection Statistics
-- (1) Traffic counts
-- ...

dlswTConnOperInDataPkts OBJECT-TYPE
SYNTAX Counter32
UNITS "SSP messages"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Switch-to-Switch Protocol (SSP) messages of type DGRMFRAME, DATAFRAME, or INFOFRAME received on this transport connection."
::= { dlswTConnOperEntry 21 }

dlswTConnOperOutDataPkts OBJECT-TYPE
SYNTAX Counter32
UNITS "SSP messages"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Switch-to-Switch Protocol (SSP) messages of type DGRMFRAME, DATAFRAME, or INFOFRAME transmitted on this transport connection."
::= { dlswTConnOperEntry 22 }

dlswTConnOperInDataOctets OBJECT-TYPE
SYNTAX Counter32
UNITS "octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number octets in Switch-to-Switch Protocol (SSP) messages of type DGRMFRAME, DATAFRAME, or INFOFRAME received on this transport connection. Each message is counted starting with the first octet following the SSP message header."
::= { dlswTConnOperEntry 23 }

dlswTConnOperOutDataOctets OBJECT-TYPE
SYNTAX Counter32
UNITS "octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number octets in Switch-to-Switch Protocol (SSP) messages of type DGRMFRAME, DATAFRAME, or INFOFRAME transmitted on this transport connection. Each message is counted starting with the first octet following the SSP message header."
::= { dlswTConnOperEntry 24 }

dlswTConnOperInCntlPkts OBJECT-TYPE
SYNTAX Counter32
UNITS "SSP messages"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Switch-to-Switch Protocol (SSP) messages received on this transport connection which were not of type DGRMFRAME, DATAFRAME, or INFOFRAME."
::= { dlswTConnOperEntry 25 }

dlswTConnOperOutCntlPkts OBJECT-TYPE
SYNTAX Counter32
UNITS "SSP messages"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Switch-to-Switch Protocol (SSP) messages of transmitted on this transport connection which were not of type DGRMFRAME, DATAFRAME, or INFOFRAME."
::= { dlswTConnOperEntry 26 }
-- ...
-- (2) Directory activities (Explorer messages)
-- ...

dlswTConnOperCURexSents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of CanUReach_ex messages sent on this transport connection."
 ::= { dlswTConnOperEntry 27 }

dlswTConnOperICRexRcvds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of ICanReach_ex messages received on this transport connection."
 ::= { dlswTConnOperEntry 28 }

dlswTConnOperCURexRcvds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of CanUReach_ex messages received on this transport connection."
 ::= { dlswTConnOperEntry 29 }

dlswTConnOperICRexSents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of ICanReach_ex messages sent on this transport connection."
 ::= { dlswTConnOperEntry 30 }

-- ...

dlswTConnOperNQexSents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of NetBIOS_NQ_ex (NetBIOS Name Query-explorer) messages sent on this transport connection."
 ::= { dlswTConnOperEntry 31 }

-- ...
messages sent on this transport connection.
::= { dlswTConnOperEntry 31 }

dlswTConnOperNRexRcvds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of NETBIOS_NR_ex (NetBIOS Name Recognized-explorer) messages received on this transport connection."
::= { dlswTConnOperEntry 32 }

dlswTConnOperNQexRcvds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of NETBIOS_NQ_ex messages received on this transport connection."
::= { dlswTConnOperEntry 33 }

dlswTConnOperNRexSents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of NETBIOS_NR_ex messages sent on this transport connection."
::= { dlswTConnOperEntry 34 }

-- ..
-- (3) Circuit activities on each transport connection
-- ..

dlswTConnOperCirCreates OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times that circuits entered 'circuit_established' state (not counting transitions from 'circuit_restart')."
::= { dlswTConnOperEntry 35 }

dlswTConnOperCircuits OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of currently active circuits on this transport
connection, where 'active' means not in 'disconnected' state.

::= { dlswTConnOperEntry 36 }

-- ---
-- Transport Connection Specific
-- ---
dlswTConnSpecific OBJECT IDENTIFIER ::= { dlswTConn 4 }
dlswTConnTcp OBJECT IDENTIFIER ::= { dlswTConnSpecific 1 }

-- ...
-- TCP Transport Connection Specific -- Configuration
-- ...
dlswTConnTcpConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswTConnTcpConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table defines the TCP transport connections that
will be either initiated by or accepted by this DLSw. It
augments the entries in dlswTConnConfigTable whose domain
is dlswTCPDomain."
::= { dlswTConnTcp 1 }

DlswTConnTcpConfigEntry OBJECT-TYPE
SYNTAX DlswTConnTcpConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Each conceptual row defines parameters that are
specific to dlswTCPDomain transport connections."
INDEX { dlswTConnConfigIndex }
::= { dlswTConnTcpConfigTable 1 }

DlswTConnTcpConfigEntry ::= SEQUENCE {
 dlswTConnTcpConfigKeepAliveInt INTEGER,
 dlswTConnTcpConfigTcpConnections INTEGER,
 dlswTConnTcpConfigMaxSegmentSize INTEGER
}

DlswTConnTcpConfigKeepAliveInt OBJECT-TYPE
SYNTAX INTEGER (0..1800)
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The time in seconds between TCP keepAlive messages when
no traffic is flowing. Zero signifies no keepAlive protocol.
RFC 2024
DLSw MIB using SMIV2
October 1996

Changes take effect only for new TCP connections.
DEFVAL (0)
::= { dlswTConnTcpConfigEntry 1 }

dlswTConnTcpConfigTcpcConnections OBJECT-TYPE
SYNTAX INTEGER (1..16)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This is our preferred number of TCP connections within a
TCP transport connection. The actual number used is negotiated
at capabilities exchange time. Changes take effect only
for new transport connections."
DEFVAL (2)
::= { dlswTConnTcpConfigEntry 2 }

dlswTConnTcpConfigMaxSegmentSize OBJECT-TYPE
SYNTAX INTEGER (0..65535)
UNITS "packets"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This is the number of bytes that this node is
willing to receive over the read TCP connection(s).
Changes take effect for new transport connections."
DEFVAL (4096)
::= { dlswTConnTcpConfigEntry 3 }

--
-- TCP Transport Connection Specific -- Operation
-- ...

dlswTConnTcpOperTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswTConnTcpOperEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of TCP transport connections. It is optional
but desirable for the agent to keep an entry for some
period of time after the transport connection is
disconnected. This allows the manager to capture
additional useful information about the connection, in
particular, statistical information and the cause of the
disconnection."
::= { dlswTConnTcp 2 }

dlswTConnTcpOperEntry OBJECT-TYPE
SYNTAX DlswTConnTcpOperEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION ""
INDEX { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr }
::= { dlswTConnTcpOperTable 1 }

DlswTConnTcpOperEntry ::= SEQUENCE {
 dlswTConnTcpOperKeepAliveInt INTEGER,
 dlswTConnTcpOperPrefTcpConnections INTEGER,
 dlswTConnTcpOperTcpConnections INTEGER
}

dlswTConnTcpOperKeepAliveInt OBJECT-TYPE
SYNTAX INTEGER (0..1800)
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The time in seconds between TCP keepAlive messages when
no traffic is flowing. Zero signifies no keepAlive protocol is
operating."
::= { dlswTConnTcpOperEntry 1 }

dlswTConnTcpOperPrefTcpConnections OBJECT-TYPE
SYNTAX INTEGER (1..16)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This is the number of TCP connections preferred by this DLSw
partner, as received in its capabilities exchange message."
::= { dlswTConnTcpOperEntry 2 }

dlswTConnTcpOperTcpConnections OBJECT-TYPE
SYNTAX INTEGER (1..16)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This is the actual current number of TCP connections within
this transport connection."
::= { dlswTConnTcpOperEntry 3 }

-- ***
-- DLSW INTERFACE GROUP
-- ***
SYNTAX SEQUENCE OF DlswIfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The list of interfaces on which DLSw is active."
 ::= { dlswInterface 1 }

dlswIfEntry OBJECT-TYPE
SYNTAX DlswIfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 ""
INDEX { ifIndex }
 ::= { dlswIfTable 1 }

DlswIfEntry ::= SEQUENCE {
 dlswIfRowStatus RowStatus,
 dlswIfVirtualSegment INTEGER,
 dlswIfSapList OCTET STRING
}

dlswIfRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object is used by the manager to create
 or delete the row entry in the dlswIfTable
 following the RowStatus textual convention."
 ::= { dlswIfEntry 1 }

dlswIfVirtualSegment OBJECT-TYPE
SYNTAX INTEGER (0..4095 | 65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The segment number that uniquely identifies the virtual
 segment to which this DLSw interface is connected.
 Current source routing protocols limit this value to
 the range 0 - 4095. (The value 0 is used by some
 management applications for special test cases.)
 A value of 65535 signifies that no virtual segment
 is assigned to this interface. For instance,
 in a non-source routing environment, segment number
 assignment is not required."
DEFVAL { 65535 }
 ::= { dlswIfEntry 2 }
dlswIfSapList OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(16))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The SAP list indicates which SAPs are allowed to be
data link switched through this interface. This list
has the same format described for dlswTConnConfigSapList.

When changes to this object take effect is implementation-
specific. Turning off a particular SAP can destroy
active circuits that are using that SAP. An agent
implementation may reject such changes until there are no
active circuits if it so chooses. In this case, it is up
to the manager to close the circuits first, using
dlswCircuitState.

The DEFVAL below indicates support for SAPs 0, 4, 8, and C."
DEFVAL { 'AA000000000000000000000000000000'H }
::= { dlswIfEntry 3 }

-- ***
-- DIRECTORY
-- Directory services caches the locations of MAC addresses
-- and NetBIOS names. For resources which are attached via
-- local interfaces, the ifIndex may be cached, and for
-- resources which are reachable via a DLSw partner, the
-- transport address of the DLSw partner is cached.
-- ***

-- Directory Related Statistical Objects
-- ---
dlswDirStat OBJECT IDENTIFIER ::= { dlswDirectory 1 }

dlswDirMacEntries OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current total number of entries in the dlswDirMacTable."
::= { dlswDirStat 1 }

dlswDirMacCacheHits OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of times a cache search for a particular MAC address resulted in success."

::= { dlswDirStat 2 }

dlswDirMacCacheMisses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of times a cache search for a particular MAC address resulted in failure."

::= { dlswDirStat 3 }

dlswDirMacCacheNextIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The next value of dlswDirMacIndex to be assigned by the agent. A retrieval of this object atomically reserves the returned value for use by the manager to create a row in dlswDirMacTable. This makes it possible for the agent to control the index space of the MAC address cache, yet allows the manager to administratively create new rows."

::= { dlswDirStat 4 }

dlswDirNBEntries OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The current total number of entries in the dlswDirNBTable."

::= { dlswDirStat 5 }

dlswDirNBCacheHits OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of times a cache search for a particular NetBIOS name resulted in success."

::= { dlswDirStat 6 }

dlswDirNBCacheMisses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times a cache search for a particular NetBIOS
name resulted in failure."
::= { dlswDirStat 7 }

dlswDirNBCacheNextIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The next value of dlswDirNBIndex to be assigned by the
agent. A retrieval of this object atomically reserves
the returned value for use by the manager to create
a row in dlswDirNBTable. This makes it possible for the
agent to control the index space for the NetBIOS name
cache, yet allows the manager to administratively
create new rows."
::= { dlswDirStat 8 }

-- Directory Cache

-- Directory for MAC Addresses.
-- All Possible combinations of values of these objects.

--- EntryType LocationType Location Status
--- -------------- -------------- --------- ---------
--- userConfigured local ifEntry or 0.0 reachable, or
--- notReachable, or
--- unknown
--- userConfigured remote TConnConfigEntry reachable, or
--- notReachable, or
--- unknown
--- partnerCapExMsg remote TConnOperEntry unknown
--- dynamic local ifEntry or 0.0 reachable
--- dynamic remote TConnOperEntry reachable

dlswDirMacTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswDirMacEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains locations of MAC addresses.
They could be either verified or not verified,
local or remote, and configured locally or learned
from either Capabilities Exchange messages or
directory searches."
::= { dlswDirCache 1 }

dlswDirMacEntry OBJECT-TYPE
SYNTAX DlswDirMacEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Indexed by dlswDirMacIndex."
INDEX { dlswDirMacIndex }
::= { dlswDirMacTable 1 }

DlswDirMacEntry ::= SEQUENCE {
 dlswDirMacIndex INTEGER,
 dlswDirMacMac MacAddressNC,
 dlswDirMacMask MacAddressNC,
 dlswDirMacEntryType INTEGER,
 dlswDirMacLocationType INTEGER,
 dlswDirMacLocation RowPointer,
 dlswDirMacStatus INTEGER,
 dlswDirMacLFSize LFSize,
 dlswDirMacRowStatus RowStatus
}

dlswDirMacIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Uniquely identifies a conceptual row of this table."
::= { dlswDirMacEntry 1 }

dlswDirMacMac OBJECT-TYPE
SYNTAX MacAddressNC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The MAC address, together with the dlswDirMacMask,
specifies a set of MAC addresses that are defined or
discovered through an interface or partner DLSw nodes."
::= { dlswDirMacEntry 2 }

dlswDirMacMask OBJECT-TYPE
SYNTAX MacAddressNC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The MAC address mask, together with the dlswDirMacMac,
specifies a set of MAC addresses that are defined or
discovered through an interface or partner DLSw nodes."

DEFVAL { 'FFFFFFFFFFFF'H }
::= { dlswDirMacEntry 3 }

dlswDirMacEntryType OBJECT-TYPE
SYNTAX INTEGER {
 other (1),
 userConfiguredPublic (2),
 userConfiguredPrivate (3),
 partnerCapExMsg (4),
 dynamic (5)
} MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The cause of the creation of this conceptual row. It could be one of the three methods: (1) user configured, including via management protocol set operations, configuration file, command line or equivalent methods; (2) learned from the partner DLSw Capabilities Exchange messages; and (3) dynamic, e.g., learned from ICanReach messages, or LAN explorer frames. Since only individual MAC addresses can be dynamically learned, dynamic entries will all have a mask of all FFs. The public versus private distinction for user-configured resources applies only to local resources (UC remote resources are private), and indicates whether that resource should be advertised in capabilities exchange messages sent by this node."

DEFVAL { userConfiguredPublic }
::= { dlswDirMacEntry 4 }

dlswDirMacLocationType OBJECT-TYPE
SYNTAX INTEGER {
 other (1),
 local (2),
 remote (3)
} MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The location of the resource (or a collection of resources using a mask) of this conceptual row"
is either (1) local - the resource is reachable via an interface, or (2) remote - the resource is reachable via a partner DLSw node (or a set of partner DLSw nodes).

DEFVAL { local }
::= { dlswDirMacEntry 5 }

dlswDirMacLocation OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Points to either the ifEntry, dlswTConnConfigEntry, dlswTConnOperEntry, 0.0, or something that is implementation specific. It identifies the location of the MAC address (or the collection of MAC addresses.)"
DEFVAL { null }
::= { dlswDirMacEntry 6 }

dlswDirMacStatus OBJECT-TYPE
SYNTAX INTEGER {
 unknown (1),
 reachable (2),
 notReachable (3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies whether DLSw currently believes the MAC address to be accessible at the specified location. The value 'notReachable' allows a configured resource definition to be taken out of service when a search to that resource fails (avoiding a repeat of the search)."
DEFVAL { unknown }
::= { dlswDirMacEntry 7 }

dlswDirMacLFSize OBJECT-TYPE
SYNTAX LFSize
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The largest size of the MAC INFO field (LLC header and data) that a circuit to the MAC address can carry through this path."
DEFVAL { lfs65535 }
::= { dlswDirMacEntry 8 }

dlswDirMacRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used by the manager to create
or delete the row entry in the dlswDirMacTable
following the RowStatus textual convention."
::= { dlswDirMacEntry 9 }

-- Directory for NetBIOS Names
-- All Possible combinations of values of these objects.

--
-- -------------- -------------- ------------------ --------------
-- EntryType LocationType Location Status
-- -------------- -------------- ------------------ --------------
-- userConfigured local ifEntry or 0.0 reachable, or
-- notReachable, or
-- unknown
-- userConfigured remote TConnConfigEntry reachable, or
-- notReachable, or
-- unknown
-- partnerCapExMsg remote TConnOperEntry unknown
-- dynamic local ifEntry or 0.0 reachable
-- dynamic remote TConnOperEntry reachable
--

dlswDirNBTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswDirNBEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains locations of NetBIOS names.
They could be either verified or not verified,
local or remote, and configured locally or learned
from either Capabilities Exchange messages or
directory searches."
::= { dlswDirCache 2 }

dlswDirNBEntry OBJECT-TYPE
SYNTAX DlswDirNBEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Indexed by dlswDirNBIndex."
INDEX { dlswDirNBIndex }
::= { dlswDirNBTable 1 }

DlswDirNBEntry ::= SEQUENCE {
 dlswDirNBIndex INTEGER,
dlswDirNBName OBJECT-TYPE
SYNTAX NBName
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The NetBIOS name (including 'any char' and 'wildcard'
characters) specifies a set of NetBIOS names that are
defined or discovered through an interface or partner
DLSw nodes."
::= { dlswDirNBEntry 2 }

dlswDirNBNameType OBJECT-TYPE
SYNTAX INTEGER { unknown (1),
individual (2),
group (3) }
MAX-ACCESS read-create
STATUS current
DESCRIPTION "Whether dlswDirNBName represents an (or a set of) individual
or group NetBIOS name(s)."
DEFVAL { unknown }
::= { dlswDirNBEntry 3 }

dlswDirNBE户型 OBJECT-TYPE
SYNTAX INTEGER {
other (1),
userConfiguredPublic (2),
userConfiguredPrivate (3),
partnerCapExMsg (4),
dynamic (5)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The cause of the creation of this conceptual row. It could be one of the three methods: (1) user configured, including via management protocol set operations, configuration file, command line, or equivalent methods; (2) learned from the partner DLSw Capabilities Exchange messages; and (3) dynamic, e.g., learned from ICanReach messages, or test frames. Since only actual NetBIOS names can be dynamically learned, dynamic entries will not contain any char or wildcard characters.

The public versus private distinction for user-configured resources applies only to local resources (UC remote resources are private), and indicates whether that resource should be advertised in capabilities exchange messages sent by this node."
DEFVAL { userConfiguredPublic }
::= { dlswDirNBEntry 4 }
dlswDirNBLocationType OBJECT-TYPE
SYNTAX INTEGER {
 other (1),
 local (2),
 remote (3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The location of the resource (or a collection of resources using any char/wildcard characters) of this conceptual row is either (1) local - the resource is reachable via an interface, or (2) remote - the resource is reachable via a partner DLSw node (or a set of partner DLSw nodes)."
DEFVAL { local }
::= { dlswDirNBEntry 5 }
dlswDirNBLocation OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Points to either the ifEntry, dlswTConnConfigEntry, dlswTConnOperEntry, 0.0, or something that is implementation specific. It identifies the location of the NetBIOS name or the set of NetBIOS names."

DEFVAL { null }
::= { dlswDirNBEntry 6 }
dlswDirNBStatus OBJECT-TYPE
SYNTAX INTEGER {
 unknown (1),
 reachable (2),
 notReachable (3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object specifies whether DLSw currently believes the NetBIOS name to be accessible at the specified location. The value ‘notReachable’ allows a configured resource definition to be taken out of service when a search to that resource fails (avoiding a repeat of the search)."

DEFVAL { unknown }
::= { dlswDirNBEntry 7 }
dlswDirNBLFSIZE OBJECT-TYPE
SYNTAX LFSIZE
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The largest size of the MAC INFO field (LLC header and data) that a circuit to the NB name can carry through this path."

DEFVAL { lfs65535 }
::= { dlswDirNBEntry 8 }
dlswDirNBRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object is used by manager to create or delete the row entry in the dlswDirNBTable following the RowStatus textual convention."

::= { dlswDirNBEntry 9 }
dlswDirLocate OBJECT IDENTIFIER ::= { dlswDirectory 3 }

-- Locate Entries in the dlswDirMacTable for a given MAC address
--

dlswDirLocateMacTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswDirLocateMacEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table is used to retrieve all entries in the dlswDirMacTable that match a given MAC address, in the order of the best matched first, the second best matched second, and so on, till no more entries match the given MAC address."
::= { dlswDirLocate 1 }

DlswDirLocateMacEntry OBJECT-TYPE
SYNTAX DlswDirLocateMacEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Indexed by dlswDirLocateMacMac and dlswDirLocateMacMatch. The first object is the MAC address of interest, and the second object is the order in the list of all entries that match the MAC address."
INDEX { dlswDirLocateMacMac, dlswDirLocateMacMatch }
::= { dlswDirLocateMacTable 1 }

DlswDirLocateMacEntry ::= SEQUENCE {
 dlswDirLocateMacMac MacAddressNC,
 dlswDirLocateMacMatch INTEGER,
 dlswDirLocateMacLocation RowPointer
}

dlswDirLocateMacMac OBJECT-TYPE
SYNTAX MacAddressNC
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The MAC address to be located."
::= { dlswDirLocateMacEntry 1 }

dlswDirLocateMacMatch OBJECT-TYPE
SYNTAX INTEGER (1..255)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The order of the entries of dlswDirMacTable that match dlswDirLocateMacMac. A value of one represents the entry that best matches the MAC address. A value of two represents the second best matched entry, and so on."

::= { dlswDirLocateMacEntry 2 }

dlswDirLocateMacLocation OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Points to the dlswDirMacEntry."

::= { dlswDirLocateMacEntry 3 }

-- Locate Entries in the dlswDirNBTable for a given NetBIOS name
-- Locate Entries in the dlswDirNBTable for a given NetBIOS name

dlswDirLocateNBTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswDirLocateNBEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table is used to retrieve all entries in the dlswDirNBTable that match a given NetBIOS name, in the order of the best matched first, the second best matched second, and so on, till no more entries match the given NetBIOS name."

::= { dlswDirLocate 2 }

dlswDirLocateNBEntry OBJECT-TYPE
SYNTAX DlswDirLocateNBEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Indexed by dlswDirLocateNBName and dlswDirLocateNBMatch. The first object is the NetBIOS name of interest, and the second object is the order in the list of all entries that match the NetBIOS name."

INDEX { dlswDirLocateNBName, dlswDirLocateNBMatch }

::= { dlswDirLocateNBTable 1 }

DlswDirLocateNBEntry ::= SEQUENCE {
 dlswDirLocateNBName NBName,
 dlswDirLocateNBMatch INTEGER,
 dlswDirLocateNBLocation RowPointer
}
dlswDirLocateNBName OBJECT-TYPE
SYNTAX NBName
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The NetBIOS name to be located (no any char or wildcards)."
::= { dlswDirLocateNBEntry 1 }

dlswDirLocateNBMatch OBJECT-TYPE
SYNTAX INTEGER (1..255)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The order of the entries of dlswDirNBTable that match dlswDirLocateNBName. A value of one represents the entry that best matches the NetBIOS name. A value of two represents the second best matched entry, and so on."
::= { dlswDirLocateNBEntry 2 }

dlswDirLocateNBLocation OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Points to the dlswDirNBEntry."
::= { dlswDirLocateNBEntry 3 }

-- ***
-- CIRCUIT
-- A circuit is the end-to-end association of two DLSw entities
-- through one or two DLSw nodes. It is the concatenation of
-- two "data links", optionally with an intervening transport
-- connection. The origin of the circuit is the end station that
-- initiates the circuit. The target of the circuit is the end
-- station that receives the initiation.
-- ***

-- Statistics Related to Circuits

-- dlswCircuitStat OBJECT IDENTIFIER ::= { dlswCircuit 1 }

dlswCircuitStatActives OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current

Chen, et. al. Standards Track [Page 56]
DESCRIPTION
"The current number of circuits in dlswCircuitTable that are
not in the disconnected state."
::= { dlswCircuitStat 1 }

dlswCircuitStatCreates OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of entries ever added to dlswCircuitTable,
or reactivated upon exiting 'disconnected' state."
::= { dlswCircuitStat 2 }

-- ---
-- Circuit Table
--
-- This table is the DLSw entity's view of circuits. There will be
-- a conceptual row in the table associated with each data link.
--
-- The chart below lists the various possible combinations of
-- origin and target MAC locations and the number of entries in
-- this Circuit Table:
--
--	number of entries in the Circuit Table	Origin End Station Location
-- |--| internal | local | remote |
-- |--|----------|-------|--------|
-- | Target | internal | NA | 2 | 1 |
-- | End | local | 2 | 2 | 1 |
-- | Station | remote | 1 | 1 | NA |
-- | Location| | | | |
--
-- NA: Not applicable
--
-- Note:
-- (a) IfIndex and RouteInfo are applied only if location is local.
-- (b) TDomain and TAddr are applied only if location is remote.
--
-- Most of statistics related to circuits can be collected
-- from LLC-2 Link Station Table.
-- ---
dlswCircuitTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswCircuitEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table is the circuit representation in the DLSw entity. Virtual data links are used to represent any internal end stations. There is a conceptual row associated with each data link. Thus, for circuits without an intervening transport connection, there are two conceptual rows for each circuit.

The table consists of the circuits being established, established, and as an implementation option, circuits that have been disconnected. For circuits carried over transport connections, an entry is created after the CUR_cs was sent or received. For circuits between two locally attached devices, or internal virtual MAC addresses, an entry is created when the equivalent of CUR_cs sent/received status is reached.

End station 1 (S1) and End station 2 (S2) are used to represent the two end stations of the circuit. S1 is always an end station which is locally attached. S2 may be locally attached or remote. If it is locally attached, the circuit will be represented by two rows indexed by (A, B) and (B, A) where A & B are the relevant MACs/SAPs.

The table may be used to store the causes of disconnection of circuits. It is recommended that the oldest disconnected circuit entry be removed from this table when the memory space of disconnected circuits is needed."

::= { dlswCircuit 2 }

DlswCircuitEntry ::= SEQUENCE {
 dlswCircuitS1Mac MacAddressNC,
 dlswCircuitS1Sap OCTET STRING,
 dlswCircuitS1IfIndex INTEGER,
 dlswCircuitS1DlcType DlcType,
 dlswCircuitS1RouteInfo OCTET STRING,
 dlswCircuitS1CircuitId OCTET STRING,
}

Chen, et. al. Standards Track [Page 58]
dlswCircuitS1Dlc RowPointer,
dlswCircuitS2Mac MacAddressNC,
dlswCircuitS2Sap OCTET STRING,
dlswCircuitS2Location EndStationLocation,
dlswCircuitS2TDomain OBJECT IDENTIFIER,
dlswCircuitS2TAddress TAddress,
dlswCircuitS2CircuitId OCTET STRING,
dlswCircuitOrigin INTEGER,
dlswCircuitEntryTime TimeTicks,
dlswCircuitStateTime TimeTicks,
dlswCircuitState INTEGER,
dlswCircuitPriority INTEGER,
dlswCircuitFCSendGrantedUnits INTEGER,
dlswCircuitFCSendCurrentWndw INTEGER,
dlswCircuitFCRecvGrantedUnits INTEGER,
dlswCircuitFCRecvCurrentWndw INTEGER,
dlswCircuitFCLargestRecvGranted Gauge32,
dlswCircuitFCLargestSendGranted Gauge32,
dlswCircuitFCHalveWndwSents Counter32,
dlswCircuitFCResetOpSents Counter32,
dlswCircuitFCHalveWndwRcvds Counter32,
dlswCircuitFCResetOpRcvds Counter32,
dlswCircuitDiscReasonLocal INTEGER,
dlswCircuitDiscReasonRemote INTEGER,
dlswCircuitDiscReasonRemoteData OCTET STRING
}

-- ..
-- Information related to the End Station 1 (S1).
-- ..
dlswCircuitS1Mac OBJECT-TYPE
SYNTAX MacAddressNC
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The MAC Address of End Station 1 (S1) used for this circuit."
 ::= { dlswCircuitEntry 1 }

dlswCircuitS1Sap OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The SAP at End Station 1 (S1) used for this circuit."
 ::= { dlswCircuitEntry 2 }

dlswCircuitS1IfIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The ifEntry index of the local interface through which S1 can be reached."
 ::= { dlswCircuitEntry 3 }

dlswCircuitS1DlcType OBJECT-TYPE
SYNTAX DlcType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The DLC protocol in use between the DLSw node and S1."
 ::= { dlswCircuitEntry 4 }

dlswCircuitS1RouteInfo OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..30))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If source-route bridging is in use between the DLSw node and S1, this is the routing information field describing the path between the two devices. Otherwise the value will be an OCTET STRING of zero length."
 ::= { dlswCircuitEntry 5 }

dlswCircuitS1CircuitId OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 8))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Circuit ID assigned by this DLSw node to this circuit. The first four octets are the DLC port Id, and the second four octets are the Data Link Correlator. If the DLSw SSP was not used to establish this circuit, the value will be a string of zero length."
 ::= { dlswCircuitEntry 6 }

dlswCircuitS1Dlc OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Points to a conceptual row of the underlying DLC MIB, which could either be the standard MIBs (e.g., the SDLC), or an enterprise-specific DLC MIB."
 ::= { dlswCircuitEntry 7 }

-- Information related to the End Station 2 (S2).
dlswCircuitS2Mac OBJECT-TYPE
SYNTAX MacAddressNC
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The MAC Address of End Station 2 (S2) used for this circuit."
 ::= { dlswCircuitEntry 8 }
dlswCircuitS2Sap OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SAP at End Station 2 (S2) used for this circuit."
 ::= { dlswCircuitEntry 9 }
dlswCircuitS2Location OBJECT-TYPE
SYNTAX EndStationLocation
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The location of End Station 2 (S2).
If the location of End Station 2 is local, the interface information will be available in the conceptual row whose S1 and S2 are the S2 and the S1 of this conceptual row, respectively."
 ::= { dlswCircuitEntry 10 }
dlswCircuitS2Domain OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the location of End Station 2 is remote, this value is the transport domain of the transport protocol the circuit is running over. Otherwise, the value is 0.0."
 ::= { dlswCircuitEntry 11 }
dlswCircuitS2TAddress OBJECT-TYPE
SYNTAX TAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the location of End Station 2 is remote,
this object contains the address of the partner
DLSw, else it will be an OCTET STRING of zero length."
 ::= { dlswCircuitEntry 12 }

dlswCircuitS2CircuitId OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 8))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Circuit ID assigned to this circuit by the partner
DLSw node. The first four octets are the DLC port Id, and
the second four octets are the Data Link Correlator.
If the DLSw SSP was not used to establish this circuit,
the value will be a string of zero length."
 ::= { dlswCircuitEntry 13 }

-- ...

dlswCircuitOrigin OBJECT-TYPE
SYNTAX INTEGER {
 s1 (1),
 s2 (2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object specifies which of the two end stations
initiated the establishment of this circuit."
 ::= { dlswCircuitEntry 14 }

-- ...

-- Operational information related to this circuit.
-- ...

dlswCircuitEntryTime OBJECT-TYPE
SYNTAX TimeTicks
UNITS "hundredths of a second"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The amount of time (in hundredths of a second) since this
circuit table conceptual row was created."
 ::= { dlswCircuitEntry 15 }
dlswCircuitStateTime OBJECT-TYPE
SYNTAX TimeTicks
UNITS "hundredths of a second"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The amount of time (in hundredths of a second) since this
 circuit entered the current state."
::= { dlswCircuitEntry 16 }

dlswCircuitState OBJECT-TYPE
SYNTAX INTEGER {
 disconnected (1),
 circuitStart (2),
 resolvePending (3),
 circuitPending (4),
 circuitEstablished (5),
 connectPending (6),
 contactPending (7),
 connected (8),
 disconnectPending (9),
 haltPending (10),
 haltPendingNoack (11),
 circuitRestart (12),
 restartPending (13)}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The current state of this circuit. The agent, implementation
 specific, may choose to keep entries for some period of time
 after circuit disconnect, so the manager can gather the time
 and cause of disconnection.

 While all of the specified values may be returned from a GET
 operation, the only SETable value is 'disconnectPending'.
 When this value is set, DLSw should perform the appropriate
 action given its previous state (e.g., send HALT_DL if the
 state was 'connected') to bring the circuit down to the
 'disconnected' state. Both the partner DLSw and local end
 station(s) should be notified as appropriate.

 This MIB provides no facility to re-establish a disconnected
 circuit, because in DLSw this should be an end station-driven
 function."
::= { dlswCircuitEntry 17 }

dlswCircuitPriority OBJECT-TYPE
SYNTAX INTEGER {
 unsupported (1),
 low (2),
 medium (3),
 high (4),
 highest (5)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The transmission priority of this circuit as understood by
this DLSw node. This value is determined by the two DLSw
nodes at circuit startup time. If this DLSw node does not
support DLSw circuit priority, the value 'unsupported' should
be returned."
::= { dlswCircuitEntry 18 }

-- Pacing Objects:
-- These objects are applicable if DLSw is using the SSP circuit
-- pacing protocol to control the flow between the two data links
-- in this circuit.
-- ...
dlswCircuitFCSendGrantedUnits OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of paced SSP messages that this DLSw is currently
authorized to send on this circuit before it must stop and
wait for an additional flow control indication from the
partner DLSw.

The value zero should be returned if this circuit is not
running the DLSw pacing protocol."
::= { dlswCircuitEntry 19 }
dlswCircuitFCSendCurrentWndw OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current window size that this DLSw is using in its role
as a data sender. This is the value by which this DLSw would
increase the number of messages it is authorized to send, if
it were to receive a flow control indication with the bits
specifying 'repeat window'.

Chen, et. al. Standards Track [Page 64]
The value zero should be returned if this circuit is not running the DLSw pacing protocol.

::= { dlswCircuitEntry 20 }

dlswCircuitFCRecvGrantedUnits OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current number of paced SSP messages that this DLSw has authorized the partner DLSw to send on this circuit before the partner DLSw must stop and wait for an additional flow control indication from this DLSw.

The value zero should be returned if this circuit is not running the DLSw pacing protocol."
::= { dlswCircuitEntry 21 }

dlswCircuitFCRecvCurrentWndw OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current window size that this DLSw is using in its role as a data receiver. This is the number of additional paced SSP messages that this DLSw would be authorizing its DLSw partner to send, if this DLSw were to send a flow control indication with the bits specifying 'repeat window'.

The value zero should be returned if this circuit is not running the DLSw pacing protocol."
::= { dlswCircuitEntry 22 }

dlswCircuitFCLargestRecvGranted OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The largest receive window size granted by this DLSw during the current activation of this circuit. This is not the largest number of messages granted at any time, but the largest window size as represented by FCIND operator bits.

The value zero should be returned if this circuit is not running the DLSw pacing protocol."
::= { dlswCircuitEntry 23 }

dlswCircuitFCLargestSendGranted OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The largest send (with respect to this DLSw) window size
granted by the partner DLSw during the current activation of
this circuit.

The value zero should be returned if this circuit is not
running the DLSw pacing protocol."
::= { dlswCircuitEntry 24 }

dlswCircuitFCHalveWndwSents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Halve Window operations this DLSw has sent on
this circuit, in its role as a data receiver.

The value zero should be returned if this circuit is not
running the DLSw pacing protocol."
::= { dlswCircuitEntry 25 }

dlswCircuitFCResetOpSents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Reset Window operations this DLSw has sent on
this circuit, in its role as a data receiver.

The value zero should be returned if this circuit is not
running the DLSw pacing protocol."
::= { dlswCircuitEntry 26 }

dlswCircuitFCHalveWndwRcvds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Halve Window operations this DLSw has received on
this circuit, in its role as a data sender.

The value zero should be returned if this circuit is not
running the DLSw pacing protocol."
::= { dlswCircuitEntry 27 }
dlswCircuitFCResetOpRcvds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of Reset Window operations this DLSw has received on
this circuit, in its role as a data sender.
The value zero should be returned if this circuit is not
running the DLSw pacing protocol."
 ::= { dlswCircuitEntry 28 }

-- ..
-- Information about the circuit disconnection
-- ..
dlswCircuitDiscReasonLocal OBJECT-TYPE
SYNTAX INTEGER {
 endStationDiscRcvd (1),
 endStationDlcError (2),
 protocolError (3),
 operatorCommand (4),
 haltDlRcvd (5),
 haltDlNoAckRcvd (6),
 transportConnClosed (7)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The reason why this circuit was last disconnected, as seen
by this DLSw node.
This object is present only if the agent keeps circuit

table entries around for some period after circuit disconnect."
 ::= { dlswCircuitEntry 29 }
dlswCircuitDiscReasonRemote OBJECT-TYPE
SYNTAX INTEGER {
 unknown (1),
 endStationDiscRcvd (2),
 endStationDlcError (3),
 protocolError (4),
 operatorCommand (5)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The generic reason code why this circuit was last
disconnected, as reported by the DLSw partner in a HALT_DL
or HALT_DL_NOACK. If the partner does not send a reason code in these messages, or the DLSw implementation does not report receiving one, the value ‘unknown’ is returned.

This object is present only if the agent keeps circuit table entries around for some period after circuit disconnect.

::= { dlswCircuitEntry 30 }

dlswCircuitDiscReasonRemoteData OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Implementation-specific data reported by the DLSw partner in a HALT_DL or HALT_DL_NOACK, to help specify how and why this circuit was last disconnected. If the partner does not send this data in these messages, or the DLSw implementation does not report receiving it, a string of zero length is returned.

This object is present only if the agent keeps circuit table entries around for some period after circuit disconnect."

::= { dlswCircuitEntry 31 }

--
-- Statistics related to this circuit.
-- All statistics are in LLC-2 Link Station Statistical Table.
-- All SDLC statistics are in SDLC MIB
--

--
-- DLSW SDLC EXTENSION
--

dlswSdlcLsEntries OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of entries in dlswSdlcLsTable."

::= { dlswSdlc 1 }

dlswSdlcLsTable OBJECT-TYPE
SYNTAX SEQUENCE OF DlswSdlcLsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table defines the virtual MAC addresses for those
SDLC link stations that participate in data link switching."
::= { dlswSdlc 2 }

dlswSdlcLsEntry OBJECT-TYPE
SYNTAX DlswSdlcLsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index of this table is the ifIndex value for the
SDLC port which owns this link station and the poll
address of the particular SDLC link station."
INDEX { ifIndex, sdlcLSAddress }
::= { dlswSdlcLsTable 1 }

DlswSdlcLsEntry ::= SEQUENCE {
 dlswSdlcLsLocalMac MacAddressNC,
 dlswSdlcLsLocalSap OCTET STRING,
 dlswSdlcLsLocalIdBlock DisplayString,
 dlswSdlcLsLocalIdNum DisplayString,
 dlswSdlcLsRemoteMac MacAddressNC,
 dlswSdlcLsRemoteSap OCTET STRING,
 dlswSdlcLsRowStatus RowStatus
}

dlswSdlcLsLocalMac OBJECT-TYPE
SYNTAX MacAddressNC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The virtual MAC address used to represent the SDLC-attached
link station to the rest of the DLSw network."
::= { dlswSdlcLsEntry 1 }

dlswSdlcLsLocalSap OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The SAP used to represent this link station."
::= { dlswSdlcLsEntry 2 }

dlswSdlcLsLocalIdBlock OBJECT-TYPE
SYNTAX DisplayString (SIZE (0 | 3))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The block number is the first three digits of the node_id,
if available. These 3 hexadecimal digits identify the product.

DEFVAL { ''H }
::= { dlswSdlcLsEntry 3 }

dlswSdlcLsLocalIdNum OBJECT-TYPE
SYNTAX DisplayString (SIZE (0 | 5))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The ID number is the last 5 digits of the node_id, if available. These 5 hexadecimal digits are administratively defined and combined with the 3 digit block number form the node_id. This node_id is used to identify the local node and is included in SNA XIDs."

DEFVAL { ''H }
::= { dlswSdlcLsEntry 4 }

dlswSdlcLsRemoteMac OBJECT-TYPE
SYNTAX MacAddressNC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The MAC address to which DLSw should attempt to connect this link station. If this information is not available, a length of zero for this object should be returned."

DEFVAL { ''H }
::= { dlswSdlcLsEntry 5 }

dlswSdlcLsRemoteSap OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 | 1))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The SAP of the remote station to which this link station should be connected. If this information is not available, a length of zero for this object should be returned."

DEFVAL { ''H }
::= { dlswSdlcLsEntry 6 }

dlswSdlcLsRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used by the manager to create or delete the row entry in the dlswSdlcLsTable"
following the RowStatus textual convention."
 ::= { dlswDlcsLsEntry 7 }

-- ***
-- TRAP GENERATION CONTROL
-- ***
dlwTrapControl OBJECT IDENTIFIER ::= { dlswNode 10}

dlwTrapCntlTConnPartnerReject OBJECT-TYPE
SYNTAX INTEGER { enabled (1),
disabled (2),
partial (3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Indicates whether the DLSw is permitted to emit partner
reject related traps. With the value of ‘enabled’
the DLSw will emit all partner reject related traps.
With the value of ‘disabled’ the DLSw will not emit
any partner reject related traps. With the value
of ‘partial’ the DLSw will only emits partner reject
traps for CapEx reject. The changes take effect
immediately."
 ::= { dlswTrapControl 1 }

dlwTrapCntlTConnProtViolation OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Indicates whether the DLSw is permitted to generate
protocol-violation traps on the events such as
window size violation. The changes take effect
immediately."
 ::= { dlswTrapControl 2 }

dlwTrapCntlTConn OBJECT-TYPE
SYNTAX INTEGER {
enabled (1),
disabled (2),
partial (3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Indicates whether the DLSw is permitted to emit transport connection up and down traps. With the value of 'enabled' the DLSw will emit traps when connections enter 'connected' and 'disconnected' states. With the value of 'disabled' the DLSw will not emit traps when connections enter of 'connected' and 'disconnected' states. With the value of 'partial' the DLSw will only emit transport connection down traps when the connection is closed with busy. The changes take effect immediately."

::= { dlswTrapControl 3 }

dlswTrapCntCircuit OBJECT-TYPE
SYNTAX INTEGER {
 enabled (1),
 disabled (2),
 partial (3)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Indicates whether the DLSw is permitted to generate circuit up and down traps. With the value of 'enabled' the DLSw will emit traps when circuits enter 'connected' and 'disconnected' states. With the value of 'disabled' the DLSw will not emit traps when circuits enter of 'connected' and 'disconnected' states. With the value of 'partial' the DLSw will emit traps only for those circuits that are initiated by this DLSw, e.g., originating the CUR_CS message. The changes take effect immediately."

::= { dlswTrapControl 4 }

-- ***
-- NOTIFICATIONS, i.e., TRAP DEFINITIONS
-- ***
dlswTraps OBJECT IDENTIFIER ::= { dlswMIB 0 }
RFC 2024 DLSw MIB using SMIv2 October 1996

-- (4) Circuit up/down
-- ---

dlswTrapTConnPartnerReject NOTIFICATION-TYPE
 OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr }
 STATUS current
 DESCRIPTION
 "This trap is sent each time a transport connection
 is rejected by a partner DLSw during Capabilities
 Exchanges. The emission of this trap is controlled
 by dlswTrapCntlTConnPartnerReject."
 ::= { dlswTraps 1 }

dlswTrapTConnProtViolation NOTIFICATION-TYPE
 OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr }
 STATUS current
 DESCRIPTION
 "This trap is sent each time a protocol violation is
 detected for a transport connection. The emission of this
 trap is controlled by dlswTrapCntlTConnProtViolation."
 ::= { dlswTraps 2 }

dlswTrapTConnUp NOTIFICATION-TYPE
 OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr }
 STATUS current
 DESCRIPTION
 "This trap is sent each time a transport connection
 enters 'connected' state. The emission of this trap
 is controlled by dlswTrapCntlTConn."
 ::= { dlswTraps 3 }

dlswTrapTConnDown NOTIFICATION-TYPE
 OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr }
 STATUS current
 DESCRIPTION
 "This trap is sent each time a transport connection
 enters 'disconnected' state. The emission of this trap
 is controlled by dlswTrapCntlTConn."
 ::= { dlswTraps 4 }

dlswTrapCircuitUp NOTIFICATION-TYPE
 OBJECTS { dlswCircuitS1Mac, dlswCircuitS1Sap,
 dlswCircuitS2Mac, dlswCircuitS2Sap

Chen, et. al. Standards Track [Page 73]
This trap is sent each time a circuit enters 'connected' state. The emission of this trap is controlled by dlswTrapCntlCircuit.

::= { dlswTraps 5 }

dlswTrapCircuitDown NOTIFICATION-TYPE
OBJECTS { dlswCircuitS1Mac, dlswCircuitS1Sap,
 dlswCircuitS2Mac, dlswCircuitS2Sap
 }
STATUS current
DESCRIPTION
"This trap is sent each time a circuit enters 'disconnected' state. The emission of this trap is controlled by dlswTrapCntlCircuit."

::= { dlswTraps 6 }

-- ***
-- CONFORMANCE INFORMATION
-- ***

dlswConformance OBJECT IDENTIFIER ::= { dlsw 3 }
dlswCompliances OBJECT IDENTIFIER ::= { dlswConformance 1 }
dlswGroups OBJECT IDENTIFIER ::= { dlswConformance 2 }

-- -----------------------------------
-- COMPLIANCE STATEMENTS
-- -----------------------------------

-- Core compliance for all DLSw entities
-- -----------------------------------
dlswCoreCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The core compliance statement for all DLSw nodes."

MODULE
MANDATORY-GROUPS {
dlswNodeGroup,
dlswTConnStatGroup,
dlswTConnConfigGroup,
dlswTConnOperGroup,
dlswInterfaceGroup,
dlswCircuitGroup,
dlswCircuitStatGroup,
dlswNotificationGroup }

GROUP dlswNodeNBGroup
DESCRIPTION
"The DLSw NetBIOS Node group is mandatory only for those DLSw entities that implement NetBIOS."

GROUP dlswTConnNBGroup
DESCRIPTION
"The DLSw NetBIOS Transport Connection group is mandatory only for those DLSw entities that implement NetBIOS."

OBJECT dlswNodeStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswNodeVirtualSegmentLFSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswNodeResourceNBExclusivity
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswNodeResourceMacExclusivity
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswTrapCntlTConnPartnerReject
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswTrapCntlTConnProtViolation
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswTrapCntlTConn
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT dlswTrapCntlCircuit
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigTDomain
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigLocalTAddr
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigRemoteTAddr
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigEntryType
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigGroupDefinition
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigSetupType
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigSapList
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigAdvertiseMacNB
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnConfigInitCirRecvWndw
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."
"Write access is not required."

OBJECT dlswTConnConfigRowStatus
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required."

OBJECT dlswTConnOperState
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required."

OBJECT dlswIfRowStatus
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required."

OBJECT dlswIfVirtualSegment
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required."

OBJECT dlswIfSapList
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required."

OBJECT dlswCircuitState
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required."

::= { dlswCompliances 1 }

-- ..
-- Compliance for all DLSw entities that provide TCP transport.
-- ..
dlswTConnTcpCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
 "Compliance for DLSw nodes that use TCP as a transport connection protocol."
MODULE
 MANDATORY-GROUPS {
 dlswTConnTcpConfigGroup,
 dlswTConnTcpOperGroup }

OBJECT dlswTConnTcpConfigKeepAliveInt
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswTConnTcpConfigTcpConnections
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswTConnTcpConfigMaxSegmentSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

::= { dlswCompliances 2 }

-- ...
-- Compliance for all DLSw Entities that implement a directory
-- ...
dlswDirCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "Compliance for DLSw nodes that provide a directory function."
 MODULE
 MANDATORY-GROUPS {
 dlswDirGroup }

GROUP dlswDirNBGroup
 DESCRIPTION
 "The DLSw NetBIOS group is mandatory only for those DLSw entities that implement NetBIOS."

OBJECT dlswDirMacMac
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswDirMacMask
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT dlswDirMacEntryType
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."
OBJECT dlswDirMacLocationType
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirMacLocation
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirMacStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirMacLFSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirMacRowStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirNBName
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirNBNameType
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirNBEEntryType
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirNBLocationType
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirNBLocation
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
"Write access is not required."

OBJECT dlswDirNBStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirNBLFSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswDirNBRowStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

::= { dlswCompliances 3 }

-- ...
-- Compliance for all DLSw entities that provide an ordered
-- list of directory entries that match a resource
-- ...
dlswDirLocateCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Compliance for DLSw nodes that provide an ordered
list of directory entries for a given resource."
MODULE
MANDATORY-GROUPS {
 dlswDirLocateGroup }

GROUP dlswDirLocateNBGroup
DESCRIPTION
"The DLSw NetBIOS group is mandatory only for
those DLSw entities that implement NetBIOS."

::= { dlswCompliances 4 }

-- ...
-- Compliance for all DLSw entities that support SDLC end stations
-- ...
dlswSdlcCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Compliance for DLSw nodes that support SDLC."
MODULE
MANDATORY-GROUPS {

dlswSdlcGroup }

OBJECT dlswSdlcLsLocalMac
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswSdlcLsLocalSap
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswSdlcLsLocalIdBlock
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswSdlcLsLocalIdNum
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswSdlcLsRemoteMac
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswSdlcLsRemoteSap
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT dlswSdlcLsRowStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

::= { dlswCompliances 5 }

-- ---
-- CONFORMANCE GROUPS
-- ---

-- ...
-- Node Conformance Group
-- ...
dlswNodeGroup OBJECT-GROUP
OBJECTS {

Chen, et. al. Standards Track [Page 81]
dlswNodeVersion,
dlswNodeVendorID,
dlswNodeVersionString,
dlswNodeStdPacingSupport,
dlswNodeStatus,
dlswNodeUpTime,
dlswNodeVirtualSegmentLFSize,
dlswNodeResourceMacExclusivity,
dlswTrapCntlTConnPartnerReject,
dlswTrapCntlTConnProtViolation,
dlswTrapCntlTConn,
dlswTrapCntlCircuit
}
STATUS current
DESCRIPTION
"Conformance group for DLSw node general information."
::= { dlswGroups 1 }

-- ..
dlswNodeNBGroup OBJECT-GROUP
OBJECTS {
 dlswNodeResourceNBExclusivity
}
STATUS current
DESCRIPTION
"Conformance group for DLSw node general information
specifically for nodes that support NetBIOS."
::= { dlswGroups 2 }

-- ..
dlswTConnStatGroup OBJECT-GROUP
OBJECTS {
 dlswTConnStatActiveConnections,
dlswTConnStatCloseIdles,
dlswTConnStatCloseBusys
}
STATUS current
DESCRIPTION
"Conformance group for statistics for transport
connections."
::= { dlswGroups 3 }

-- ..
dlswTConnConfigGroup OBJECT-GROUP
OBJECTS {
 dlswTConnConfigTDomain,
dlswTConnConfigLocalTAddr,
dlswTConnConfigRemoteTAddr,
dlswTConnConfigLastModifyTime,
dlswTConnConfigEntryType,
dlswTConnConfigGroupDefinition,
dlswTConnConfigSetupType,
dlswTConnConfigSapList,
dlswTConnConfigAdvertiseMacNB,
dlswTConnConfigInitCirRecvWndw,
dlswTConnConfigOpens,
dlswTConnConfigRowStatus
}

STATUS current

DESCRIPTION
"Conformance group for the configuration of
transport connections."
::= { dlswGroups 4 }

-- ...
dlswTConnOperGroup OBJECT-GROUP

OBJECTS {
 dlswTConnOperLocalTAddr,
dlswTConnOperEntryTime,
dlswTConnOperConnectTime,
dlswTConnOperState,
dlswTConnOperConfigIndex,
dlswTConnOperFlowCntlMode,
dlswTConnOperPartnerVersion,
dlswTConnOperPartnerVendorID,
dlswTConnOperPartnerVersionStr,
dlswTConnOperPartnerInitPacingWndw,
dlswTConnOperPartnerSapList,
dlswTConnOperPartnerMacExcl,
dlswTConnOperPartnerMacInfo,
dlswTConnOperDiscTime,
dlswTConnOperDiscReason,
dlswTConnOperDiscActiveCir,
dlswTConnOperInDataPkts,
dlswTConnOperOutDataPkts,
dlswTConnOperInDataOctets,
dlswTConnOperOutDataOctets,
dlswTConnOperInCntlPkts,
dlswTConnOperOutCntlPkts,
dlswTConnOperCURexSents,
dlswTConnOperICRexRcvds,
dlswTConnOperCURexRcvds,
dlswTConnOperICRexSents,
dlswTConnOperCirCreates,
dlswTConnOperCircuits
}
STATUS current
DESCRIPTION
"Conformance group for operation information for
transport connections."
 ::= { dlswGroups 5 }

-- ...
dlswTConnNBGroup OBJECT-GROUP
OBJECTS {
 dlswTConnOperPartnerNBExcl,
 dlswTConnOperPartnerNBInfo,
 dlswTConnOperNQexSents,
 dlswTConnOperNRexRcvds,
 dlswTConnOperNQexRcvds,
 dlswTConnOperNRexSents
}
STATUS current
DESCRIPTION
"Conformance group for operation information for
transport connections, specifically for nodes
that support NetBIOS."
 ::= { dlswGroups 6 }

-- ...
dlswTConnTcpConfigGroup OBJECT-GROUP
OBJECTS {
 dlswTConnTcpConfigKeepAliveInt,
 dlswTConnTcpConfigTcpConnections,
 dlswTConnTcpConfigMaxSegmentSize
}
STATUS current
DESCRIPTION
"Conformance group for configuration information for
transport connections using TCP."
 ::= { dlswGroups 7 }

-- ...
dlswTConnTcpOperGroup OBJECT-GROUP
OBJECTS {
 dlswTConnTcpOperKeepAliveInt,
 dlswTConnTcpOperPrefTcpConnections,
 dlswTConnTcpOperTcpConnections
}
STATUS current
DESCRIPTION
"Conformance group for operation information for
transport connections using TCP."
 ::= { dlswGroups 8 }
--- ...
dlswInterfaceGroup OBJECT-GROUP
 OBJECTS {
 dlswIfRowStatus,
 dlswIfVirtualSegment,
 dlswIfSapList
 }
 STATUS current
 DESCRIPTION
 "Conformance group for DLSw interfaces."
 ::= { dlswGroups 9 }
--- ...
dlswDirGroup OBJECT-GROUP
 OBJECTS {
 dlswDirMacEntries,
 dlswDirMacCacheHits,
 dlswDirMacCacheMisses,
 dlswDirMacCacheNextIndex,
 dlswDirMacMac,
 dlswDirMacMask,
 dlswDirMacEntryType,
 dlswDirMacLocationType,
 dlswDirMacLocation,
 dlswDirMacStatus,
 dlswDirMacLFSize,
 dlswDirMacRowStatus
 }
 STATUS current
 DESCRIPTION
 "Conformance group for DLSw directory using MAC addresses."
 ::= { dlswGroups 10 }
--- ...
dlswDirNBGroup OBJECT-GROUP
 OBJECTS {
 dlswDirNBEntries,
 dlswDirNBCacheHits,
 dlswDirNBCacheMisses,
 dlswDirNBCacheNextIndex,
 dlswDirNBNName,
 dlswDirNBNNameType,
 dlswDirNBEntryType,
 dlswDirNBLocationType,
 dlswDirNBLocation,
 dlswDirNBSStatus,
 dlswDirNBLFSize,
dlswDirNBRowStatus
}
STATUS current
DESCRIPTION
"Conformance group for DLSw directory using NetBIOS
names."
::= { dlswGroups 11 }

-- ...
dlswDirLocateGroup OBJECT-GROUP
OBJECTS { dlswDirLocateMacLocation }
STATUS current
DESCRIPTION
"Conformance group for a node that can return directory
entry order for a given MAC address."
::= { dlswGroups 12 }

-- ...
dlswDirLocateNBGroup OBJECT-GROUP
OBJECTS { dlswDirLocateNBLocation }
STATUS current
DESCRIPTION
"Conformance group for a node that can return directory
entry order for a given NetBIOS name."
::= { dlswGroups 13 }

-- ...
dlswCircuitStatGroup OBJECT-GROUP
OBJECTS { dlswCircuitStatActives, dlswCircuitStatCreates }
STATUS current
DESCRIPTION
"Conformance group for statistics about circuits."
::= { dlswGroups 14 }

-- ...
dlswCircuitGroup OBJECT-GROUP
OBJECTS { dlswCircuitS1IfIndex, dlswCircuitS1DlcType, dlswCircuitS1RouteInfo, dlswCircuitS1CircuitId,
dlswCircuitS1Dlc,
dlswCircuitS2Location,
dlswCircuitS2TDomain,
dlswCircuitS2Address,
dlswCircuitS2CircuitId,
dlswCircuitOrigin,
dlswCircuitEntryTime,
dlswCircuitStateTime,
dlswCircuitState,
dlswCircuitPriority,
dlswCircuitFCSendGrantedUnits,
dlswCircuitFCSendCurrentWndw,
dlswCircuitFCRecvGrantedUnits,
dlswCircuitFCRecvCurrentWndw,
dlswCircuitFCLargestRecvGranted,
dlswCircuitFCLargestSendGranted,
dlswCircuitFCHalveWndwSents,
dlswCircuitFCResetOpSents,
dlswCircuitFCHalveWndwRcvds,
dlswCircuitFCResetOpRcvds,
dlswCircuitDiscReasonLocal,
dlswCircuitDiscReasonRemote,
dlswCircuitDiscReasonRemoteData
}
STATUS current
DESCRIPTION
"Conformance group for DLSw circuits."
 ::= { dlswGroups 15 }

-- ..
dlswSdlcGroup OBJECT-GROUP
OBJECTS {
 dlswSdlcLsEntries,
dlswSdlcLsLocalMac,
dlswSdlcLsLocalSap,
dlswSdlcLsLocalIdBlock,
dlswSdlcLsLocalIdNum,
dlswSdlcLsRemoteMac,
dlswSdlcLsRemoteSap,
dlswSdlcLsRowStatus
}
STATUS current
DESCRIPTION
"Conformance group for DLSw SDLC support."
 ::= { dlswGroups 16 }

-- ..
dlswNotificationGroup NOTIFICATION-GROUP

Chen, et. al. Standards Track [Page 87]
NOTIFICATIONS {
 dlswTrapTConnPartnerReject,
 dlswTrapTConnProtViolation,
 dlswTrapTConnUp,
 dlswTrapTConnDown,
 dlswTrapCircuitUp,
 dlswTrapCircuitDown
}
STATUS current
DESCRIPTION
 "Conformance group for DLSw notifications."
 ::= { dlswGroups 17 }

END
4.0 Acknowledgements

This memo has been produced by the AIW DLSw MIB RIGlet, which is also recognized as the IETF DLSw MIB Working Group.

5.0 References

6.0 Security Considerations

Security issues are not discussed in this memo.

7.0 Authors’ Addresses

David D. Chen
IBM Networking Systems
P. O. Box 12195
Research Triangle Park, NC 27709
US

Phone: +1 919 254 6182
EMail: dchen@vnet.ibm.com

Peter W. Gayek
IBM Networking Systems
P. O. Box 12195
Research Triangle Park, NC 27709
US

Phone: +1 919 254 1808
EMail: gayek@vnet.ibm.com

Shannon Nix
Metaplex, Inc.

7025 Kit Creek Road
P. O. Box 14987
Research Triangle Park, NC 27709
US

Phone: +1 919 472 2388
EMail: snix@metaplex.com