The Internet and the Millennium Problem (Year 2000)

Status of this Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

The Year 2000 Working Group (WG) has conducted an investigation into the millennium problem as it regards Internet related protocols. This investigation only targeted the protocols as documented in the Request For Comments Series (RFCs). This investigation discovered little reason for concern with regards to the functionality of the protocols. A few minor cases of older implementations still using two digit years (ala RFC 850) were discovered, but almost all Internet protocols were given a clean bill of health. Several cases of "period" problems were discovered, where a time field would "roll over" as the size of field was reached. In particular, there are several protocols, which have 32 bit, signed integer representations of the number of seconds since January 1, 1970 which will turn negative at Tue Jan 19 03:14:07 GMT 2038. Areas whose protocols will be effected by such problems have been notified so that new revisions will remove this limitation.

1. Introduction

According to the trade press billions of dollars will be spend the upcoming years on the year 2000 problem, also called the millennium problem (though the third millennium will really start in 2001). This problem consists of the fact that many software packages and some protocols use a two-digit field for the year in a date field. Most of the problems seem to be in administrative and financial programs, or in the hardcoded microcomputers found in electronic equipment. A lot of organizations are now starting to make an inventory of which software and tools they use will suffer from the millennium problem.
With the increasing popularity of the Internet, more and more organizations use the Internet as a serious business tool. This means that most organizations will want to analyze the millennium problems due to the use of Internet protocols and popular Internet software. In the trade press the first articles suggest that the Internet will collapse at midnight the 31st of December 1999.

To counter these suggestions, and to avoid having countless companies redo the same investigation, this effort was undertaken by the IETF. The Year 2000 WG has made an inventory of all-important Internet protocols that have been documented in the Request for Comments (RFC) series. Only protocols directly related to the Internet will be considered.

This document is divided into a number of sections. Section 1 is the Introduction which you are now reading. Section 2 is a disclaimer about the completeness of this effort. Section 3 describes areas in which millennium problems have been found, while Section 4 describes a few other "period" problems. Section 5 describes potential fixes to problems that have been identified. Section 6 describes the methodology used in the investigation. Sections 7 through 22 are devoted to the 15 different groupings of protocols and RFCs. Section 23 discusses security considerations, Section 24 is devoted to references, and Section 25 is the author contact information. Appendix A is the list of RFCs examined broken down by category. Appendix B is a PERL program used to make a first cut identification of problems, and Appendix C is the output of that PERL program.

The editor of this document would like to acknowledge the critical contributions of the following for direct performance of research and the provision of text: Alex Latzko, Robert Elz, Erik Huizer, Gillian Greenwood, Barbara Jennings, R.E. (Robert) Moore, David Mills, Lynn Kubinec, Michael Patton, Chris Newman, Erik-Jan Bos, Paul Hoffman, and Rick H. Wesson. The pace with which this group has operated has only been achievable by the intimate familiarity of the contributors with the protocols and ready access to the collective knowledge of the IETF.

2. Disclaimer

This RFC is not complete. It is an effort to analyze the Y2K impact on hundreds of protocols but is likely to have missed some protocols and misunderstood others. Organizations should not attempt to claim any legitimacy or approval for any particular protocol based on this document. The efforts have concentrated on the identification of potential problems, rather than solutions to any of the problems that have been identified. Any proposed solutions are only that: proposed. A formal engineering review should take place before any solution is
adopted.

It should also be noted that the research was performed on RFCs 1 through 2128. At that time the IESG was charted with not allowing any new RFCs to be published that had any Year 2000 issues. Since that cutoff time there has been work to correct issues discovered by this Working Group. In particular, RWhois as documented by RFC 1714 has been updated to fix the problems found. RFC 2167 now documents a fixed version of the RWhois protocol. The work of this group was to look backwards, and hence new RFC’s which supplant the old are expected to make the information in this RFC obsolete. The work of this group will truly be complete when this document is completely obsolete.

A number of people have suggested looking into other "special" dates. For example, the first leap year, the first "double digit" day (January 10, 2000), January 1, 2001, etc. There is not one place where days have been used in the protocols defined by the RFC series so there is little reason to believe that any of these special dates will have any impact.

3. Summary of Year 2000 Problems

Here is a brief description of all the Millennium issues discovered in the course of this research. Note that many of the RFCs are unclear on the issue. They mandate the use of UTCTime but do not specify whether the two-digit or four-digit year representation should be used.

3.1 "Directory Services"

- rfc1274.txt - References UTC date/time
- rfc1276.txt - References UTC date/time for version control.
- rfc1488.txt - References UTC Time as printable strings.
- rfc1608.txt - Refers to uTCTimeSyntax
- rfc1609.txt - Refers to uTCTimeSyntax
- rfc1778.txt - Refers to uTCTimeSyntax

3.2 "Information Services and File Transfer"

HTTP 1.1, as defined in RFC 2068, requires all newly generated date stamps to conform to RFC 1123 date formats which are Year 2000 compliant, but it also requires acceptance of the older non-compliant RFC850 formats. Some specific recommendations have been passed to the HTTP WG.
HTML 2.0, as defined in RFC 1866, could allow a very subtle Year 2000 problem, but once again this recommendation has been passed on the HTML WG.

RFC 1778 on String Representations of Standard Attribute Syntax’s define UTC Time in Section 2.21 and uses that definition in Section 2.25 on User Certificates. Since UTC Time is being used, there is a potential millennium issue.

RFC 1440 on SIFT/UFT: Sender-Initiated/Unsolicited File Transfer defines an optional DATE command in Section 5 of the form mm/dd/yy which is subject to millennium issues.

3.3 "Electronic Mail"

After reviewing all mail-related RFCs, it was discovered that while some obsolete standards required two-digit years, all currently used standards require four-digit years and are thus not prone to typical Year 2000 problems.

RFCs 821 and 822, the main basis for SMTP mail exchange and message format, originally required two-digit years. However, both of these RFCs were later modified by RFC 1123 in 1989, which strongly recommended 4-digit years.

3.4 "Name Serving"

While not a protocol issue, there is a common habit of writing serial numbers for DNS zone files in the form YYXXXXXX. The only real requirement on the serial numbers is that they be increasing (see RFC 1982 for a complete description) and a change from 99XXXXXX to 00XXXXXX cause a failure. See the section on "Name Serving" for a complete description of the issues.

3.5 "Network Management"

Version 2 of SNMP’s MIB definition language (SMIv2) specifies the use of UCTTimes for time stamping MIB modules. Even though these time stamps do not flow in any network protocols, there could be as issue with management applications, depending on implementations.

3.6 "Network News"

There does exist a problem in both NNTP, RFC 977, and the Usenet News Message Format, RFC 10336. They both specify two-digit year format. A working group has been formed to update the network news protocols in general, and addressing this problem is on their list of work items.
3.7 "Real-Time Services"

A Year 2000 problem does occur in the Simple Network Paging Protocol, versions 2 & 3. Both define a HOLDuntil option which uses a YYYYMMDDHHMMSS+-GMT field. Version 3 also defines a MSTAtus command, which is required to store, dates and times as YYYYMMDDHHMMSS+-GMT.

There is a small Year 2000 issue in RFC 1786 on the Representation of IP Routing Policies in the ripe-81++ Routing Registry. In Appendices C the "changed" object parameter defines a format of <email-address> YYYYMMDD, and similarly in Appendix D "withdrawn" object identifier has the format of YYYYMMDD. Since these are only identifiers there should be little operational impact. Some application software may need to be modified.

3.8 "Security"

RFC 1507 on Distributed Authentication Security Services (DASS) use UTCTime. Because of the imprecision of the UTC time definition there could be problems with this protocol.

RFCs 1421-1424 specifies that PEM uses UTC time formats which could have a Millennium issue.

4. Summary of Other "Periodicity" Problems

By far, the largest area of "period" problems occurs in the year 2038. Many protocols use a 32-bit field to record the number of seconds since January 1, 1970.

4.1 "Name Services"

DNS Security uses 32-bit timestamps which will roll over in 2038. This issue has been referred to the appropriate Working Group so that the details of rollover can be established.

4.2 "Routing"

IDPR suffers from the classic Year 2038 problem, by having a timestamp counter which rolls over at that time.

5. Suggested Solutions

The real solution to the problem is to use 4 digit year fields for applications and hardware systems. For counters that key off of a certain time (January 1, 1970 for example) need to either: define a wrapping solution, or to define a larger number space (greater than 32-bits), or to make more efficient use of the 32-bit space. However,
it will be impossible to completely replace currently deployed systems, so solutions for handling problems are in order.

5.1 Fixed Solution

A number of organizations and groups have suggested a fixed solution to the problem of two digit years. Given a two-digit year YY, if YY is greater than or equal to 50, the year shall be interpreted as 19YY; and where YY is less than 50, the year shall be interpreted as 20YY.

While a simple and straightforward solution, it only pushes the problem off 40 to 50 years, until the artificially generated Year 2050 problem needs to be addressed. However, it is easy to implement and deploy, so it might be the most commonly adopted solution.

5.2 Sliding Window

Another solution is the "sliding window" approach. In this approach, some value N is selected, and any two digit year that is less than or equal to the current two digit year plus N is considered the future, while any other two digit year is considered in the past.

For example, choosing N equal to 10, if the current year is 2012, and I get a two digit year that is any of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22, assume it is 20YY (i.e. the future), otherwise consider it to be in the past (1923-1999, 2000-2011).

This solution has two advantages. First, no new fixed year problems are introduced. Second, different applications and protocols could choose different values of N. The drawback is that this solution is harder to implement, and to work well the value of N will need to be constant across different implementations.

6. Methodology

The first task was dividing the types of RFC’s into logical groups rather than the strict numeric publishing order. Sixteen specific areas were identified. They are: "Autoconfiguration", "Directory Services", "Disk Sharing", "Games and Chat", "Information Services & File Transfer", "Network & Transport Layer", "Electronic Mail", "NTP", "Name Serving", "Network Management", "News", "Real Time Services", "Routing", "Security", "Virtual Terminal", and "Other". In addition to these categories, many hundreds of RFC’s were immediately eliminated based on content. That is not to say that all Informational RFC’s were not considered, many did contain some technical content or overview which demanded scrutiny.
Each area was assigned to a team for investigation. Although each team used whatever additional investigation techniques which seemed appropriate (including completely reading each RFC, and in some cases the source code for the reference implementation) at minimum each team used an automatic scanning system to search for the following items (case insensitively) in each RFC:

- date
- GMT
- UTCTime
- year
- yy (that is not part of yyyy)
- two-digit, 2-digit, 2digit
- century
- 1900 & 2000

Note that all of these strings except "UTCTime" may occur in conjunction with a date format that accommodates the Year 2000 crossing, as well as with one that does not. So "hits" on these string do not necessarily indicate Year 2000 problems: they simply identify elements that need to be examined.

After the documents were scanned, therefore, each "hit" was examined individually. Those that cause no Year 2000 problems (e.g., those that encode the year as a two-byte integer, or as a four-character display string) are not discussed here. Those that do cause Year 2000 problems are identified in this document, and the nature and impact of the problems they cause are described.

7. Autoconfiguration

7.1 Summary

The RFC’s which were categorized into this group were primarily the BOOT Protocol (BOOTP) and the Dynamic Host Configuration Protocol (DHCP) for both IP version four and six.

Examination of the BOOTP protocols and most popular implementations show no year 2000 problems. All times are references as 32 bit integers in seconds of UTC time. An investigation of all DHCP and the IPv6 Autoconfiguration mechanisms produced no year 2000 problems. All references to time, in particular lease lengths, are 32 bit integers in seconds, allowing lease times of well over 100 years.
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

7.2 Specifics

The following RFCs were examined for possible millennium problems: 906, 951, 1048, 1084, 1395, 1497, 1531, 1532, 1533, 1534, 1541, 1542, 1970, & 1971. RFC 951’s only reference to time or dates is a two-byte field in the packet, which is number of second since the hosts, was booted. RFC’s 1048, 1084, 1395, 1497, 1531, & 1532 have either no references to dates and time, or they are the same as the RFCs, which obsoleted them, discussed in the next paragraph.

RFC 1533 enumerates all the known DHCP field types and a number of these have to do with time. Section 3.4 defines a "Time Offset" field which specifies the offset of the clients subnet in seconds from UTC. This 4 byte field has no millennium issues. Section 9.2 defines the IP Address Lease Time field which is used by clients to request a specific lease time. This four byte field is an unsigned integer containing a number of seconds. Section 9.9 defines a Renewal Time Value field, Section 9.10 defines a Rebinding Time Value, both of which are similarly 32 bit fields, which have no millennium issues.

RFC 1534 has no references to times or dates.

RFC 1541 has two mentions of times/dates. The first is the "secs" field which, similarly to RFC 951, is a 16-bit field for the number of seconds since the host has booted. There is also a discussion in section 3.3 about "Interpretation and Representation of Time Values" which while clearly states that there is no millennium or period problems.

RFC 1542 also references the "secs" field mentioned previously.

RFC 1970 mentions a number of variables, which are time related. In section 4.2 "Router Advertisement Message Format" the following fields are defined: Router Lifetime, Reachable Time, & Retrans Timer. In section 4.6.2 "Prefix Information" the following are defined: Valid Lifetime, & Preferred Lifetime. In section 6.2.1 "Router Configuration Variables the following are defined: MaxRtrAdvInterval, MinRtrAdvInterval, AdvReachableTime, AdvRetransTimer, AdvDefaultLifetime, AdvValidLifetime, & AdvPreferredLifetime. All of these fields specify counters of some sort which have no millennium or periodicity problems.

RFC 1971 has some discussion of preferred lifetimes, depreciated lifetimes and valid lifetimes of leases, but only discusses them in an expository way.
8. Directory Services

8.1 Summary

The RFC’s which were categorized into this group were primarily X.500 related RFC’s, Whois, Rwhois, Whois++, and the Lightweight Directory Access Protocol (LDAP).

Upon review of the Directory Services related RFC’s, no serious year 2000 problems were discovered. Some minor issues were noted and explained below in the specific portion of this section.

8.2 Specifics

RFCs that mentioned UTC Time or made reference to uTCTimeSyntax could fail to be Y2K compliant. These should be updated to specify the four year version of uTCTimeSyntax rather than giving the option of using a two-year date representation. The following RFCs fall into this category:

- rfc1274.txt - References UTC date/time
- rfc1276.txt - References UTC date/time for version control.
- rfc1488.txt - References UTC Time as printable strings.
- rfc1608.txt - Refers to uTCTimeSyntax
- rfc1609.txt - Refers to uTCTimeSyntax
- rfc1778.txt - Refers to uTCTimeSyntax

Two RFC’s have unusual date specifications and specify their own date format. Both of these support Y2K compliant dates.

RFC1714 (RWhois) specifies date formats that are not Y2K compliant, but it also supports dates that are. Implementers of the RWhois protocol should only use the %MY4 format.

RFC1834 (Whois++) requires the use of dates, but it didn’t specify the format, syntax, or representation of the date string to be used.

9. Disk Sharing

9.1 Summary

The RFC’s which were categorized into this group were those related to the Network File System (NFS). Other popular disk sharing protocols like SMB and AFS were referred to their respective trustee’s for review.

After careful review, NFS has no year 2000 problems.
9.2 Specifics

The references to time in this protocol are the times of file data modification, file access, and file metadata change (mtime, atime, and time, respectively). These times are kept as 32 bit unsigned quantities in seconds since 1970-01-01, and so the NFS protocol will not experience an Epoch event until the year 2106.

10. Games and Chat

10.1 Summary

The RFC’s which were categorized into this group were related to the Internet Relay Chat Protocol (IRC). No millennium problems exist in the IRC protocol.

10.2 Specifics

There is only a single instance of time or date related information in the IRC protocol as specified by RFC 1459. Section 4.3.4 defines a TIME message type which queries a server for its local time. No mention is made of the format of the reply or how it is parsed, the assumption being specific implementations will handle the reply and parse it appropriately.

11. Information Services & File Transfer

11.1 Summary

The RFC’s which were categorized into this group were divided among World Wide Web (WWW) protocols and File Transfer Protocols (FTP). WWW protocols include the Hypertext Transfer Protocol (HTTP), a variety of Uniform Resource formats (URL, URAs, etc.) and the HyperText Markup Language(HTML). FTP protocols include the well known FTP protocol, the Trivial File Transfer Protocol (TFTP) and a variety of extensions to these protocols. Other information services includes the Finger Protocol and the LPD protocol.

HTTP 1.1, as defined in RFC 2068, requires all newly generated date stamps to conform to RFC 1123 date formats which are Year 2000 compliant, but it also requires acceptance of the older non-compliant RFC850 formats. Some specific recommendations are listed below and have been passed to the HTTP WG.

HTML 2.0, as defined in RFC 1866, could allow a very subtle Year 2000 problem, but once again this recommendation has been passed on the HTML WG.
RFC 1778 on String Representations of Standard Attribute Syntax’s define UTC Time in Section 2.21 and uses that definition in Section 2.25 on User Certificates. Since UTC Time is being used, there is a potential millennium issue.

RFC 1440 on SIFT/UFT: Sender-Initiated/Unsolicited File Transfer defines an optional DATE command in Section 5 of the form mm/dd/yy which is subject to millennium issues.

11.2 Specifics

The main IETF standards-track document on the HTTP protocol is RFC2068 on HTTP 1.1. It notes that historically three different date formats have been used, and that one of them uses a two-digit year field. In section 3.3.1 it requires HTTP 1.1 implementations to generate this RFC1123 format:

 Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

instead of this RFC850 format:

 Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

Unfortunately, many existing servers, serving on the order of one fifth of the current HTTP traffic, send dates in the ambiguous RFC850 format.

Section 19.3 of the RFC2068 says this:

- HTTP/1.1 clients and caches should assume that an RFC-850 date which appears to be more than 50 years in the future is in fact in the past (this helps solve the "year 2000" problem).

This avoids a "stale cache" problem, which would cause the user to see out-of-date data.

RFC 1986 documents experiments with a simple file transfer program over radio links using Enhanced Trivial FTP (ETFTP). There are a number of timers defined which are all in seconds and have no year 2000 issues.

In RFC 1866, on HTML 2.0, the <META> tag allows the embedding of recommended values for some HTTP headers, including Expires. E.g.

 <META HTTP-EQUIV="Expires"
 CONTENT="Tue, 04 Dec 1993 21:29:02 GMT">

Servers should rewrite these dates into RFC1123 format if necessary.
RFC 1807 defines a format for bibliographic records and it specifies a DATE format, which requires 4 digit year fields.

RFC 1788 defines ICMP Domain Name messages. Section 3 defines a Domain Name Reply Packet, which contains a signed 32-bit integer. This timer is not Year 2000 reliant and is certainly large enough for its purposes.

RFC 1784 on TFTP Timeout Intervals and Transfer Size Options uses a field for the number of seconds for the timeout. It is an ASCII value from 1 to 255 octets in length. There is no Y2K issue.

RFC 1778 on String Representations of Standard Attribute Syntax’s define UTC Time in Section 2.21 and uses that definition in Section 2.25 on User Certificates. Since UTC Time is being used, there is a potential millennium issue.

RFC 1777 on LDAP defines a timelimit in Section 4.3 which is expressed in seconds, but does not define any limits.

RFC 1440 on SIFT/UFT: Sender-Initiated/Unsolicited File Transfer defines an optional DATE command in Section 5 of the form mm/dd/yy, which is subject to millennium issues.

RFC 1068 on the Background File Transfer Protocol (BFTP) defines two commands in Sections B.2.12 and B.2.13, the Submit and Time commands. From the example usage’s given in Appendix C it is clear that this protocol will function correctly though the year 9999.

RFC 1037 on NFILE (a file access protocol) discusses the a Date representation in Section 7.1 as the number of seconds since January 1, 1900, but does not limit the field size. There should be no Y2K issues.

RFC 998 on NETBLT defines a Death time in Section 8, which is the sender’s death time in seconds.

RFC 978 on the Voice File Interchange Protocol defines the Total Time of a message to be a 32-bit number of deci-seconds. This limits the size of a message but has no millennium issues.

RFC 969 was obsoleted by RFC 998.

RFC 916 defines the Reliable Asynchronous Transfer Protocol (RATP). Three timers are discussed in an expository manner in Section 5.4 and its subsections. There are no relevant issues.
12. Network & Transport Layer

12.1 Summary

The RFC’s which were categorized into this group were the Internet Protocol (IP) versions four and six, the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), the Point-to-Point Protocol (PPP) and its extensions, Internet Control Message Protocol (ICMP), the Address Resolution Protocol (ARP) and Remote Procedure Call (RPC) protocol. A variety of less known protocols were also examined.

After careful review of the nearly 400 RFC’s in this category, no millennium or year 2000 problems were found.

12.2 Specifics

RFC 2125 on the PPP Bandwidth Allocation Protocol (BAP) in section 5.3 discusses the use of mandatory timers, but gives no mention as to how they are implemented.

RFC 2114 on a Data Link Switching Client Access Protocol defines a retry timer of five seconds in Section 3.4.1.

RFC 2097 on the PPP NetBIOS Frame Control Protocol discusses several timer and timeouts in Section 2.1, none of which suffers from a year 2000 problem.

RFC 2075 on the IP Echo Host Service discusses timestamps and has no millennium issues.
RFC 2005 on the Applicability for Mobile IP discusses using timestamps as a security measure to avoid replay attacks (Section 3.), but does not quantify them. There are no expected issues.

RFC 2002 on IP Mobility Support uses a 16-bit field for the lifetime of a connection and notes the 18.2 hour limitation that this imposes. Section 5.6.1 on replay protection requires the use of 64-bit time fields, of a similar format to NTP packets.

RFC 1981 on Path MTU Discovery for IPv6 discusses timestamps and their potential use to purge stale information in section 5.3. There is no millennium issues in this use.

RFC 1963 on the PPP Serial Data Transport Protocol defines a flow expiration time in section 4.9 which has no year 2000 issues.

RFC 1833 on Binding Protocols for ONC RPC Version 2 defines a variable in Section 2.2.1 called RPCBPROC_GETTIME which returns the local time in seconds since 1/1/1970. Since this value is not fields width dependent, it may or may not wrap around the 32-bit value depending on the operating system parameters.

RFC 1762 on the PPP DECnet Phase IV Control Protocol discusses a number of timers in Section 5 (General Considerations). None of these timers experience any millennium issues.

RFC 1761 on Snoop Version 2 Packet Capture File Format discusses two 32-bit timestamp values on Section 4 on Packet Record Formats. The first of these may wrap in the year 2038, but should not effect anything of any import.

RFC 1755 on ATM Signalling Support for IP Over ATM discusses timing issues in Section 3.4 on VC Teardown. These limited timers have no year 2000 issues.

RFC 1692 on the Transport Multiplexing Protocol (TMux) defines a TTL in Section 2.3 and a timer in Section 3.3. Neither of these suffer from any millennium or year 2000 issues.

RFC 1661 on PPP defines three timers in Section 4.6, none of which have any year 2000 issues.

RFC 1644 on T/TCP (TCP Extensions for Transactions) mentions RFC 1323 and the extended timers recommended in it.

RFC 1575 defines an echo function for CNLP discusses in the narrative the use of the Lifetime Field in Section 5.3. There is nothing to suggest that there is any year 2000 issues.
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

RFC 1329 on Dual MAC FDDI Networks discusses ARP cache administration in Section 9.3 and 9.4 and various timers to expire entries.

RFC 1256 on ICMP Router Discovery Messages talks about lifetime fields in Section 2 and defines three router configuration variables in Section 4.1. None of these have any millennium issues.

RFC 792 on ICMP discusses Timestamps and Timestamp Reply messages which define a 32-bit timestamp which contains the number of milliseconds since midnight UT.

RFC 791 on the Internet Protocol defines a packet type 68 which is an Internet Timestamp, which defines a 32-bit field which contains the number of milliseconds since midnight UT.

RFC 781 was defines the same option which is codified in RFC 791 as a packet type 68.

13. Electronic Mail

13.1 Summary

The RFC's which were categorized into this group were the Simple Mail Transfer Protocol (SMTP), Internet Mail Access Protocol (IMAP), Post Office Protocol (POP), Multipurpose Internet Mail Exchange (MIME), and X.400 to SMTP interaction.

After reviewing all mail-related RFCs, it was discovered that while some obsolete standards required two-digit years, all currently used standards require four-digit years and are thus not prone to typical Year 2000 problems.

13.2 Specifics

RFCs 821 and 822, the main basis for SMTP mail exchange and message format, originally required two-digit years. However, both of these RFCs were later modified by RFC 1123 in 1989, which strongly recommended 4-digit years. Although there might be a few very old SMTP systems using two-digit years, it is believed that almost all mail sent over the Internet today uses four-digit years. Mail that contains two-digit years in its SMTP headers will not "fail", but might be mis-sorted in message stores and mail user agents. This problem is avoided entirely by taking the RFC 1123 change as a requirement, rather than merely as a recommendation.

IMAP versions 1, 2, and 3 used two-digit years, but IMAP version 4 (defined in RFCs 1730 and 1732 in 1994) requires four-digit years. There are still a few IMAP 2 servers and clients in use on the Internet today, but IMAP version 4 has already taken over almost all of the IMAP market. Mail stored on an IMAP server or client with two-digit years will not "fail", but could possibly be mis-sorted or prematurely expired.

RFC 1153 describes a format for digests of mailing lists, and uses two-digit dates. This format is not widely used. The use of two-digit dates could possibly cause mis-sorting of stored messages.
RFC 1327, which describes mapping between X.400 mail and SMTP mail, uses the UTCTime format.

RFC 1422 describes the structure of certificates that were used in PEM (and are expected to be used in many other mail and non-mail services). Those certificates use dates in UTCTime format. Poorly written software might prematurely expire or validate a certificate based on comparisons of the date with the current date, although no current software is known to do this.

14. Network Time Protocols

14.1 Summary

The RFC’s which were categorized into this group were the Network Time Protocol (NTP), and the Time Protocol.

NTP has been certified year 2000 compliant, while the Time Protocol will "roll over" at Thu Feb 07 00:54:54 2036 GMT. Since NTP is the current defacto standard for network time this does not seem to be an issue.

14.2 Specifics

There is no reference anywhere in the NTP specification or implementation to any reference epoch other than 1 January 1900. In short, NTP doesn’t know anything about the millennium.

>From the Time Protocol RFC (868):

S: Send the time as a 32 bit binary number.

...

The time is the number of seconds since 00:00 (midnight) 1 January 1900 GMT, such that the time 1 is 12:00:01 am on 1 January 1900 GMT; this base will serve until the year 2036.

15. Name Services

15.1 Summary

The RFC’s which were categorized into this group were the Domain Name System (DNS), it’s advanced add on features (Incremental Zone Transfer, etc.).

There have been no year 2000 relayed problems found with the DNS protocols, or common implementations of them.
15.2 Specifics

One is a common practice of writing serial numbers in zone files as if they represent a date, and using only two digits of the year. That practice cannot survive into the year 2000. This is not a protocol problem, the serial number is simply an integer, and any value is OK, provided it always increases (see rfc1982 for a definition of what that means). In any case, a change from 97abcd (or similar) to 00abcd would be a decrease and so is not permitted. Zone file maintainers have two choices, one easy (though irrational) one would be to continue from 99 to 100 and so on. The other, is simply to switch, at any time between now and when the serial number first needs updating after the year 2000, to use 4 digits to represent the year instead of 2. As long as there are no more than 6 digits in the "abcd" part, and this is done sometime before the year 2100, this is always an increase, and therefore always safe. Should any zone files be of the form yyabcdefg (with 7 digits after a 2-digit year) then the procedures of section 7 of rfc2182 should be adopted to convert the serial number to some other value.

The other item of note is related to timestamps in DNS security. Those are represented as 32 bit counts of seconds, based in 1970, and hence have no year 2000 problems. However, they do obviously have a natural end of life, and sometime before that time is reached, the definitions of those fields need to be corrected, perhaps to allow them to represent the number of seconds elapsed since the base, modulo 2^32, which is likely to be adequate for the purposes of DNS security (signatures and keys are unlikely to need to be valid for more than 70 years). In any case, more work is needed in this area in the not too far distant future.

16 Network Management

16.1 Summary

The RFC’s which were categorized into this group were the Simple Network Management Protocol (SNMP), a large number of Management Information Bases (MIBs) and the Common Management Information Protocol over TCP/IP (CMOT).

Although a few discrepancies have been found and outlined below, none of them should have an impact on interoperability.

16.2 Specifics

16.2.1 Use of GeneralizedTime in CMOT as defined in RFCs 1095 and 1189.
The standards for CMOT specify an unusual use for the GeneralizedTime type. (GeneralizedTime has a four-digit representation of the year.)

If the system generating the PDU does not have the current time, yet does have the time since last boot, then GeneralizedTime can be used to encode this information. The time since last boot will be added to the base time "0001 Jan 1 00:00:00.00" using the Gregorian calendar algorithm.

This is really a "Year 0" problem rather than a Year 2000 problem, and in any case, CMOT is not currently deployed.

16.2.2 UTCTime in SNMP Definitions

UTCTime is an ASN.1 type that includes a two-digit representation of the year. There are several options for UTCTime in ASN.1, that vary in precision and in local versus GMT, but these options all have two-digit years. The standards for SNMP definitions specify one particular format:

YYMDDHHMMZ

The first usage of UTCTime in the standards for SNMP definitions goes all the way back to RFC 1303. It has persisted unchanged up through the current specifications in RFC 1902. The role of UTCTime in SNMP definitions is to record the history of an SNMP MIB module in the module itself, via two ASN.1 macros:

- LAST-UPDATED
- REVISION

Management applications that store and use MIB modules need to be smart about interpreting these UTCTimes, by prepending a "19" or a "20" as appropriate.

16.2.3 Objects in the Printer MIB (RFC 1559)

There are two objects in the Printer MIB that allow use of a date as an object value with no explicit guidance for formatting the value. The objects are prtInterpreterLangVersion and prtInterpreterVersion. Both are defined with a syntax of OCTET STRING. The descriptions for the objects allow the object value to contain a date, version code or other product specific information to identify the interpreter or language. The descriptions do not include an explicit statement recommending use of a four-digit year when a date is used as the object value.
16.2.4 Dates in Mobile Network Tracing Records (RFC 2041)

The RFC specifies trace headers and footers with date fields that are character arrays of size 32. While 32 characters certainly provide enough room for a four-digit year, there’s no explicit statement that these years must be represented with four digits.

17 Network News

17.1 Summary

The RFC’s which were categorized into this group were related to the Network News Protocol (NNTP).

There does exist a problem in both NNTP, RFC 977, and the Usenet News Message Format, RFC 10336. They both specify two-digit year format. A working group has been formed to update the network news protocols in general, and addressing this problem is on their list of work items.

17.2 Specifics

The NNTP transfer protocols defined in RFC 977. Sections 3.7.1, the definition of the NEWGROUPS command, and 3.8.1, the NEWNEWS command, that dates must be specified in Y1M1D1 format.

The format for USENET news messages is defined in RFC 1036. The Date line is defined in section 2.1.2 and it is specified in RFC-822 format. It specifically disallows the standard UNIX ctime(3) format, which would allow for four digit years. Section 2.2.4 on Expires also mandates the same two-digit year format.

18. Real Time Services

18.1 Summary

The RFC’s which were categorized into this group were related to IP Multicast, RTP, and Internet Stream Protocol. A Year 2000 problem does occur in the Simple Network Paging Protocol, versions 2 & 3. Both define a HOLDuntil option which uses a Y1M1D1H1M1S+/-GMT field. Version 3 also defines a MSTatus command, which is required to store, dates and times as Y1M1D1H1M1S+/-GMT.

18.2 Specifics

RFC 2102 discusses Multicast support for NIMROD and has no mention of dates or time. RFC 2090 on TFTP Multicast options is also free from any date/time references.
RFC 2038 on RTP MPEG formats has three references to time: a Presentation Time Stamp (PTS), a Decoding Time Stamp (DTS), and a System Clock (SC) reference time. Each RTP packet contains a timestamp derived from the sender 90 kHz clock reference. Each of the header fields are defined in section 2.1, 3, and 3.3 are 32 bit fields. No mention is made of a "zero" start time, so it is presumed that this format will be valid until at least 2038.

Similarly RFC 2035 on the RTP JPEG format defines the same timestamp in section 3. RFC 2032 on RTP H.261 video streams uses a calculated time based on the original frame so once again there is no millennium issue. RFC 2029 on the RTP format for Sun's CellB video encoding mentions the RTP timestamp in section 2.1.

RFC 2022 defines support for multicast over UNI 3.0/3.1 based ATM networks. Section 5. defines a timeout value for connections between one and twenty minutes. Section 5.1.1 discusses several timers that are bound between five and ten seconds, while 5.1.3 requires an inactivity timer, which should also run between one and twenty minutes. Sections 5.1.5, 5.1.5.1, 5.1.5.2, 5.2.2, 5.4, 5.4.1, 5.4.2, 5.4.3, 6.1.3 and Appendix E all defines numerous timers, none of which have any millennium issues.

RFC 1890 on RTP profiles for audio and video conferences discusses a sampling frequency which has no issues. RFC 1889 on RTP discusses time formats in section 4, as the same 64 bit unsigned integer format that NTP uses. There is a "period" problem, which will occur in the year 2106. Section 5.1 is a more formalized discussion of the timestamp properties, while Section 6.3.1 discusses a variety of different timers all using the 64 bit field format, or a compressed 32-bit version of the inner octet of bytes. Section 8.2 discusses loop detection and how the various timers are used to determine if looping occurs.

RFC 1861 on Version 3 of the Simple Network Paging Protocol does have a Year 2000 problem. The protocol defines a HOLDuntil command in section 4.5.6 and a MSTatus command in section 4.6.10, both of which require dates/times to be stored as YYMMDDHHMMSS+-GMT. Clearly this format will be invalid after the end of 1999.

RFC 1821 has no date/time references. RFC 1819 on Version 2 of the Internet Stream Protocol defines a HELLO message format in section 6.1.2, which does contain a timer which is updated every millisecond. No year 2000 problems exist with this protocol.

RFC 1645 on Version 2 of the Simple Network Paging Protocol contains the same HOLDuntil field problem as version 3. The definition is contained section 4.4.6.
RFC 1458 on the Requirements of Multicast Protocols discusses a retransmission timer in section 4.23, and a general discussion of timer expiration in section 5, neither of which have any millennium concerns. RFC 1301 on the Multicast Transport Protocol defines a heartbeat interval of time in section 2.1, as well as retention and windows. Formal definitions for each are contained in sections 2.2.7, 2.2.8 and 2.2.9. The heartbeat is a 32 bit unsigned field, while the Window and Retention are both 16 bit unsigned fields. Section 3.4.2 gives examples values for these fields, which indicate no millennium issues.

RFC 1301 on the Multicast Transport Protocol defines a heartbeat interval of time in section 2.1, as well as retention and windows. Formal definitions for each are contained in sections 2.2.7, 2.2.8 and 2.2.9. The heartbeat is a 32 bit unsigned field, while the Window and Retention are both 16 bit unsigned fields. Section 3.4.2 gives examples values for these fields, which indicate no millennium issues.

RFC 1193 on Client Requirements for Real Time Services talks about time in section 4.4, but there are no Year 2000 issues. RFC 1190 have been obsoleted by RFC 1819, but the hello timer issues are similar.

RFCs 1789, 1768, 1703, 1614, 1569, 1568, 1546, 1469, 1453, 1313, 1257, 1197, 1112, 1054, 988, 966, 947, 809, 804, 803, 798, 769, 741, 511, 508, 420, 408 and 251 contain no date or time references.

19. Routing

19.1 Summary

The RFC’s which were categorized into this group were Routing Information Protocol (RIP), the Open Shortest Path First (OSPF) protocol, Classless InterDomain Routing (CIDR), the Border Gateway Protocol (BGP), and the InterDomain Routing Protocol (IDRP).

After careful examination both BGP and RIP have been found Year 2000 compliant.

There is a small Year 2000 issue in RFC 1786 on the Representation of IP Routing Policies in the ripe-81++ Routing Registry. In Appendices C the "changed" object parameter defines a format of <email-address> YYYYMMDD, and similarly in Appendix D "withdrawn" object identifier has he format of YYYYMMDD. Since these are only identifiers there should be little operational impact. Some application software may need to be modified.

IDPR suffers from the classic Year 2038 problem, by having a timestamp counter which rolls over at that time.

19.2 Specifics

RFC 2091 on Extensions to RIP to Support Demand Circuits defines three required and one optional timers in section 6. The Database Timer (6.1), the Hold down Timer (6.2), the Retransmission Time (6.3)
and the Over-Subscription Timer (6.4) are all counters, which have no millennium, issues. RFC 2081 on the applicability of RIPng discusses deletion of routes for a variety of issues, one of which is the garbage-collection timer exceeds 120 seconds. There are no Year 2000 issues. RFC 2080 on RIPng for IPv6, discusses various times in section 2.6, none of which have any millennium problems.

RFC 1987 on Ipsilon’s General Switch Management protocol there is a Duration field defined in section 4, which has no relevant problems. Section 8.2 defines the procedure for dealing with timers. RFC 1953 on Ipsilon’s Flow Management Specification for IPv4 defines the same procedure in section 3.2, as well as a lifetime field in the Redirect Message (Section 4.1). There are no millennium issues in either case.

There is a small Year 2000 issue in RFC 1786 on the Representation of IP Routing Policies in the ripe-81++ Routing Registry. In Appendices C the "changed" object parameter defines a format of <email-address> YYMMDD, and similarly in Appendix D "withdrawn" object identifier has the format of YYMMDD. Since these are only identifiers there should be little operational impact. Some application software may need to be modified.

RFC 1771 defines the Border Gateway Protocol (BGP). BGP does not have knowledge of absolute time, only relative time. There are five timers defined: Hold Timer, ConnectRetry Timer, KeepAlive Timer, MinRouteAdvertisementInterval and MinASOriginationInterval. There are no known issues regarding BGP and the millennium.

In RFC 1584, which defines Multicast Extensions to OSPF, three timers are defined in section 8.2: IGMPPollingInterval, IGMPTimeout, and IGMP polling timer. Section 8.4 defines an age parameter for the local groups database and section 9.3 outlines how to implement that age parameter. It is not expected that any connections lifetime will be long enough to cause any issues with these timers.

RFC 1583, OSPF, there are two types of timers defined in section 4.4, single-shot timers and interval timers. There are a number of timers defined in Section 9 including: HelloInterval, RouterDeadInterval, InfTransDelay, Hello Timer, Wait Timer and RxmtInterval. Section 10 also defines the Inactivity Timer. No millennium problem exists for any of these timers.

RFC 1582 is an earlier version of RFC 2091. Section 7 documents the same timers as noted above, with the same lack of a millennium issue.

RFC 1504 on Appletalk Update-Based Routing Protocol defines a 10-second period in Section 3, and hence has no relevant issues.
RFC 1479 which specifies IDPR Version 1, defines a timestamp field in section 1.5.1, which is a 32 bit unsigned integer number of seconds since January 1, 1970. The authors recognize the problem of timestamp exhaustion in 2038, but feel that the protocol will not be in use for that period. Sections 1.7, 2.1, and 4.3.1 also discuss the timestamp field. RFC 1478 on the IDPR Architecture, also discusses the same timestamp field in section 3.3.4. RFC 1477 again refers to the IDPR timestamp in section 4.2. Thus IDPR has no Year 2000 issue, but does have a period problem in the year 2038.

RFC 1075 on Distance Vector Multicast Routing Protocol devotes section 7 to time values. None of the timers have any millennium issues. RFC 1074, on the NFSNET backbone SPF IGP defines several hardcoded timers values in section 5.

RFC 1058 on RIP discusses the 30-second timers in section 3.3. There is no millennium issues related to RIP.

RFC 995 on the Requirements for Internet Gateways has extensive discussions of timers in section 7.1 and throughout A.1 and A.2. None of these timers suffer from the millennium problem.

RFC 911 on EGP on Berkeley Unix recommend timer values of 30 and 120 seconds.

RFC 904 which defines the Exterior Gateway Protocol (EGP). There are a number of timers discussed in sections 4.1.1 and 4.1.4. None of these timers suffer from any relevant problems.

20. Security

20.1 Summary

The RFC’s which were categorized into this group were kerberos authentication protocol, Remote Authentication Dial In User Service (RADIUS), One Time Password System (OTP), Privacy Enhanced Mail (PEM), security extensions to a variety of protocols including (but not limited to) RIPv2, HTTP, MIME, PPP, IP, Telnet and FTP.
Encryption and authentication algorithms are also examined.

RFC 1507 on Distributed Authentication Security Services (DASS) discusses time and secure time in an expository manner in Sections 1.2.2, 1.4.4 and 2.1. Section 3.6 defines absolute time as an UTC time with a precision of 1 second, and Section 4.1 discusses ANS.1 encoding of time values. Because of the imprecision of the UTC time definition there could be problems with this protocol.

RFCs 1421-1424 specifies that PEM uses UTC time formats which could have a Millennium issue since the year specification only provides the last two digits of the year.

20.2 Specifics

RFC 2082 on RIPv2 MD5 Authentication requires storage of security keys for a specified lifetime in sections 4.1 and 4.2. There are no millennium issues in this protocol.

RFC 2078 on the GSSAPI Version 2 defines numerous calls that use timers for inputs and outputs. Sections 2.1.1, 2.1.3, 2.1.4, 2.1.5, 2.2.1, 2.2.2, 2.2.5 and 2.2.6 all use the lifetime_rec field, which is defined as an integer counter in seconds. There should be no relevant problems with this protocol.

RFC 2069 on Digest Authentication for HTTP, defines a 'date' and a 1123 formats which is not subject to millennium issues. Section 3.2 discusses dates and times in the context of thwarting replay attacks, but have no relevant issues.

RFC 2065 on DNS Security extensions first discusses time in section 2.3.3. The SIG RDATA format is defined in Section 4.1 discusses "time signed" field and defines it to be a 32 bit unsigned integer number of seconds since January 1, 1970. There will be a period problem in 2038 because of rollover. Section 4.5 on the file representations of SIG RRs specifies the time field is expressed as YYYYMMDDHHMMSS which is clearly Year 2000 compliant.

RFC 2059 on RADIUS account formats defines a "time" attribute, which is optional which is a 32 bit unsigned integer number of seconds since January 1, 1970. Likewise RFC 2058 on RADIUS also defines this optional attribute in the same way. There will be a potential period problem that occurs on 2038.

RFC 2035 on the Simple Public Key GSSAPI Mechanism talks about secure timestamps in the background and overview sections only in an expository manner.
RFC 1969 on the PPP DES Encryption Protocol uses time as an example in Section 4 when discussing how to encrypt the first packet of a stream. It is suggested that the first 32 bits be used for the number of seconds since January 1, 1970. There could thus be a potential operations problem in 2038.

RFC 1898 on the CyberCash Credit Card Protocol provides an example message in Section 2.7 which uses a date field of the form YYYYMMDDHHMM that is clearly Y2K compliant.

RFC 1510, which defines Kerberos Version 5, makes extensive use of times in the security model. There are discussions in the Introduction, as well as Sections 1.2, and 3.1.3. Kerberos uses ASN.1 definitions to abstract values, and hence defines a base definition for KerberosTime which is a generalized time format in Section 5.2. >From the text: "Example: The only valid format for UTC time 6 minutes, 27 seconds after 9 p.m. on 6 November 1985 is 19851106210627Z." A side note is that the MIT reference implementation of the Kerberos, by default set the expiration of tickets to December 31, 1999. This is not protocol related but could have some operational impacts.

RFC 1509 on GSSAPI C-bindings makes a single reference that all counters are in seconds and assigned as 32 bit unsigned integers. Hence GSSAPI mechanisms may have problems in 2038.

RFC 1507 on Distributed Authentication Security Services (DASS) discusses time and secure time in an expository manner in Sections 1.2.2, 1.4.4 and 2.1. Section 3.6 defines absolute time as an UTC time with a precision of 1 second, and Section 4.1 discusses ANS.1 encoding of time values. Because of the imprecision of the UTC time definition there could be problems with this protocol.

RFC 1424 on PEM Part IV defines a self-signed certificate request in Section 3.1. The validity period start and end times are both suggested to be January 1, 1970. RFC 1422 on PEM Part II defines the validity period for a certificate in Section 3.3.6. It is recommended that UTC Time formats are used, and notes the lack of a century so that comparisons between different centuries must be done with care. No suggestions on how to do this are included. Sections 3.5.2 also discusses validity period in PEM CRLs. RFC 1421 on PEM Part I discusses validity periods in an expository way. PEM as a whole could have problems after December 31, 1999 based on its use of UTC Time.

RFCs 1113, 1114, and 1115 specify the original version of PEM and have been obsoleted by 1421, 1422, 1423, & 1424.
21. Virtual Terminal

21.1 Summary

The RFC's which were categorized into this group were Telnet and its many extensions, as well as the Secure SHell (SSH) protocol. The X window system was not considered since it is not an IETF protocol. Official acknowledgement by the trustee's of the X window system was given that they will examine the protocol.

Unencrypted Telnet and TN3270 have both been found to be Year 2000 Compliant. The SSH protocols are also Year 2000 compliant.

21.2 Specifics

RFC 1013 on the X Windows version 11 alpha protocol defines are 32 bit unsigned integer timestamp in Section 4.

22. Other

22.1 Summary

This grouping was a hodge-podge of informational RFCs, April Fool’s Jokes, IANA lists, and experimental RFCs. None were found to have any millennium issues.
22.2 Specifics

23. Security Considerations

Although this document does consider the implications of various security protocols, there is no need for additional security considerations. The effect of a potential year 2000 problem may cause some security problems, but those problems are more of specific applications rather than protocol deficiencies introduced in this document.

24. References

Because of the exhaustive nature of this investigation, the reader is referred to the list of published RFC’s available from the IETF Secretariat or the RFC Editor, rather than republishing them here.

25. Editors’ Address

Philip J. Nesser II
Nesser & Nesser Consulting
13501 100th Ave N.E.
Suite 5202
Kirkland, WA 98052

Phone: 425-481-4303
EMail: pjnesser@nesser.com
pjnesser@martigny.ai.mit.edu
Appendix A: List of RFC’s for each Area

The following list contains the RFC’s grouped by area that were searched for year 2000 problems.

Each line contains three fields are separated by ‘::’. The first field is the RFC number, the second field is the type of RFC (S = Standard, DS = Draft Standard, PS = Proposed Standard, E = Experimental, H = Historical, I = Informational, BC = Best Current Practice, ‘’ = No Type), and the third field is the Title.

A.1 Autoconfiguration

<table>
<thead>
<tr>
<th>RFC Number</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>PS</td>
<td>IPv6 Stateless Address Autoconfiguration</td>
</tr>
<tr>
<td>1970</td>
<td>PS</td>
<td>Neighbor Discovery for IP Version 6 (IPv6)</td>
</tr>
<tr>
<td>1542</td>
<td>PS</td>
<td>Clarifications and Extensions for the Bootstrap Protocol</td>
</tr>
<tr>
<td>1541</td>
<td>PS</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>1534</td>
<td>PS</td>
<td>Interoperation Between DHCP and BOOTP</td>
</tr>
<tr>
<td>1533</td>
<td>PS</td>
<td>DHCP Options and BOOTP Vendor Extensions</td>
</tr>
<tr>
<td>1532</td>
<td>PS</td>
<td>Clarifications and Extensions for the Bootstrap Protocol</td>
</tr>
<tr>
<td>1531</td>
<td>PS</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>1497</td>
<td>DS</td>
<td>BOOTP Vendor Information Extensions</td>
</tr>
<tr>
<td>1395</td>
<td>DS</td>
<td>BOOTP Vendor Information Extensions</td>
</tr>
<tr>
<td>1084</td>
<td>DS</td>
<td>BOOTP vendor information extensions</td>
</tr>
<tr>
<td>1048</td>
<td>DS</td>
<td>BOOTP vendor information extensions</td>
</tr>
<tr>
<td>951</td>
<td>DS</td>
<td>Bootstrap Protocol</td>
</tr>
<tr>
<td>906</td>
<td></td>
<td>Bootstrap loading using TFTP</td>
</tr>
</tbody>
</table>

A.2 Directory Services

<table>
<thead>
<tr>
<th>RFC Number</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2120</td>
<td>E</td>
<td>Managing the X.500 Root Naming Context</td>
</tr>
<tr>
<td>2079</td>
<td>PS</td>
<td>Definition of X.500 Attribute Types and an Object Class to Hold Uniform Resource Identifiers (URIs)</td>
</tr>
<tr>
<td>1943</td>
<td>I</td>
<td>Building an X.500 Directory Service in the US</td>
</tr>
<tr>
<td>1914</td>
<td>PS</td>
<td>How to interact with a Whois++ mesh</td>
</tr>
<tr>
<td>1913</td>
<td>PS</td>
<td>Architecture of the Whois++ Index Service</td>
</tr>
<tr>
<td>1838</td>
<td>E</td>
<td>Use of the X.500 Directory to support mapping between X.400 and RFC 822 Addresses</td>
</tr>
<tr>
<td>1837</td>
<td>E</td>
<td>Representing Tables and Subtrees in the X.500 Directory</td>
</tr>
<tr>
<td>1836</td>
<td>E</td>
<td>Representing the O/R Address hierarchy in the X.500 Directory Information Tree</td>
</tr>
<tr>
<td>1835</td>
<td>PS</td>
<td>Architecture of the WHOIS++ service</td>
</tr>
<tr>
<td>1834</td>
<td>I</td>
<td>Whois and Network Information Lookup Service Whois++</td>
</tr>
<tr>
<td>1781</td>
<td>PS</td>
<td>Using the OSI Directory to Achieve User Friendly Naming</td>
</tr>
<tr>
<td>1714</td>
<td>I</td>
<td>Referral Whois Protocol (RWhois)</td>
</tr>
<tr>
<td>1684</td>
<td>I</td>
<td>Introduction to White Pages services based on X.500</td>
</tr>
<tr>
<td>1637</td>
<td>E</td>
<td>DNS NSAP Resource Records</td>
</tr>
<tr>
<td>1632</td>
<td>I</td>
<td>A Revised Catalog of Available X.500 Implementations</td>
</tr>
</tbody>
</table>
1617:: I:: Naming and Structuring Guidelines for X.500 Directory Pilots
1609:: E:: Charting Networks in the X.500 Directory
1608:: E:: Representing IP Information in the X.500 Directory
1588:: I:: WHITE PAGES MEETING REPORT
1562:: I:: Naming Guidelines for the AARNet X.500 Directory Service
1491:: I:: A Survey of Advanced Usages of X.500
1488:: PS:: The X.500 String Representation of Standard Attribute Syntaxes
1487:: PS:: X.500 Lightweight Directory Access Protocol
1485:: PS:: A String Representation of Distinguished Names
1484:: E:: Using the OSI Directory to achieve User Friendly Naming
1430:: I:: A Strategic Plan for Deploying an Internet X.500 Directory Service
1400:: I:: Transition and Modernization of the Internet Registration Service
1384:: I:: Naming Guidelines for Directory Pilots
1355:: I:: Privacy and Accuracy Issues in Network Information Center Databases
1330:: I:: Recommendations for the Phase I Deployment of OSI Directory Services (X.500) and OSI Message Handling Services (X.400) within the ESnet Community
1309:: I:: Technical Overview of Directory Services Using the X.500 Protocol
1308:: I:: Executive Introduction to Directory Services Using the X.500 Protocol
1292:: I:: A Catalog of Available X.500 Implementations
1279:: :: X.500 and Domains
1276:: PS:: Replication and Distributed Operations extensions to provide an Internet Directory using X.500
1275:: I:: Replication Requirements to provide an Internet Directory using X.500
1274:: PS:: The COSINE and Internet X.500 Schema
1255:: I:: A Naming Scheme for c=US
1218:: :: A Naming Scheme for c=US
1202:: I:: Directory Assistance Service
1107:: :: Plan for Internet directory services
954:: DS:: NICNAME/WHOIS
953:: H:: Hostname Server
812:: :: NICNAME/WHOIS
756:: :: NIC name server - a datagram-based information utility
752:: :: Universal host table

Disk Sharing
1813:: I:: NFS Version 3 Protocol Specification
1094:: H:: NFS: Network File System Protocol specification

Games and Chat
1459:: E:: Internet Relay Chat Protocol
Information Services & File Transfer
2122:: PS:: VEMMI URL Specification
2070:: PS:: Internationalization of the Hypertext Markup Language
2068:: PS:: Hypertext Transfer Protocol -- HTTP/1.1
2056:: PS:: Uniform Resource Locators for Z39.50
2055:: I:: WebNFS Server Specification
2054:: I:: WebNFS Client Specification
2044:: I:: UTF-8, a transformation format of Unicode and ISO 10646
2016:: E:: Uniform Resource Agents (URAs)
1986:: E:: Experiments with a Simple File Transfer Protocol for
 Radio Links using Enhanced Trivial File Transfer
 Protocol (ETFTP)
1980:: I:: A Proposed Extension to HTML: Client-Side Image Maps
1960:: PS:: A String Representation of LDAP Search Filters
1959:: PS:: An LDAP URL Format
1945:: I:: Hypertext Transfer Protocol -- HTTP/1.0
1942:: E:: HTML Tables
1874:: E:: SGML Media Types
1867:: E:: Form-based File Upload in HTML
1866:: PS:: Hypertext Markup Language – 2.0
1865:: I:: EDI Meets the Internet: Frequently Asked Questions
 about Electronic Data Interchange (EDI) on the Internet
1862:: I:: Report of the IAB Workshop on Internet Information
 Infrastructure, October 12-14, 1994
1843:: I:: HZ - A Data Format for Exchanging Files of Arbitrarily
 Mixed Chinese and ASCII characters
1842:: I:: ASCII Printable Characters-Based Chinese Character
 Encoding for Internet Messages
1823:: I:: The LDAP Application Program Interface
1815:: I:: Character Sets ISO-10646 and ISO-10646-J-1
1808:: PS:: Relative Uniform Resource Locators
1807:: I:: A Format for Bibliographic Records
1798:: PS:: Connection-less Lightweight Directory Access Protocol
1788:: E:: ICMP Domain Name Messages
1785:: I:: TFTP Option Negotiation Analysis
1784:: PS:: TFTP Timeout Interval and Transfer Size Options
1783:: PS:: TFTP Blocksize Option
1782:: PS:: TFTP Option Extension
1779:: DS:: A String Representation of Distinguished Names
1778:: DS:: The String Representation of Standard Attribute Syntaxes
1777:: DS:: Lightweight Directory Access Protocol
1766:: PS:: Tags for the Identification of Languages
1738:: PS:: Uniform Resource Locators (URL)
1737:: I:: Functional Requirements for Uniform Resource Names
1736:: I:: Functional Requirements for Internet Resource Locators
1729:: I:: Using the Z39.50 Information Retrieval Protocol in the
 Internet Environment
1728:: I:: Resource Transponders
1727:: I:: A Vision of an Integrated Internet Information Service
1639:: E:: FTP Operation Over Big Address Records (FOOBAR)
1633:: I:: Integrated Services in the Internet Architecture
1630:: I:: Universal Resource Identifiers in WWW
1625:: I:: WAIS over Z39.50-1988
1558:: I:: A String Representation of LDAP Search Filters
1548:: E:: FTP Operation Over Big Address Records (FOOBAR)
1530:: I:: Principles of Operation for the TPC.INT Subdomain:
 General Principles and Policy
1529:: I:: Principles of Operation for the TPC.INT Subdomain:
 Remote Printing -- Administrative Policies
1528:: E:: Principles of Operation for the TPC.INT Subdomain:
 Remote Printing -- Technical Procedures
1489:: I:: Registration of a Cyrillic Character Set
1486:: E:: An Experiment in Remote Printing
1440:: I:: The Internet Gopher Protocol (a distributed document
 search and retrieval protocol)
1415:: PS:: FTP-FTAM Gateway Specification
1413:: PS:: Identification Protocol
1350:: S:: THE TFTP PROTOCOL (REVISION 2)
1345:: I:: Character Mnemonics & Character Sets
1312:: E:: Message Send Protocol
1302:: I:: Building a Network Information Services Infrastructure
1288:: DS:: The Finger User Information Protocol
1278:: I:: A String Encoding of Presentation Address
1241:: E:: A Scheme for an Internet Encapsulation Protocol: Version 1
1235:: E:: The Coherent File Distribution Protocol
1196:: DS:: The Finger User Information Protocol
1194:: DS:: The Finger User Information Protocol
1179:: I:: Line Printer Daemon Protocol
1123:: S:: Requirements for Internet hosts - application and support
1068:: :: Background File Transfer Program BFTP
1037:: H:: NFILE - a file access protocol
1003:: :: Issues in defining an equations representation standard
 998:: E:: NETBLT: A bulk data transfer protocol
 978:: :: Voice File Interchange Protocol VFIP
 971:: :: Survey of data representation standards
 969:: :: NETBLT: A bulk data transfer protocol
 965:: :: Format for a graphical communication protocol
 959:: S:: File Transfer Protocol
 949:: :: FTP unique-named store command
 916:: H:: Reliable Asynchronous Transfer Protocol RATP
 913:: H:: Simple File Transfer Protocol
 887:: E:: Resource Location Protocol
 866:: S:: Active users
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

865:: S:: Quote of the Day Protocol
864:: S:: Character Generator Protocol
863:: S:: Discard Protocol
862:: S:: Echo Protocol
797:: :: Format for Bitmap files
795:: :: Service mappings
783:: DS:: TFTP Protocol revision 2
775:: :: Directory oriented FTP commands
765:: :: File Transfer Protocol specification
751:: :: Survey of FTP mail and MLFL
743:: :: FTP extension: XRSQ/XRCP
742:: PS:: NAME/FINGER Protocol
740:: H:: NETRJS Protocol
737:: :: FTP extension: XSEN
725:: :: RJE protocol for a resource sharing network
722:: :: Thoughts on interactions in distributed services
712:: :: Distributed Capability Computing System DCCS
707:: :: High-level framework for network-based resource sharing
697:: :: CWD command of FTP
691:: :: One more try on the FTP
683:: :: FTPSRV - Tenex extension for paged files
662:: :: Performance improvement in ARPANET file transfers
from Multics
640:: :: Revised FTP reply codes
633:: :: IMP/TIP preventive maintenance schedule
630:: :: FTP error code usage for more reliable mail service
624:: :: Comments on the File Transfer Protocol
622:: :: Scheduling IMP/TIP down time
614:: :: Response to RFC 607: "Comments on the File Transfer Protocol"
610:: :: Further datalanguage design concepts
607:: :: Comments on the File Transfer Protocol
599:: :: Update on NETRJS
593:: :: Telnet and FTP implementation schedule change
592:: :: Some thoughts on system design to facilitate resource sharing
589:: :: CCN NETRJS server messages to remote user
573:: :: Data and file transfer: Some measurement results
571:: :: Tenex FTP problem
570:: :: Experimental input mapping between NVT ASCII and UCSB On Line System
553:: :: Draft design for a text/graphics protocol
551:: :: [Letter from Feinroth re: NYU, ANL, and LBL entering the net, and FTP protocol]
549:: :: Minutes of Network Graphics Group meeting, 15-17 July 1973
543:: :: Network journal submission and delivery
542:: :: File Transfer Protocol

Nesser Informational [Page 33]
<table>
<thead>
<tr>
<th>#:</th>
<th>Comments on File Access Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>532:</td>
<td>:: UCSD-CC Server-FTP facility</td>
</tr>
<tr>
<td>525:</td>
<td>:: MIT-MATHLAB meets UCSB-OLS—an example of resource sharing</td>
</tr>
<tr>
<td>520:</td>
<td>:: Memo to FTP group: Proposal for File Access Protocol</td>
</tr>
<tr>
<td>514:</td>
<td>:: Network make-work</td>
</tr>
<tr>
<td>506:</td>
<td>:: FTP command naming problem</td>
</tr>
<tr>
<td>505:</td>
<td>:: Two solutions to a file transfer access problem</td>
</tr>
<tr>
<td>504:</td>
<td>:: Distributed resources workshop announcement</td>
</tr>
<tr>
<td>501:</td>
<td>:: Un-muddling "free file transfer"</td>
</tr>
<tr>
<td>499:</td>
<td>:: Harvard’s network RJE</td>
</tr>
<tr>
<td>493:</td>
<td>:: E.W., Jr Graphics Protocol</td>
</tr>
<tr>
<td>490:</td>
<td>:: Surrogate RJS for UCLA-CCN</td>
</tr>
<tr>
<td>487:</td>
<td>:: Free file transfer</td>
</tr>
<tr>
<td>486:</td>
<td>:: Data transfer revisited</td>
</tr>
<tr>
<td>485:</td>
<td>:: MIX and MIXAL at UCSB</td>
</tr>
<tr>
<td>480:</td>
<td>:: Host-dependent FTP parameters</td>
</tr>
<tr>
<td>479:</td>
<td>:: Use of FTP by the NIC Journal</td>
</tr>
<tr>
<td>478:</td>
<td>:: FTP server-server interaction - II</td>
</tr>
<tr>
<td>477:</td>
<td>:: Remote Job Service at UCSB</td>
</tr>
<tr>
<td>472:</td>
<td>:: Illinois’ reply to Maxwell’s request for graphics information NIC 14925</td>
</tr>
<tr>
<td>468:</td>
<td>:: FTP data compression</td>
</tr>
<tr>
<td>467:</td>
<td>:: Proposed change to Host-Host Protocol: Resynchronization of connection status</td>
</tr>
<tr>
<td>463:</td>
<td>:: FTP comments and response to RFC 430</td>
</tr>
<tr>
<td>454:</td>
<td>:: File Transfer Protocol—meeting announcement and a new proposed document</td>
</tr>
<tr>
<td>451:</td>
<td>:: Tentative proposal for a Unified User Level Protocol</td>
</tr>
<tr>
<td>448:</td>
<td>:: Print files in FTP</td>
</tr>
<tr>
<td>446:</td>
<td>:: Proposal to consider a network program resource notebook</td>
</tr>
<tr>
<td>438:</td>
<td>:: FTP server-server interaction</td>
</tr>
<tr>
<td>437:</td>
<td>:: Data Reconfiguration Service at UCSB</td>
</tr>
<tr>
<td>436:</td>
<td>:: Announcement of RJS at UCSB</td>
</tr>
<tr>
<td>430:</td>
<td>:: Comments on File Transfer Protocol</td>
</tr>
<tr>
<td>429:</td>
<td>:: Character generator process</td>
</tr>
<tr>
<td>418:</td>
<td>:: Server file transfer under TSS/360 at NASA Ames</td>
</tr>
<tr>
<td>414:</td>
<td>:: File Transfer Protocol FTP status and further comments</td>
</tr>
<tr>
<td>412:</td>
<td>:: User FTP documentation</td>
</tr>
<tr>
<td>411:</td>
<td>:: New MULTICS network software features</td>
</tr>
<tr>
<td>410:</td>
<td>:: Removal of the 30-second delay when hosts come up</td>
</tr>
<tr>
<td>409:</td>
<td>:: Tenex interface to UCSB’s Simple-Minded File System</td>
</tr>
<tr>
<td>407:</td>
<td>:: Remote Job Entry Protocol</td>
</tr>
<tr>
<td>406:</td>
<td>:: Scheduled IMP software releases</td>
</tr>
<tr>
<td>396:</td>
<td>:: Network Graphics Working Group meeting—second iteration</td>
</tr>
<tr>
<td>387:</td>
<td>:: Some experiences in implementing Network Graphics Protocol Level 0</td>
</tr>
<tr>
<td>385:</td>
<td>:: Comments on the File Transfer Protocol</td>
</tr>
<tr>
<td>382:</td>
<td>:: Mathematical software on the ARPA Network</td>
</tr>
</tbody>
</table>
374:: :: IMP system announcement
373:: :: Arbitrary character sets
368:: :: Comments on "Proposed Remote Job Entry Protocol"
367:: :: Network host status
366:: :: Network host status
366:: :: Deamon processes on host 106
360:: :: Proposed Remote Job Entry Protocol
354:: :: File Transfer Protocol
351:: :: Graphics information form for the ARPANET graphics
resources notebook
342:: :: Network host status
338:: :: EBCDIC/ASCII mapping for network RJE
336:: :: Level 0 Graphic Input Protocol
335:: :: New interface - IMP/360
332:: :: Network host status
325:: :: Network Remote Job Entry program - NETRJS
324:: :: RJE Protocol meeting
314:: :: Network Graphics Working Group meeting
310:: :: Another look at Data and File Transfer Protocols
309:: :: Data and File Transfer workshop announcement
307:: :: Using network Remote Job Entry
306:: :: Network host status
299:: :: Information management system
298:: :: Network host status
294:: :: On the use of "set data type" transaction in
File Transfer Protocol
293:: :: Network host status
292:: :: E.W., Jr Graphics Protocol: Level 0 only
288:: :: Network host status
287:: :: Status of network hosts
286:: :: Network library information system
285:: :: Network graphics
283:: :: NETRJT: Remote Job Service Protocol for TIPS
281:: :: Suggested addition to File Transfer Protocol
268:: :: Graphics facilities information
267:: :: Network host status
266:: :: Network host status
265:: :: File Transfer Protocol
264:: :: Data Transfer Protocol
255:: :: Status of network hosts
252:: :: Network host status
250:: :: Some thoughts on file transfer
238:: :: Comments on DTP and FTP proposals
217:: :: Specifications changes for OLS, RJE/RJOR, and SMFS
199:: :: Suggestions for a network data-tablet graphics protocol
192:: :: Some factors which a Network Graphics Protocol must
consider
191:: :: Graphics implementation and conceptualization at
Augmentation Research Center

189:: :: Interim NETRJS specifications
184:: :: Proposed graphic display modes
183:: :: EBCDIC codes and their mapping to ASCII
181:: :: Modifications to RFC 177
174:: :: UCLA - computer science graphics overview
172:: :: File Transfer Protocol
163:: :: Data transfer protocols
141:: :: Comments on RFC 114: A File Transfer Protocol
134:: :: Network Graphics meeting
133:: :: File transfer and recovery
125:: :: Response to RFC 86: Proposal for network standard format for a graphics data stream
114:: :: File Transfer Protocol
105:: :: Network specifications for Remote Job Entry and Remote Job Output Retrieval at UCSB
98:: :: Logger Protocol proposal
94:: :: Some thoughts on network graphics
88:: :: NETRJS: A third level protocol for Remote JobEntry
86:: :: Proposal for a network standard format for a data stream to control graphics display
83:: :: Language-machine for data reconfiguration

Internet & Network Layer
2126:: PS:: ISO Transport Service on top of TCP (ITOT)
2125:: PS:: The PPP Bandwidth Allocation Protocol (BAP) The PPP Bandwidth Allocation Control Protocol (BACP)
2118:: I:: Microsoft Point-To-Point Compression (MPPC) Protocol
2114:: I:: Data Link Switching Client Access Protocol
2113:: PS:: IP Router Alert Option
2107:: I:: Ascend Tunnel Management Protocol - ATMP
2106:: I:: Data Link Switching Remote Access Protocol
2105:: I:: Cisco Systems’ Tag Switching Architecture Overview
2098:: I:: Toshiba’s Router Architecture Extensions for ATM:Overview
2097:: PS:: The PPP NetBIOS Frames Control Protocol (NBFCP)
2075:: I:: IP Echo Host Service
2067:: DS:: IP over HIPPI
2043:: PS:: The PPP SNA Control Protocol (SNACP)
2023:: PS:: IP Version 6 over PPP
2019:: PS:: Transmission of IPv6 Packets Over FDDI
2018:: PS:: TCP Selective Acknowledgment Options
2009:: E:: GPS-Based Addressing and Routing
2005:: PS:: Applicability Statement for IP Mobility Support
2004:: PS:: Minimal Encapsulation within IP
2003:: PS:: IP Encapsulation within IP
2002:: PS:: IP Mobility Support
2001:: PS:: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms
1994:: DS:: PPP Challenge Handshake Authentication Protocol (CHAP)
1993:: I:: PPP Gandalf FZA Compression Protocol
1990:: DS:: The PPP Multilink Protocol (MP)
1989:: DS:: PPP Link Quality Monitoring
1981:: PS:: Path MTU Discovery for IP version 6
1979:: I:: PPP Deflate Protocol
1978:: I:: PPP Predictor Compression Protocol
1977:: I:: PPP BSD Compression Protocol
1976:: I:: PPP for Data Compression in Data Circuit-Terminating Equipment (DCE)
1975:: I:: PPP Magnalink Variable Resource Compression
1974:: I:: PPP Stac LZS Compression Protocol
1973:: PS:: PPP in Frame Relay
1972:: PS:: A Method for the Transmission of IPv6 Packets over Ethernet Networks
1967:: I:: PPP LZS-DCP Compression Protocol (LZS-DCP)
1963:: I:: PPP Serial Data Transport Protocol (SDTP)
1962:: PS:: The PPP Compression Control Protocol (CCP)
1954:: I:: Transmission of Flow Labelled IPv4 on ATM Data Links
1946:: I:: Native ATM Support for ST2+
1937:: I:: Local/Remote Forwarding Decision in Switched Data Link Subnetworks
1936:: I:: Implementing the Internet Checksum in Hardware
1934:: I:: Ascend’s Multilink Protocol Plus (MP+)
1933:: PS:: Transition Mechanisms for IPv6 Hosts and Routers
1932:: I:: IP over ATM: A Framework Document
1931:: I:: Dynamic RARP Extensions and Administrative Support for Automatic Network Address Allocation
1926:: I:: An Experimental Encapsulation of IP Datagrams on Top of ATM
1924:: I:: A Compact Representation of IPv6 Addresses
1919:: I:: Classical versus Transparent IP Proxies
1918:: BC:: Address Allocation for Private Internets
1917:: BC:: An Appeal to the Internet Community to Return Unused IP Networks (Prefixes) to the IANA
1916:: I:: Enterprise Renumbering
1915:: BC:: Variance for The PPP Connection Control Protocol and The PPP Encryption Control Protocol
1897:: E:: IPv6 Testing Address Allocation
1888:: E:: OSI NSAPs and IPv6
1887:: I:: An Architecture for IPv6 Unicast Address Allocation
1885:: PS:: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
1884:: PS:: IP Version 6 Addressing Architecture
1883:: PS:: Internet Protocol, Version 6 (IPv6) Specification
1881:: I:: IPv6 Address Allocation Management
1878:: I:: Variable Length Subnet Table For IPv4
1877:: I:: PPP Internet Protocol Control Protocol Extensions for Name Server Addresses
1868:: E:: ARP Extension - UNARP
1860:: I:: Variable Length Subnet Table For IPv4
1859:: I:: ISO Transport Class 2 Non-use of Explicit Flow Control over TCP RFC1006 extension
1853:: I:: IP in IP Tunneling
1841:: I:: PPP Network Control Protocol for LAN Extension
1833:: PS:: Binding Protocols for ONC RPC Version 2
1832:: PS:: XDR
1831:: PS:: RPC
1809:: I:: Using the Flow Label Field in IPv6
1795:: I:: Data Link Switching
1791:: E:: TCP And UDP Over IPX Networks With Fixed Path MTU
1770:: I:: IPv4 Option for Sender Directed Multi-Destination Delivery
1764:: PS:: The PPP XNS IDP Control Protocol (XNSCP)
1763:: PS:: The PPP Banyan Vines Control Protocol (BVCP)
1762:: DS:: The PPP DECnet Phase IV Control Protocol (DNCP)
1761:: I:: Snoop Version 2 Packet Capture File Format
1756:: E:: REMOTE WRITE PROTOCOL - VERSION 1.0
1755:: PS:: ATM Signaling Support for IP over ATM
1754:: I:: IP over ATM Working Group’s Recommendations for the ATM Forum’s Multiprotocol BOF Version 1
1752:: PS:: The Recommendation for the IP Next Generation Protocol
1744:: I:: Observations on the Management of the Internet Address Space
1735:: E:: NBMA Address Resolution Protocol (NARP)
1726:: I:: Technical Criteria for Choosing IP
1719:: I:: A Direction for IPng
1717:: PS:: The PPP Multilink Protocol (MP)
1710:: I:: Simple Internet Protocol Plus White Paper
1707:: I:: CATNIP
1705:: I:: Six Virtual Inches to the Left
1698:: I:: Octet Sequences for Upper-Layer OSI to Support Basic Communications Applications
1693:: E:: An Extension to TCP
1692:: PS:: Transport Multiplexing Protocol (TMux)
1688:: I:: IPng Mobility Considerations
1687:: I:: A Large Corporate User’s View of IPng
1686:: I:: IPng Requirements
1683:: I:: Multiprotocol Interoperability In IPng
1682:: I:: IPng BSD Host Implementation Analysis
1681:: I:: On Many Addresses per Host
1680:: I:: IPng Support for ATM Services
1679:: I:: HPN Working Group Input to the IPng Requirements Solicitation
1678:: I:: IPng Requirements of Large Corporate Networks
1677:: I:: Tactical Radio Frequency Communication Requirements

Nesser Informational [Page 38]
for IPng
1676:: I:: INFN Requirements for an IPng
1674:: I:: A Cellular Industry View of IPng
1673:: I:: Electric Power Research Institute Comments on IPng
1672:: I:: Accounting Requirements for IPng
1671:: I:: IPng White Paper on Transition and Other Considerations
1670:: I:: Input to IPng Engineering Considerations
1669:: I:: Market Viability as an IPng Criteria
1667:: I:: Modeling and Simulation Requirements for IPng
1663:: PS:: PPP Reliable Transmission
1662:: S:: PPP in HDLC-like Framing
1661:: S:: The Point-to-Point Protocol (PPP)
1644:: E:: T/TCP -- TCP Extensions for Transactions Functional Specification
1638:: PS:: PPP Bridging Control Protocol (BCP)
1634:: I:: Novell IPX Over Various WAN Media (IPXWAN)
1631:: I:: The IP Network Address Translator (Nat)
1629:: DS:: Guidelines for OSI NSAP Allocation in the Internet
1626:: PS:: Default IP MTU for use over ATM AAL5
1624:: I:: Computation of the Internet Checksum via Incremental Update
1622:: I:: Pip Header Processing
1621:: I:: Pip Near-term Architecture
1619:: PS:: PPP over SONET/SDH
1618:: PS:: PPP over ISDN
1613:: I:: cisco Systems X.25 over TCP (XOT)
1605:: I:: SONET to Sonnet Translation
1604:: PS:: Definitions of Managed Objects for Frame Relay Service
1598:: PS:: PPP in X.25
1590:: I:: Media Type Registration Procedure
1577:: PS:: Classical IP and ARP over ATM
1575:: DS:: An Echo Function for CLNP (ISO 8473)
1570:: PS:: PPP LCP Extensions
1561:: E:: Use of ISO CLNP in TUBA Environments
1560:: I:: The MultiProtocol Internet
1553:: PS:: Compressing IPX Headers Over WAN Media (CIPX)
1552:: PS:: The PPP Internetwork Packet Exchange Control Protocol (IPXCP)
1551:: I:: Novell IPX Over Various WAN Media (IPXWAN)
1549:: DS:: PPP in HDLC Framing
1548:: DS:: The Point-to-Point Protocol (PPP)
1547:: I:: Requirements for an Internet Standard Point-to-Point Protocol
1538:: I:: Advanced SNA/IP
1526:: I:: Assignment of System Identifiers for TUBA/CLNP Hosts
1518:: PS:: An Architecture for IP Address Allocation with CIDR
1498:: I:: On the Naming and Binding of Network Destinations
1490:: DS:: Multiprotocol Interconnect over Frame Relay
1483:: PS:: Multiprotocol Encapsulation over ATM Adaptation Layer 5
1475:: E:: TP/IX
1466:: I:: Guidelines for Management of IP Address Space
1454:: I:: Comparison of Proposals for Next Version of IP
1435:: I:: IESG Advice from Experience with Path MTU Discovery
1434:: I:: Data Link Switching
1433:: E:: Directed ARP
1393:: E:: Traceroute Using an IP Option
1390:: S:: Transmission of IP and ARP over FDDI Networks
1385:: I:: EIP
1379:: I:: Extending TCP for Transactions -- Concepts
1378:: PS:: The PPP AppleTalk Control Protocol (ATCP)
1377:: PS:: The PPP OSI Network Layer Control Protocol (OSINLCP)
1376:: PS:: The PPP DECnet Phase IV Control Protocol (DNCP)
1375:: I:: Suggestion for New Classes of IP Addresses
1374:: PS:: IP and ARP on HIPPI
1365:: I:: An IP Address Extension Proposal
1363:: E:: A Proposed Flow Specification
1362:: I:: Novell IPX Over Various WAN Media (IPXWAN)
1356:: PS:: Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode
1347:: I:: TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing
1337:: I:: TIME-WAIT Assassination Hazards in TCP
1335:: PS:: A Two-Tier Address Structure for the Internet
1334:: PS:: PPP Authentication Protocols
1333:: PS:: PPP Link Quality Monitoring
1332:: PS:: The PPP Internet Protocol Control Protocol (IPCP)
1331:: PS:: The Point-to-Point Protocol (PPP) for the Transmission of Multi-protocol Datagrams over Point-to-Point Links
1329:: I:: Thoughts on Address Resolution for Dual MAC FDDI Networks
1326:: I:: Mutual Encapsulation Considered Dangerous
1323:: PS:: TCP Extensions for High Performance
1314:: PS:: A File Format for the Exchange of Images in the Internet
1307:: E:: Dynamically Switched Link Control Protocol
1306:: I:: Experiences Supporting By-Request Circuit-Switched T3 Networks
1294:: PS:: Multiprotocol Interconnect over Frame Relay
1293:: PS:: Inverse Address Resolution Protocol
1277:: PS:: Encoding Network Addresses to Support Operation Over Non-OSI Lower Layers
1263:: I:: TCP Extensions Considered Harmful
1256:: PS:: ICMP Router Discovery Messages
1240:: PS:: OSI Connectionless Transport Services on top of UDP
1237:: PS:: Guidelines for OSI NSAP Allocation in the Internet
1236:: PS:: IP to X.121 Address Mapping for DDN
1234:: PS:: Tunneling IPX Traffic through IP Networks

Nesser Informational [Page 40]
1226:: E:: Internet Protocol Encapsulation of AX.25 Frames
1223:: :: OSI CLNS and LLC1 Protocols on Network Systems HYPERchannel
1220:: PS:: Point-to-Point Protocol Extensions for Bridging
1219:: :: On the Assignment of Subnet Numbers
1210:: :: Network and Infrastructure User Requirements for
Transatlantic Research Collaboration - Brussels,
July 16-18, and Washington July 24-25, 1990
1209:: DS:: The Transmission of IP Datagrams over the SMDS Service
1201:: H:: Transmitting IP Traffic over ARCNET Networks
1191:: DS:: A Proposed Standard for the Transmission of IP Datagrams
over FDDI Networks
1185:: E:: TCP Extension for High-Speed Paths
1172:: PS:: The Point-to-Point Protocol (PPP) Initial Configuration
Options
1171:: DS:: The Point-to-Point Protocol for the Transmission of
Multi-Protocol Datagrams Over Point-to-Point Links
1166:: :: Internet Numbers
1162:: :: Connectionless Network Protocol (ISO 8473) and End
System to Intermediate System (ISO 9542) Management
Information Base
1151:: E:: Version 2 of the Reliable Data Protocol (RDP)
1146:: E:: TCP Alternate Checksum Options
1145:: E:: TCP Alternate Checksum Options
1144:: PS:: Compressing TCP/IP headers for low-speed serial links
1141:: :: Incremental Updating of the Internet Checksum
1139:: PS:: Echo function for ISO 8473
1134:: PS:: Point-to-Point Protocol
1132:: S:: Standard for the transmission of 802.2 packets over
IPX networks
1122:: S:: Requirements for Internet hosts - communication layers
1110:: :: Problem with the TCP big window option
1106:: :: TCP big window and NAK options
1103:: PS:: Proposed standard for the transmission of IP datagrams
over FDDI Networks
1088:: S:: Standard for the transmission of IP datagrams over
NetBIOS networks
1086:: :: ISO-TP0 bridge between TCP and X.25
1085:: :: ISO presentation services on top of TCP/IP based internets
1078:: :: TCP port service Multiplexer TCMPUX
1072:: E:: TCP extensions for long-delay paths
1071:: :: Computing the Internet checksum
1070:: :: Use of the Internet as a subnetwork for experimentation
with the OSI network layer
1069:: :: Guidelines for the use of Internet-IP addresses in the
ISO Connectionless-Mode Network Protocol
1063:: :: IP MTU Discovery options
1062:: :: Internet numbers
1057:: I:: RPC
1055:: S:: Nonstandard for transmission of IP datagrams over serial lines
1051:: S:: Standard for the transmission of IP datagrams and ARP packets over ARCNET networks
1050:: H:: RPC
1046:: :: Queuing algorithm to provide type-of-service for IP links
1045:: E:: VMTP
1044:: S:: Internet Protocol on Network System’s HYPERchannel
1042:: S:: Standard for the transmission of IP datagrams over IEEE 802 networks
1030:: :: On testing the NETBLT Protocol over divers networks
1029:: :: More fault tolerant approach to address resolution for a Multi-LAN system of Ethernets
1027:: :: Using ARP to implement transparent subnet gateways
1025:: :: TCP and IP bake off
1016:: :: Something a host could do with source quench
1008:: :: Implementation guide for the ISO Transport Protocol
1007:: :: Military supplement to the ISO Transport Protocol
1006:: S:: ISO transport services on top of the TCP
1002:: S:: Protocol standard for a NetBIOS service on a TCP/UDP transport
1001:: S:: Protocol standard for a NetBIOS service on a TCP/UDP transport
994:: :: Final text of DIS 8473, Protocol for Providing the Connectionless-mode Network Service
986:: :: Guidelines for the use of Internet-IP addresses in the ISO Connectionless-Mode Network Protocol [Working draft]
983:: :: ISO transport arrives on top of the TCP
982:: :: Guidelines for the specification of the structure of the Domain Specific Part DSP of the ISO standard NSAP address
970:: :: On packet switches with infinite storage
964:: :: Some problems with the specification of the Military Standard Transmission Control Protocol
963:: :: Some problems with the specification of the Military Standard Internet Protocol
962:: :: TCP-4 prime
955:: :: Towards a transport service for transaction processing applications
948:: :: Two methods for the transmission of IP datagrams over IEEE 802.3 networks
942:: :: Transport protocols for Department of Defense data networks
941:: :: Addendum to the network service definition covering network layer addressing
940:: :: Toward an Internet standard scheme for subnetting
936:: :: Another Internet subnet addressing scheme
935:: :: Reliable link layer protocols
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

932:: :: Subnetwork addressing scheme
926:: :: Protocol for providing the connectionless mode network services
925:: :: Multi-LAN address resolution
924:: :: Official ARPA-Internet protocols for connecting personal computers to the Internet
922:: S:: Broadcasting Internet datagrams in the presence of subnets
919:: S:: Broadcasting Internet datagrams
917:: :: Internet subnets
914:: H:: Thinwire protocol for connecting personal computers to the Internet
905:: :: ISO Transport Protocol specification ISO DP 8073
903:: S:: Reverse Address Resolution Protocol
896:: :: Congestion control in IP/TCP internetworks
895:: S:: Standard for the transmission of IP datagrams over experimental Ethernet networks
894:: S:: Standard for the transmission of IP datagrams over Ethernet networks
893:: :: Trailer encapsulations
892:: :: ISO Transport Protocol specification [Draft]
891:: S:: DCN local-network protocols
889:: :: Internet delay experiments
879:: :: TCP maximum segment size and related topics
877:: S:: Standard for the transmission of IP datagrams over public data networks
874:: :: Critique of X.25
872:: :: TCP-on-a-LAN
871:: :: Perspective on the ARPANET reference model
848:: :: Who provides the "little" TCP services?
829:: :: Packet satellite technology reference sources
826:: S:: Ethernet Address Resolution Protocol
824:: :: CRONUS Virtual Local Network
815:: :: IP datagram reassembly algorithms
814:: :: Name, addresses, ports, and routes
813:: :: Window and acknowledgment strategy in TCP
801:: :: NCP/TCP transition plan
793:: S:: Transmission Control Protocol
792:: S:: Internet Control Message Protocol
791:: S:: Internet Protocol
789:: :: Vulnerabilities of network control protocols
787:: :: Connectionless data transmission survey/tutorial
781:: :: Specification of the Internet Protocol IP timestamp option
777:: :: Internet Control Message Protocol
768:: S:: User Datagram Protocol
761:: :: DOD Standard Transmission Control Protocol
760:: :: DoD standard Internet Protocol
759:: H:: Internet Message Protocol
730:: :: Extensible field addressing
704:: :: IMP/Host and Host/IMP Protocol change
696:: :: Comments on the IMP/Host and Host/IMP Protocol changes
695:: :: Official change in Host-Host Protocol
692:: :: Comments on IMP/Host Protocol changes RFCs 687 and 690
690:: :: Comments on the proposed Host/IMP Protocol changes
689:: :: Tenex NCP finite state machine for connections
687:: :: IMP/Host and Host/IMP Protocol changes
685:: :: Response time in cross network debugging
680:: :: Specification of Internet Transmission Control Program
674:: :: Procedure call documents - version 2
660:: :: Some changes to the IMP and the IMP/Host interface
658:: :: Throughput degradations for single packet messages
626:: :: On a possible lockup condition in IMP subnet due to
 message sequencing
613:: :: Network connectivity
611:: :: Two changes to the IMP/Host Protocol to improve
 user/network communications
594:: :: Speedup of Host-IMP interface
591:: :: Addition to the Very Distant Host specifications
576:: :: Proposal for modifying linking
550:: :: NIC NCP experiment
548:: :: Hosts using the IMP Going Down message
528:: :: Software checksumming in the IMP and network reliability
521:: :: Restricted use of IMP DDT
489:: :: Comment on resynchronization of connection status proposal
488:: :: NLS classes at network sites
476:: :: IMP/TIP memory retrofit schedule rev. 2
473:: :: MIX and MIXAL?
460:: :: NCP survey
459:: :: Network questionnaires
450:: :: MULTICS sampling timeout change
449:: :: Current flow-control scheme for IMPSYS
445:: :: IMP/TIP preventive maintenance schedule
442:: :: Current flow-control scheme for IMPSYS
434:: :: IMP/TIP memory retrofit schedule
426:: :: Reconnection Protocol
417:: :: Link usage violation
398:: :: ICP sockets
395:: :: Switch settings on IMPs and TIPs
394:: :: Two proposed changes to the IMP-Host Protocol
359:: :: Status of the release of the new IMP System
357:: :: Echoing strategy for satellite links
348:: :: Discard process
347:: :: Echo process
346:: :: Satellite considerations
343:: :: IMP System change notification
312:: :: Proposed change in IMP-to-Host Protocol

Nesser Informational [Page 44]
BBN IMP #5 and NCC schedule March 4, 1971
ARPA Network mailing lists
IMP System change notifications
Connecting computers to MLC ports
Improvement of flow control
Achieving reliable communication
Possible deadlock in ICP
Initial Connection Protocol - Reviewed
DEC PDP-10-IMLAC communications system
Network graphic attention handling
Comments on "Byte size for connections"
Comments on "Socket conventions reconsidered"
Data Reconfiguration Service
Proffered official Initial Connection Protocol
Solution to the race condition in the ICP
Comments on a proffered official ICP
Use of IPC facilities
Views on issues relevant to data sharing on computer networks
Initial Connection Protocol control commands
Regarding proffered official ICP
Time-out mechanism in the Host-Host Protocol
Bytes
Comments on RFC 123
Proffered official ICP
Network specifications for UCSB’s Simple-Minded File System
Initial Connection Protocol
Proposed User-User Protocol
Protocols and data formats
Logger Protocol error
Note on padding
Proposed change to Host/IMP spec to eliminate marking
Comments on Host/Host Protocol document #1
Systems for interprocess communication in a resource sharing computer network
Simplified NCP Protocol
Flow control - fixed versus demand allocation
Third level protocol
Prototypical implementation of the NCP
Official protocol proffering
Official protocol mechanism
IMP-IMP teletype communication
Comments on network protocol from NWG/RFC #36
New Host-Host Protocol
Transmission of multiple control messages
Host-host control message formats
ASCII format for network interchange
Two protocol suggestions to reduce congestion at swap bound nodes

Some questions re IMP-Host interface flow diagrams

Mail

The MIME Multipart/Related Content-type
Content-ID and Message-ID Uniform Resource Locators
MIME E-mail Encapsulation of Aggregate Documents, such as HTML (MHTML)
HTTP State Management Mechanism
IMAP/POP AUTHorize Extension for Simple Challenge/Response
IMAP4 non-synchronizing literals
IMAP4 QUOTA extension
IMAP4 ACL extension
The Model Primary Content Type for Multipurpose Internet Mail Extensions
Common Internet Message Headers
Internet Message Access Protocol - Obsolete Syntax
IMAP4 COMPATIBILITY WITH IMAP2BIS
INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1
Multipurpose Internet Mail Extensions (MIME) Part Five
Multipurpose Internet Mail Extensions (MIME) Part Four
Multipurpose Internet Mail Extensions (MIME) Part Three
Multipurpose Internet Mail Extensions (MIME) Part One
SMTP Service Extension for Returning Enhanced Error Codes
Local Mail Transfer Protocol
Definition of the URL MIME External-Body Access-Type
PGP Message Exchange Formats
SMTP Service Extension for Remote Message Queue Starting
Some Observations on Implementations of the Post Office Protocol (POP3)
Greek Character Encoding for Electronic Mail Messages
Post Office Protocol - Version 3
Suggested Additional MIME Types for Associating Documents
Chinese Character Encoding for Internet Messages
Voice Profile for Internet Mail
The text/enriched MIME Content-type
The Application/CALS-1840 Content-type
An Extensible Message Format for Delivery Status Notifications
Enhanced Mail System Status Codes
The Multipart/Report Content Type for the Reporting of Mail System Administrative Messages
SMTP Service Extension for Delivery Status Notifications
Message/External-Body Content-ID Access Type
The MIME Multipart/Related Content-type
1870:: S:: SMTP Service Extension for Message Size Declaration
1869:: S:: SMTP Service Extensions
1864:: DS:: The Content-MD5 Header Field
1854:: PS:: SMTP Service Extension for Command Pipelining
1848:: PS:: MIME Object Security Services
1847:: PS:: Security Multipart for MIME
1846:: E:: SMTP 521 reply code
1845:: E:: SMTP Service Extension for Checkpoint/Restart
1844:: I:: Multimedia E-mail (MIME) User Agent checklist
1830:: E:: SMTP Service Extensions for Transmission of Large and Binary MIME Messages
1820:: I:: Multimedia E-mail (MIME) User Agent Checklist
1806:: E:: Communicating Presentation Information in Internet Messages
1804:: E:: Schema Publishing in X.500 Directory
1803:: I:: Recommendations for an X.500 Production Directory Service
1801:: E:: MHS use of the X.500 Directory to support MHS Routing
1767:: PS:: MIME Encapsulation of EDI Objects
1741:: I:: MIME Content Type for BinHex Encoded Files
1740:: PS:: MIME Encapsulation of Macintosh files - MacMIME
1734:: PS:: POP3 AUTHentication command
1733:: I:: DISTRIBUTED ELECTRONIC MAIL MODELS IN IMAP4
1732:: I:: IMAP4 COMPATIBILITY WITH IMAP2 AND IMAP2BIS
1731:: PS:: IMAP4 Authentication mechanisms
1730:: PS:: INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4
1725:: DS:: Post Office Protocol - Version 3
1711:: I:: Classifications in E-mail Routing
1685:: I:: Writing X.400 O/R Names
1653:: DS:: SMTP Service Extension for Message Size Declaration
1652:: DS:: SMTP Service Extension for 8bit-MIMEtransport
1651:: DS:: SMTP Service Extensions
1649:: I:: Operational Requirements for X.400 Management Domains in the GO-MHS Community
1648:: PS:: Postmaster Convention for X.400 Operations
1642:: E:: UTF-7 - A Mail-Safe Transformation Format of Unicode
1641:: E:: Using Unicode with MIME
1616:: I:: X.400(1988) for the Academic and Research Community in Europe
1615:: I:: Migrating from X.400(84) to X.400(88)
1563:: I:: The text/enriched MIME Content-type
1557:: I:: Korean Character Encoding for Internet Messages
1556:: I:: Handling of Bi-directional Texts in MIME
1555:: I:: Hebrew Character Encoding for Internet Messages
1544:: PS:: The Content-MD5 Header Field
1524:: I:: A User Agent Configuration Mechanism For Multimedia Mail Format Information
1523:: I:: The text/enriched MIME Content-type
1522:: DS:: MIME (Multipurpose Internet Mail Extensions) Part Two
<table>
<thead>
<tr>
<th>Number</th>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1064</td>
<td>H:</td>
<td>Interactive Mail Access Protocol</td>
</tr>
<tr>
<td>1056</td>
<td>I:</td>
<td>PCMAIL</td>
</tr>
<tr>
<td>1049</td>
<td>S:</td>
<td>Content-type header field for Internet messages</td>
</tr>
<tr>
<td>1047</td>
<td></td>
<td>Duplicate messages and SMTP</td>
</tr>
<tr>
<td>1026</td>
<td>PS:</td>
<td>Addendum to RFC 987</td>
</tr>
<tr>
<td>993</td>
<td></td>
<td>PCMAIL</td>
</tr>
<tr>
<td>987</td>
<td>PS:</td>
<td>Mapping between X.400 and RFC 822</td>
</tr>
<tr>
<td>984</td>
<td></td>
<td>PCMAIL</td>
</tr>
<tr>
<td>976</td>
<td></td>
<td>UUCP mail interchange format standard</td>
</tr>
<tr>
<td>974</td>
<td>S:</td>
<td>Mail routing and the domain system</td>
</tr>
<tr>
<td>937</td>
<td>H:</td>
<td>Post Office Protocol - version 2</td>
</tr>
<tr>
<td>934</td>
<td></td>
<td>Proposed standard for message encapsulation</td>
</tr>
<tr>
<td>918</td>
<td></td>
<td>Post Office Protocol</td>
</tr>
<tr>
<td>915</td>
<td></td>
<td>Network mail path service</td>
</tr>
<tr>
<td>910</td>
<td></td>
<td>Multimedia mail meeting notes</td>
</tr>
<tr>
<td>886</td>
<td></td>
<td>Proposed standard for message header munging</td>
</tr>
<tr>
<td>876</td>
<td></td>
<td>Survey of SMTP implementations</td>
</tr>
<tr>
<td>841</td>
<td></td>
<td>Specification for message format for Computer Based Message Systems</td>
</tr>
<tr>
<td>822</td>
<td>S:</td>
<td>Standard for the format of ARPA Internet text messages</td>
</tr>
<tr>
<td>821</td>
<td>S:</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>808</td>
<td></td>
<td>Summary of computer mail services meeting held at BBN on 10 January 1979</td>
</tr>
<tr>
<td>807</td>
<td></td>
<td>Multimedia mail meeting notes</td>
</tr>
<tr>
<td>805</td>
<td></td>
<td>Computer mail meeting notes</td>
</tr>
<tr>
<td>788</td>
<td></td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>786</td>
<td></td>
<td>Mail Transfer Protocol</td>
</tr>
<tr>
<td>785</td>
<td></td>
<td>Mail Transfer Protocol</td>
</tr>
<tr>
<td>784</td>
<td></td>
<td>Mail Transfer Protocol</td>
</tr>
<tr>
<td>780</td>
<td></td>
<td>Mail Transfer Protocol</td>
</tr>
<tr>
<td>773</td>
<td></td>
<td>Comments on NCP/TCP mail service transition strategy</td>
</tr>
<tr>
<td>772</td>
<td></td>
<td>Mail Transfer Protocol</td>
</tr>
<tr>
<td>771</td>
<td></td>
<td>Mail transition plan</td>
</tr>
<tr>
<td>767</td>
<td></td>
<td>Structured format for transmission of multi-media documents</td>
</tr>
<tr>
<td>763</td>
<td></td>
<td>Role mailboxes</td>
</tr>
<tr>
<td>757</td>
<td></td>
<td>Suggested solution to the naming, addressing, and delivery problem for ARPAENET message systems</td>
</tr>
<tr>
<td>754</td>
<td></td>
<td>Out-of-net host addresses for mail</td>
</tr>
<tr>
<td>753</td>
<td></td>
<td>Internet Message Protocol</td>
</tr>
<tr>
<td>744</td>
<td></td>
<td>MARS - a Message Archiving and Retrieval Service</td>
</tr>
<tr>
<td>733</td>
<td></td>
<td>Standard for the format of ARPA network text messages</td>
</tr>
<tr>
<td>724</td>
<td></td>
<td>Proposed official standard for the format of ARPA network messages</td>
</tr>
<tr>
<td>720</td>
<td></td>
<td>Address specification syntax for network mail</td>
</tr>
<tr>
<td>714</td>
<td></td>
<td>Host-Host Protocol for an ARPAENET-type network</td>
</tr>
<tr>
<td>713</td>
<td></td>
<td>MSDTP-Message Services Data Transmission Protocol</td>
</tr>
<tr>
<td>706</td>
<td></td>
<td>On the junk mail problem</td>
</tr>
</tbody>
</table>
Mail priority
Announcement of a mail facility at UCSB
Standardizing network mail headers
Responses to critiques of the proposed mail protocol
Thoughts on the mail protocol proposed in RFC524
Lost message detection
Message-ID numbers
Proposed Mail Protocol
Lost message detection
More on lost message detection
Request for network mailbox addresses
On mail service to CCN
FTP and network mail system
Network mail meeting summary
Mail retrieval via FTP
Meeting announcement to discuss a network mail system
Proposed experiment with a Message Switching Protocol
Revision of the Mail Box Protocol
Comments on Mailbox Protocol
Mail Box Protocol
Mail Box Protocol
Logical message synchronization
Message data types

Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI
Simple Network Time Protocol (SNTP)
NTP PICS PROFORMA For the Network Time Protocol Version 3
A Kernel Model for Precision Timekeeping
Simple Network Time Protocol (SNTP)
Network Time Protocol (v3)
Network Time Protocol (NTP) over the OSI Remote Operations Service
Internet time synchronization
Measured performance of the Network Time Protocol in the Internet system
Network Time Protocol version 2 specification and implementation
Network Time Protocol version 1 specification and implementation
Network Time Protocol NTP
Experiments in network clock synchronization
Algorithms for synchronizing network clocks
Time Protocol
Daytime Protocol
DCNET Internet Clock Service
Time server
29:: :: Response to RFC 28
28:: :: Time standards
===
Name Serving
2053:: I:: The AM (Armenia) Domain
2052:: E:: A DNS RR for specifying the location of services (DNS SRV)
2010:: I:: Operational Criteria for Root Name Servers
1996:: PS:: A Mechanism for Prompt Notification of Zone Changes
 (DNS NOTIFY)
1995:: PS:: Incremental Zone Transfer in DNS
1982:: PS:: Serial Number Arithmetic
1956:: I:: Registration in the MIL Domain
1912:: I:: Common DNS Operational and Configuration Errors
1886:: PS:: DNS Extensions to support IP version 6
1876:: E:: A Means for Expressing Location Information in the Domain Name System
1794:: I:: DNS Support for Load Balancing
1713:: I:: Tools for DNS debugging
1712:: E:: DNS Encoding of Geographical Location
1706:: I:: DNS NSAP Resource Records
1664:: E:: Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables
1591:: I:: Domain Name System Structure and Delegation
1537:: I:: Common DNS Data File Configuration Error
1536:: I:: Common DNS Implementation Errors and Suggested Fixes.
1480:: I:: The US Domain
1464:: E:: Using the Domain Name System To Store Arbitrary String Attributes
1394:: I:: Relationship of Telex Answerback Codes to Internet Domains
1386:: I:: The US Domain
1348:: E:: DNS NSAP RRs
1183:: E:: New DNS RR Definitions
1101:: :: DNS encoding of network names and other types
1034:: S:: Domain names - concepts and facilities
1033:: S:: Domain administrators operations guide
1032:: :: Domain administrators guide
1031:: :: MILNET name domain transition
973:: :: Domain system changes and observations
952:: :: DoD Internet host table specification
921:: :: Domain name system implementation schedule - revised
920:: :: Domain requirements
897:: :: Domain name system implementation schedule
883:: :: Domain names
882:: :: Domain names
881:: :: Domain names plan and schedule
849:: :: Suggestions for improved host table distribution
830:: :: Distributed system for Internet name service

Nesser Informational [Page 51]
019:: :: Domain naming convention for Internet user applications
811:: :: Hostnames Server
810:: :: DoD Internet host table specification
799:: :: Internet name domains
796:: :: Address mappings
627:: :: ASCII text file of hostnames
625:: :: On-line hostnames service
623:: :: Comments on on-line host name service
620:: :: Request for monitor host table updates
608:: :: Host names on-line
606:: :: Host names on-line
289:: :: What we hope is an official list of host names
280:: :: Draft of host names
273:: :: More on standard host names
247:: :: Proffered set of standard host names
237:: :: NIC view of standard host names
236:: :: Standard host names
233:: :: Standardization of host call letters
229:: :: Standard host names
226:: :: Standardization of host mnemonics
===
2011:: PS:: SNMPv2 Management Information Base for the Internet Protocol using SMIv2
2006:: PS:: The Definitions of Managed Objects for IP Mobility Support using SMIv2
1944:: I:: Benchmarking Methodology for Network Interconnect Devices
1910:: E:: User-based Security Model for SNMPv2
1909:: E:: An Administrative Infrastructure for SNMPv2
1908:: DS:: Coexistence between Version 1 and Version 2 of the Internet-standard Network Management Framework
1907:: DS:: Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2)
1906:: DS:: Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2)
1905:: DS:: Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2)
1904:: DS:: Conformance Statements for Version 2 of the Simple Network Management Protocol (SNMPv2)
1903:: DS:: Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2)
1902:: DS:: Structure of Management Information for Version 2 of the Simple Network Management Protocol (SNMPv2)
1901:: E:: Introduction to Community-based SNMPv2
1857:: I:: A Model for Common Operational Statistics
1856:: I:: The Opstat Client-Server Model for Statistics Retrieval
1850:: DS:: OSPF Version 2 Management Information Base
1792:: E:: TCP/IPX Connection Mib Specification
1759:: PS:: Printer MIB
1757:: DS:: Remote Network Monitoring Management Information Base
1749:: PS:: IEEE 802.5 Station Source Routing MIB using SMIv2
1748:: DS:: IEEE 802.5 MIB using SMIv2
1747:: PS:: Definitions of Managed Objects for SNA Data Link Control
1743:: DS:: IEEE 802.5 MIB using SMIv2
1742:: PS:: AppleTalk Management Information Base II
1724:: DS:: RIP Version 2 MIB Extension
1697:: PS:: Relational Database Management System (RDBMS) Management Information Base (MIB) using SMIv2
1696:: PS:: Modem Management Information Base (MIB) using SMIv2
1695:: PS:: Definitions of Managed Objects for ATM Management Version 8.0 using SMIv2
1694:: DS:: Definitions of Managed Objects for SMDS Interfaces using SMIv2
1666:: PS:: Definitions of Managed Objects for SNA NAUs using SMIv2
1665:: PS:: Definitions of Managed Objects for SNA NAUs using SMIv2
1660:: DS:: Definitions of Managed Objects for Parallel-printer-like Hardware Devices using SMIv2
1659:: DS:: Definitions of Managed Objects for RS-232-like Hardware Devices using SMIv2
1658:: DS:: Definitions of Managed Objects for Character Stream
<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1657:: PS::</td>
<td></td>
<td>Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol (BGP-4) using SMIv2</td>
</tr>
<tr>
<td>1650:: PS::</td>
<td></td>
<td>Definitions of Managed Objects for the Ethernet-like Interface Types using SMIv2</td>
</tr>
<tr>
<td>1643:: PS::</td>
<td></td>
<td>Definitions of Managed Objects for the Ethernet-like Interface Types</td>
</tr>
<tr>
<td>1628:: PS::</td>
<td></td>
<td>UPS Management Information Base</td>
</tr>
<tr>
<td>1623:: S::</td>
<td></td>
<td>Definitions of Managed Objects for the Ethernet-like Interface Types</td>
</tr>
<tr>
<td>1612:: PS::</td>
<td></td>
<td>DNS Resolver MIB Extensions</td>
</tr>
<tr>
<td>1611:: PS::</td>
<td></td>
<td>DNS Server MIB Extensions</td>
</tr>
<tr>
<td>1596:: PS::</td>
<td></td>
<td>Definitions of Managed Objects for Frame Relay Service</td>
</tr>
<tr>
<td>1595:: PS::</td>
<td></td>
<td>Definitions of Managed Objects for the SONET/SDH Interface Type</td>
</tr>
<tr>
<td>1593:: I::</td>
<td></td>
<td>SNA APPN Node MIB</td>
</tr>
<tr>
<td>1592:: E::</td>
<td></td>
<td>Simple Network Management Protocol Distributed Protocol Interface Version 2.0</td>
</tr>
<tr>
<td>1573:: PS::</td>
<td></td>
<td>Evolution of the Interfaces Group of MIB-II</td>
</tr>
<tr>
<td>1567:: PS::</td>
<td></td>
<td>X.500 Directory Monitoring MIB</td>
</tr>
<tr>
<td>1566:: PS::</td>
<td></td>
<td>Mail Monitoring MIB</td>
</tr>
<tr>
<td>1565:: PS::</td>
<td></td>
<td>Network Services Monitoring MIB</td>
</tr>
<tr>
<td>1564:: I::</td>
<td></td>
<td>DSA Metrics (OSI-DS 34 (v3))</td>
</tr>
<tr>
<td>1559:: DS::</td>
<td></td>
<td>DECnet Phase IV MIB Extensions</td>
</tr>
<tr>
<td>1525:: PS::</td>
<td></td>
<td>Definitions of Managed Objects for Source Routing Bridges</td>
</tr>
<tr>
<td>1516:: DS::</td>
<td></td>
<td>Definitions of Managed Objects for IEEE 802.3 Repeater Devices</td>
</tr>
<tr>
<td>1515:: PS::</td>
<td></td>
<td>Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)</td>
</tr>
<tr>
<td>1514:: PS::</td>
<td></td>
<td>Host Resources MIB</td>
</tr>
<tr>
<td>1513:: PS::</td>
<td></td>
<td>Token Ring Extensions to the Remote Network Monitoring MIB</td>
</tr>
<tr>
<td>1512:: PS::</td>
<td></td>
<td>FDDI Management Information Base</td>
</tr>
<tr>
<td>1503:: I::</td>
<td></td>
<td>Algorithms for Automating Administration in SNMPv2 Managers</td>
</tr>
<tr>
<td>1493:: DS::</td>
<td></td>
<td>Definitions of Managed Objects for Bridges</td>
</tr>
<tr>
<td>1474:: PS::</td>
<td></td>
<td>The Definitions of Managed Objects for the Bridge Network Control Protocol of the Point-to-Point Protocol</td>
</tr>
<tr>
<td>1473:: PS::</td>
<td></td>
<td>The Definitions of Managed Objects for the IP Network Control Protocol of the Point-to-Point Protocol</td>
</tr>
<tr>
<td>1472:: PS::</td>
<td></td>
<td>The Definitions of Managed Objects for the Security Protocols of the Point-to-Point Protocol</td>
</tr>
<tr>
<td>1471:: PS::</td>
<td></td>
<td>The Definitions of Managed Objects for the Link Control Protocol of the Point-to-Point Protocol</td>
</tr>
<tr>
<td>1470:: I::</td>
<td></td>
<td>FYI on a Network Management Tool Catalog</td>
</tr>
<tr>
<td>1461:: PS::</td>
<td></td>
<td>SNMP MIB extension for MultiProtocol Interconnect over X.25</td>
</tr>
<tr>
<td>1452:: PS::</td>
<td></td>
<td>Coexistence between version 1 and version 2 of the Internet-standard Network Management Framework</td>
</tr>
</tbody>
</table>
Manager to Manager Management Information Base
Management Information Base for version 2 of the Simple Network Management Protocol (SNMPv2)
Transport Mappings for version 2 of the Simple Network Management Protocol (SNMPv2)
Protocol Operations for version 2 of the Simple Network Management Protocol (SNMPv2)
Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)
Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)
Administrative Model for version 2 of the Simple Network Management Protocol (SNMPv2)
Conformance Statements for version 2 of the Simple Network Management Protocol (SNMPv2)
Textual Conventions for version 2 of the Simple Network Management Protocol (SNMPv2)
Structure of Management Information for version 2 of the Simple Network Management Protocol (SNMPv2)
Introduction to version 2 of the Internet-standard Network Management Framework
DUA Metrics
SNMP over IPX
SNMP over AppleTalk
SNMP over OSI
Ident MIB
Definitions of Managed Objects for the DS3/E3 Interface Type
Definitions of Managed Objects for the DS1 and E1 Interface Types
A Model for Common Operational Statistics
Definitions of Managed Objects for the Ethernet-like Interface Types
RIP Version 2 MIB Extension
SNMP MIB Extension for the X.25 Packet Layer
SNMP MIB Extension for X.25 LAPB
Implementation Notes and Experience for The Internet Ethernet MIB
Definitions of Managed Objects for IEEE 802.3 Repeater Devices
IP Forwarding Table MIB
Definitions of Managed Objects for Administration of SNMP Parties
SNMP Security Protocols
SNMP Administrative Model
Resource Allocation, Control, and Accounting for the Use of Network Resources
Definitions of Managed Objects for Parallel-printer-like
Hardware Devices
1317:: PS:: Definitions of Managed Objects for RS-232-like Hardware Devices
1316:: PS:: Definitions of Managed Objects for Character Stream Devices
1315:: PS:: Management Information Base for Frame Relay DTEs
1304:: PS:: Definitions of Managed Objects for the SIP Interface Type
1303:: I:: A Convention for Describing SNMP-based Agents
1298:: I:: SNMP over IPX
1289:: PS:: DECnet Phase IV MIB Extensions
1286:: PS:: Definitions of Managed Objects for Bridges
1285:: PS:: FDDI Management Information Base
1284:: PS:: Definitions of Managed Objects for the Ethernet-like Interface Types
1283:: E:: SNMP over OSI
1273:: I:: A Measurement Study of Changes in Service-Level Reachability in the Global TCP/IP Internet
1272:: I:: Internet Accounting
1271:: PS:: Remote Network Monitoring Management Information Base
1270:: I:: SNMP Communications Services
1269:: PS:: Definitions of Managed Objects for the Border Gateway Protocol (Version 3)
1262:: I:: Guidelines for Internet Measurement Activities
1253:: PS:: OSPF Version 2 Management Information Base
1252:: PS:: OSPF Version 2 Management Information Base
1248:: PS:: OSPF Version 2 Management Information Base
1247:: DS:: OSPF Version 2
1243:: PS:: AppleTalk Management Information Base
1242:: I:: Benchmarking Terminology for Network Interconnection Devices
1239:: PS:: Reassignment of Experimental MIBs to Standard MIBs
1238:: E:: CLNS MIB - for use with Connectionless Network Protocol (ISO 8473) and End System to Intermediate System (ISO 9542)
1233:: H:: Definitions of Managed Objects for the DS3 Interface Type
1232:: H:: Definitions of Managed Objects for the DS1 Interface Type
1231:: DS:: IEEE 802.5 Token Ring MIB
1230:: H:: IEEE 802.4 Token Bus MIB
1229:: DS:: Extensions to the Generic-Interface MIB
1228:: E:: SNMP-DPI - Simple Network Management Protocol Distributed Program Interface
1227:: E:: SNMP MUX Protocol and MIB
1224:: E:: Techniques for Managing Asynchronously Generated Alerts
1215:: I:: A Convention for Defining Traps for use with the SNMP
1214:: H:: OSI Internet Management
1213:: S:: Management Information Base for Network Management of TCP/IP-based internets
1212:: S:: Concise MIB Definitions
1189:: H:: The Common Management Information Services and Protocols for the Internet
1187:: E:: Bulk Table Retrieval with the SNMP
1161:: E:: SNMP over OSI
1158:: PS:: Management Information Base for Network Management of TCP/IP-based internets
1157:: S:: A Simple Network Management Protocol (SNMP)
1155:: S:: Structure and Identification of Management Information for TCP/IP-based Internets
1109:: :: Report of the second Ad Hoc Network Management Review Group
1098:: :: Simple Network Management Protocol SNMP
1095:: DS:: Common Management Information Services and Protocol over TCP/IP CMOT
1089:: :: SNMP over Ethernet
1067:: :: Simple Network Management Protocol
1066:: H:: Management Information Base for network management of TCP/IP-based internets
1065:: H:: Structure and identification of management information for TCP/IP-based internets
1052:: :: IAB recommendations for the development of Internet network management standards
1028:: H:: Simple Gateway Monitoring Protocol
1024:: :: HEMS variable definitions
1023:: :: HEMS monitoring and control language
1022:: :: High-level Entity Management Protocol HEMP
1021:: H:: High-level Entity Management System HEMS
1012:: :: Bibliography of Request For Comments 1 through 999
1011:: S:: Official Internet protocols
1010:: S:: Assigned numbers
996:: H:: Statistics server
619:: :: Mean round-trip times in the ARPANET
618:: :: Few observations on NCP statistics
616:: :: Latest network maps
615:: :: Proposed Network Standard Data Pathname Syntax
612:: :: Traffic statistics December 1973
601:: :: Traffic statistics November 1973
586:: :: Traffic statistics October 1973
579:: :: Traffic statistics September 1973
568:: :: Response to RFC 567 - cross country network bandwidth
567:: :: Cross country network bandwidth
566:: :: Traffic statistics August 1973
565:: :: Storing network survey data at the datacomputer
557:: :: Revelations in network host measurements
546:: :: Tenex load averages for July 1973
545:: :: Of what quality be the UCSB resources evaluators?
538:: :: Traffic statistics June 1973
531:: :: Feast or famine? A response to two recent RFC’s about
network information

522:: :: Traffic statistics May 1973
509:: :: Traffic statistics April 1973
500:: :: Integration of data management systems on a computer network
482:: :: Traffic statistics February 1973
455:: :: Traffic statistics January 1973
443:: :: Traffic statistics December 1972
423:: :: UCLA Campus Computing Network liaison staff for ARPANET
422:: :: Traffic statistics November 1972
421:: :: Software consulting service for network users
416:: :: ARC system will be unavailable for use during Thanksgiving week
415:: :: Tenex bandwidth
413:: :: Traffic statistics October 1972
400:: :: Traffic statistics September 1972
392:: :: Measurement of host costs for transmitting network data
391:: :: Traffic statistics August 1972
389:: :: UCLA Campus Computing Network liaison staff for ARPANET Network
388:: :: NCP statistics
384:: :: Official site idents for organizations in the ARPA Network
381:: :: Three aids to improved network operation
378:: :: Traffic statistics July 1972
363:: :: Evaluation of ARPANET services January-March, 1972
362:: :: Network host status
353:: :: Network host status
344:: :: Network host status
326:: :: Network host status
323:: :: Formation of Network Measurement Group NMG
308:: :: ARPANET host availability data
304:: :: Data management system proposal for the ARPA network
302:: :: Exercising the ARPANET
274:: :: Establishing a local guide for network usage
227:: :: Data transfer rates Rand/UCLA
212:: :: NWG meeting on network usage
193:: :: Network checkout
188:: :: Data management meeting announcement
156:: :: Status of the Illinois site
153:: :: SRI ARC-NIC status
96:: :: Interactive network experiment to study modes of access to the Network Information Center
32:: :: Connecting M.I.T. computers to the ARPA Computer-to-computer communication network
18:: :: [Link assignments]

==
Network News
1036:: : : Standard for interchange of USENET messages
977:: PS:: Network News Transfer Protocol
850:: : : Standard for interchange of USENET messages

Real Time Services
:: ::
2102:: I:: Multicast Support for Nimrod
2090:: E:: TFTP Multicast Option
2038:: PS:: RTP Payload Format for MPEG1/MPEG2 Video
2035:: PS:: RTP Payload Format for JPEG-compressed Video
2032:: PS:: RTP payload format for H.261 video streams
2029:: PS:: RTP Payload Format of Sun's CellB Video Encoding
2022:: PS:: Support for Multicast over UNI 3.0/3.1 based ATM Networks
1890:: PS:: RTP Profile for Audio and Video Conferences with Minimal Control
1889:: PS:: RTP
1861:: I:: Simple Network Paging Protocol - Version 3 - Two-Way Enhanced
1821:: I:: Integration of Real-time Services in an IP- ATM Network Architecture
1789:: I:: INETPhone
1768:: E:: Host Group Extensions for CLNP Multicasting
1703:: I:: Principles of Operation for the TPC.INT Subdomain
1645:: I:: Simple Network Paging Protocol - Version 2
1614:: I:: Network Access to Multimedia Information
1569:: I:: Principles of Operation for the TPC.INT Subdomain
1568:: I:: Simple Network Paging Protocol - Version 1(b)
1546:: I:: Host Anycasting Service
1469:: PS:: IP Multicast over Token-Ring Local Area Networks
1458:: I:: Requirements for Multicast Protocols
1453:: I:: A Comment on Packet Video Remote Conferencing and the Transport/Network Layers
1313:: I:: Today’s Programming for KRFC AM 1313 Internet Talk Radio
1301:: I:: Multicast Transport Protocol
1257:: I:: Isochronous Applications Do Not Require Jitter-Controlled Networks
1197:: I:: Using ODA for Translating Multimedia Information
1193:: :: Client Requirements for Real-Time Communication Services
1190:: E:: Experimental Internet Stream Protocol, Version 2 (ST-II)
1112:: S:: Host extensions for IP multicasting
1054:: :: Host extensions for IP multicasting
988:: :: Host extensions for IP multicasting
966:: :: Host groups
947:: :: Multi-network broadcasting within the Internet
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

809:: :: UCL facsimile system
804:: :: CCITT draft recommendation T.4 [Standardization of
 Group 3 facsimile apparatus for document transmission]
803:: :: Dacom 450/500 facsimile data transcoding
798:: :: Decoding facsimile data from the Rapicom 450
769:: :: Rapicom 450 facsimile file format
741:: :: Specifications for the Network Voice Protocol NVP
511:: :: Enterprise phone service to NIC from ARPANET sites
508:: :: Real-time data transmission on the ARPANET
420:: :: CCA ICCC weather demo
408:: :: NETBANK
251:: :: Weather data
===
1774:: I:: BGP-4 Protocol Analysis
1773:: I:: Experience with the BGP-4 protocol
1772:: DS:: Application of the Border Gateway Protocol in the Internet
1771:: DS:: A Border Gateway Protocol 4 (BGP-4)
1765:: E:: OSPF Database Overflow
1753:: I:: IPvng Technical Requirements Of the Nimrod Routing and Addressing Architecture
1745:: PS:: BGP4/IDRP for IP---OSPF Interaction
1723:: DS:: RIP Version 2 Carrying Additional Information
1722:: DS:: RIP Version 2 Protocol Applicability Statement
1721:: I:: RIP Version 2 Protocol Analysis
1716:: I:: Towards Requirements for IP Routers
1702:: I:: Generic Routing Encapsulation over IPv4 networks
1701:: I:: Generic Routing Encapsulation (GRE)
1668:: I:: Unified Routing Requirements for IPvng
1656:: I:: BGP-4 Protocol Document Roadmap and Implementation Experience
1655:: PS:: Application of the Border Gateway Protocol in the Internet
1654:: PS:: A Border Gateway Protocol 4 (BGP-4)
1587:: PS:: The OSPF NSSA Option
1586:: I:: Guidelines for Running OSPF Over Frame Relay Networks
1585:: I:: MOSPF
1584:: PS:: Multicast Extensions to OSPF
1583:: DS:: OSPF Version 2
1582:: PS:: Extensions to RIP to Support Demand Circuits
1581:: I:: Protocol Analysis for Extensions to RIP to Support Demand Circuits
1520:: I:: Exchanging Routing Information Across Provider Boundaries in the CIDR Environment
1519:: PS:: Classless Inter-Domain Routing (CIDR)
1517:: PS:: Applicability Statement for the Implementation of Classless Inter-Domain Routing (CIDR)
1504:: I:: AppleTalk Update-Based Routing Protocol
1482:: I:: Aggregation Support in the NSFNET Policy Routing Database
1479:: PS:: Inter-Domain Policy Routing Protocol Specification
1478:: PS:: An Architecture for Inter-Domain Policy Routing
1477:: I:: IDPR as a Proposed Standard
1476:: E:: RAP
1439:: I:: The Uniqueness of Unique Identifiers
1403:: PS:: BGP OSPF Interaction
1397:: PS:: Default Route Advertisement In BGP2 And BGP3 Versions Of The Border Gateway Protocol
1388:: PS:: RIP Version 2 Carrying Additional Information
1387:: I:: RIP Version 2 Protocol Analysis
1383:: I:: An Experiment in DNS Based IP Routing
1380:: I:: IESG Deliberations on Routing and Addressing
1371:: I:: Choosing a "Common IGP" for the IP Internet (The
IESG’s Recommendation to the IAB)

1370: PS: Applicability Statement for OSPF
1364: PS: BGP OSPF Interaction
1338: I: Supernetting
1322: I: A Unified Approach to Inter-Domain Routing
1268: DS: Application of the Border Gateway Protocol in the Internet
1267: DS: A Border Gateway Protocol 3 (BGP-3)
1266: I: Experience with the BGP Protocol
1265: I: BGP Protocol Analysis
1264: I: Internet Routing Protocol Standardization Criteria
1254: I: Gateway Congestion Control Survey
1246: I: Experience with the OSPF Protocol
1245: I: OSPF Protocol Analysis
1222: I: Advancing the NSFNET Routing Architecture
1195: PS: Use of OSI IS-IS for Routing in TCP/IP and Dual Environments
1164: PS: Application of the Border Gateway Protocol in the Internet
1163: PS: A Border Gateway Protocol (BGP)
1142: I: OSI IS-IS Intra-domain Routing Protocol
1136: I: Administrative Domains and Routing Domains
1133: I: Routing between the NSFNET and the DDN
1131: PS: OSPF specification
1126: I: Goals and functional requirements for inter-autonomous system routing
1125: I: Policy requirements for inter Administrative Domain routing
1124: I: Policy issues in interconnecting networks
1105: E: Border Gateway Protocol BGP
1104: I: Models of policy based routing
1102: I: Policy routing in Internet protocols
1092: I: EGP and policy based routing in the new NSFNET backbone
1075: E: Distance Vector Multicast Routing Protocol
1074: I: NSFNET backbone SPF based Interior Gateway Protocol
1058: S: Routing Information Protocol
1009: H: Requirements for Internet gateways
985: I: Requirements for Internet gateways - draft
981: I: Experimental multiple-path routing algorithm
975: I: Autonomous confederations
950: S: Internet standard subnetting procedure
911: I: EGP Gateway under Berkeley UNIX 4.2
904: H: Exterior Gateway Protocol formal specification
898: I: Gateway special interest group meeting notes
890: I: Exterior Gateway Protocol implementation schedule
888: H: STUB Exterior Gateway Protocol
875: I: Gateways, architectures, and heffalumps
827: I: Exterior Gateway Protocol EGP
Security
2104:: PS:: HMAC-MD5 IP Authentication with Replay Prevention
2084:: PS:: Considerations for Web Transaction Security
2082:: PS:: RIP-2 MD5 Authentication
2078:: PS:: Generic Security Service Application Program Interface, Version 2
2069:: PS:: An Extension to HTTP
2065:: PS:: Domain Name System Security Extensions
2059:: I:: RADIUS Accounting
2058:: PS:: Remote Authentication Dial In User Service (RADIUS)
2057:: I:: Source directed access control on the Internet.
2040:: I:: The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms
2025:: PS:: The Simple Public-Key GSS-API Mechanism (SPKM)
2015:: PS:: MIME Security with Pretty Good Privacy (PGP)
1984:: I:: IAB and IESG Statement on Cryptographic Technology and the Internet
1969:: I:: The PPP DES Encryption Protocol (DESE)
1968:: PS:: The PPP Encryption Control Protocol (ECP)
1964:: PS:: The Kerberos Version 5 GSS-API Mechanism
1961:: PS:: GSS-API Authentication Method for SOCKS Version 5
1949:: E:: Scalable Multicast Key Distribution
1948:: I:: Defending Against Sequence Number Attacks
1938:: PS:: A One-Time Password System
1929:: PS:: Username/Password Authentication for SOCKS V5
1928:: PS:: SOCKS Protocol Version 5
1898:: I:: CyberCash Credit Card Protocol Version 0.8
1858:: I:: Security Considerations for IP Fragment Filtering
1852:: E:: IP Authentication using Keyed SHA
1851:: E:: The ESP Triple DES-CBC Transform
1829:: PS:: The ESP DES-CBC Transform
1828:: PS:: IP Authentication using Keyed MD5
1827:: PS:: IP Encapsulating Security Payload (ESP)
1826:: PS:: IP Authentication Header
1825:: PS:: Security Architecture for the Internet Protocol
1824:: I:: The Exponential Security System TESS
1760:: I:: The S/KEY One-Time Password System
1751:: I:: A Convention for Human-Readable 128-bit Keys
1750:: I:: Randomness Recommendations for Security
1704:: I:: On Internet Authentication
1675:: I:: Security Concerns for IPng
1579:: I:: Firewall-Friendly FTP
1535:: I:: A Security Problem and Proposed Correction With Widely Deployed DNS Software
1511:: I:: Common Authentication Technology Overview
1510:: PS:: The Kerberos Network Authentication Service (V5)
1509:: PS:: Generic Security Service API
1508:: PS:: Generic Security Service Application Program Interface
1507:: E:: DASS - Distributed Authentication Security Service
1492:: I:: An Access Control Protocol, Sometimes Called TACACS
1457:: I:: The Key Label Framework for the Internet
1455:: E:: Physical Link Security Type of Service
1424:: PS:: Privacy Enhancement for Internet Electronic Mail
1423:: PS:: Privacy Enhancement for Internet Electronic Mail
1422:: PS:: Privacy Enhancement for Internet Electronic Mail
1421:: PS:: Privacy Enhancement for Internet Electronic Mail
1416:: E:: Telnet Authentication Option
1412:: E:: Telnet Authentication
1411:: E:: Telnet Authentication
1409:: E:: Telnet Authentication Option
1408:: H:: Telnet Environment Option
1321:: I:: The MD5 Message-Digest Algorithm
1320:: I:: The MD4 Message-Digest Algorithm
1319:: I:: The MD2 Message-Digest Algorithm
1281:: I:: Guidelines for the Secure Operation of the Internet
1244:: I:: Site Security Handbook
1186:: I:: The MD4 Message Digest Algorithm
1170:: I:: Public Key Standards and Licenses
1156:: S:: Management Information Base for Network Management of
TCP/IP-based internets
1115:: H:: Privacy enhancement for Internet electronic mail
1114:: H:: Privacy enhancement for Internet electronic mail
1113:: H:: Privacy enhancement for Internet electronic mail
1108:: PS:: U.S. Department of Defense Security Options for the
Internet Protocol
1040:: :: Privacy enhancement for Internet electronic mail
1038:: :: Draft revised IP security option
1004:: E:: Distributed-protocol authentication scheme
989:: :: Privacy enhancement for Internet electronic mail
972:: :: Password Generator Protocol
931:: E:: Authentication server
927:: :: TACACS user identification Telnet option
912:: :: Authentication service
644:: :: On the problem of signature authentication for
network mail

===

Virtual Terminal
2066:: E:: TELNET CHARSET Option
1647:: PS:: TN3270 Enhancements
1646:: I:: TN3270 Extensions for Luname and Printer Selection
1576:: I:: TN3270 Current Practices
1572:: PS:: Telnet Environment Option
1571:: I:: Telnet Environment Option Interoperability Issues
1372:: PS:: Telnet Remote Flow Control Option
1282:: I:: BSD Rlogin
1258:: I:: BSD Rlogin
1221:: :: Host Access Protocol (HAP) Specification - Version 2
1205:: :: 5250 Telnet Interface
1184:: DS:: Telnet Linemode Option
1143:: :: The Q Method of Implementing TELNET Option Negotiation
1116:: PS:: Telnet Linemode option
1097:: :: Telnet subliminal-message option
1096:: :: Telnet X display location option
1091:: :: Telnet terminal-type option
1080:: :: Telnet remote flow control option
1079:: :: Telnet terminal speed option
1073:: :: Telnet window size option
1053:: :: Telnet X.3 PAD option
1043:: :: Telnet Data Entry Terminal option
1041:: :: Telnet 3270 regime option
1013:: :: X Window System Protocol, version 11
1005:: :: ARPANET AHIP-E Host Access Protocol enhanced AHIP
 946:: :: Telnet terminal location number option
 933:: :: Output marking Telnet option
 930:: :: Telnet terminal type option
 929:: :: Proposed Host-Front End Protocol
 907:: S:: Host Access Protocol specification
 885:: :: Telnet end of record option
 884:: :: Telnet terminal type option
 878:: :: ARPANET 1822L Host Access Protocol
 861:: :: Telnet extended options
 860:: S:: Telnet timing mark option
 859:: S:: Telnet status option
 858:: S:: Telnet Suppress Go Ahead option
 857:: S:: Telnet echo option
 856:: S:: Telnet binary transmission
 855:: S:: Telnet option specifications
 854:: S:: Telnet Protocol specification
 851:: :: ARPANET 1822L Host Access Protocol
 818:: H:: Remote User Telnet service
 802:: :: ARPANET 1822L Host Access Protocol
 782:: :: Virtual Terminal management model
 779:: :: Telnet send-location option
 764:: :: Telnet Protocol specification
 749:: :: Telnet SUPDUP-Output option
 748:: :: Telnet randomly-lose option
 747:: :: Recent extensions to the SUPDUP Protocol
 746:: :: SUPDUP graphics extension
 736:: :: Telnet SUPDUP option
 735:: :: Revised Telnet byte macro option
 734:: H:: SUPDUP Protocol
 732:: :: Telnet Data Entry Terminal option
365:: :: Letter to all TIP users
364:: :: Serving remote users on the ARPANET
352:: :: TIP site information form
340:: :: Proposed Telnet changes
339:: :: MLTNET
328:: :: Suggested Telnet Protocol changes
318:: :: [Ad hoc Telnet Protocol]
311:: :: New console attachments to the USCB host
297:: :: TIP message buffers
296:: :: DS-1 display system
231:: :: Service center standards for remote usage
230:: :: Toward reliable operation of minicomputer-based
terminals on a TIP
216:: :: Telnet access to UCSB’s On-Line System
215:: :: NCP, ICP, and Telnet
206:: :: User Telnet - description of an initial implementation
205:: :: NETCRT - a character display protocol
177:: :: Device independent graphical display description
158:: :: Telnet Protocol
139:: :: Discussion of Telnet Protocol
137:: :: Telnet Protocol - a proposed document
110:: :: Conventions for using an IBM 2741 terminal as a
user console for access to network server hosts
97:: :: First cut at a proposed Telnet Protocol
===
Framework
1983:: I:: Internet Users’ Glossary
1958:: I:: Architectural Principles of the Internet
1952:: I:: GZIP file format specification version 4.3
1951:: I:: DEFLATE Compressed Data Format Specification version 1.3
1950:: I:: ZLIB Compressed Data Format Specification version 3.3
1941:: I:: Frequently Asked Questions for Schools
1935:: I:: What is the Internet, Anyway?
1920:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1900:: I:: Renumbering Needs Work
1899:: I:: Request for Comments Summary RFC Numbers 1800-1899
1882:: I:: The 12-Days of Technology Before Christmas
1880:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1879:: I:: Class A Subnet Experiment Results and Recommendations
1875:: I:: UNINETT PCA Policy Statements
1871:: BC:: Addendum to RFC 1602 -- Variance Procedure
1855:: I:: Netiquette Guidelines
1822:: I:: A Grant of Rights to Use a Specific IBM patent with Photuris
1818:: S:: Best Current Practices
1816:: I:: U.S. Government Internet Domain Names
1814:: I:: Unique Addresses are Good
1811:: I:: U.S. Government Internet Domain Names
1810:: I:: Report on MD5 Performance
1805:: I:: Location-Independent Data/Software Integrity Protocol
1802:: I:: Introducing Project Long Bud
1800:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1799:: I:: Request for Comments Summary RFC Numbers 1700-1799
1797:: E:: Class A Subnet Experiment
1796:: I:: Not All RFCs are Standards
1790:: I:: An Agreement between the Internet Society and Sun Microsystems, Inc. in the Matter of ONC RPC and XDR Protocols
1780:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1776:: I:: The Address is the Message
1775:: I:: To Be "On" the Internet
1758:: I:: NAFD Standing Documents
1746:: I:: Ways to Define User Expectations
1739:: I:: A Primer On Internet and TCP/IP Tools
1720:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1718:: I:: The Tao of IETF - A Guide for New Attendees of the Internet Engineering Task Force
1715:: I:: The H Ratio for Address Assignment Efficiency
1709:: I:: K-12 Internetworking Guidelines
1700:: S:: ASSIGNED NUMBERS
1699:: I:: Request for Comments Summary RFC Numbers 1600-1699
1691:: I:: The Document Architecture for the Cornell Digital Library
1690:: I:: Introducing the Internet Engineering and Planning
Group (IEPG)
1689:: I:: A Status Report on Networked Information Retrieval
1640:: I:: The Process for Organization of Internet Standards Working Group (POISED)
1636:: I:: Report of IAB Workshop on Security in the Internet Architecture - February 8-10, 1994
1635:: I:: How to Use Anonymous FTP
1627:: I:: Network 10 Considered Harmful (Some Practices Shouldn’t be Codified)
1610:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1607:: I:: A VIEW FROM THE 21ST CENTURY
1606:: I:: A Historical Perspective On The Usage Of IP Version 9
1603:: I:: IETF Working Group Guidelines and Procedures
y1602:: I:: The Internet Standards Process -- Revision 2
1601:: I:: Charter of the Internet Architecture Board (IAB)
1600:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1599:: I:: Request for Comments Summary RFC Numbers 1500 - 1599
1597:: I:: Address Allocation for Private Internets
1594:: I:: FYI on Questions and Answer Answers to Commonly asked "New Internet User" Questions
1580:: I:: Guide to Network Resource Tools
1578:: I:: FYI on Questions and Answers
1574:: I:: Essential Tools for the OSI Internet
1550:: I:: IP
1543:: I:: Instructions to RFC Authors
1540:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1539:: I:: The Tao of IETF - A Guide for New Attendees of the Internet Engineering Task Force
1527:: I:: What Should We Plan Given the Dilemma of the Network?
1501:: I:: OS/2 User Group
1500:: S:: INTERNET OFFICIAL PROTOCOL STANDARDS
1499:: I:: Request for Comments Summary RFC Numbers 1400-1499
1481:: I:: IAB Recommendation for an Intermediate Strategy to Address the Issue of Scaling
1467:: I:: Status of CIDR Deployment in the Internet
1463:: I:: FYI on Introducing the Internet--A Short Bibliography of Introductory Internetworking Readings for the Network Novice
1462:: I:: FYI on "What is the Internet?"
1438:: I:: Internet Engineering Task Force Statements Of Boredom (SOBs)
1432:: I:: Recent Internet Books
1417:: I:: NADF Standing Documents
1410:: S:: IAB OFFICIAL PROTOCOL STANDARDS
1402:: I:: There’s Gold in them thar Networks! Searching for Treasure in all the Wrong Places
1401:: I:: Correspondence between the IAB and DISA on the use of DNS throughout the Internet

Nesser Informational [Page 69]
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

1399:: I:: Request for Comments Summary RFC Numbers 1300-1399
1396:: I:: The Process for Organization of Internet Standards Working Group (POISED)
1392:: I:: Internet Users’ Glossary
1391:: I:: The Tao of IETF
1367:: I:: Schedule for IP Address Space Management Guidelines
1366:: I:: Guidelines for Management of IP Address Space
1360:: S:: IAB OFFICIAL PROTOCOL STANDARDS
1359:: I:: Connecting to the Internet What Connecting Institutions Should Anticipate
1358:: I:: Charter of the Internet Architecture Board (IAB)
1349:: PS:: Type of Service in the Internet Protocol Suite
1340:: S:: ASSIGNED NUMBERS
1336:: I:: Who’s Who in the Internet Biographies of IAB, IESG and IRSG Members
1325:: I:: FYI on Questions and Answers Answers to Commonly asked "New Internet User" Questions
1324:: I:: A Discussion on Computer Network Conferencing
1311:: I:: Introduction to the STD Notes
1310:: I:: The Internet Standards Process
1300:: I:: Remembrances of Things Past
1299:: I:: Request for Comments Summary RFC Numbers 1200-1299
1297:: I:: NOC Internal Integrated Trouble Ticket System Functional Specification Wishlist ("NOC TT REQUIREMENTS")
1296:: I:: Internet Growth (1981-1991)
1295:: I:: User Bill of Rights for entries and listings in the Public Directory
1291:: I:: Mid-Level Networks
1290:: I:: There’s Gold in them thar Networks! or Searching for Treasure in all the Wrong Places
1287:: I:: Towards the Future Internet Architecture
1280:: S:: IAB OFFICIAL PROTOCOL STANDARDS
1261:: I:: Transition of NIC Services
1259:: I:: Building The Open Road
1251:: :: Who’s Who in the Internet
1250:: S:: IAB Official Protocol Standards
1249:: I:: DIXIE Protocol Specification
1217:: :: Memo from the Consortium for Slow Commotion Research (CSCR)
1216:: :: Gigabit Network Economics and Paradigm Shifts
1208:: :: A Glossary of Networking Terms
1207:: :: Answers to Commonly asked "Experienced Internet User" Questions
1206:: :: FYI on Questions and Answers - Answers to Commonly asked "New Internet User" Questions
1200:: S:: IAB Official Protocol Standards
1199:: I:: Request for Comments Summary RFC Numbers 1100-1199
1198:: I:: FYI on the X Window System
RFC 2626

The Internet and the Millennium Problem (Year 2000) June 1999

1192:: :: Commercialization of the Internet Summary Report
1181:: :: RIPE Terms of Reference
1180:: :: A TCP/IP Tutorial
1178:: :: Choosing a Name for Your Computer
1177:: :: FYI on Questions and Answers - Answers to Commonly
 asked "New Internet User" Questions
1175:: :: FYI on Where to Start - A Bibliography of
 Internetworking Information
1174:: :: IAB Recommended Policy on Distributing Internet
 Identifier Assignment and IAB Recommended Policy Change
 to Internet "Connected" Status
1173:: :: Responsibilities of Host and Network Managers
 Summary of the "Oral Tradition" of the Internet
1169:: :: Explaining the Role of GOSIP
1167:: :: Thoughts on the National Research and Education Network
1160:: :: The Internet Activities Board
1152:: :: Workshop Report
1150:: :: F.Y.I. on F.Y.I.
1149:: :: A Standard for the Transmission of IP Datagrams
 on Avian Carriers
1147:: :: FYI on a Network Management Tool Catalog
1140:: :: IAB Official Protocol Standards
1135:: :: Helminthiasis of the Internet
1130:: :: IAB official protocol standards
1127:: :: Perspective on the Host Requirements RFCs
1121:: :: Act one - the poems
1120:: :: Internet Activities Board
1118:: :: Hitchhiker's guide to the Internet
1117:: :: Internet numbers
1111:: :: Request for comments on Request for Comments
1100:: :: IAB official protocol standards
1099:: :: Request for Comments Summary RFC Numbers 1000-1099
1093:: :: NSFNET routing architecture
1087:: :: Ethics and the Internet
1083:: :: IAB official protocol standards
1077:: :: Critical issues in high bandwidth networking
1076:: :: HEMS monitoring and control language
1060:: :: ASSIGNED NUMBERS
1039:: :: DoD statement on Open Systems Interconnection protocols
1020:: :: Internet numbers
1019:: :: Report of the Workshop on Environments for
 Computational Mathematics
1018:: :: Some comments on SQuID
1017:: :: Network requirements for scientific research
1015:: :: Implementation plan for interagency research Internet
1014:: :: XDR
1000:: :: Request For Comments reference guide
999:: :: Requests For Comments summary notes
820:: :: Assigned numbers
817:: :: Modularity and efficiency in protocol implementation
816:: :: Fault isolation and recovery
806:: :: Proposed Federal Information Processing Standard
800:: :: Request For Comments summary notes
794:: :: Pre-emption
790:: :: Assigned numbers
776:: :: Assigned numbers
774:: :: Internet Protocol Handbook
770:: :: Assigned numbers
766:: :: Internet Protocol Handbook
762:: :: Assigned numbers
758:: :: Assigned numbers
755:: :: Assigned numbers
750:: :: Assigned numbers
745:: :: JANUS interface specifications
739:: :: Assigned numbers
717:: :: Assigned network numbers
716:: :: Interim revision to Appendix F of BBN 1822
708:: :: Elements of a distributed programming system
705:: :: Front-end Protocol B6700 version
700:: :: Protocol experiment
699:: :: Request For Comments summary notes
694:: :: Protocol information
686:: :: Leaving well enough alone
684:: :: Commentary on procedure calling as a network protocol
681:: :: Network UNIX
678:: :: Standard file formats
677:: :: Maintenance of duplicate databases
672:: :: Multi-site data collection facility
671:: :: Note on Reconnection Protocol
667:: :: BBN host ports
666:: :: Specification of the Unified User-Level Protocol
663:: :: Lost message detection and recovery protocol
661:: :: Protocol information
655:: :: Network Standard Data Specification syntax
653:: :: Network Debugging Protocol
642:: :: Ready line philosophy and implementation
638:: :: IMP/TIP preventive maintenance schedule
637:: :: Change of network address for SU-DSL
635:: :: Assessment of ARPANET protocols
634:: :: Change in network address for Haskins Lab
631:: :: International meeting on minicomputers and data communication
629:: :: Scenario for using the Network Journal
628:: :: Status of RFC numbers and a note on pre-assigned journal numbers
621:: :: NIC user directories at SRI ARC
Note on socket number assignment
Statement of upcoming move of NIC/NLS service
Assigned link numbers
Response to RFC 597
The stockings were hung by the chimney with care
RFC index - December 5, 1973
Host status
MULTICS address change
London node is now up
ARPANET users interest working group meeting
Charter for ARPANET Users Interest Working Group
Comments on RFC 580
Corrections to RFC 560
Note to protocol designers and implementers
Using MIT-Mathlab MACSYMA from MIT-DMS Muddle
NETED
Single access to standard protocols
Change to the Very Distant Host specification
Locating on-line documentation at SRI-ARC
Announcement of NGG meeting July 16-17
Report on the Survey project
Note on protocol synch sequences
ARPAWOCKY
Technical meeting
SURVEY is in operation again
Resource evaluation
ARPANET accounts
Specifications for datalanguage
Socket number list
TNLS quick reference card is available
Availability of MIX and MIXAL in the Network
Response to RFC 467
What is "Free"?
Cancellation of the resource notebook framework meeting
Announcement of NGWG meeting
Resource notebook framework
Responding to user needs
TIPUG
Memorandum
Inter-Entity Communication - an experiment
Scheduled network software maintenance
PARRY encounters the DOCTOR
Socket number list
Network logical map
But my NCP costs $500 a day
To
Correction to RFC 404
Host address changes involving Rand and ISI
403:: :: Desirability of a network 1108 service
402:: :: ARPA Network mailing lists
401:: :: Conversion of NGP-0 coordinates to device specific coordinates
390:: :: TSO scenario
379:: :: Using TSO at CCN
376:: :: Network host status
372:: :: Notes on a conversation with Bob Kahn on the ICCC
371:: :: Demonstration at International Computer Communications Conference
370:: :: Network host status
363:: :: ARPA Network mailing lists
356:: :: ARPA Network Control Center
355:: :: Response to NWG/RFC 346
350:: :: User accounts for UCSB On-Line System
349:: :: Proposed standard socket numbers
345:: :: Interest in mixed integer programming MPSX on NIC 360/91 at CCN
334:: :: Network use on May 8
331:: :: IMP System change notification
330:: :: Network host status
329:: :: ARPA Network mailing lists
327:: :: Data and File Transfer workshop notes
322:: :: Well known socket numbers
321:: :: CBI networking activity at MITRE
320:: :: Workshop on hard copy line printers
319:: :: Network host status
317:: :: Official Host-Host Protocol modification
316:: :: ARPA Network Data Management Working Group
315:: :: Network host status
313:: :: Computer based instruction
305:: :: Unknown host numbers
303:: :: ARPA Network mailing lists
295:: :: Report of the Protocol Workshop, 12 October 1971
291:: :: Data management meeting announcement
290:: :: Computer networks and data sharing
282:: :: Graphics meeting report
276:: :: NIC course
270:: :: Correction to BBN Report No. 1822 NIC NO 7958
269:: :: Some experience with file transfer
263:: :: Very Distant Host interface
256:: :: IMPSYS change notification
254:: :: Scenarios for using ARPANET computers
253:: :: Second Network Graphics meeting details
249:: :: Coordination of equipment and supplies purchase
246:: :: Network Graphics meeting
245:: :: Reservations for Network Group meeting
243:: :: Network and data sharing bibliography
242:: :: Data descriptive language for shared data
240:: :: Site status
239:: :: Host mnemonics proposed in RFC 226 NIC 7625
235:: :: Site status
234:: :: Network Working Group meeting schedule
232:: :: Postponement of network graphics meeting
228:: :: Clarification
225:: :: Rand/UCSB network graphics experiment
223:: :: Network Information Center schedule for network users
219:: :: User’s view of the datacomputer
218:: :: Changing the IMP status reporting facility
214:: :: Network checkpoint
213:: :: IMP System change notification
211:: :: ARPA Network mailing lists
209:: :: Host/IMP interface documentation
208:: :: Address tables
207:: :: September Network Working Group meeting
204:: :: Sockets in use
200:: :: RFC list by number
198:: :: Site certification - Lincoln Labs 360/67
195:: :: Data computers-data descriptions and access language
194:: :: Data Reconfiguration Service - compiler/interpreter implementation notes
187:: :: Network/440 protocol concept
186:: :: Network graphics loader
185:: :: NIC distribution of manuals and handbooks
182:: :: Compilation of list of relevant site reports
180:: :: File system questionnaire
179:: :: Link number assignments
173:: :: Network data management committee meeting announcement
171:: :: Data Transfer Protocol
170:: :: RFC list by number
169:: :: Computer networks
168:: :: ARPA Network mailing lists
167:: :: Socket conventions reconsidered
164:: :: Minutes of Network Working Group meeting, 5/16 through 5/19/71
162:: :: NETBUGGER3
160:: :: RFC brief list
157:: :: Invitation to the Second Symposium on Problems in the Optimization of Data Communications Systems
155:: :: ARPA Network mailing lists
154:: :: Exposition style
149:: :: Best laid plans
148:: :: Comments on RFC 123
147:: :: Definition of a socket
140:: :: Agenda for the May NWG meeting
138:: :: Status report on proposed Data Reconfiguration Service
136:: :: Host accounting and administrative procedures
135:: :: Response to NWG/RFC 110
132:: :: Typographical error in RFC 107
131:: :: Response to RFC 116
130:: :: Response to RFC 111
129:: :: Request for comments on socket name structure
126:: :: Graphics facilities at Ames Research Center
124:: :: Typographical error in RFC 107
121:: :: Network on-line operators
120:: :: Network PL1 subprograms
119:: :: Network Fortran subprograms
118:: :: Recommendations for facility documentation
117:: :: Some comments on the official protocol
116:: :: Structure of the May NWG meeting
115:: :: Some Network Information Center policies on handling documents
113:: :: Network activity report
112:: :: User/Server Site Protocol
111:: :: Pressure from the chairman
109:: :: Level III Server Protocol for the Lincoln Laboratory NIC 360/67 Host
108:: :: Attendance list at the Urbana NWG meeting, February 17-19, 1971
107:: :: Output of the Host-Host Protocol glitch cleaning committee
106:: :: User/Server Site Protocol network host questionnaire
104:: :: Link 191
103:: :: Implementation of interrupt keys
102:: :: Output of the Host-Host Protocol glitch cleaning committee
101:: :: Notes on the Network Working Group meeting, Urbana, Illinois, February 17, 1971
100:: :: Categorization and guide to NWG/RFCs
 99:: :: Network meeting
 95:: :: Distribution of NWG/RFC’s through the NIC
 90:: :: CCN as a network service center
 89:: :: Some historic moments in networking
 87:: :: Topic for discussion at the next Network Working Group meeting
 85:: :: Network Working Group meeting
 84:: :: List of NWG/RFC’s 1-80
 82:: :: Network meeting notes
 81:: :: Request for reference information
 78:: :: NCP status report
 77:: :: Network meeting report
 76:: :: Connection by name
 75:: :: Network meeting
 74:: :: Specifications for network use of the UCSB On-Line System
 73:: :: Response to NWG/RFC 67
 72:: :: Proposed moratorium on changes to network protocol
71:: :: Reallocation in case of input error
69:: :: Distribution list change for MIT
68:: :: Comments on memory allocation control commands
66:: :: NIC - third level ideas and other noise
64:: :: Getting rid of marking
63:: :: Related network meeting report
61:: :: Note on interprocess communication in a resource
 sharing computer network
57:: :: Thoughts and reflections on NWG/RFC 54
52:: :: Updated distribution list
51:: :: Proposal for a Network Interchange Language
50:: :: Comments on the Meyer proposal
49:: :: Conversations with S. Crocker UCLA
48:: :: Possible protocol plateau
47:: :: BBN’s comments on NWG/RFC #33
46:: :: ARPA Network protocol notes
45:: :: New protocol is coming
44:: :: Comments on NWG/RFC 33 and 36
43:: :: Proposed meeting [LIL]
40:: :: More comments on the forthcoming protocol
39:: :: Comments on protocol re
37:: :: Network meeting epilogue, etc
36:: :: Protocol notes
35:: :: Network meeting
34:: :: Some brief preliminary notes on the Augmentation
 Research Center clock
31:: :: Binary message forms in computer
30:: :: Documentation conventions
27:: :: Documentation conventions
25:: :: No high link numbers
24:: :: Documentation conventions
21:: :: Network meeting
16:: :: M.I.T
15:: :: Network subsystem for time sharing hosts
13:: :: [Referring to NWG/RFC 11]
11:: :: Implementation of the Host-Host software procedures
 in GORDO
10:: :: Documentation conventions
 9:: :: Host software
 8:: :: Functional specifications for the ARPA Network
 7:: :: Host-IMP interface
 6:: :: Conversation with Bob Kahn
 5:: :: Decode Encode Language
 4:: :: Network timetable
 3:: :: Documentation conventions
 2:: :: Host software
 1:: :: Host software
Appendix B: Automatic Script to Implement Methodology

#!/usr/bin/perl

Program to read text files (such as RFCs and Internet Drafts) and
output items that might relate to year 2000 issues, particularly
2-digit years.

Version 1.1a. Slight modification by Philip J. Nesser
(phil@nesser.com) to split lines from old RFC’s that are
too wide to conform with current RFC standards.

Version 1.1. By Paul Hoffman (phoffman@imc.org). This is a
quick-and-dirty hack and could be written more elegantly and
more efficiently. There may be bugs in this software. For
example, there was an off-by-one-line bug in version 1.0.
Use this code at your own risk. This code may be freely
redistributed.

Some people like using disk files, others like STDIN and STDOUT.
This program accommodates both types by setting the $UsageType
variable. ‘file’ means input comes from the first argument on
the command line, output goes to that filename with a ".out"
extension; ‘std’ means STDIN and STDOUT.
$UsageType = 'file'; # Should be ‘file’ or ‘std’

@CheckWords is a list of words to look for. This list is used in
addition to the automatic checking for "yy" on a line without "YYYY".
You might want to add "year yyyy" to this list, but then a large
proportion of the RFCs and drafts get selected
@CheckWords = qw(UTCTime two-digit 2-digit 2digit century 1900 2000);

if($UsageType eq 'file') {
 if($ARGV[0] eq '')
 { die "You must specify the name of the file to open.\n" }
 $InName = $ARGV[0];
 unless(-r $InName) { die "Could not read $InName.\n" }
 open(IN, $InName) or die "Could not open $InName.\n";
 $OutName = "$InName.out";
 open(OUT, ">$OutName") or die "Could not write to $OutName.\n";
 $OutStuff = ''; # Holder for what we’re going to print out
} else { # Do STDIN and STDOUT
 open(IN, "-"); open(OUT, "-");
}

Read the whole file into an array. This is a tad wasteful of memory
but makes the output easier.
@All = ();
while(<IN>) { push(@All, $_) }
$LastLine = $#All;

Process the instance of "yy" not followed by "yy"
for($i = 0; $i <= $LastLine; $i += 1) {
 next unless(grep(/yy/i, $All[$i]));
 next if(grep(/yyyy/i, $All[$i]));
 &PrintFive($i, "'yy' on a line without 'yyyy'");
}

Next do the words that should cause extra concern
foreach $Word (@CheckWords) {
 for($i = 0; $i <= $LastLine; $i += 1) {
 next unless(grep(/$Word/i, $All[$i]));
 &PrintFive($i, "$Word");
 }
}

All done. If writing to a file, and nothing got written, delete the
file so that you can quickly scan for the ".out" files.
(A better-written program would have waited to do the opens
until here so the unlink wouldn’t be necessary. Oh, well.)
if($UsageType eq 'file') {
 if(length($OutStuff) > 0) {
 $OutStuff = "+=+=+=+=+= File $InName +=+=+=+=+= \n$OutStuff\n print OUT $OutStuff; close(OUT);
 } else { # Nothing to put in the .out
 close(OUT);
 unlink($OutName) or die " Couldn’t unlink $OutName\n";
 }
}
exit;

Print the five lines around the word found
sub PrintFive {
 my $Where = shift(@_); my $Msg = shift(@_);
 my ($WhereRealLine, $Start, $End, $j);

 $WhereRealLine = $Where + 1;
 $Start = $WhereRealLine - 2; $End = $WhereRealLine + 2;
 if($Where < 2) { $Start = 0 }
 if($Where > $LastLine - 2) { $End = $LastLine }
 for($j = $Start; $j <= $End; $j += 1) {
 if (length($All[$j-1]) > 64) {
 $FirstHalf = substr($All[$j-1], 0, 64) . "\n";
 $LastHalf = "$j(continued):\t\t" . substr($All[$j-1], 64);
App. C: Output of the script in App. B on all RFC's from 1 through 2479

File rfc0052.txt found at line 141:
140: Chuck Rose Case University
141: Jennings Computing Center (216) 368-2000
142: Case Western Reserve University x2808
143: 10900 Euclid Avenue

File rfc0090.txt found at line 71:
69: consoles);
71(continued): j) Six data communication ports (3 dial @
71(continued): 2000 baud,
72(continued): 1 dedicated @ 4800 baud, and 2 dedicate
72(continued): d @ 50,000
73(continued): baud) for remote batch entry terminals;
73(continued):

File rfc0230.txt found at line 92:
90: as for conventional synchronous block communication, since start
90(continued): and
91: stop bits for each character would need to be transmitted. This
91(continued): loss
92: is not substantial and does occur now for 2000 bps TIP-terminal
93: communication.
94:

File rfc0230.txt found at line 134:
132: 92 transmitting sites in the U.S. and Canada were used with stan
132(continued): dard
133: Bell System Dataphone datasets used at both ends. At both 1200
133(continued): and
134: 2000 bps, approximately 82% of the calls had error rates of 1 er
134(continued): ror in
135: 10^5 bits or better, assuming an equal number of short, medium, and long hauls.

2000 found at line 32:

30: justifiable on the basis that the IMP and Host computers were 30(continued):
31: expected to be either in the same room (up to 30 feet of cable) 31(continued):
32: via the Distant Host option, within 2000 feet on well-controlled, 32(continued):
33: shielded cables. A connection through common carrier facilities 33(continued):
34: not comparably free of errors. Usage of common-carrier lines 34(continued):

2000 found at line 22:

20: of the occasional desire to interface a Host to some IMP via a 21: long-distance connection (where long-distance, in this context, 22(continued):
23: is any cable run longer than 2000 feet but may typically be tens 22(continued):
23: of miles) via either a hard-wire or telephone circuit. We believe 23(continued):
24: that any good solution to the general problem of interfacing Hos 24(continued):

2000 found at line 143:

141: by a rather short cable (approximately 100 feet long.) The CISL 141(continued):
142: is connected to the IMP number 6 (port 0) by an approximately 1500 142(continued):
143: feet long cable. 80th IMPs are in close physical proximity (approximately 2000 feet 143(continued):
144: connected to each other by a 50 kilobits per second line. The results given 144(continued):
145: above show considerable improvement in the performance with the 145(continued):

2000 found at line 830:

828: succeeding bytes in the stream used to encode the object.
829:
830: A data object requiring 20000 (47040 octal) bytes would
831: appear in the stream as follows.
2000 found at line 837:
835: 10000010 -- specifying that the next 2 bytes
836: contain the stream length
837: 01001110 -- first byte of number 20000
838: 00100000 -- second byte
839:

2000 found at line 845:
843: .
844:
845: Interpretation of the contents of the 20000 bytes in
846: the stream can be performed by a module which knows the
847: specific format of the non-atomic type specified by DEFGH in

+++= File rfc0724.txt ++++
2-digit found at line 1046:
1044: <4-digit-year>
1045: <slash-date> ::= <numeric-month> "/" <date-of-month>
1046: "/" <2-digit-year>
1047: <numeric-month> ::= <one or two decimal digits>
1048: <day-of-month> ::= <one or two decimal digits>

2-digit found at line 1062:
1060: | "December" | "Dec"
1061: <4-digit-year> ::= <four decimal digits>
1062: <2-digit-year> ::= <two decimal digits>
1063: <time> ::= <24-hour-time> "-" <time-zone>
1064: <24-hour-time> ::= <hour> <minute>

2-digit found at line 1675:
1673: A. ALPHABETICAL LISTING OF SYNTAX RULES
1674:
1675: <2-digit-year> ::= <two decimal digits>
1676: <4-digit-year> ::= <four decimal digits>
1677: <24-hour-time> ::= <hour> <minute>

2-digit found at line 1829:
1827:
1828: <slash-date> ::= <numeric-month> "/" <date-of-month>
1829(continued):
1829: "/" <2-digit-year>
1830: <space> ::= <TELNET ASCII space (decimal 32)>
1831:

Hazeltine IB-1866A, 1870.

 IB-1866A, 1870.

2-digit found at line 333:
331: "<n>(element)" is equivalent to "<n>*<n>(element)"; that is
332(continued):
333: exactly <n> occurrences of (element). Thus 2DIGIT is a 2-digit
333(continued): number, and 3ALPHA is a string of three alphabetic characters.

2digit found at line 333:
331: "<n>(element)" is equivalent to "<n>*<n>(element)"; that is
332(continued):
333: exactly <n> occurrences of (element). Thus 2DIGIT is a 2-digit
333(continued): number, and 3ALPHA is a string of three alphabetic characters.

2digit found at line 947:
945: / "Sunday" / "Sun"
946: date = 1*2DIGIT ["-"] month ; day month year
948: ["-"] (2DIGIT /4DIGIT) ; e.g. 20 Aug [19]7
948(continued): 7

2digit found at line 948:
946: date = 1*2DIGIT ["-"] month ; day month year
2digit found at line 967:
967: hour = 2DIGIT [":"] 2DIGIT [
968: ; 0000[00] - 2359[59
969:]

2digit found at line 1718:
1718: date = 1*2DIGIT ["-"] month ["-"] (2DIGIT /4DIGIT)
1719: date-field = "Date" ":" date-time
1720: date-time = [day-of-week ","] date time

2digit found at line 1754:
1754: hour = 2DIGIT [":"] 2DIGIT [
1755:]
1756: HTAB = <TELNET ASCII horizontal-tab>

2000 found at line 184:
184: %TOALT 200000,,0 characters 175 and 176 are
184(continued): converted to
185: altmode (033) on input.
186: 2000 found at line 264:
264: %TOSA1 2000,,0 characters 001-037 should
264(continued): be displayed
265: using the Stanford/ITS extended
265(continued): ASCII
266: graphics character set instead of
266(continued): uparrow

2000 found at line 354:
The time is the number of seconds since 0000 (midnight) 1 January 1900 GMT, such that the time 1 is 12:00:01 am on 1 January 1900 GMT; this base will serve until the year 2036. As a further example, the most recent leap year as of this writing began from the time 2,398,291,200.

Circuits, EIA standard RS-422, April 1975; Engineering Dept., Electronic Industries Assn., 2001 Eye St., N.W., Washington, D.C.

'yy' on a line without 'yyyy'
340: %GOCLR ;Clear the screen.
341: %GOMVA xx yy ;Set cursor.
342: %GODLA xx yy ;Draw line from there.
343: << repeat last two commands for each line >>

yy' on a line without 'yyyy' found at line 342:
340: %GOCLR ;Clear the screen.
341: %GOMVA xx yy ;Set cursor.
342: %GODLA xx yy ;Draw line from there.
343: << repeat last two commands for each line >>
344: %TDNOP ;Exit graphics.

2000 found at line 859:
857: %TRGIN 0,,400000 terminal can provide graphics input.
858: %TRGHC 0,,200000 terminal has a hard-copy device to which outp
859(continued): ut can
860: be diverted.
861:

==File rfc0752.txt==

yy' on a line without 'yyyy' found at line 218:
216: word 4 The name of the site in SIXBIT.
217: word 5 The user name who compiled the file, usually in
217(continued): SIXBIT.
218: word 6 Date of compilation as SIXBIT YYMMDD.
219: word 7 Time of compilation as SIXBIT HHMMSS.
220: word 8 Address in file of NAME table.

==File rfc0754.txt==

yy' on a line without 'yyyy' found at line 76:
74:
75: Messages are transmitted as a character string to an address whi
75(continued): ch is
76: specified "outside" the message. The destination host ("YYY") i
76(continued): s
77: specified to the sending (or user) FTP as the argument of the "o
77(continued): pen
78: connection" command, and the destination user ("XXX") is specifi
78(continued): ed to

yy' on a line without 'yyyy' found at line 81:
79: the receiving (or server) FTP as the argument of the "MAIL" (or
79(continued): "MLFL")
80: command. In Tenex, when mail is queued this outside information
80(continued): is
81: saved in the file name ("[---].XXX@YYY").
82:

Nesser Informational [Page 87]
83: The proposed solutions are briefly characterized.

'y' on a line without 'yyy' found at line 239:

237:
238:
239: "[---].XXX@YYY", not anything from the header. Only the stri
239(continued): ng "XXX"
240: is passed to the FTP server.
241:

+=+=+=+= File rfc0759.txt +=+=+=+=
two-digit found at line 1414:
1412: yyyy-mm-dd:hh:mm:ss,fff+hh:mm
1413:
1414: Where yyyy is the four-digit year, mm is the two-digit month
1414(continued): , dd is
1415: the two-digit day, hh is the two-digit hour in 24 hour time,
1415(continued): mm is
1416: the two-digit minute, ss is the two-digit second, and fff is
1416(continued): the
1417: decimal fraction of the second. To this basic date and time
1417(continued): is

two-digit found at line 1416:
1414: Where yyyy is the four-digit year, mm is the two-digit month
1414(continued): , dd is
1415: the two-digit day, hh is the two-digit hour in 24 hour time,
1415(continued): mm is
1416: the two-digit minute, ss is the two-digit second, and fff is
1416(continued): the
1417: decimal fraction of the second. To this basic date and time
1417(continued): is
1418: appended the offset from Greenwich as plus or minus hh hours
1418(continued): and mm

+=+=+=+= File rfc0767.txt +=+=+=+=
two-digit found at line 710:
708: yyyy-mm-dd:hh:mm:ss,fff+hh:mm
709:

Nesser Informational [Page 88]
The date-time will be in the default TOPS20 ODTIM format:

```
"dd-mmm-yy hh:mm:ss" (24 hour time).
```

The files will be named "arbitrary.NIMAIL.-1", where "arbitrary" will be appended the offset from Greenwich as plus or minus hh hours and mm.
'yy' on a line without 'yyyy' found at line 1602:

```
1600:                        "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "D
1600(continued):     EC"
1601:
1602:              <yy> ::= the two decimal integer year of the century
1602(continued):                 in the
1603:                        range 01 to 99.
1604:
```

century found at line 1602:

```
1600:                        "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "D
1600(continued):     EC"
1601:
1602:              <yy> ::= the two decimal integer year of the century
1602(continued):                 in the
1603:                        range 01 to 99.
1604:
```

+=+=+=+=+= File rfc0809.txt +=+=+=+=+=

2000 found at line 3349:

```
3347:
3348:    #define WID     0000000   /* Write Image Data */
3349:    #define WGD     0020000   /* Write Graphic Data */
3350:    #define WAC     0022000   /* Write AlphanumCh */
3351:
```

2000 found at line 3350:

```
3348:    #define WID     0000000   /* Write Image Data */
3349:    #define WGD     0020000   /* Write Graphic Data */
3350:    #define WAC     0022000   /* Write AlphanumCh */
3351:
3352:    #define LWM     0024000   /* Load Write Mode */
```

2000 found at line 3379:

```
3377:
3378:    #define ERS     0030000   /* Erase */
3379:    #define ERL     0032000   /* Erase Line */
3380:    #define SLU     0034000   /* Special Location Update */
3381:    #define SCRL_ZAP 0100   /* unlimited scroll speed */
```

2000 found at line 3392:

```
3390:    #define LLB     0070000   /* Load Lb */
3391:    #define LLC     0074000   /* Load Lc */
3392:    #define LGW     0200000   /* perform write */
3393:
3394:    #define NOP     0110000   /* No-Operation */
```

Nesser Informational [Page 90]
#define NOP 0110000 /* No-Operation */

#define SPD 0120000 /* Select Special Device */

#define LPA 0130000 /* Load Peripheral Address */

#define LPR 0140000 /* Load Peripheral Register */

#define ALPHA 06000 /* LPR - Alphanumeric data */

#define GRAPH 04000 /* LPR - Graphic data */

#define IMAGE 02000 /* LPR - Image data */

#define LTHENH 01000 /* take lo byte then hi byte */

#define DROPBYTE 0400 /* drop last byte */

#define LTHENH 01000 /* take lo byte then hi byte */

#define DROPBYTE 0400 /* drop last byte */

#define INTERR 02000 /* SPD - Interrupt Enable */

#define TEST 04000 /* SPD - Diagnostic Test */

#define DROPBYTE 0400 /* drop last byte */

+++ File rfc0810.txt ++++

'yy' on a line without 'yyyy' found at line 146:

144: , (comma) is used as a data element delimiter

146: XXX/YYYY indicates protocol information of the type

146(continued):

147: TRANSPORT/SERVICE.

+++ File rfc0820.txt ++++

2000 found at line 674:

672: 014.000.000.001 311031700035 00 PURDUE-TN
672(continued): [CXK]
673: 014.000.000.002 311060800027 00 UWISC-TN
673(continued): [CXK]
674: 014.000.000.003 311030200024 00 UDEL-TN
674(continued): [CXK]
675: 014.000.000.004 234219200149 23 UCL-VTEST
675(continued): [PK]
676: 014.000.000.005 234219200300 23 UCL-TG
676(continued): [PK]

+++ File rfc0821.txt ++++

'yy' on a line without 'yyyy' found at line 1944:

1942: <daytime> ::= <SP> <date> <SP> <time>
1943: <date> ::= <dd> <SP> <mon> <SP> <yy>
1945:
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

1946: <time> ::= <hh> ":" <mm> ":" <ss> <SP> <zone>

'yy' on a line without 'yyyy' found at line 1954:
1952: "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "D
1952(continued): EC"
1953: <yy> ::= the two decimal integer year of the century
1954(continued): in the
1955: range 00 to 99.
1956: century found at line 1954:
1952: "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "D
1952(continued): EC"
1953: <yy> ::= the two decimal integer year of the century
1954(continued): in the
1955: range 00 to 99.
1956:

File rfc0822.txt +=+=+=+=+= File
'yy' on a line without 'yyyy' found at line 1635:
1633: 5.1. SYNTAX
1634: date-time = [day ","] date time ; dd mm yy
1635: ; hh:mm:ss zzz
1636: ;
1636(continued):
1637: day = "Mon" / "Tue" / "Wed" / "Thu"
1638: dates = orig-date ; Original
1639: [resent-date] ; Forwarded
1640: date-time = [day ","] date time ; dd mm yy
1641: ; hh:mm:ss zzz
1642: ;
1642(continued):
1643: day = "Mon" / "Tue" / "Wed" / "Thu"

2-digit found at line 344:
342: "<n>(element)" is equivalent to "<n>*<n>(element)"; th
343(continued): at is,
344: exactly <n> occurrences of (element). Thus 2DIGIT is a 2
344(continued): -digit
345: number, and 3ALPHA is a string of three alphabetic character
345(continued): rs.
346:

2digit found at line 344:
"<n>(element)" is equivalent to "<n>*<n>(element)"; that is, exactly <n> occurrences of (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic characters.

2digit found at line 1641:
1639: / "Fri" / "Sat" / "Sun"
1640:
1641: date = 1*2DIGIT month 2DIGIT ; day month year
1641(continued): r
1642: ; e.g. 20 Jun
1642(continued): 82
1643:

2digit found at line 1650:
1648: time = hour zone ; ANSI and Military
1648(continued): tary
1649:
1650: hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT]
1651: ; 00:00:00 - 23:59:59
1651(continued): 00:00:00 - 23:59:59
1652:

2digit found at line 2697:
2695: CTL = <any ASCII control character and DEL> ; (0-37, 0.
2695(continued): -31.)
2696: character and DEL> ; (177, 127.)
2696(continued): 127.)
2697: date = 1*2DIGIT month 2DIGIT ; day month year
2697(continued): r
2698: ; e.g. 20 Jun
2698(continued): 82
2699: dates = orig-date ; Original
2699(continued): dates = orig-date

2digit found at line 2747:
2745: field-name = 1*<any CHAR, excluding CTLs, SPACE, and ":"> 0-37, 0.
2745(continued): 31.)
2746: group = phrase ":" [#mailbox] ";"
2746(continued): phrase ":" [#mailbox] ";"
2747: hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT]
2748: ; 00:00:00 - 23:59:59
2748(continued): 00:00:00 - 23:59:59
2749: HTAB = <ASCII HT, horizontal-tab> ; (11, 9.)
network. One format that is acceptable to both is

Weekday, DD-Mon-YY HH:MM:SS TIMEZONE

Several examples of valid dates appear in the sample

Another popular syntax is that used in SMTP:

Example:

This protocol provides a site-independent, machine readable date
and time. The Time service sends back to the originating source the
time in seconds since midnight on January first 1900.

One motivation arises from the fact that not all systems have a

The time is the number of seconds since 00:00 (midnight) 1 January
ry 1900
GMT, such that the time 1 is 12:00:01 am on 1 January 1900 GMT;
this
base will serve until the year 2036.

The time is the number of seconds since 00:00 (midnight) 1 January
ry 1900
GMT, such that the time 1 is 12:00:01 am on 1 January 1900 GMT;
this
base will serve until the year 2036.

1900 found at line 83:
81: The Time
82:
83: The time is the number of seconds since 00:00 (midnight) 1 Janua
83(continued): ry 1900
84: GMT, such that the time 1 is 12:00:01 am on 1 January 1900 GMT;
84(continued): this
85: base will serve until the year 2036.

1900 found at line 84:
82:
83: The time is the number of seconds since 00:00 (midnight) 1 Janua
83(continued): ry 1900
84: GMT, such that the time 1 is 12:00:01 am on 1 January 1900 GMT;
84(continued): this
85: base will serve until the year 2036.
86:

2000 found at line 1639:
1637: 400 HDH
1638: 1000 Cassette Writer
1639: 2000 Propagation Delay Measurement
1640: 4000 X25
1641: 10000 Profile Measurements

2000 found at line 1642:
1640: 4000 X25
1641: 10000 Profile Measurements
1642: 20000 Self Authenticating Password
1643: 40000 Host traffic Matrix
1644: 100000 Experimental/Special

2000 found at line 1669:
1667: 200 Trace ON
1668: 1000 Statistics ON
1669: 2000 Message Generator ON
1670: 4000 Packet Trace ON
1671: 10000 Host Data Checksum is BAD

2000 found at line 1672:
1670: 4000 Packet Trace ON
1671: 10000 Host Data Checksum is BAD
1672: 20000 Reload Location SET
1673:
1674:

+=+=+=+=+= File rfc0884.txt +=+=+=+=+
2000 found at line 236:
234: GENERAL-TERMINAL-100A
235: HAZELTINE-1500
236: HAZELTINE-2000
237: HP-2621
238: HP-2640A

+=+=+=+=+= File rfc0889.txt +=+=+=+=+
1900 found at line 337:
335: provides a site-independent, machine readable date and time.
335(continued): The
336(continued): Time service sends back to the originating source the time in
337(continued): since midnight on January first 1900.
338:
339: 867 Postel May 83 Daytime Protocol

+=+=+=+=+= File rfc0900.txt +=+=+=+=+
2000 found at line 1595:
1593: HAZELTINE-1510
1594: HAZELTINE-1520
1595: HAZELTINE-2000
A session begins when a host opens a transport connection to a target listening on a well known port. LDP uses RDP port number zzz or TCP port number yyy. When the connection has been established, the host sends a HELLO command, and the target replies with a HELLO_REPLY. The HELLO_REPLY

FOLD mailbox - Error
READ [n] #xxx
RETR =yyy
ACKS
ACKD

XXX/YYY indicates protocol information of the type TRANSPORT/SERVICE.
3. The data format should be based on the UDP Time format, which specifies 32-bit time in seconds since 1 January 1900, but extended additional bits for the fractional part of a second.

experiment the results indicated by UDP and ICMP are compared. In the UDP Time protocol time is indicated as a 32-bit field in seconds past 0000 UT on 1 January 1900, while in the ICMP Timestamp message time is indicated as a 32-bit field in milliseconds past 0000 UT of each day.

NTP timestamps are represented as a 64-bit fixed-point number, in seconds relative to 0000 UT on 1 January 1900. The integer part is in the first 32 bits and the fraction part in the last 32 bits.
144(continued): s, as
145: shown in the following diagram.

+=+=+=+= File rfc0960.txt +=+=+=+=

2000 found at line 1659:
1657: 014.000.000.018 2624-522-80900 52 DFVLR5-X25
1657(continued): [HDC1]
1658: 014.000.000.019 2041-170-10000 00 SHAPE-X25
1658(continued): [JFW]
1659: 014.000.000.020 5052-737-20000 50 UQNET
1659(continued): [AXH]
1660: 014.000.000.021 3020-801-00057 50 DMC-CRC1
1660(continued): [JR17]
1661: 014.000.000.022-014.255.255.254 Unassigned
1661(continued): [JBP]

2000 found at line 1984:
1982: AEGIS
1983: APOLLO
1984: BS-2000
1985: CEDAR
1986: CGW

2000 found at line 2350:
2348: HAZELTINE-1510
2349: HAZELTINE-1520
2350: HAZELTINE-2000
2351: HP-2621
2352: HP-2621A

+=+=+=+= File rfc0973.txt +=+=+=+=

2000 found at line 377:
375: We might add the following to the parent zone:
376:
377: 99.128.IN-ADDR.ARPA. 2000 NS Q.ISI.EDU.
378: 2000 NS XX.MIT.EDU.
379: Q.ISI.EDU. 2000 A <address of Q.ISI.EDU.>

2000 found at line 378:
376:
377: 99.128.IN-ADDR.ARPA. 2000 NS Q.ISI.EDU.
378: 2000 NS XX.MIT.EDU.
379: Q.ISI.EDU. 2000 A <address of Q.ISI.EDU.>
380: XX.MIT.EDU. 2000 A <address of XX.MIT.EDU.>

2000 found at line 379:
377: 99.128.IN-ADDR.ARPA. 2000 NS Q.ISI.EDU.
378: 2000 NS XX.MIT.EDU.
and the following to the child zone:

and the following to the child zone:

and the following to the child zone:

The date is sent as 6 digits in the format YYMMDD, where YY is the last two digits of the year, MM is the two digits of the month (with leading zero, if appropriate), and DD is the day of the month.
The closest century is assumed as part of the year (i.e., 86 specifies 1986, 30 specifies 2030, 99 is 1999, 00 is 2000).

Time must also be specified. It must be as 6 digits HHMMSS with HH

(client asks for new newsgroups since April 3, 1985)
C: NEWGROUPS 850403 020000
S: 231 New newsgroups since 03/04/85 02:00:00 follow

(client asks for new newsgroups since 2 am, May 15, 1985)
C: NEWGROUPS 850515 020000
S: 235 New newsgroups since 850515 follow
S: net.fluff

(client asks for new news articles since 2 am, May 15, 1985)
C: NEWNEWS * 850515 020000
S: 230 New news since 850515 020000 follows
S: <1772@foo.UUCP>

(client asks for new news articles since 2 am, May 15, 1985)
C: NEWNEWS * 850515 020000
S: 230 New news since 850515 020000 follows
Very Distant Host (VDH) methods are not recommended for new implementations. The Distant Host (DH) method is used when host and IMP are separated by not more than about 2000 feet of cable, while the HDLC Distant Host is used for greater distances where a modem is required. Retransmission, resequencing and flow control are recommended. A symmetrical mapping can be made between these constructs, in line with CEN/CENELEC recommendations.

Both UTCTime and the RFC 822 date-time syntax contain: Year (lowest two digits), Month, Day of Month, hour, minute, second (optional), and Timezone. RFC 822.date-time also contains an optional day of the week, but this is redundant. There should be used, in line with CEN/CENELEC recommendations.
3394: The extended syntax of zone defined in the JNT Mail Protocol
3395: should be used in the mapping of UTCTime defined in chapter
3396: r 3.
3397: 5. Lack of separate 822-P.1 originator specification

UTCTime found at line 3910:
3908: <5> In practice, a gateway will need to parse various illegal
3909: variants on 822.date-time. In cases where 822.date-time
3910: cannot be parsed, it is recommended that the derived UTCTime is
3911: the value at the time of translation.

2digit found at line 2785:
2783: last-trace ";"
2784: "ext" 1*DIGIT
2785: "flags" 2DIGIT
2786: ["intended" mailbox] ";"
2787: ["info" printablestring]

File rfc0990.txt

2000 found at line 2265:
2263: 014.000.000.018 2624-522-80900 52 DFVLR5-X25
2264: 014.000.000.019 2041-170-10000 00 SHAPE-X25
2265: 014.000.000.020 5052-737-20000 50 UQNET
2266: 014.000.000.021 3020-801-00057 50 DMC-CRC1
2267: 014.000.000.022 2624-522-80902 77 DFVLRVAX-X25

2000 found at line 2584:
2582: AEGIS
2583: APOLLO
2584: BS-2000
2585: CEDAR
2586: CGW

2000 found at line 2945:
2943: HAZELTINE-1510
2944: HAZELTINE-1520
2945: HAZELTINE-2000
2946: HP-2621
2947: HP-2621A

+=+=+=+=+= File rfc0996.txt +=+=+=+=+=
2000 found at line 76:
74:
75: Process type: 000027 options: 040000
77: Foreign address: [192.5.39.87] max size: 576
78: Input packets 3645 Output packets 3690

+=+=+=+=+= File rfc1000.txt +=+=+=+=+=
1900 found at line 3105:
3103: protocol provides a site-independent, machine readable dat
3103(continued): e and
3104: time. The Time service sends back to the originating sour
3104(continued): ce the
3105: time in seconds since midnight on January first 1900.
3106:
3107: 867 Postel May 83 Daytime Protocol

+=+=+=+=+= File rfc1009.txt +=+=+=+=+=
2000 found at line 1412:
1410: method is used when the host and IMP (the Defense Communic
1410(continued): ation
1411: Agency calls it a Packet Switch Node or PSN) are separated
1411(continued): by not
1412: more than about 2000 feet of cable, while the HDLC Distant
1412(continued): Host
1413: (HDH) is used for greater distances where a modem is requi
1413(continued): red.
1414: Under HDH, retransmission, resequencing and flow control a
1414(continued): re

+=+=+=+=+= File rfc1010.txt +=+=+=+=+=
2000 found at line 969:
967: 014.000.000.018 2624-522-80900 52 DFVLR5-X25
967(continued): [GB7]
968: 014.000.000.019 2041-170-10000 00 SHAPE-X25
968(continued): [JFW]
969: 014.000.000.020 5052-737-20000 50 UQNET
969(continued): [AXH]
970: 014.000.000.021 3020-801-00057 50 DMC-CRC1
970(continued): [JR17]
971: 014.000.000.022 2624-522-80902 77 DFVLRVAX-X25
971(continued): [GB7]

2000 found at line 1353:

Nesser Informational [Page 103]
+==++++ File rfc1024.txt +==++++

1900 found at line 535:
533:
534: The local system clock, measured in milliseconds since 00:00
534(continued): 1
535: January 1900 UTC. Assumed to be only a local estimate of the
535(continued): time.
536: The value 0 is reserved for an uninitialized clock (For examp
536(continued): le, an
537: uninitialized time-of-day chip.)

1900 found at line 546:
544: A network synchronized clock, which is assumed to be synchron
544(continued): ized
545: across some part of a network. The clock value is measured i
545(continued): n
546: milliseconds since 00:00 1 January 1900 UTC. Specific inform
546(continued): ation
547: about the synchronization protocol is found in the system var
547(continued): ible
548: dictionary. The value 0 is used to indicate an uninitialized
548(continued): clock.

+==++++ File rfc1036.txt +==++++

‘yy’ on a line without ‘yyyy’ found at line 196:
194: both is:
195:
196: Wdy, DD Mon YY HH:MM:SS TIMEZONE
197:
198: Several examples of valid dates appear in the sample message
198(continued): above.

+==++++ File rfc1037.txt +==++++

1900 found at line 541:
539: Date A numeric data token. The date is expre
Universal Time format, which measures a time as the number of seconds since January 1, 1900, at midnight GMT.

The creation date of the file. The date is expressed in Universal Time format, which measures a time as the number of seconds since January 1, 1900, at midnight GMT. Creation date does not necessarily mean the time the file system created the directory entry or records of the file. For systems that support modification or appending to the file.

Program numbers are given out in groups of hexadecimal 200000 (decimal 536870912) according to the following chart:

<table>
<thead>
<tr>
<th>Program Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1fffffff</td>
<td>defined by Sun</td>
</tr>
<tr>
<td>20000000 - 3fffffff</td>
<td>defined by user</td>
</tr>
<tr>
<td>40000000 - 5fffffff</td>
<td>transient</td>
</tr>
<tr>
<td>60000000 - 7fffffff</td>
<td>reserved</td>
</tr>
</tbody>
</table>

The values of this field are assigned by DCA Code R130, Washington, D.C. 20305-2000. Each value corresponds to a requestor who, once assigned, becomes the authority for the remainder of the optional definition for that value.
7.3 Program Number Assignment

Program numbers are given out in groups of hexadecimal 200000 00 (decimal 536870912) according to the following chart:

<table>
<thead>
<tr>
<th>Program Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1fffffff</td>
<td>defined by Sun</td>
</tr>
<tr>
<td>20000000 - 3fffffff</td>
<td>defined by user</td>
</tr>
<tr>
<td>40000000 - 5fffffff</td>
<td>transient</td>
</tr>
<tr>
<td>60000000 - 7fffffff</td>
<td>reserved</td>
</tr>
</tbody>
</table>

 mechanisms to synchronize time in principle to precisions in the order of nanoseconds while preserving a non-ambiguous date we ll into the next century. The protocol includes provisions to specify characteristics and estimate the error of the local clock and the time server to which it may be synchronized. It also include s

frequency to the TA time scale. At 0000 hours on 1 January 1900, the NTP time scale was set to 2,272,060,800, representing the number of TA seconds since 0000 hours on 1 January 1900. The insertion of leap seconds in UTC does not affect the oscillator itself, only the translation between TA and UTC, or conventional civil time. However,

main product of the protocol, a special timestamp format has been established. NTP timestamps are represented as a 64-bit unsigned fixed-point number, in seconds relative to 0000 UT on 1 January 1900.

The integer part is in the first 32 bits and the fraction par
t in the last 32 bits, as shown in the following diagram.

1900 found at line 690:
the Integer Part) has been set and that the 64-bit field will overflow some time in 2036. Should NTP be in use in 2036, so external means will be necessary to qualify time relative to 1900 and time relative to 2036 (and other multiples of 136 years).

692: Timestamped data requiring such qualification will be so precious

File rfc1060.txt

(yy) on a line without ‘yyyy’ found at line 2324:
AB-00-04-00-00-00 ???? Reserved DEC customer private use
AB-00-04-00-xx-xx 6007 DEC Local Area VAX Cluster groups
oups
System Communication Architecture (SCA)
Ethernet Configuration Test protocol (Loopback):

2000 found at line 2729:
2729: 014.000.000.0182624-522-80900 52 FGAN-SIEMENS-X25 [GB7]
2729(continued):
2729: 014.000.000.0192041-170-10000 00 SHAPE-X25 [JFW]
2729(continued):
2729: 014.000.000.0205052-737-20000 50 UQNET [AXH]
2729(continued):
2729: 014.000.000.0213020-801-00057 50 DMC-CRC1 [VXT]
2731: 014.000.000.0222624-522-80329 02 FGAN-FGANFFMVAX-X25 [GB7]

2000 found at line 3155:
3153: AEGIS MACOS TP3010
3154: APOLLO MINOS TRS80
3155: BS-2000 MOS ULTRIX
3156: CEDAR MPE5 UNIX
3157: CGW MSDOS UNIX-BSD

2000 found at line 3508:
3506: HAZELTINE-1520 IBM-3278-5-E

Nesser Informational [Page 107]
UTCTime found at line 1501:
1499:
1500: commonReference
1501: UTCTime,
1502:
1503: additionalReferenceInformation[0]

2000 found at line 878:
876:
877: 0040000 This is a directory; "type" field should be NFDIR.
877(continued):
878: 0020000 This is a character special file; "type" field sho
878(continued): uld
879: be NFCHR.
880: 0060000 This is a block special file; "type" field should
880(continued): be

2000 found at line 883:
881: NFBLK.
882: 0100000 This is a regular file; "type" field should be NFR
882(continued): EG.
883: 0120000 This is a symbolic link file; "type" field should
883(continued): be
884: NFLNK.
885: 0140000 This is a named socket; "type" field should be NFN
885(continued): ON.

2000 found at line 887:
885: 0140000 This is a named socket; "type" field should be NFN
885(continued): ON.
886: 0004000 Set user id on execution.
Set group id on execution.
Save swapped text even after use.
Read permission for owner.

throughout DoD common user data networks, users of these networks should submit requirements for additional Protection Authority to DISA DISDB, Washington, D.C. 20305-2000, for review and approval. Such review and approval should be sought prior to design, development or deployment of any system which would make use of these networks, and to maximize interoperability, each activity should submit its plans for the definition and use of an Additional Security Info Format Code to DISA DISDB, Washington, D.C. 20305-2000 for review and approval. DISA DISDB will forward plans to the Internet Activities Board for architectural review and, if required, a cleared

CertificateSerialNumber,
3.4 Certificate Definition and Usage

UTCTime found at line 1296:
1294:
1295: Validity ::= SEQUENCE{
1296: notBefore UTCTime,
1297: notAfter UTCTime}
1298:

UTCTime found at line 1297:
1295: Validity ::= SEQUENCE{
1296: notBefore UTCTime,
1297: notAfter UTCTime}
1298:
1299: SubjectPublicKeyInfo ::= SEQUENCE{
1300:--

2digit found at line 3239:
3237: The syntax for the date is hereby changed to:
3238:
3239: date = 1*2DIGIT month 2*4DIGIT
3240:
3241:

century found at line 3253:
3251:
3252: All mail software SHOULD use 4-digit years in dates, to
3252(continued): ease
3253: the transition to the next century.
3254:
3255: There is a strong trend towards the use of numeric time
3255(continued): zone

Nesser Informational
3.3.5. UTCTime

Both UTCTime and the RFC 822 date-time syntax contain: Year (lowest two digits), Month, Day of Month, hour, minute, second (optional), and Timezone. RFC 822.date-time also contains an optional Timezone offset. In practice, a gateway will need to parse various illegal variants on RFC 822.date-time. In cases where RFC 822.date-time cannot be parsed, it is recommended that the derived UTC Time is set to the value at the time of translation.

The UTCTime format which specifies the timezone offset should be used.
6. Lack of 822-MTS originator specification

+==+==+==+== File rfc1147.txt +==+==+==+
'y' on a line without 'yyyy' found at line 9715:
9713: cerns to security and management personnel at DDN faci
9714: ties. It is available online, via kermit or anonymous
9715: FTP, from nic.ddn.mil, in SCC:DDN-SECURITY-yy-nn.TXT (where
9716: is the year and "nn" is the bulletin number). The SCC
9717: provides immediate assistance with DDN-related host secur
9718:

"NETMON." These tools were independently developed, ar
1095: e functionally different, run in different environments, and
1096: are no more related than Richard Burton the 19th centu
1097: r explorer and Richard Burton the 20th century actor. B
1098: YU's tool "NETMON" is listed as "NETMON (I)," MITRE's as "N
1099: ETMON

functionally different, run in different environments, and
1095: are no more related than Richard Burton the 19th centu
1096: r explorer and Richard Burton the 20th century actor. B
1097: YU's tool "NETMON" is listed as "NETMON (I)," MITRE's as "N
1098: ETMON
1099: (II)," and the tool from SNMP Research as "NETMON (III)

libraries), but this has not been done. Curses i
1432: very slow and cpu intensive on VMS, but the tool has b
1433: en
run in a window on a VAXstation 2000. Just don’t try to run it on a terminal connected to a 11/750.

Both UTCTime and the RFC 822 date-time syntax contain: Year (lowest two digits), Month, Day of Month, hour, minute, second (optional), and Timezone. 822.date-time also contains an optional Timezone offset should be used.

In practice, a gateway will need to parse various illegal variants on 822.date-time. In cases where 822.date-time cannot be parsed, it is recommended that the derived UTC Time is set to the value at the time of translation.
UTCTime found at line 4566:
4564: 4565: The extended syntax of zone defined in the JNT Mail Protocol
4565(continued): should
4566: be used in the mapping of UTCTime defined in Chapter 3.
4567:
4568: 6. Lack of 822-MTS originator specification

 File rfc1152.txt

’y’ on a line without ‘yyyy’ found at line 937:
935: Reservation Multiple-Access).
936:
937: Finally, Yechiam Yemeni (YY, Columbia University) discussed h
937(continued): is work
938: on a protocol silicon compiler. In order to exploit the pot
938(continued): ential parallelism, he is planning to use one processor per connecti
939(continued): on.

 File rfc1153.txt

’y’ on a line without ‘yyyy’ found at line 119:
117:
118:
119: Date: ddd, dd mmm yy hh:mm:ss zzz
120: From: listname-REQUEST@fqhn
121: Reply-To: listname@fqhn

’y’ on a line without ‘yyyy’ found at line 122:
120: From: listname-REQUEST@fqhn
121: Reply-To: listname@fqhn
122: Subject: listname Digest Vyy #nn
123: To: listname@fqhn
124:

’y’ on a line without ‘yyyy’ found at line 125:
123: To: listname@fqhn
124:
125: listname Digest ddd, dd mmm yy Volume yy : Iss
125(continued): ue nn
126:
127: Today’s Topics:

’y’ on a line without ‘yyyy’ found at line 137:
135: ---
135(continued): ------
136:

Nesser Informational [Page 114]
1266:
1267: Email: JYY@MERIT.EDU
1268:
1269:

2000 found at line 89:
87: are also likely play a role along with Switched Multi-megabit
87(continued): Data
88: Service (SMDS) provided by telecommunications carriers. It a
88(continued): lso
89: would be fair to ask what role FTS-2000 might play in the sys
89(continued): tem, at
90: least in support of government access to the NREN, and possib
90(continued): ly in
91: support of national agency network facilities.

70: only choice; I don't see any prospect of either the governmen
70(continued): t or
71: private enterprise building a monolithic, centralized, ubiqui
71(continued): tous "Ma
72: Datagram" network provider in this century.
73:
74: 2. Responsibilities of Network Managers

1433: "NO" SP text_line / "BAD" SP text_line)
1434:
1435: date ::= string in form "dd-mmm-yy hh:mm:ss-zzz"
1436:
1437: envelope ::= "(" env_date SP env_subject SP env_from S
1437(continued): P

2000 found at line 208:
206: 1.1MBps, no matter how high the theoretical transfer rate
206(continued): of the
path. This corresponds to cycling the sequence number spa
c in
208: Twrap= 2000 secs, which is safe in today’s Internet.
209: Based on this reasoning, an earlier RFC [McKenzie89] has c
210: Based on this reasoning, an earlier RFC [McKenzie89] has c
210(continued): auto
210(continued): auto
211: Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):

Based on this reasoning, an earlier RFC [McKenzie89] has c
211(continued):
137: Files are available for anonymous ftp; use ‘guest’ as the
138:
+++=*=*=*=*= File rfc1210.txt +=*=*=*=*==
2000 found at line 1548:
1546: Franci Bigi (1)
1547: CEC
1548: Rue de la Loi 2000
1549: B-1049
1550: Brussels
2000 found at line 1756:
1754: Rolf Speth (1)
1755: CEC
1756: Rue de la Loi 2000
1757: B-1049
1758: Brussels
2000 found at line 1773:
1771: Jose Torcato (1), (2)
1772: CEC, TR 61 0/10
1773: Rue de la Loi 2000
1774: B-1049
1775: Brussels
2000 found at line 1801:
1799: Karel De Vriendt (1)
1800: CEC
1801: Rue de la Loi 2000
1802: B-1049
1803: Brussels
2000 found at line 1837:
1835: Rosalie Zobel (1) (2)
1836: CEC
1837: Rue de la Loi 2000
1838: B-1049
1839: Brussels
+++=*=*=*=*= File rfc1211.txt +=*=*=*=*==
1900 found at line 1591:
1589: westine 49% mconnect OSI3.NCSL.NIST.GOV
1590: connecting to host OSI3.NCSL.NIST.GOV (0x6c300681), port 0x19
1591(continued): 00
1592: connection open
1593: 220 osi3.ncsl.nist.gov sendmail 4.0/NIST(rbj/dougm) ready at
2000 found at line 2363:
2361: Office Automation Division
2362: Code H610
2363: Washington, DC 20305-2000
2364:
2365: Hostname: DCA-EMS.DCA.MIL

2000 found at line 1249:
1247: Rapport Communication, Inc.
1248: 3055 Q Street NW
1249: Washington, DC 20007
1250:
1251: Tel: +1 202-342-2727

2000 found at line 983:
981: and placed in an ethernet packet). 120 request packets ar
981(continued): e sent
982: each cycle (3 for each of 40 nodes), and 120 response pack
982(continued): ets are
983: expected. 72000 bytes (240 packets at 300 bytes each) mus
983(continued): t be
984: transferred during each poll cycle, merely to determine th
984(continued): at the
985: network is fine.

.yy' on a line without 'yyyy' found at line 2481:
2479: and concerns to security and management personnel at
2479(continued): DDN
2480: facilities. It is available online, via kermit or a
2480(continued): nonymous
2481: FTP, from the host NIC.DDN.MIL, in SCC:DDN-SECURITY-
2481(continued): yy-
2482: nn.TXT (where "yy" is the year and "nn" is the bulle
2482(continued): tin
2483: number). The SCC provides immediate assistance with
2483(continued): DDN-

.yy' on a line without 'yyyy' found at line 2482:
2480: facilities. It is available online, via kermit or a
2480(continued): nonymous
2481: FTP, from the host NIC.DDN.MIL, in SCC:DDN-SECURITY-
2481(continued): yy-
2482: nn.TXT (where "yy" is the year and "nn" is the bulle
2482(continued): tin
2483: number). The SCC provides immediate assistance with
where growing above 100 network numbers seemed excessive. Today's number of networks in the global infrastructure exceeds 2000 connected networks, and many more if isolated network islands get included.

number of packet arrivals, over which packets are dropped with uniform probability. For instance, in a sample implementation, if this interval spanned 2000 packet arrivals, and a suitable probability of drop was 0.001, then two random variables would be drawn in a uniform distribution in the range of 1 to 2,000.

indicates that to get good, consistent performance, we may need to have up to 5 to 10 times the number of active source-destination pairs. In a typical gateway, this may require around 1000 to 2000 queues.

should never go back to any monopoly arrangement like the pre
divestiture AT&T which held back market-driven innovation in telecommunications for half a century. Given the interconnection technology now available, we should never again have to accept the argument that we have to sacrifice interoperability for efficiency.

In light of the possibilities for new service offerings by the 21st century, as well as the growing importance of telecommunications and information services to US economic and social development, limiting our concept of universal service to the 20th century need not display the brutality of 19th century imperialism. As commercial opportunities to offer applications and services develop, entrepreneurs will discover that ease of use sells. The norm...

California v. FCC (9th Cir. 1990).

18. NTIA Telecomm 2000 at 79.

19. Committee on Energy and Commerce, Subcommittee on

Hopkinton, Mass. 01748

Phone: (508) 435-2000

Email: kasten@europa.clearpoint.com

 lastModifiedTime ATTRIBUTE
1050: WITH ATTRIBUTE-SYNTAX
1051: uTCTimeSyntax
1052: ::= {pilotAttributeType 23}
1053:

UTCTime found at line 2990:
2990: lastModifiedTime ATTRIBUTE
2991: WITH ATTRIBUTE-SYNTAX
2992: ::= {pilotAttributeType 23}
2993:

UTCTime found at line 558:
556: }
557:
558:
559:
560: __________________Figure_2:__Replication_Protocol______________
561: UTCTime found at line 938:
936:)
937:
938: EDBVersion ::= UTCTime
939: \(\text{END}\)
940:

UTCTime found at line 938:
936:)
937:
938: EDBVersion ::= UTCTime
939: \(\text{END}\)
940:

UTCTime found at line 938:
936:)
937:
938: EDBVersion ::= UTCTime
939: END
940:

1900 found at line 317:
315: on the protocol-ID
316:
317: 03019000
318:
319: This is an X.25 protocol-ID assigned for local purposes.

2000 found at line 206:
204: (1) <nsap> is a hex string defining the nsap, e.g.,
205:
206: "snmp"/NS+4900590800200038bafe00
207:
208: Similarly, SNMP traps are, by convention, sent to a manager l
209: (continued): listening

2000 found at line 278:
276: (1) <nsap> is a hex string defining the nsap, e.g.,
277:

Nesser Informational [Page 122]
"snmp"/NS+4900590800200038bafe00

+++=+=+=+= File rfc1284.txt ++++=+=+=
2000 found at line 1146:
1144: Hopkinton Mass 01748
1145:
1146: Phone: 508-435-2000
1147: EMail: kasten@europa.clearpoint.com
1148:

+++=+=+=+= File rfc1285.txt ++++=+=+=
'yy' on a line without 'yyyy' found at line 219:
217: -- The unique identifier for the FDDI station. This is a
218: -- string of 8 octets, represented as
219: -- X' yy yy xx xx xx xx
219(continued): xx xx'
220: -- with the low order 6 octet (xx) from a unique IEEE
221: -- assigned address. The high order two bits of the I
221(continued):
 "EEE"

'yy' on a line without 'yyyy' found at line 232:
230: -- (Universal/Local) bit should both be zero. The fir
231(continued): two
232: -- octets, the yy octets, are implementor-defined.
233:
234: -- The representation of the address portion of the st
234(continued): ation id

+++=+=+=+= File rfc1290.txt ++++=+=+=
'yy' on a line without 'yyyy' found at line 549:
547: Anonymous FTP to nis.nsf.net
548: cd stats
549: get nsfyy-mm.ptraffic where yy is year, 91 and mm is mont
549(continued): h, 06
550: get nsf91-06.ptraffic ptraffic is the packet traffic
551: get nsf91-06.btraffic btraffic is the byte traffic
552:
553: get nsf91-06.btraffic btraffic is the byte traffic
554:
When comparing attributes of UTCtime syntax, if the seconds field is omitted, QUIPU does not perform the match correctly (i.e., the seconds field in the attribute values should be ignored, but are)

2000 found at line 4158:
4158: UCOM.X 500 runs on: Sun 3, Sun 4, IBM RS 6000, Philips P 9000
4158(continued): DEC
4158: machines, Bull DPX 2000, HP 9000/300, Siemens IN 6000 and 386
4158(continued): -based
4159: PCs. It can easily be ported to any UNIX machine.
4160:

2000 found at line 4803:
4803: HARDWARE PLATFORMS
4804: 3Com’s OSI/TCP CS/2000 and CS/2100.
4805: SOFTWARE PLATFORMS

2000 found at line 4807:
4807: The "SW/2000-OT Vers 1.0" software runs on 3Com’s OSI/TCP CS/2000 and 2000 and CS/2100, both stand-alone systems.
4809:

2000 found at line 4812:
4812: AVAILABILITY
4813: The dual-stack OSI/TCP terminal server and its "SW/2000-OT Vers rs 1.0"
4813(continued): software is available from:
century found at line 428:
426: mechanisms to synchronize time in principle to precisions in the
426(continued): order
427: of nanoseconds while preserving a non-ambiguous date well into t
427(continued): he next
428: century. The protocol includes provisions to specify the charact
428(continued): eristics
429: and estimate the error of the local clock and the time server to
429(continued): which
430: it may be synchronized. It also includes provisions for operatio
430(continued): n with a

century found at line 4529:
4527: political and ritual needs characteristic of the societies in wh
4527(continued): ich they
4528: flourished. Astronomical observations to establish the winter an
4528(continued): d summer
4529: solstices were in use three to four millennia ago. By the 14th c
4529(continued): entry
4530: BC the Shang Chinese had established the solar year as 365.25 da
4530(continued): ys and
4531: the lunar month as 29.5 days. The lunisolar calendar, in which t
4531(continued): he

century found at line 4548:
4546: with the Shang Chinese, the ancient Egyptians had thus establish
4546(continued): ed the
4547: solar year at 365.25 days, or within about 11 minutes of the pre
4547(continued): sent
4548: measured value. In 432 BC, about a century after the Chinese had
so, the Greek astronomer Meton calculated there were 110 lunar months of 29 days and 125 lunar months of 30 days for a total of 235 lunar months.

The seven-day Sumerian week was introduced only in the fourth century AD by Emperor Constantine I. During the Roman era a 15-year census cycle, called the Indiction cycle, was instituted for taxation purposes. The Gregorian calendar is in use throughout most of the world today, and some countries did not adopt it until early in the twentieth century. While it remains a fascinating field for time historians, the above narrative provides conclusive evidence that conjugating calendar dates is sometimes used to represent dates near our own era in convention al time and with fewer digits, is defined as MJD = JD <196> 2,400,000.5.

Following the convention that our century began at 0h on 1 January 1900, at which time the tropical year was already 12h old, that eclectic instant corresponds to MJD 15,020.0. Thus, the Julian timescale ticks in through observations of the Sun, Moon and planets. In 1958 the standard second was defined as 1/31,556,925.9747 of the tropical year that began this century. On this scale the tropical year is 365.2421987 days and the lunar month - one complete revolution of the Moon around the...
4641(continued): Earth -
4642: is 29.53059 days; however, the actual tropical year can be deter
4642(continued): mined

1900 found at line 851:
849: product of the protocol, a special timestamp format has been
850: established. NTP timestamps are represented as a 64-bit unsigned
850(continued): fixed-
851: point number, in seconds relative to 0h on 1 January 1900. The i
851(continued): nteger
852: part is in the first 32 bits and the fraction part in the last 3
852(continued): 2 bits.
853: This format allows convenient multiple-precision arithmetic and

1900 found at line 873:
871: integer part) has been set and that the 64-bit field will overl
871(continued): ow some
872: time in 2036. Should NTP be in use in 2036, some external means
872(continued): will be
873: necessary to qualify time relative to 1900 and time relative to
873(continued): 2036
874: (and other multiples of 136 years). Timestamped data requiring s
874(continued): uch
875: qualification will be so precious that appropriate means should
875(continued): be

1900 found at line 4620:
4618: sometimes used to represent dates near our own era in convention
4618(continued): al time
4619: and with fewer digits, is defined as MJD = JD <196> 2,400,000.5.
4619(continued):
4620: Following the convention that our century began at 0h on 1 Janua
4620(continued): ry 1900,
4621: at which time the tropical year was already 12h old, that eclect
4621(continued): ic
4622: instant corresponds to MJD 15,020.0. Thus, the Julian timescale
4622(continued): ticks in

1900 found at line 4724:
4722: always coincident with it. At 0h on 1 January 1972 (MJD 41,317.0
4722(continued):), the
4723: first tick of the UTC Era, the NTP clock was set to 2,272,060,80
4723(continued): 0,
4724: representing the number of standard seconds since 0h on 1 Janua
4724(continued): y 1900
4725: (MJD 15, 020.0). The insertion of leap seconds in UTC and subseq
4726: (continued): ently
4726: into NTP does not affect the UTC or NTP oscillator, only the con
4726: (continued): version

2000 found at line 4489:
4487: the Mid-Continent Chain, the deployment of LORAN-C transmitters
4487: (continued): now
4488: provides complete coverage of the U.S. LORAN-C timing receivers,
4488: (continued): such as
4489: the Austron 2000, are specialized and extremely expensive (up to
4489: (continued):
4490: $20,000). They are used primarily to monitor local cesium clocks
4490: (continued): and are
4491: not suited for unattended, automatic operation. While the LORAN-
4491: (continued): C system

As the pace of industry, science, and technological developme
47: (continued): nt
48: quickened over the past century, it became increasingly proba
48: (continued): ble that
49: someone in a geographically distant location would be trying
49: (continued): to solve
50: the same problems you were trying to solve, or that someone i
50: (continued): n a

00DE YPosition 011F 0005 00000001 00
1107(continued): 00016C
1108: 00EA Group4Options 0125 0004 00000001 00
1108(continued): 000002
1109: 00F6 ResolutionUnit 0128 0003 00000001 00
1109(continued): 020000
1110: 0102 Software 0131 0002 00000008 00
1110(continued): 000174
1111: 010E DateTime 0132 0002 00000014 00
1111(continued): 00017C

1.1MBps, no matter how high the theoretical transfer rate
318: (continued): of the
319: path. This corresponds to cycling the sequence number spa
319: (continued): ce in
320: Twrap= 2000 secs, which is safe in today’s Internet.
321:
322: It is important to understand that the culprit is not the
322(continued): larger

"yy" on a line without 'yyyy' found at line 611:
609: In addition, back issues of the Report are available for a
609(continued): anonymous
610: FTP from the host NIS.NSF.NET in the ‘imr’ directory with
610(continued): the file
611: names in the form IMRYY-MM.TXT, where YY is the last two d
611(continued):igits of
612: the year and MM two digits for the month. For example, th
612(continued): e June
613: 1991 Report is in the file IMR91-06.TXT.

"yy" on a line without 'yyyy' found at line 2618:
2616: attributes remaining in the O/R address shall be encoded
2616(continued): on
2617: the LHS. This is to ensure a reversible mapping. For
2618: example, if the is an address /S=XX/O=YY/ADMD=A/C=NN/ and
2618(continued): a
2619: mapping for /ADMD=A/C=NN/ is used, then /S=XX/O=YY/ is
2620: encoded on the LHS.

2621:

"yy" on a line without 'yyyy' found at line 2665:
2663:
2664: C = "XX"
2665: ADMD = "YY"
2666: O = "ZZ"
2667: "RFC-822" = "Smith(a)ZZ.YY.XX"

"yy" on a line without 'yyyy' found at line 2667:
2665: ADMD = "YY"
2666: O = "ZZ"
"RFC-822" = "Smith(a)ZZ.YY.XX"

This is mapped first to an RFC 822 address, and then back to
'

yy' on a line without 'yyyy' found at line 2673:

C = "XX"
ADMD = "YY"
O = "ZZ"
Surname = "Smith"

UTCTime found at line 1483:

the full BNF easier to parse.

3.3.5. UTCTime

Both UTCTime and the RFC 822 822.date-time syntax contain: Y
ear

Both UTCTime and the RFC 822 822.date-time syntax contain: Y

(lowest two digits), Month, Day of Month, hour, minute, second
(optional), and Timezone. 822.date-time also contains an optional

In practice, a gateway will need to parse various illegal
variants on 822.date-time. In cases where 822.date-time
cannot be parsed, it is recommended that the derived UTC
time is set to the value at the time of translation.

is set to the value at the time of translation.

When mapping to X.400, the UTCTime format which specifies the
timezone offset shall be used.
UTCTime found at line 5143:
5141:
5142: The extended syntax of zone defined in the JNT Mail Protoc
5142(continued): ol shall
5143: be used in the mapping of UTCTime defined in Chapter 3.
5144:
5145: 7. Lack of 822-MTS originator specification

2000 found at line 1770:
1768: While ESnet will provide X.400 routing service for systems, i
1768(continued): cannot
1769: provide routing via commercial X.400 carriers at this time.
1769(continued): The
1770: FTS-2000 charge for routing X.400 messages is $.45 (US) plus
1770(continued): X.25
1771: packet charges. This could result in a charge of several dol
1771(continued): lars for
1772: large messages, a real possibility with the multi-media capac
1772(continued): ity of

2000 found at line 378:
376: where growing above 100 network numbers seemed excess
376(continued): ive.
377: Todays number of networks in the global infrastructur
377(continued): e
378: exceeds 2000 connected networks, and many more if iso
378(continued): lated
379: network islands get included.
380:

'yy' on a line without 'yyyy' found at line 401:
399: 3.2. Historic growth rates
400:
401: MM/YY ROUTES MM/YY ROUTES
402: ADVERTISED ADVERTIS
402(continued): ED
403: ------------------------ ------------------
403(continued): -----

'yy' on a line without 'yyyy' found at line 1060:
1058: 1071 Beal Ave.
1059: Ann Arbor, MI 48109
1060: email: jyy@merit.edu
1061: 1062:

Nesser Informational
[Page 131]
'yy' on a line without 'yyyy' found at line 3390:

- AB-00-04-00-xx-xx
 - ??? Reserved DEC customer private
 - use
- AB-00-04-01-xx-yy
 - 6007 DEC Local Area VAX Cluster
 - groups
- Sys. Communication Architecture (SCA)

1900 found at line 4066:
- 014.000.000.063 2422-650-23500 00 Tollpost-Globe AS
 - [OXG]
- 014.000.000.064 2422-330-02500 00 Tollpost-Globe AS
 - [OXG]
- 014.000.000.065 2422-350-01900 00 Tollpost-Globe AS
 - [OXG]
- 014.000.000.066 2422-410-00700 00 Tollpost-Globe AS
 - [OXG]
- 014.000.000.067 2422-539-06200 00 Tollpost-Globe AS
 - [OXG]

2000 found at line 1300:
- nkd 1650/tcp
- nkd 1650/udp
- callbook 2000/tcp
- callbook 2000/udp
- dc 2001/tcp

2000 found at line 1301:
- nkd 1650/udp
- callbook 2000/tcp
- callbook 2000/udp
- dc 2001/tcp
- wizard 2001/udp curry

2000 found at line 4013:
- 014.000.000.018 2624-522-80900 52 FGAN-SIEMENS-X25
 - [GB7]
- 014.000.000.019 2041-170-10000 00 SHAPE-X25
 - [JFW]
- 014.000.000.020 5052-737-20000 50 UQNET
 - [AXH]
- 014.000.000.021 3020-801-00057 50 DMC-CRC1
 - [VXT]
- 014.000.000.022 2624-522-80329 02 FGAN-FGANFFMVAX-X25
 - [VXT]
2000 found at line 4838:
4836: AIX/370 LOCUS SWIFT
4837: AIX-PS/2 MACOS TAC
4838: BS-2000 MINOS TANDEM
4839: CEDAR MOS TENEX
4840: CGW MPE5 TOPS10

2000 found at line 5188:
5186: HAZELTINE-1520 IBM-3278-3
5187: HAZELTINE-1552 IBM-3278-4
5188: HAZELTINE-2000 IBM-3278-5
5189: HAZELTINE-ESPRIT IBM-3279-2
5190: HITACHI-5601 IBM-3279-3

2000 found at line 143:
141: Or in net 11110031f67293.nsap-in-addr.arpa:
142: 143: 67894444333322220000 NSAP-PTR host.school.de.
144: The RR data is the ASCII representation of the digits. It is
145(continued): encoded

'yy' on a line without 'yyyy' found at line 260:
258: 259: ID (M) -- This is the second field of any record. It is also a
260: mandatory field. Its format is "ID:: XXX//YYY", where X
260(continued): XX is
261: the publisher-ID (the controlled symbol of the publisher
261(continued):)
262: and YYY is the ID (e.g., report number) of the publicati
262(continued): on as

'yy' on a line without 'yyyy' found at line 262:
260: 260: mandatory field. Its format is "ID:: XXX//YYY", where X
260(continued): XX is
261: the publisher-ID (the controlled symbol of the publisher
261(continued):)
262: and YYY is the ID (e.g., report number) of the publicati
262(continued): on as
263: assigned by the publisher. This ID is typically printed
263(continued): on
264: the cover, and may contain slashes.
In order to avoid conflicts among the symbols of the publishing organizations (the XXX part of the "ID:: XXX//YYY") it is suggested that the various organizations that publish reports (such as universities, departments, and laboratories) register their 2-digit:

The format for ENTRY date is "Month Day, Year". The month must be alphabetic (spelled out). The "Day" is a 1- or 2-digit number. The "Year" is a 4-digit number.

DATE (O) -- The publication date. The formats are "Month Year" and "Month Day, Year". The month must be alphabetic (spelled out). The "Day" is a 1- or 2-digit number. The "Year" is a 4-digit number.

main product of the protocol, a special timestamp format has been established. NTP timestamps are represented as a 64-bit unsigned fixed-point number, in seconds relative to 0h on 1 January 1900. The integer part is in the first 32 bits and the fraction part in the last 32 bits. This format allows convenient multiple-precision

overflow some time in 2036. Should NTP or SNTP be in use in 2036, some external means will be necessary to qualify time relativ
145: 1900 and time relative to 2036 (and other multiples of 136 years).
146: Timestamped data requiring such qualification will be so precise
147: that appropriate means should be readily available. There will exist

2000 found at line 847:
845:
846: objective an MSL of at least 2000 seconds. If there were no
847(continued): TIME-WAIT delay, the ultimate limit on transaction rate would be set by
848(continued): speed-of-light delays in the network and by the latency of hosts

2000 found at line 988:
986: the official delay of 240 seconds, formula [1] implies an upper bound (as RTT -> 0) of TRmax = 268 Tps; with our target MSL of 2000 sec, TRmax = 32 Tps. These values are unacceptably low.
989: To improve this transaction rate, we could use TCP timestamps to

2000 found at line 1079:
1077: segment lifetime MSL. For reasonable limiting values of R and MSL, formula [6] leads to a very low value of TRmax. For example, with MSL= 2000 secs, R=10**9 Bps, and Ts = 0.5 seconds, TRmax < 2*10**-3 Tps.

2000 found at line 1136:
1134: For example, if MSL = 2000 seconds then TRmax < 10**6 Tp.
1135: These are acceptable limits for transaction processing. However
1137(continued): if they are not, we could augment CC with TCP timestamps to obtain

Nesser Informational [Page 135]
2000 found at line 1276:
1274: (a) no timestamps 2**31/MSL MSL 3rd seq
1275(continued): e.g., MSL=2000 sec
1276(continued): space
1277: TRmax = 10**6
1278:

File rfc1405.txt

yy' on a line without 'yyyy' found at line 378:
376: maps into
377:
378: C=xx; ADMD=yyy; PRMD=zzz; O=ooo; OU=uuu; DD.Dnet=net;
379: DD.Mail-11=route::node::localpart;
380:

yy' on a line without 'yyyy' found at line 384:
382:
383: xx = country code of the gateway performing the conversion
384: yyy = Admd of the gateway performing the conversion
385: zzz = Prmd of the gateway performing the conversion
386: ooo = Organisation of the gateway performing the conversion
386(continued): ion

yy' on a line without 'yyyy' found at line 474:
472: it is connected to. In this case the mapping is trivial:
473:
474: C=xx; ADMD=yyy; PRMD=zzz; O=ooo; OU=uuu; DD.Dnet=net;
475: DD.Mail-11=route::node::localpart;
476:

yy' on a line without 'yyyy' found at line 477:
475: DD.Mail-11=route::node::localpart;
476:
477: (see sect. 5.2 for explication of 'xx','yyy','zzz','ooo','uuu
477(continued): ','net')
478:
479: maps into

yy' on a line without 'yyyy' found at line 487:
485: described into section 5.4 apply:
486:
487: C=xx; ADMD=yyy; PRMD=www; DD.Dnet=net;
488: DD.Mail-11=route::node::localpart;
489:
'yy' on a line without 'yyyy' found at line 492:
490: maps into
491:
492: gwnode::gw"C=xx;ADMD=yyy;PRMD=www;DD.Dnet=net;
493: DD.Mail-11=route::node::localpart;"
494:

'yy' on a line without 'yyyy' found at line 595:
593: maps into
594:
595: C=xx; ADMD=yyy; DD.Dnet=net;
596: DD.Mail-11=route::gwnode::gw(p)(q)x400-text-address(q);
597:

+=+=+=+=+= File rfc1409.txt +=+=+=+=+=
'yy' on a line without 'yyyy' found at line 311:
309: IAC SB AUTHENTICATION RESPONSE yy yy yy yy yy
310: KERBEROS_V4 CLIENT|MUTUAL
311: RESPONSE yy yy yy yy yy
312: IAC SE
313:

+=+=+=+=+= File rfc1411.txt +=+=+=+=+=
'yy' on a line without 'yyyy' found at line 163:
161: IAC SB AUTHENTICATION RESPONSE yy yy yy yy yy
162: KERBEROS_V4 CLIENT|MUTUAL
163: RESPONSE yy yy yy yy yy
164: IAC SE
165:

+=+=+=+=+= File rfc1415.txt +=+=+=+=+=
2000 found at line 2814:
2812: 2 1016 Grouping threshold violation | 503
2812(continued):
2813: 2 1017 Inconsistent PDU request | 503
2813(continued):
2814: 2 2000 Association with user not allowed | 532
2814(continued):
2815: 2 2002 Unsupported service class | 504
2815(continued):
2816: 0 2003 Unsupported functional unit | 211
2816(continued):

Nesser Informational [Page 137]
The Internet and the Millennium Problem (Year 2000) June 1999

'yy' on a line without 'yyyy' found at line 318:
316: IAC SB AUTHENTICATION RE
316(continued): PLY
317: KERBEROS_V4 CLIENT|MUTUA
317(continued): L
318: RESPONSE yy yy yy yy yy
318(continued): yy yy
319: IAC SE
320:

2000 found at line 156:
154: c/o Rapport Communication
155: 3055 Q Street NW
156: Washington, DC 20007
157: US
158:

2000 found at line 198:
196: Rapport Communication
197: 3055 Q Street NW
198: Washington, DC 20007
199:
200: Phone: +1 202-342-2727

'yy' on a line without 'yyyy' found at line 1148:
1146: BAoTF1JTQSBEYXRhIFN1Y3VyaXR5LCBjbnMuMQ8wDQYDVQQLEwZCZXRhIDEx
1146(continued): DTAL
1147: BgNVBAsTBFRMQ0EwHhcNOTEwOTAxMDgwMDAwWhcNOTIwOTAxMDc1OTU5WjBR
1147(continued): MQsw
1148: CQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4x
1148(continued): DzAN
1149: BgNVBAsTBkJldGEgMTEPMA0GA1UECxMGTk9UQVJZMHAwCgYEVQgBAQICArwD
1149(continued): YgAw
1150: XwJYCsnp61QCxYykN1ODwutF/jMJ3kJL+3PjYyHOwk+/9rLq6X65B/LD4bJHt
1150(continued): 05XW

'yy' on a line without 'yyyy' found at line 1150:
1148: CQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4x
1148(continued): DzAN
1149: BgNVBAsTBkJldGEgMTEPMA0GA1UECxMGTk9UQVJZMHAwCgYEVQgBAQICArwD
1149(continued): YgAw
1150: XwJYCsnp61QCxYykN1ODwutF/jMJ3kJL+3PjYyHOwk+/9rLq6X65B/LD4bJHt
1150(continued): 05XW
1151: cqAz/7R7XhjYCm0PcqbdzoACZtIlETrKrcJiDYoP+DkZ8k1gCk7hQHpbiWID
1151(continued): AQAB
UTCTime found at line 1596:
1594:
1595: Validity ::= SEQUENCE{
1596: notBefore UTCTime,
1597: notAfter UTCTime}
1598:

UTCTime found at line 1597:
1595: Validity ::= SEQUENCE{
1596: notBefore UTCTime,
1597: notAfter UTCTime}
1598:
1599: SubjectPublicKeyInfo ::= SEQUENCE{

UTCTime found at line 1640:
1638: signature AlgorithmIdentifier,
1639: issuer Name,
1640: lastUpdate UTCTime,
1641: nextUpdate UTCTime,
1642: revokedCertificates

Nesser Informational
UTCTime found at line 1641:
1639: issuer Name,
1640: lastUpdate UTCTime,
1641: nextUpdate UTCTime,
1642: revokedCertificates
1643: SEQUENCE OF CRLEntry OPTIONAL}

UTCTime found at line 1647:
1645: CRLEntry ::= SEQUENCE{
1646: userCertificate SerialNumber,
1647: revocationDate UTCTime}
1648:
1649: References

century found at line 463:
461: confusion relating to daylight savings time. Note that UTCT
462: expresses the value of a year modulo 100 (with no indication
462(continued): of
463: century), hence comparisons involving dates in different cent
463(continued): uries
464: must be performed with care.
465:

2000 found at line 711:
709: Digital Press
710: buddenhagen@cecv01.enet.dec.com McGraw-Hill
711: 617-276-1498 212-512-2000
712: fax: 617-276-4314 1221 Ave. of the Ameri
712(continued): cas
713: Digital Equipment Corporation New York, NY 10020

2000 found at line 185:
183: generation of the X.400 specification, X.400-1996. This will
183(continued): give
184: the community ample time to define a more complete specificat
184(continued): ion for
185: matter transport as part of X.400-2000, and possibly even a r
185(continued): eadily-
186: implementable specification as part of X.400-2004, although s
186(continued): ome will
187: no doubt argue that this would be too strong a break with tra
187(continued): dition.

330: The time stamp on the file as it appears at the sending site
may be sent and applied to the copy at the receiving site. The form is US mm/dd/yy and hh:mm:ss. A time zone is optional. If the time omitted, local time is assumed. If the DATE command is omitted, time and date of arrival are assumed.

UTCTime found at line 362:
BEGIN
TYPE NOTATION ::= "LAST-UPDATED" value(Update UTCTime)
"ORGANIZATION" Text
"CONTACT-INFO" Text

UTCTime found at line 378:
Revisions Revision ::= "REVISION" value(Update UTCTime)
"DESCRIPTION" Text

1900 State Street, Suite D, Santa Barbara, California 93101 USA, January 11, 1992.
Phone: (617) 942-2000
EMail: rebraudes@tasc.com

Phone: (617) 942-2000
EMail: rebraudes@tasc.com

<Update-info> ::= "Update: FORMAT=V3; DATE=’yymmdd’ \n; START=’yymmdd’ \n['; END=’yymmdd’] <CR>

The date of the last update of a document is given in the form ’yymmdd’. A start date must be set. A document can be published this way before the information in it is valid.

(This...
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

1674: "; START="'ymmd' \n1675: ["; END="'ymmd'"] <CR>
1676:

'yy' on a line without 'yyyy' found at line 1675:
1673: <Update-info> ::= "Update: FORMAT=V3; DATE="'ymmd' \n1674: "; START="'ymmd' \n1675: ["; END="'ymmd'"] <CR>
1676: <window-size> ::= "RTS-window-size: " \n1677: "RTS-window-size: " \

Nesser Informational [Page 143]
9. Other relevant documents

2000 found at line 4696:
4694: libraries), but this has not been done. Curses i
4694(continued): very
4695: slow and cpu intensive on VMS, but the tool has b
4695(continued): een
4696: run in a window on a VAXstation 2000. Just don’t
4696(continued): try
4697: to run it on a terminal connected to a 11/750.
4698:

2000 found at line 752:
750: We note that none of the IDPR protocols contain explicit prov
750(continued): isions
751: for dealing with an exhausted timestamp space. As timestamp
751(continued): space
752: exhaustion will not occur until well into the next century, w
752(continued): e expect
753: timestamp space viability to outlast the IDPR protocols.
754:

2000 found at line 745:
743: Date: Sun, 11 Apr 1993 20:34:12 -0800
744: Subject: Comments on "An Experiment in Remote Printing"
745: Message-ID: <19930411203412000.123@tpd.org>
746: MIME-Version: 1.0
747: Content-Type: text/plain; charset=us-ascii
UTCTime found at line 302:
300: 2.21. UTC Time
301:
302: Values of type uTCTimeSyntax are encoded as if they were Prin
302(continued):
303: table
304:
305: Strings with the strings containing a UTCTime value.
306:

UTCTime found at line 303:
301:
302: Values of type uTCTimeSyntax are encoded as if they were Prin
302(continued):
303: table
304:
305: Strings with the strings containing a UTCTime value.
306:
307: 2.22. Guide (search guide)

UTCTime found at line 377:
375: <algorithm-id> ::= <oid> '#' <algorithm-parameters>
376:
377: <utc-time> ::= an encoded UTCTime value
378:
379: <hex-string> ::= <hex-digit> | <hex-digit> <hex-string>

'yy' on a line without 'yyyy' found at line 1950:
1948: The text version is sent.
1948(continued):
1949: file /ftp/rfc/rfcnnnn.yyy where 'nnnn' is the RFC n
1950: umber. and 'yyy' is 'txt' or 'ps
1951: '.
1952:

'yy' on a line without 'yyyy' found at line 1951:
1949: file /ftp/rfc/rfcnnnn.yyy where 'nnnn' is the RFC n
1950: umber. and 'yyy' is 'txt' or 'ps
1951: '.
1952: help to get information on how
1953(continued): to use

Nesser Informational [Page 145]
Validity ::= SEQUENCE {
 NotBefore UTCTime,
 NotAfter UTCTime
}

UTCTime found at line 5112:

Validity ::= SEQUENCE {
 NotBefore UTCTime,
 NotAfter UTCTime
}

UTCTime found at line 6297:

Version ::= INTEGER { 1988(0)} SerialNumber ::= INTEGER
(continued): Validity
(continued): ::= SEQUENCE{
(continued): notBefore UTCTime,
(continued): notAfter UTCTime}

SubjectPublicKeyInfo ::= SEQUENCE {

'y' on a line without 'yyyy' found at line 243:

FddiSMTStationIdType ::= OCTET STRING (SIZE (8))
(continued): s a
(continued): -- string of 8 octets, represented as X' yy yy xx xx x
(continued): x xx
(continued): -- xx xx' with the low order 6 octet (xx) from a uniqu
(continued): e IEEE
(continued): -- assigned address. The high order two bits of the I
(continued): EEE

'y' on a line without 'yyyy' found at line 248:

-- address, the group address bit and the administrati
(continued): on bit
(continued): -- (Universal/Local) bit should both be zero. The fir
(continued): st two
(continued): -- octets, the yy octets, are implementor-defined.
(continued): --
(continued): -- The representation of the address portion of the st
Historic growth rates

<table>
<thead>
<tr>
<th>MM/YY</th>
<th>ROUTES</th>
<th>MM/YY</th>
<th>ROUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADVERTISED</td>
<td></td>
<td>ADVERTISED</td>
</tr>
<tr>
<td></td>
<td>ED</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>--------</td>
<td></td>
<td>---------</td>
</tr>
</tbody>
</table>

Ann Arbor, MI 48109
EMail: jyy@merit.edu

ubiquitous as the current telephone network and provides all Americans with access to information in much the same way as libraries were created for a similar purpose a century ago.

Congress must understand that the NREN is not just a new technology.

regulated companies from becoming viable players. We must recognize that we are about to enter a power struggle for the control of information resources of the 21st century that promises to be every bit as harsh and bruising as the power struggle for natural resources was at the end of the last century.

While the intentions of most appear to be good, as this study has
Example: zone file for foo.xx:

```
pqr          MX 100  relay.yy.
xyz          MX 100  relay.yy           (no trailing dot!)
```

When fully written out this stands for:

```
pqr.foo.xx. MX 100  relay.yy.
xyz.foo.xx. MX 100  relay.yy.foo.xx.   (name extension!)
```

6. Missing secondary servers

```
foo.xx.      MX 100  gateway.xx.
MX 200  fallback.yy.
```

8. Hostnames

```
MX 200  fallback.yy.
```

```
86400 ; Refresh  24 hours
7200 ; Retry    2 hours
```

Nesser Informational [Page 148]
The following searches should be tried. Unless otherwise stated, the "XXX" or "YYY" part of the search filter should be chosen in such a way as to return a single result. Unless stated otherwise the results should return all attributes for the entry.

RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

’y’ on a line without ‘yyy’ found at line 848:
846:
847: objectClass=person AND
848: (commonName=XXX* OR telephoneNumber=*YYY)
849:
850: 75. Search returning all entries (i.e., 100 entries in the si
850(continued): ngle

2000 found at line 527:
525:
526: 42. If the DSA runs as a static server, state the start-up ti
526(continued): me for a
527(continued): DSA with a database of 20000 entries. If this varies wid
528: ely
528(continued): according to configuration options, give figures for the
529(continued): various
529(continued): options. ..

2000 found at line 709:
707:
708: i. The tests should be made against an organisational databa
708(continued): se of
709(continued): 20000 entries. Some tests are against subsets of this da
709(continued): ta, and
710: so the database should be set up according to the followi
710(continued): ng
711: instructions.

2000 found at line 713:
711: instructions.
712:
713: Create an organisational DSA with 20000 entries below the
713(continued): organisation node. Sub-divide this data into a number of
714(continued): organisational units, one of which should contain 1000 en
715(continued): tries,

2000 found at line 808:
806: ii. An organisation subtree search, on the subtree of 20000 e
808(continued): ntries.
809:
810: The following searches should be tried. Unless otherwise sta
810(continued): ted, the
849: 75. Search returning all entries (i.e., 100 entries in the single
850: (continued): level search, and all 20000 entries in the subtree search
851: (continued):
852: 853: objectClass=*

--- File rfc1578.txt ---

--- File rfc1589.txt ---

--- File rfc1593.txt ---

--- File rfc1594.txt ---

'yy' on a line without 'yyyy' found at line 379:
377: The text version is sent.
377(continued):
378:
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

379: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC number.
379(continued): umber.
380: and ‘yyy’ is ‘txt’ or ‘ps
380(continued): ‘.
381:

’yy’ on a line without ‘yyyy’ found at line 380:
378:
379: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC number.
379(continued): umber.
380: and ‘yyy’ is ‘txt’ or ‘ps
380(continued): ‘.
381:
382: help to get information on how
382(continued): to use

’yy’ on a line without ‘yyyy’ found at line 574:
572: In addition, back issues of the Report are available for a
572(continued): nonymous
573: FTP from the host ftp.isi.edu in the in-notes/imr directory
573(continued): y, with
574: the file names in the form imryymm.txt, where yy is the la
574(continued): st two
575: digits of the year and mm two digits for the month. For e
575(continued): xample,

+=+=+=+= File rfc1595.txt +=+=+=+=
2000 found at line 300:
298:
299: ifSpeed Speed of line rate for SONET/SDH,
300: (e.g., 155520000 bps).
301:
302: ifPhysAddress The value of the Circuit Identifier
302(continued): .

2000 found at line 357:
355: ifSpeed set to speed of SONET/SDH path
356: (e.g., an STS-1 path has a
357: rate of 50112000 bps.)
358:
359: ifPhysAddress Circuit Identifier or OCTET STRING
359(continued): of

+=+=+=+= File rfc1600.txt +=+=+=+=
‘yy’ on a line without ‘yyyy’ found at line 1950:
1948: The text version is sent.
1948(continued):
A VIEW FROM THE 21ST CENTURY

Status of this Memo

century found at line 60:
58: Cerf
58(continued): [Page 1]
century found at line 116:
114: Cerf
114(continued): [Page 2]
RFC 1607 A View from the 21st Century 1 Ap

Nesser Informational [Page 153]
century found at line 284:

282: Cerf
282(continued): [Page 5]
2000 found at line 663:
661: transmission, switching and computing in a cost-effective
662: way. For a long time, this technology involved rather

Nesser Informational [Page 155]
bulky equipment - some of the early 3DV clips from 2000-2005 showed rooms full of gear required to steer beams around. A very interesting combination of fiber optics and

UTC

UTCTime found at line 240:
238: provider :: DistinguishedNameSyntax, /* points to network provider */
240: onlineDate :: uTCTimeSyntax /* date when network got connected to the Internet */
242:

UTC

UTCTime found at line 370:
368: asGuardian :: DistinguishedNameSyntax, /* DN of guardian of this AS */
370: lastModifiedDate :: UTCtimeSyntax /* important as routes change frequently */
372:

UTC

UTCTime found at line 423:
421: that the number was assigned to. This does not imply that assTo "owns" this number now. */
423: assDate :: uTCTimeSyntax, /* date of assignment for this number */
425: nicHandle :: CaseIgnoreStringSyntax,

UTC

UTCTime found at line 1048:
1046: speed: id-nw-at.10 :numericString
1047: traffic: id-nw-at.11 :numericString
1048: configurationDate: id-nw-at.12 :utcTime
1049: configurationHistory: id-nw-at.13 :caseIgnoreString
1049(continued):
1050: nodeName,nd: id-nw-at.14 :caseIgnoreString
1050(continued):

UTC

UTCTime found at line 1071:
1069:
1070:
1071: onlineDate: id-nw-at.27 :utcTime
1072: ipNodeName,IPnd: id-nw-at.28 :caseIgnoreString
1072(continued):
1073: protocol: id-nw-at.29 :caseIgnoreString
1073(continued):

UTC

UTCTime found at line 1083:
1081: assBy: id-nw-at.37 :DN
1082: assTo: id-nw-at.38 :DN
1083: assDate: id-nw-at.39 :utcTime
The general format of a Gopher+ view descriptor is:

Nesser

Informational

[Page 157]
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

1565: xxx/yyy zzz: <nnnK>
1566:
1567:

'yy' on a line without 'yyyy' found at line 1575:
1573:
1574:
1575: where xxx is a general type-of-information advisory, yyy is what
1575(continued): information format you need understand to interpret this info
1576(continued): rmation,
1577: zzz is a language advisory (coded using POSIX definitions), a
1577(continued): nd nnn

'yy' on a line without 'yyyy' found at line 1584:
1582: the need to be consistent in the use of type/encoding attribu
1582(continued): tes with
1583: the MIME specification. The Gopher+ Type Registry may thus
1584: eventually disappear, together with the set of xxx/yyy values
1584(continued): it
1585: currently contains.)
1586:

+==+=+=+=+= File rfc1625.txt +==+=+=+=
2000 found at line 255:
253: (use = "wb", relation = "ro", term = 0)
254: AND
255: (use = "wb", relation = "ro", term = 2000)
256:)
257:

+==+=+=+=+= File rfc1632.txt +==+=+=+=
UTCTime found at line 3795:
3793: association is rejected. However, if a chain operation is r
3793(continued): equired
3794: to check the DN, the bind IS allowed.
3795: - When comparing attributes of UTCTime syntax, if the seconds
3795(continued): field
3796: is omitted, QUIPU does not perform the match correctly (i.e
3796(continued): ., the
3797: seconds field in the attribute values should be ignored, bu
3797(continued): t are
1353(continued):
1354: 0x01 Intervention Required 0x08020000
1355(continued):
1356:
1357: 0x02 Operation Check 0x10050000
1357(continued):

+=+=+=+= File rfc1671.txt +=+=+=+=
1900 found at line 410:
408: Phone: +41 22 767-4967
409: Fax: +41 22 767-7155
410: Telex: 419000 cer ch
411: EMail: brian@dxcoms.cern.ch
412:
+=+=+=+= File rfc1679.txt +=+=+=+=
century found at line 95:
93: examined below. The time frame for design, development, and
94: deployment of HPN based systems and subsystems is 1996 into t
94(continued):
95: twenty first century.
96:
97: Three general problem domains have been identified by the HPN
97(continued):

+=+=+=+= File rfc1689.txt +=+=+=+=
century found at line 6899:
6897: vision of how information management must change in the 1990s
6897(continued):
6898: the social and economic opportunities and challenges of the 2
6898(continued):
6899: century. Members of the Coalition Task Force include, among
6899(continued):
6900: higher education institutions, publishers, network service pr
6900(continued):
6901: computer hardware, software, and systems companies, library n
6901(continued):

2000 found at line 421:
419: archie did for the world of ftp. A central server periodi
419(continued):
420: scans the complete menu hierarchies of Gopher servers appe
420(continued): aring on
an ever-expanding list (over 2000 sites as of November 1993). The resulting index is provided by a veronica server and can be accessed by any gopher client.

There are currently (as of November 1993) some 500 registered WAIS databases with an estimated 2000 additional databases that are not yet registered. There are approximately another 100 commercial WAIS databases.

<table>
<thead>
<tr>
<th>Baker</th>
<th>Boston</th>
<th>$849</th>
<th>Sportsware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker</td>
<td>Washington</td>
<td>$3,100</td>
<td>Weights</td>
</tr>
<tr>
<td>Baker</td>
<td>Washington</td>
<td>$2000</td>
<td>Camping Gear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baker</th>
<th>Atlanta</th>
<th>$290</th>
<th>Baseball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker</td>
<td>Boston</td>
<td>$1,500</td>
<td>Sportsware</td>
</tr>
</tbody>
</table>

'yy' on a line without 'yyyy' found at line 513:

'yy' on a line without 'yyyy' found at line 515:
The most likely attributes for an RDN have the following hex values for yy.

- CommonName 03

yy as part of a value - a variable value, each y represents one hex digit.

This document is a composition of letters discussing a possible future.
1900 found at line 10173:
10171: 014.000.000.063 2422-650-23500 00 Tollpost-Globe AS [OX
10171(continued): G]
10172: 014.000.000.064 2422-330-02500 00 Tollpost-Globe AS [OX
10172(continued): G]
10173: 014.000.000.065 2422-350-01900 00 Tollpost-Globe AS [OX
10173(continued): G]
10174: 014.000.000.066 2422-410-00700 00 Tollpost-Globe AS [OX
10174(continued): G]
10175: 014.000.000.067 2422-539-06200 00 Tollpost-Globe AS [OX
10175(continued): G]

1900 found at line 10255:
10253:
10254:
10255: 014.000.000.131 2422-190-41900 00 T-G Airfreight AS [OX
10255(continued): G]
10256: 014.000.000.132 2422-616-16100 00 Tollpost-Globe AS [OX
10256(continued): G]
10257: 014.000.000.133 2422-150-50700-00 Tollpost-Globe Int. [OX
10257(continued): G]

1900 found at line 11112:
11110: 1569 621 ?? Something from Emulex
11111: 1571 623 UNKNOWN?? Running on a Novell Server
11112: 1900 076C Xerox
11113: 2857 0b29 Site Lock
11114: 3113 0c29 Site Lock Applications

2000 found at line 2822:
2820: tcp-id-port 1999/tcp cisco identification port
2821: tcp-id-port 1999/udp cisco identification port
2822: callbook 2000/tcp
2823: callbook 2000/udp
2824: dc 2001/tcp

2000 found at line 2823:
2821: tcp-id-port 1999/udp cisco identification port
2822: callbook 2000/tcp
2823: callbook 2000/udp
2824: dc 2001/tcp
2825: wizard 2001/udp curry

2000 found at line 10120:
10118: 014.000.000.018 2624-522-80900 52 FGAN-SIEMENS-X25 [GB
10118(continued): 7]
10119: 014.000.000.019 2041-170-10000 00 SHAPE-X25 [JF
10119(continued): W]

Nesser Informational [Page 163]
10120: 014.000.000.020 5052-737-20000 50 UQNET
10120 (continued): H
10121: 014.000.000.021 3020-801-00057 50 DMC-CRC1
10121 (continued): T
10122: 014.000.000.022 2624-522-80329 02 FGAN-FGANFFMVAX-X25
10122 (continued): Y

2000 found at line 11572:
11570: AMIGA-1200/LC040
11571: AMIGA-1200/040
11572: AMIGA-2000
11573: AMIGA-2000/010
11574: AMIGA-2000/020

2000 found at line 11573:
11571: AMIGA-1200/040
11572: AMIGA-2000
11573: AMIGA-2000/010
11574: AMIGA-2000/020
11575: AMIGA-2000/EC030

2000 found at line 11574:
11572: AMIGA-2000
11573: AMIGA-2000/010
11574: AMIGA-2000/020
11575: AMIGA-2000/EC030
11576: AMIGA-2000/030

2000 found at line 11575:
11573: AMIGA-2000/010
11574: AMIGA-2000/020
11575: AMIGA-2000/EC030
11576: AMIGA-2000/030
11577: AMIGA-2000/LC040

2000 found at line 11576:
11574: AMIGA-2000/020
11575: AMIGA-2000/EC030
11576: AMIGA-2000/030
11577: AMIGA-2000/LC040
11578: AMIGA-2000/EC040

2000 found at line 11577:
11575: AMIGA-2000/EC030
11576: AMIGA-2000/030
11577: AMIGA-2000/LC040
11578: AMIGA-2000/EC040
11579: AMIGA-2000/040
found at line 11578:
11576: AMIGA-2000/030
11577: AMIGA-2000/LC040
11578: AMIGA-2000/EC040
11579: AMIGA-2000/040
11580: AMIGA-3000

found at line 11579:
11577: AMIGA-2000/LC040
11578: AMIGA-2000/EC040
11579: AMIGA-2000/040
11580: AMIGA-3000
11581: AMIGA-3000/EC040

found at line 12014:
12012: AIX/370
12013: AIX-PS/2
12014: BS-2000
12015: CEDAR
12016: CGW

found at line 12356:
12354: HAZELTINE-1520
12355: HAZELTINE-1552
12356: HAZELTINE-2000
12357: HAZELTINE-ESPRIT
12358: HITACHI-5601

+=+=+=+=+= File rfc1705.txt +=+=+=+=+=

'yy' on a line without 'yyyy' found at line 1166:
1164: will be made.
1165:
1166: node.sub.domain.name IN TA xx.yy.zz.aa.bb.cc.dd.ee
1167:
1168: ee.dd.cc.bb.aa.zz.yy.aa.in-addr.tcp IN PTR node.sub.domain.name
1168(continued): ame.

'yy' on a line without 'yyyy' found at line 1168:
1166: node.sub.domain.name IN TA xx.yy.zz.aa.bb.cc.dd.ee
1167:
1168: ee.dd.cc.bb.aa.zz.yy.aa.in-addr.tcp IN PTR node.sub.domain.name
1168(continued): ame.
1169:
1170: Using these entries, along with the existing DNS A records, a
Using these entries, along with the existing DNS A records, a requesting node can determine where the remote node is located. The format xx.yy.zz is the IEEE assigned portion and aa.bb.cc.dd.ee is the encoded machine serial number as described in section 4.1.

```
@ IN SOA marsh.cs.curtin.edu.au. postmaster.cs.curtin.edu.au. (94070503 10800 3600)
```

University, but then Eric Wassenaar from Nikhef did a major rewrite and still seems to be actively working on improving it. The program is available from ftp://ftp.nikhef.nl/pub/network/host_YYMMDD.tar.Z (YYMMDD is the date of the latest release).

By default, host just maps host names to Internet addresses, querying

```
-0 2000
```

Example of use:

```
-0 -limit 2000
```

2.3.3 schema
2230: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC n
2230(continued): umber.
2231: and ’yyy’ is ‘txt’ or ’ps
2231(continued): ’.
2232:

‘yy’ on a line without ‘yyyy’ found at line 2231:
2229:
2230: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC n
2230(continued): umber.
2231: and ’yyy’ is ‘txt’ or ’ps
2231(continued): ’.
2232:
2233: help to get information on how
2233(continued): to use
2234:

+=+=+=+=+= File rfc1730.txt +=+=+=+=+=
2digit found at line 3334:
3332: date ::= date_text / <" date_text <">
3333:
3334: date_day ::= 1*2digit
3335: ;; Day of month
3336:

2digit found at line 3337:
3335: ;; Day of month
3336:
3337: date_day_fixed ::= (SPACE digit) / 2digit
3338: ;; Fixed-format version of date_day
3339:

2digit found at line 3348:
3346: date_year ::= 4digit
3347:
3348: date_year_old ::= 2digit
3349: ;; OBSOLETE, (year - 1900)
3350:

2digit found at line 3657:
3655: TEXT_CHAR ::= <any CHAR except CR and LF>
3656:
3657: time ::= 2digit ":" 2digit ":" 2digit
3658: ;; Hours minutes seconds
3659:

1900 found at line 3349:
3347:
3348: date_year_old ::= 2digit

Nesser Informational [Page 168]
The format of dates and times has changed due to the impending end of the century. Clients that fail to accept a four-digit year or a signed four-digit timezone value will not work properly with IMAP4.

For example, a user connected to an IMAP4 server via a dialup link can determine that a message has a 2000 byte text segment and a 40 megabyte video segment, and elect to fetch only the text segment.

This field denotes the version of AppleSingle format in the event the format evolves (more fields may be added to the header). The version described in this note is version $00020000 or 0x00020000.
0x00020000.

Filler

#define F_fStationary 0x0800 /* file is a stationary pad */
#define F_fNameLocked 0x1000 /* file can’t be renamed by Fi
nder */
#define F_fHasBundle 0x2000 /* file has a bundle */
#define F_fInvisible 0x4000 /* file’s icon is invisible */
#define F_fAlias 0x8000 /* file is an alias file (Syst em 7) */

uint32 magicNum; /* internal file type tag */
uint32 versionNum; /* format version: 2 = 0x00020000 */
uchar8 filler[16]; /* filler, currently all bits 0 */
uint16 numEntries; /* number of entries which follow */

/* Times are stored as a "signed number of seconds before of
after 12:00 a.m. (midnight), January 1, 2000 Greenwich Mean Time
(GMT). */
* Applications must convert to their native date and time

sdlcPortAdminTopology == multipoint
DEFVAL { 2000 }
s := { sdlcPortAdminEntry 9 }

We recommend that a new IPng Transition (NGTRANS) Working Gro
up be formed with Bob Gilligan of Sun Microsystems and xxx of yyy a
co-
paths to design the mechanisms and procedures to support the
1930 (continued):
1931: transition of the Internet from IPv4 to IPv6 and to give advi
1931 (continued): ce on

+=+=+++ File rfc1758.txt +=+=+++ 2000 found at line 180:
178: c/o Rapport Communication
179: 2721 N Street NW
180: Washington, DC 20007
181: US
182:

2000 found at line 205:
203: Rapport Communication
204: 2721 N Street NW
205: Washington, DC 20007
206:
207: Phone: +1 202-342-2727

+=+=+++ File rfc1759.txt +=+=+++ 2000 found at line 1488:
1487: -- See IANA Registry for vendor developed character sets
1488: -- in the MIBenum range of 2000-xxxx.
1489: }
1490:

+=+=+++ File rfc1769.txt +=+=+++ 1900 found at line 218:
216: main product of the protocol, a special timestamp format has
216 (continued): been
217: established. NTP timestamps are represented as a 64-bit unsig
217 (continued): ned
218: fixed-point number, in seconds relative to 0h on 1 January 19
218 (continued): 00. The
219: integer part is in the first 32 bits and the fraction part in
219 (continued): the
220: last 32 bits. In the fraction part, the non-significant low-o
220 (continued): rder

1900 found at line 248:
246: overflow some time in 2036. Should NTP or SNTP be in use in 2
246 (continued): 036,
247: some external means will be necessary to qualify time relativ
247 (continued): e to
248: 1900 and time relative to 2036 (and other multiples of 136 ye
248 (continued): ars).
249: Timestamped data requiring such qualification will be so prec
that appropriate means should be readily available. There will exist

Values of type UTCTimeSyntax are encoded as if they were Prin
table
Strings with the strings containing a UTCTime value.

Values of type UTCTimeSyntax are encoded as if they were Prin
table
Strings with the strings containing a UTCTime value.

Guide (search guide)

<utc-time> ::= an encoded UTCTime value
<hex-string> ::= <hex-digit> | <hex-digit> <hex-string>

The text version is sent.

where 'nnnn' is the RFC number.
and 'yyy' is 'txt' or 'ps'

'yy' on a line without 'yyyy' found at line 2119:

file /ftp/rfc/rfcnnnn.yyy to get information on how
where 'nnnn' is the RFC number.
and 'yyy' is 'txt' or 'ps'

help
'yy' on a line without 'yyyy' found at line 2992:
2990: USA
2991: +1 313 936 2655
2992: jyy@merit.edu
2993:
2994:

'yy' on a line without 'yyyy' found at line 3694:
3692:
3693: Format:
3694: <email-address> YYMMDD
3695:
3696:

'yy' on a line without 'yyyy' found at line 3704:
3702:
3703: <email-address> should be the address of the person who made
3703(continued): the last change. YYMMDD denotes the date this change was made.
3704(continued):
3705:
3706: Example:

'yy' on a line without 'yyyy' found at line 3950:
3948:
3949: Format:
3950: <email-address> YYMMDD
3951:
3952: <email-address> should be the address of the person who made
3952(continued): the last change. YYMMDD denotes the date this change was made.
3953:
3954:
3955:

'yy' on a line without 'yyyy' found at line 4170:
4168:
4169: Format:
4170: <email-address> YYMMDD
4171:
4172: <email-address> should be the address of the person who
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

‘yy’ on a line without ‘yyyyMMdd’ found at line 4173:
4172: <email-address> should be the address of the person
4172(continued): who
4173: made the last change. YYMMDD denotes the date this
4173(continued): change
4174: was made.
4175:

‘yy’ on a line without ‘yyyyMMdd’ found at line 4305:
4304: Format:
4305: YYMMDD
4306: YYMMDD denotes the date this route was withdrawn.

‘yy’ on a line without ‘yyyyMMdd’ found at line 4307:
4305: YYMMDD
4306: YYMMDD denotes the date this route was withdrawn.
4308:
4309:

‘yy’ on a line without ‘yyyyMMdd’ found at line 4394:
4392: Format:
4393: <email-address> YYMMDD
4395: <email-address> should be the address of the person
4396(continued): who

‘yy’ on a line without ‘yyyyMMdd’ found at line 4397:
4395: <email-address> should be the address of the person
4396(continued): who
4397: made the last change. YYMMDD denotes the date this
4397(continued): change
4398: was made.
4399:

+=+=+=+=+= File rfc1800.txt +=+=+=+=+=

‘yy’ on a line without ‘yyyyMMdd’ found at line 1950:
1948: The text version is sent.
1948(continued):
1949:
1950: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC n

Nesser Informational [Page 174]
1950(continued): number.
1951: and 'yyy' is 'txt' or 'ps
1951(continued): '.
1952:

'yy' on a line without 'yyyy' found at line 1951:
1949:
1950: file /ftp/rfc/rfcnnnn.yyy where 'nnnn' is the RFC n
1950(continued): number.
1951: and 'yyy' is 'txt' or 'ps
1951(continued): '.
1952:
1953: help to get information on how
1953(continued): to use

+=+=+=+= File rfc1806.txt +=+=+=+=

6:
7: Network Working Group R
7(continued): Troost
8: Request for Comments: 1806 New Century
8(continued): Systems
9: Category: Experimental S
9(continued): Dorner
10: QUALCOMM Incorporated
10(continued): rporated

century found at line 402:
400:
401: Rens Troost
402: New Century Systems
403: 324 East 41st Street #804
404: New York, NY, 10017 USA

century found at line 408:
406: Phone: +1 (212) 557-2050
407: Fax: +1 (212) 557-2049
408: EMail: rens@century.com
409:
410:

+=+=+=+= File rfc1807.txt +=+=+=+=

'yy' on a line without 'yyyy' found at line 318:
316: mandatory field. The ID field identifies the bibliogra
316(continued): phic
317: record and is used in management of these records.

Nesser Informational [Page 175]
Its format is "ID:: XXX//YYY", where XXX is the
publisher-ID (the controlled symbol of the publisher)
and YYY is the ID (e.g., report number) of the
publication as assigned by the publisher. This ID is
typically printed on the cover, and may contain slashes.

In order to avoid conflicts among the symbols of the publishing organizations (the XXX part of the "ID:: XXX//YYY") it is suggested that the various organizations that publish reports (such as universities, departments, and laboratories) register their
2-digit numbers for these symbols.

The format for ENTRY date is "Month Day, Year". The
month must be alphabetic (spelled out). The "Day" is a
1- or 2-digit number. The "Year" is a 4-digit number.

The format for DATE (O) -- The publication date. The formats are "Month Year"
and "Month Day, Year". The month must be alphabetic
(spelled out). The "Day" is a 1- or 2-digit number. The
"Year" is a 4-digit number.
is assumed to be January 1, 1900 (the previous RFC, used
revision data of 0, 1, 2, 3, etc. this specification is
programs that might process records from RFC1357).

--- File rfc1815.txt ---
2000 found at line 187:
185: 8 BASIC GREEK 0370-03CF
186: 10 CYRILLIC 0400-04FF
187: 32 GENERAL PUNCTUATION 2000-206F See note 1,
187(continued): below.
188: 39 MATHEMATICAL OPERATORS 2200-22FF See note 1,
188(continued): below.
189: 44 BOX DRAWING 2500-257F

--- File rfc1819.txt ---
2000 found at line 5855:
5853: 5 HelloLossFactor Number of consecutively missed H
5853(continued): ELLO
5854: messages before declaring link f
5854(continued): ailure
5855: 2000 DefaultRecoveryTimeout Interval between successive HELL
5855(continued): Os
5856: to/from active neighbors
5857:

--- File rfc1831.txt ---
2000 found at line 401:
399: 7.3 Program Number Assignment
400:
401: Program numbers are given out in groups of hexadecimal 200000
401(continued): 00
402: (decimal 536870912) according to the following chart:
403:

--- File rfc1848.txt ---
'yy' on a line without 'yyyy' found at line 1881:
1879: Content-Transfer-Encoding: base64
1880:
1881: AfR1WSeyLhy5AtcX0ktUV1bFC1vvcoCjYWy/yYjVj48eqzUVvGTGMsV6


```
1881(continued):                MdlynU
1882:          d4jcJgRnQvIxmu2VRgH8W8MkA1ul+RWGu7jnxjp0sNsU562+RZr0f4F
1882(continued):                3K3n4w
1883:          onUUP265UvvMj23RSTguZ/nl/OxnFM6SzDgV39V/i/RofqI=

(yy) on a line without ‘yyyy’ found at line 1994:
1992:        U6B13vzpE8wMSVefzaCTSpXRSC08ceVEZrIYS53/CKZV2/Sga71pGNlux
1992(continued):                BMsJpY
1993:        Lwdj5Q3NKnIoMo8yrMAe+avMjfOnhui49Xon1Gft+N5XDH/+wI9qx
1993(continued):                9fkQv
1994:        NZVD1WIhCyeKxd5ke549tlKjEqHqbgJW5C+K/uxdiD2dBt+nRCXcu00Px
1994(continued):                3yKrY
1995:        g/9Bgr36padShuv48xBg5YagaEWPezLIOqD31vAyP23rqlPhfbn6sjiQ2
1995(continued):                KrWhiF
1996:        213TV8kQsIGHHZUkUbgkXJe6PEdWWhwsqCFpDkpjzQrTuJH6x1eNUFg
1996(continued):                +CG1V+

++++++++++ File rfc1861.txt ++++++++  
(yy) on a line without ‘yyyy’ found at line 766:
764:      554 Error, failed (technical reason)
765:      4.5.6 HOLDuntil <YYMMDDHHMMSS> [+- GMTdifference]
767:      YYMMDDHHMMSS+GMT   (example: 950925143501+7)
768(continued):                ssage,

(yy) on a line without ‘yyyy’ found at line 1061:
1059:     the current transaction should be kept in the following forma
1059(continued):                t:
1060:
1061:     YYMMDDHHMMSS+GMT   (example: 950925143501+7)
1062:
1063:

+++++++ File rfc1865.txt ++++++++  
1900 found at line 1564:
1562:
1563:     START
1564:     GET ITU-1900
1565:     END
1566:

2000 found at line 1745:
1743:  Logistics Management Institute
1744:  Attn. Library
1745:  2000 Corporate Ridge
1746:  McLean, Virginia, 22102-7805
1747:
```
Let α and β be finite sets.

Since 20000000m (represented by the value 0x29) is greater than the equatorial diameter of the WGS 84 ellipsoid (12756274m), it is therefore suitable for use as a

The text version is sent.

The text version is sent.

The text version is sent.
2063: and ‘yyy’ is ‘txt’ or ‘ps
2063(continued):
2064:
2065: help to get information on how
2065(continued): to use

File rfc1888.txt

1900 found at line 859:
857: Group Leader, Communications Systems Phone: +41 22 767-
857(continued): 4967
858: Computing and Networks Division Fax: +41 22 767-
858(continued): 7155
859: CERN Telex: 419000 cer
859(continued): ch
860: European Laboratory for Particle Physics Email: brian@dxcoms
860(continued): .cern.ch
861: 1211 Geneva 23, Switzerland

File rfc1889.txt

1900 found at line 518:
516: Wallclock time (absolute time) is represented using the times
516(continued): tmp
517: format of the Network Time Protocol (NTP), which is in second
517(continued): s
518: relative to 0h UTC on 1 January 1900 [5]. The full resolution
518(continued): NTP
519: timestamp is a 64-bit unsigned fixed-point number with the in
519(continued): teger
520: part in the first 32 bits and the fractional part in the last
520(continued): 32

2000 found at line 1526:
1524: v
1525: ntp_sec =0xb44db705 v ^ dlsr=0x0005.4000 (5
1525(continued): .250s)
1526: ntp_frac=0x20000000 v ^ lsr =0xb705:2000 (46853
1526(continued): .125s)
1527: (3024992016.125 s) v ^
1528: r v ^ RR(n)

2000 found at line 1535:
1533: A 0xb710:8000 (46864.500 s)
1534: DSLR -0x0005:4000 (5.250 s)
1535: LSR -0xb705:2000 (46853.125 s)
1536: ------------------------------
1537: delay 0x 6:2000 (6.125 s)
2000 found at line 1537:
1535: LSR -0xb705:2000 (46853.125 s)
1536: -------------------------------
1537: delay 0x 6:2000 (6.125 s)
1538:
1539: Figure 2: Example for round-trip time computation

2000 found at line 3182:
3180: * Big-endian mask for version, padding bit and packet type p
3180(continued): air
3181: */
3182: #define RTCP_VALID_MASK (0xc000 | 0x2000 | 0xfe)
3183: #define RTCP_VALID_VALUE ((RTP_VERSION << 14) | RTCP_SR)
3184:

2000 found at line 293:
291:
292: The sampling frequency should be drawn from the set: 8000, 11
292(continued): 025,
293: 16000, 22050, 24000, 32000, 44100 and 48000 Hz. (The Apple Ma
293(continued): cintosh
294: computers have native sample rates of 22254.54 and 11127.27,
294(continued): which
295: can be converted to 22050 and 11025 with acceptable quality b
295(continued): y

2000 found at line 568:
566:
567: Sampling rate and channel count are contained in the payload.
567(continued): MPEG-I
568: audio supports sampling rates of 32000, 44100, and 48000 Hz (I
568(continued): SO/IEC
569: 11172-3, section 1.1; "Scope"). MPEG-II additionally supports
569(continued): ISO/IEC
570: 11172-3 Audio..."

2000 found at line 1271:
1269: 3rWM5Ir3ier3/7WM5Ir36+v35v73ife1jOWK94n3/7T3/ffm5uD+7N339/f3
1269(continued): 9/eq3ff3
1270: 9/eFiJK5tLizsoeSmpW7uLS8/7iio7WisfV38biio7uyufv3tfv35uH+7N3d
1270(continued): 9/exuKX3
1271: 5+z3vuuo4qO7srnsvvz8/venogQOv7al/7iio7WisYy+iv7s3ff3p6KjtL+2
1271(continued): pf/wi7nw
1272: 3ard3Q==
1273: $$-CyberCash-End-7Tm/djB05pLIw3JAYy5E7A==-$$
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

'yy' on a line without 'yyyy' found at line 1273:
1271: 5+z3vuu4qO7srnsvvz8/venogO0v7al/7iio7WisYy+iv7s3FF3p6KjtL+2
1271(continued): pf/wi7nw
1272: 3ard3Q==
1273: $$-CyberCash-End-7Tm/djB05pLIw3JAyy5E7A==$$
1274: pr-signed-hash:
1275: a/0meaMHRinNVd8ng/fKsYg5AfTZZUCX0S3gkJAh2Tmcrkp6RZvppmDd/P71
1275(continued): boFLFDBh

'yy' on a line without 'yyyy' found at line 1328:
1326: merchant-date: 19950121100505.nnn
1327: merchant-response-code: failure/success/etc.
1328: pr-hash: 7Tm/djB05pLIw3JAyy5E7A==
1329: pr-signed-hash:
1330: a/0meaMHRinNVd8ng/fKsYg5AfTZZUCX0S3gkJAh2Tmcrkp6RZvppmDd/P71
1330(continued): boFLFDBh

'yy' on a line without 'yyyy' found at line 1340:
1338: rHzP5YqaNk5iRBHvkw5MaxkXkGOeF5s8M5M812d0XpecH4xNBn8BMAJ6
1338(continued): iskZmszo
1339: QfDeWgqa48q2tqlA6ifZGp7daDR81umtGMCvg==
1340: $$-CyberCash-End-7Tm/djB05pLIw3JAyy5E7A==$$
1341: merchant-signature:
1342: v4qZMe2d7mUXztVdC3ZPMmMgYHlBA7bhR96LSehKP15y1qR/1KwwbBAX8CEq
1342(continued): ns55UIYY

Nesser Informational [Page 182]
1491: GGMwPMGoF+GDPM7G1C6fReQ5wyvV1PnETSVO9/LAyRz0zzRYuyVueOjWDlr5
1491(continued):
1492:

'yy' on a line without 'yyyy' found at line 1593:
1591: mjd6ickhd+SQZhbRCNer1TiQGhuL4wUXzGh8aHk2oXjoMpVzWw2EImPu5Qa
1591(continued): PEc36xgr
1592: mNz8vCovDiuy3tZ42IARzxweaslPLCb0Y=
1593: $$-CyberCash-End-7Tm/djB05pLIw3JAy5E7A=-$$
1594:
1595: ###
1595(continued): #######

'yy' on a line without 'yyyy' found at line 1602:
1600: order-id: 1231-3424-234242
1601: merchant-amount: usd 10.00
1602: pr-hash: 7Tm/djB05pLIw3JAy5E7A==
1603: pr-signed-hash:
1604: a/0meAMHRinNVd8nq/jkSgAFtZtZUCX0S3gk0jAhZTmcrlp6RZvppmDd/P71
1604(continued): boFLFDbh

'yy' on a line without 'yyyy' found at line 1692:
1690: mjD6ickhd+SQZhbRCNer1TiQGhuL4wUXzGh8aHk2oXjoMpVzWw2EImPu5Qa
1690(continued): PEc36xgr
1691: mNz8vCovDiuy3tZ42IARzxweaslPLCb0Y=
1692: $$-CyberCash-End-7Tm/djB05pLIw3JAy5E7A=-$$
1693:
1694: ###
1694(continued): #######

'yy' on a line without 'yyyy' found at line 1804:
1802: mjD6ickhd+SQZhbRCNer1TiQGhuL4wUXzGh8aHk2oXjoMpVzWw2EImPu5Qa
1802(continued): PEc36xgr
1803: mNz8vCovDiuy3tZ42IARzxweaslPLCb0Y=
1804: $$-CyberCash-End-7Tm/djB05pLIw3JAy5E7A=-$$
1805:
1806: ###
1806(continued): #######

'yy' on a line without 'yyyy' found at line 1821:
1819: response-code: failure/success/etc.
1820: order-id: 1231-3424-234242
1821: pr-hash: 7Tm/djB05pLIw3JAy5E7A==
1822: pr-signed-hash:
1823: Bzqw0ipqLt6e0tBz5j5VPNJPp0nfTwkZPtuk5lqMykKDvThh00ycrFT7e
1823(continued): Xrn/hLUC

'yy' on a line without 'yyyy' found at line 1827:
1825: retrieval-reference-number: 43211234321
1826: authorization-code: a12323
1827: card-hash: 7Tm/djB05pLIw3JAy5E7A==
1828: {
1829: card-prefix: nnxxxx [Returned if merchant is not full-PAN]

'yy' on a line without 'yyyy' found at line 1948:
1946: mjD6ickh+SQZhbrCNe1t1Qhuti4wUAxzGh8aRk2oXjoMpVzWw2ElmPu5Qa
1946(continued): PEc36xgr
1947: mNz8vCovDiuy3tZ42IGArxBweasLPChm0Y=
1948: $$-CyberCash-End-7Tm/djB05pLIw3JAy5E7A==$$
1949:
1950: #---#
1950(continued): ######

'yy' on a line without 'yyyy' found at line 1958:
1956: order-id: 12313424234242
1957: merchant-amount: usd 10.00
1958: pr-hash: 7Tm/djB05pLIw3JAy5E7A==
1959:
1960:

'yy' on a line without 'yyyy' found at line 2050:
2048: CEUEvQhcmrucp9Eeehv+bejc3fDDZ23JKrbh1Z171SvFRl4PKS132pXFqTO
2048(continued): Oej9GTC5
2049: L6c8nM3tI1qdHNCe0N5f7ksdK50tYSxAYJLIR6MqPrXjNJEAx7VulodM1kg
2049(continued): rzGOV1fo
2050: 5w33BQHK3U2h+1e5zYBeHY32YG4nym1YyiX4ye4xpuPN4QU0dGrWzoImYE44Q
2050(continued): Owjd5ozl
2051: xu1PBjj6cpEI/9wTwR3tpkBb42fYirxxnoj9JUKPK9Srv91J
2052: $$-CyberCash-End-7Tm/djB05pLIw3JAy5E7A==$$
2053:
2054: #---#
2054(continued): ######

'yy' on a line without 'yyyy' found at line 2052:
2050: 5w33BQHK3U2h+1e5zYBeHY32YG4nym1YyiX4ye4xpuPN4QU0dGrWzoImYE44Q
2050(continued): Owjd5ozl
2051: xu1PBjj6cpEI/9wTwR3tpkBb42fYirxxnoj9JUKPK9Srv91J
2052: $$-CyberCash-End-7Tm/djB05pLIw3JAy5E7A==$$
2053:
2054: #---#
2054(continued): ######

'yy' on a line without 'yyyy' found at line 2064:
2062: response-code: failure/success/etc.
2063: order-id: 1231-3424-234242
2064: pr-hash: 7Tm/djB05pLIw3JAy5E7A==
2065: pr-signed-hash:
2066: IV9gW4h1f8eCkWscs3OE3M8mnTbQ7IBBcEmyGDAwjdB4L5Qm/bh06OX1npe
2066(continued): 2d3Hijsx
2068: card-hash: 7Tm/djB05pLIw3JAyy5E7A==
2069: card-number: 4811123456781234
2070: card-type: visa

2151: transaction: 123123213
2150: date: 19950121100505.nnn
2151: $$-CyberCash-End-7Tm/djB05pLIw3JAyy5E7A==-$$

2193: supported-versions: 08.win, 0.81win, 0.8mac
2193: $$-CyberCash-End-7Tm/djB05pLIw3JAyy5E7A==-$$

2359: 35XiC9Yn8f1E4Va14UxmF2RCR1B/XoV6AEd64KwPeCYyOywBrcypRMbXFLy
2359(continued): YgWM+ME1
2360: +yp7c66SrCBhW4Q8A6YQ+5j5uy07uKyyq70hrV0IMpRDPjIQXZMooLZOifJP
2360(continued): mpvJ66hC
2361: V2uWmuA6LR+TJzWUM4sUP9Zb6zMQShedUyOPrtw1vkjXU1vZ5aI80JAgUcLE
2361(continued): itcD+dsY

2360: 35XiC9Yn8f1E4Va14UxmF2RCR1B/XoV6AEd64KwPeCYyOywBrcypRMbXFLy
2359(continued): YgWM+ME1
2360: +yp7c66SrCBhW4Q8A6YQ+5j5uy07uKyyq70hrV0IMpRDPjIQXZMooLZOifJP
2360(continued): mpvJ66hC
2361: V2uWmuA6LR+TJzWUM4sUP9Zb6zMQShedUyOPrtw1vkjXU1vZ5aI80JAgUcLE
2361(continued): itcD+dsY
2362: Df4CzA00fC10POk58HZB/pSBfUrHAA+iQMYZKv/HBi9TjTwmtkji+8T9or
2362(continued): XS0jSvor

2358: 35XiC9Yn8f1E4Va14UxmF2RCR1B/XoV6AEd64KwPeCYyOywBrcypRMbXFLy
2359(continued): YgWM+ME1
2360: +yp7c66SrCBhW4Q8A6YQ+5j5uy07uKyyq70hrV0IMpRDPjIQXZMooLZOifJP
2360(continued): mpvJ66hC
2361: V2uWmuA6LR+TJzWUM4sUP9Zb6zMQShedUyOPrtw1vkjXU1vZ5aI80JAgUcLE
2361(continued): itcD+dsY
2362: Df4CzA00fC10POk58HZB/pSBfUrHAA+iQMYZKv/HBi9TjTwmtkji+8T9or
2362(continued): XS0jSvor
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

2500(continued): 7eun2dsy
2501: Wve2O/FwicWHvkg5aDPsgOjzetsn1JCNZzbW
2502: $$-CyberCash-End-7Tm/djB05pLIw3JAyy5E7A==--$$
2503:
2504: ###
2504(continued): ########
2505: 'yy' on a line without 'yyyy' found at line 2591:
2506: x-opaque: [if can’t decrypt]
2507: 9/eFiJK5tLizsoeSmpW7uLS8/7iio7Wisfv38biio7uyufv3tfv35uH+7N3d
2508: 9/exuKK3
2509: 5+z3vuu4oqO7srnsvvz8/venog00v7a1/7iio7WisYy+iv7s3ff3p6KjtL+2
2510: pf/wi7nw
2511: 5+z3vuu4oqO7srnsvvz8/venog00v7a1/7iio7WisYy+iv7s3ff3p6KjtL+2
2512: pf/wi7nw
2513: 5+z3vuu4oqO7srnsvvz8/venog00v7a1/7iio7WisYy+iv7s3ff3p6KjtL+2
2514: pf/wi7nw
2515: ###
2515(continued): ########
2516: 'yy' on a line without 'yyyy' found at line 2653:
2517: x-opaque: [if can’t decrypt]
2518: 9/eFiJK5tLizsoeSmpW7uLS8/7iio7Wisfv38biio7uyufv3tfv35uH+7N3d
2519: 9/exuKK3
2520: 5+z3vuu4oqO7srnsvvz8/venog00v7a1/7iio7WisYy+iv7s3ff3p6KjtL+2
2521: pf/wi7nw
2522: 5+z3vuu4oqO7srnsvvz8/venog00v7a1/7iio7WisYy+iv7s3ff3p6KjtL+2
2523: pf/wi7nw
2524: 5+z3vuu4oqO7srnsvvz8/venog00v7a1/7iio7WisYy+iv7s3ff3p6KjtL+2
2525: pf/wi7nw
2526: ###
2526(continued): ########
2527: 1900 found at line 8:
2528: 6: Network Working Group B. C
2529: 7(continued): carpenter
2530: 8: Request for Comments: 1900 Y.
2531: 8(continued): Rekhter
2532: 9: Category: Informational
2533: 9(continued): IAB
2534: 10: Febru
2535: 10(continued): ary 1996
2536: 1900 found at line 60:
2537: 58: Carpenter & Rekhter Informational
2538: 58(continued): [Page 1]
1900 found at line 116:
114: Carpenter & Rekhter Informational
114(continued): [Page 2]
RFC 1900: Renumbering Needs Work February 1996

1900 found at line 172:
170: Carpenter & Rekhter Informational [Page 3]
170(continued):
171: RFC 1900
172: Renumbering Needs Work
172(continued): February 1996
173:
174:

1900 found at line 207:
205: Phone: +41 22 767-4967
206: Fax: +41 22 767-7155
207: Telex: 419000 cer ch
208: EMail: brian@dxcoms.cern.ch
209:

`====== File rfc1902.txt` `======`

yy’ on a line without ‘yyyy’ found at line 2027:
2025: Several clauses defined in this document use the UTC Time for
2025(continued): mat:
2026:
2027: YYMMDDHHMMZ
2028:
2029: where: YY - last two digits of year

‘yy’ on a line without ‘yyyy’ found at line 2029:
2027: YYMMDDHHMMZ
2028:
2029: where: YY - last two digits of year
2030: MM - month (01 through 12)
2031: DD - day of month (01 through 31)

UTCTime found at line 136:
134: BEGIN
135: TYPE NOTATION ::=
136: "LAST-UPDATED" value(Update UTCTime)
137: "ORGANIZATION" Text
138: "CONTACT-INFO" Text
UTCTime found at line 152:
150: | Revisions Revision
151: Revision ::=
152: "REVISION" value(Update UTCTime)
153: "DESCRIPTION" Text
154:

2000 found at line 1702:
1700:
1701: usecMIB MODULE-IDENTITY
1702: LAST-UPDATED "9601120000Z"
1703: ORGANIZATION "IETF SNMPv2 Working Group"
1704: CONTACT-INFO

century found at line 259:
257: should be noted that careful extrapolations of the current tr
257(continued): ends
258: suggest that the address space will be exhausted early in the
258(continued): next
259: century.
260:
261: 3. Problem

‘yy’ on a line without ‘yyyy’ found at line 2174:
2172: The text version is sent.
2173:
2174: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC n
2174(continued): umber.
2175: and ‘yyy’ is ‘txt’ or ‘ps
2175(continued): ‘.
2176:

‘yy’ on a line without ‘yyyy’ found at line 2175:
2173:
2174: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC n
2174(continued): umber.
2175: and ‘yyy’ is ‘txt’ or ‘ps
2175(continued): ‘.
2176:
2177: help to get information on how
2177(continued): to use
1900 found at line 851:
849: An Experimental protocol.
850: 1900 - Renumbering Needs Work
851: This is an information document and does not specif
852: (continued):
853: any
854:
2000 found at line 2826:
2824: 700 13th Street, NW
2825: Suite 950
2826: Washington, DC 20005
2827: Phone: 202-434-8954
2828: EMail: sellers@quest.arc.nasa.gov

2-digit found at line 500:
498: Specific repetition: "<n>(element)" is equivalent to
499: "<n>*<n>(element)"; that is, exactly <n> occurrences of
500: (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is
500(continued):
501: string of three alphabetic characters.
502:
2digit found at line 500:
498: Specific repetition: "<n>(element)" is equivalent to
499: "<n>*<n>(element)"; that is, exactly <n> occurrences of
500: (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is
500(continued):
501: string of three alphabetic characters.
502:
2digit found at line 872:
870: asctime-date = wday SP date3 SP time SP 4DIGIT
871:
872: date1 = 2DIGIT SP month SP 4DIGIT
873: ; day month year (e.g., 02 Jun 1982)
874: date2 = 2DIGIT "-" month "-" 2DIGIT
875: ; day-month-year (e.g., 02-Jun-82)
876: date3 = month SP (2DIGIT | (SP 1DIGIT))
2digit found at line 876:
874: date2 = 2DIGIT "-" month "-" 2DIGIT
875: ; day-month-year (e.g., 02-Jun-82)
876: date3 = month SP (2DIGIT | (SP 1DIGIT))
877: ; month day (e.g., Jun 2)
878:
2digit found at line 879:
877: ; month day (e.g., Jun 2)
878:
879: time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
880: ; 00:00:00 - 23:59:59
881:
+=+=+=+= File rfc1967.txt +=+=+=+=
'y' on a line without 'yyy' found at line 276:
274: +-----+----....................----+
275: where: C0 and 80 are representative LZS-DCP headers; nn,
276(continued): xx, yy,
277: and zz are values determined by the packet’s conte
277(continued): xt.
278:
+=+=+=+= File rfc1980.txt +=+=+=+=
century found at line 301:
299: ALT="Our products">
300: <AREA SHAPE=RECT COORDS="0,51,100,100 HREF="technology.htm
300(continued): 1"
301: ALT="Technology for the next century">
302: </MAP>
303:
+=+=+=+= File rfc1997.txt +=+=+=+=
2000 found at line 130:
128: 690 may define research, educational and commercial community
128(continued): values
129: that may be used for policy routing as defined by the operato
129(continued): rs of
130: that AS using community attribute values 0x02B20000 through
131: 0x02B2FFFF).
This RFC is a slightly annotated list of the 100 RFCs from RFC 1900 through RFCs 1999. This is a status report on these RFCs. This memo provides information for the Internet community. It does not specify...
1900 found at line 172:
170: Elliott Informational
170(continued): [Page 3]

1900 found at line 228:
226: Elliott Informational

226(continued): [Page 4]
507:

Nesser

Informational

[Page 192]
Hosts in an IP network are identified by IP addresses, and the I
P

+====+ File rfc2000.txt +====
‘yy’ on a line without ‘yyyy’ found at line 3070:
3068: The text version is sent.
3068(continued):
3069:
3070: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC n
3070(continued): number.
3071: and ‘yyy’ is ‘txt’ or ‘ps
3071(continued): ‘.
3072:

‘yy’ on a line without ‘yyyy’ found at line 3071:
3069:
3070: file /ftp/rfc/rfcnnnn.yyy where ‘nnnn’ is the RFC n
3070(continued): number.
3071: and ‘yyy’ is ‘txt’ or ‘ps
3071(continued): ‘.
3072:
3073: help to get information on how
3073(continued): to use

1900 found at line 1264:
1262: This memo.
1263:
1265:
1266: This is an information document and does not specif
1266(continued): y any

2000 found at line 8:
6:
7: Network Working Group Internet Architecture
7(continued): re Board
8: Request for Comments: 2000 J. Postel
8(continued): , Editor
RFC 2000 Internet Standards Febru
(continued): ary 1997

2000 found at line 116:
114: Internet Architecture Board Standards Track
114(continued): [Page 2]
RFC 2000 Internet Standards Febru
ary 1997

2000 found at line 172:

Internet Architecture Board Standards Track

[Page 3]
2000 found at line 228:

Internet Architecture Board Standards Track
2000 found at line 284:
282: Internet Architecture Board Standards Track
282(continued): [Page 5]
2000 found at line 396:
394: Internet Architecture Board Standards Track
394(continued): [Page 7]
RFC 2000 Internet Standards February 1997

2000 found at line 452:

450: Internet Architecture Board Standards Track
450(continued): [Page 8]
2000 found at line 508:
506: Internet Architecture Board Standards Track
506(continued): [Page 9]
The Internet and the Millennium Problem (Year 2000)

Internet Architecture Board Standards Track

RFC 2626

June 1999

Nesser

Informational

[Page 201]
<table>
<thead>
<tr>
<th>Line</th>
<th>Protocol</th>
<th>Name</th>
<th>Status</th>
<th>Req</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750</td>
<td>FC STD</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1751</td>
<td>Internet Official Protocol Standards</td>
<td>Req</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1752</td>
<td>Assigned Numbers</td>
<td>Req</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1753</td>
<td>Host Requirements - Communications</td>
<td>Req</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Nesser, Informational [Page 202]
Access-Type: www

+++ File rfc2015.txt ++++
'yy' on a line without 'yyyy' found at line 153:
151: hIwDY32hYGCE8MkB/wOu7d45aUxF4Q0RKJprD3v5Z9KiYcRJ2fve871M1D
152(continued): 1x4Oj
153: eW4GdBFbJE7VUpp13N19GL8e/AqbyyjHH4aS0YoTk10QQ9nnRvjlY8nZL3
153(continued): MPXSZ
154: g9VGQxFeGqzykzmykU6A26SMexR4ApeoON6xz2Wfo+0yOqAq61b46wsvld
154(continued): Z96YA
155: AABH78hyX7YY4uT1tNCWEIIBoqqvCeIMpp7UQ2IpBrXg6GtukS8NxbukLea
155(continued): mqVW3

+++ File rfc2025.txt ++++
UTCTime found at line 751:
749: context-id Random-Integer, -- see Section 6.3
749(continued):
750: pvno BIT STRING, -- protocol version
750(continued):
751: timestamp UTCTime OPTIONAL, -- mandatory for S
751(continued):
752: randSrc Random-Integer,
753: targ-name Name,

UTCTime found at line 923:
921: context-id Random-Integer, -- see Section 6.3
922: pvno [0] BIT STRING OPTIONAL, -- prot. version
922(continued):
923: timestamp UTCTime OPTIONAL, -- mandatory for S
923(continued):
924: randTarg Random-Integer,
925: src-name [1] Name OPTIONAL,

UTCTime found at line 2159:
2157: context-id Random-Integer,
2158: pvno BIT STRING,
2159: timestamp UTCTime OPTIONAL, -- mandatory for S
2159(continued):
2160: randSrc Random-Integer,
2161: targ-name Name,

UTCTime found at line 2248:
2246:
2247: pvno [0] BIT STRING OPTIONAL,
2248: timestamp UTCTime OPTIONAL, -- mandatory for S

Nesser Informational [Page 207]
PKM-2

Validity ::= SEQUENCE {
 notBefore UTCTime,
 notAfter UTCTime
}

signature AlgorithmIdentifier,
issuer Name,
thisUpdate UTCTime,
nextUpdate UTCTime OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE {
 userCertificate CertificateSerialNumber,
 revocationDate UTCTime } OPTION

Digital Equipment Corporation
1401 H Street NW
Washington DC 20005
Phone: +1 202 383 5615
main product of the protocol, a special timestamp format has been established. NTP timestamps are represented as a 64-bit unsigned fixed-point number, in seconds relative to 0h on 1 January 1900. The integer part is in the first 32 bits and the fraction part in last 32 bits. In the fraction part, the non-significant low order can

64-bit field will overflow some time in 2036 (second 4,294,967,296). Should NTP or SNTP be in use in 2036, some external means will be necessary to qualify time relative to 1900 and time relative (and other multiples of 136 years). There will exist a 200-picosecond interval, henceforth ignored, every 136 years when the 64-bit field following convention: If bit 0 is set, the UTC time is in the range 1968-2036 and UTC time is reckoned from 0h 0m 0s UTC on 1 January 1900. If bit 0 is not set, the time is in the range 2036-2104 and UTC time is reckoned from 6h 28m 16s UTC on 7 February 2036. Note that when calculating the correspondence, 2000 is not a leap year. Note also that leap seconds are not counted in the reckoning.
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

''yy' on a line without 'yyyy' found at line 738:
736:
737: To: ietf-types@iana.org
738: Subject: Registration of MIME media type XXX/YYY
739:
740: MIME media type name:

'1900 found at line 638:
636: [RFC 1814] Gerich, E., "Unique Addresses are Good", June 1995
636(continued): .
637:
638: [RFC 1900] Carpenter, B., and Y. Rekhter, "Renumbering Needs
639:
640:

'1900 found at line 420:
419:
420: RFC 1900: Carpenter, B., and Y. Rekhter, "Renumbering Needs W
420(continued): ork",
421: RFC 1900, February 1996.
422:

1900 found at line 421:
419:
420: RFC 1900: Carpenter, B., and Y. Rekhter, "Renumbering Needs W
420(continued): ork",
421: RFC 1900, February 1996.
422:
423: RFC 1920: Postel, J., "INTERNET OFFICIAL PROTOCOL STANDARDS",
423(continued):

'2digit found at line 3782:
3780: date ::= date_text / ""> date_text <">
3781:
3782: date_day ::= 1*2digit
3783: ;; Day of month
3784:

2digit found at line 3785:
3783: ;; Day of month
3784:
3785: date_day_fixed ::= (SPACE digit) / 2digit
3786: ;; Fixed-format version of date_day
3787:
2digit found at line 4101:
4099: TEXT_CHAR ::= <any CHAR except CR and LF>
4100:
4101: time ::= 2digit ":" 2digit ":" 2digit
4102: ;; Hours minutes seconds
4103:

2digit found at line 330:
328: ::= partial
329:
330: date_year_old ::= 2digit
331: ;; (year - 1900)
332:

1900 found at line 331:
329:
330: date_year_old ::= 2digit
331: ;; (year - 1900)
332:
333: date_time_old ::= <"> date_day_fixed "-" date_month "-" date_year
333(continued): e_year

2000 found at line 716:
714: start time = 1 start time =
715(continued): 1
716: Usage record N: flow count = 2000 flow count = 200
716(continued): 0 (done)
717:
718: start time = 1 start time =
718(continued): 5

2000 found at line 725:
723:
724: In the continuing flow case, the same flow was reported when
724(continued): its
725: count was 2000, and again at 3000: the total count to date i
725(continued): s 3000.
726: In the OLD/NEW case, the old flow had a count of 2000. Its r
726(continued): ecord
727:

Nesser Informational [Page 211]
In the continuing flow case, the same flow was reported when its count was 2000, and again at 3000: the total count to date is 3000. In the OLD/NEW case, the old flow had a count of 2000. Its record:

Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic characters.

Specific repetition: "<n>(element)" is equivalent to "<n>*<n>(element)"; that is, exactly <n> occurrences of (element).

Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic characters.

asctime-date = wkday SP date3 SP time SP 4DIGIT

date1 = 2DIGIT SP month SP 4DIGIT
 ; day month year (e.g., 02 Jun 1982)
date2 = 2DIGIT "-" month "-" 2DIGIT

date1 = 2DIGIT SP month SP 4DIGIT
 ; day month year (e.g., 02 Jun 1982)
date2 = 2DIGIT "-" month "-" 2DIGIT
 ; day-month-year (e.g., 02-Jun-82)
date3 = month SP (2DIGIT | (SP 1DIGIT))
2digit found at line 1167:
1165: date2 = 2DIGIT "-" month "-" 2DIGIT
1166: ; day-month-year (e.g., 02-Jun-82)
1167: date3 = month SP (2DIGIT | (SP 1DIGIT))
1168: ; month day (e.g., Jun 2)
1169:

2digit found at line 1170:
1168: ; month day (e.g., Jun 2)
1169:
1170: time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
1171: ; 00:00:00 - 23:59:59
1172:

2digit found at line 7652:
7650:
7651: warning-value = warn-code SP warn-agent SP warn-text
7652: warn-code = 2DIGIT
7653: warn-agent = (host [":" port]) | pseudonym
7654: ; the name or pseudonym of the server
7654(continued):
1900 found at line 1083:
1081: for TCP connections on that port of that host, and the Request
1081(continued):
1082: for the resource is abs_path. The use of IP addresses in URL’s
1082(continued):
1083: be avoided whenever possible (see RFC 1900 [24]). If the abs_
1083(continued):
1084: path is not present in the URL, it MUST be given as "/" when used as
1084(continued):
1085: Request-URI for a resource (section 5.1.2).

1900 found at line 8249:
8247:
8248(continued):
8249: RFC
8249: 1900, IAB, February 1996.
8250:
8251: [25] Deutsch, P., "GZIP file format specification version 4.3
8251(continued):
2000 found at line 8453:
8451: HTTP/1.1 clients and caches should assume that an RFC-850 date
8451(continued):
8452: which appears to be more than 50 years in the future is in fact
in the past (this helps solve the "year 2000" problem).

Many discussions of renumbering emphasize interactions among organizations’ numbering plans and those of the global Internet. According to [RFC1900], "Unless and until viable alternatives are developed, extended deployment of Classless Inter-Domain Routing (CIDR) is vital to keep the Internet routing system alive and to..."
Program numbers are given out in groups of hexadecimal 20000000 (decimal 536870912) according to the following chart:

- 0 - 1fffffff defined by rpc@sun.com
- 20000000 - 3fffffff defined by user
- 40000000 - 5fffffff transient
- 60000000 - 7fffffff reserved

AUTHENTICATE command (or the similar POP3 AUTH command), yielding

\[
gltIGI5MTNhNjAyYzdlZGE3YTQ5NWI0ZTl1NzMzNQzODkw
\]

C: A0001 OK CRAM authentication successful
The MIB module for the display of CIDR multipath IP Routes.

Revisions made by the OSPF WG.
2000 found at line 116:
114: Elliott Informational
114(continued): [Page 2]
| Nesser | Informational | [Page 216] |
RFC 2099

Summary of 2000-2099

Ma
rch 1997

2000 found at line 228:

226: Elliott Informational

[Page 4]
283:
284: RFC 2099 Summary of 2000-2099 Ma
284(continued): rch 1997
285:
286:

2000 found at line 340:
338: Elliott Informational
338(continued): [Page 6]
<table>
<thead>
<tr>
<th>Nesser</th>
<th>Informational</th>
<th>[Page 217]</th>
</tr>
</thead>
</table>

RFC 2099

Summary of 2000-2099

Ma
396 (continued): rch 1997
397:
398:

2000 found at line 452:
450: Elliott Informational
450 (continued): [Page 8]
2000 found at line 508:

506: Elliott Informational
506(continued): [Page 9]
Nesser

Informational

[Page 218]
<table>
<thead>
<tr>
<th>Line</th>
<th>RFC 2626: The Internet and the Millennium Problem (Year 2000) June 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>730</td>
<td>2000 found at line 732:</td>
</tr>
<tr>
<td>730(continued):</td>
<td>Page 13</td>
</tr>
<tr>
<td>731</td>
<td>2000 found at line 788:</td>
</tr>
<tr>
<td>732</td>
<td>2000 found at line 844:</td>
</tr>
<tr>
<td>733</td>
<td>2000 found at line 900:</td>
</tr>
<tr>
<td>734</td>
<td>2000 found at line 956:</td>
</tr>
<tr>
<td>735</td>
<td>2000 found at line 1012:</td>
</tr>
<tr>
<td>736</td>
<td>Nesser Informational [Page 219]</td>
</tr>
</tbody>
</table>
Changing providers is just one possible reason for renumbering. The informational document [RFC 1900] shows why renumbering is an increasingly frequent event. Both DHCP [RFC 1541] and PPP [RFC 1661] promote the use of dynamic address allocation.

Solutions for renumbering sites. The need to contain the overhead in a rapidly growing Internet routing system is likely to make...
The need to scale the Internet routing system, and the use of CIDR as found at line 632:

Carpenter, B., and Y. Rekhter, "Renumbering Needs Work",

RFC 1900, February 1996.

Carpenter, B., and Y. Rekhter, "Renumbering Needs Work",

RFC 1900, February 1996.

Rekhter, Y., Moskowitz, B., Karrenberg, D., de Graaf, G.

date value in a fixed-length variant format in place of Max-A ge:

Wdy, DD-Mon-YY HH:MM:SS GMT

Note that the Expires date format contains embedded spaces, a nd that

MAIL.X-OD V2.3

MAIL.2000 V1.2, AKOM

MS-Mail

1-800-257-OPEN (U.S. and Canada)
1-612-482-6736 (worldwide)
FAX: 1-612-482-2000 (worldwide)
EMAIL: info@cdc.com
or
2000 found at line 30:
28: To: Department of Consumer and Regulatory Affairs
30: Washington, D.C. 20001
31: We, the undersigned natural persons of the age of eighteen
32(continued): n years

2000 found at line 140:
138: The address, including street and number, of the initial
139: registered office of the corporation is c/o C T Corporation
140: System, 1030 15th Street, N.W., Washington, D.C. 20005, an
140(continued): d the
141: name of its initial registered agent at such address is C
141(continued): T
142: Corporation System.

2000 found at line 2197:
2195: scholarly music resources. http://rism.harvard.edu/RISM/
2196: Crescendo is used in the web pages at http://mcenury.citi.do
2197(continued): c.ca
2198: along with a growing number of others. One very interesting
2198(continued): use of
2199: Crescendo occurs on the Music Theory Online publication, a se
2199(continued): rious

2000 found at line 3150:
3148: Joseph Aiuto
3149: Sepideh Boroumand
3150: Michael Century
3151: Kelly Cooper
3152: Lile Elam

2000 found at line 1805:
1803: About Hill Associates
1804: HAI Products and Services Catalog
1805: Datacomm/2000-ED Series
1806: Contacting Hill Associates
1807: Employment Opportunities

2000 found at line 2808:
2806: [23] _____, Editor, "Internet Official Protocol Standards,"

Nesser Informational [Page 222]
This is mapped first to an RFC 822 address, and then back to

Nesser Informational [Page 223]
'yy' on a line without 'yyyy' found at line 3325:

3323:
3324: C = "XX"
3325: ADMD = "YY"
3326: O = "ZZ"
3327: Surname = "Smith"

UTCTime found at line 1705:
1703: "yen*{165}"
1704: 3.3.5. UTCTime
1705: Both UTCTime and the RFC 822 822.date-time syntax contain: Ye
1707(continued):
1708(continued): ar,
1709(continued): Month, Day of Month, hour, minute, second (optional), and Tim
ezone (technically a time differential in UTCTime). 822.date-time
1709(continued): also contains an optional day of the week, but this is redundant.
1710(continued): With the exception of Year, a symmetrical mapping can be made betw
1711(continued): een

UTCTime found at line 1717:
1715: In practice, a gateway will need to parse various illegal
1716(continued): variants on 822.date-time. In cases where 822.date-time cannot be
1716(continued): parsed,
1717(continued): it is recommended that the derived UTCTime is set to the v
1718(continued): alue at the time of translation. Such errors may be noted in an R
1718(continued): FC 822 comment, to aid detection and correction.
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

UTCTime found at line 1721:
1719: comment, to aid detection and correction.
1720:
1721: When mapping to X.400, the UTCTime format which specifies the
1721(continued):
1722: timezone offset shall be used.
1723:

UTCTime found at line 1745:
1743: RFC 822, as modified by RFC 1123, requires use of a four digi
1743(continued):
1744: Note that the original RFC 822 uses a two digit date, which i
1744(continued):
1745: longer legal. UTCTime uses a two digit date. To map a year
1745(continued):
1746: 822 to X.400, simply use the last two digits. To map a year
1746(continued):
1747: X.400 to RFC 822, assume that the two digit year refers to a
1747(continued):

Nesser Informational [Page 225]
916: DD.Mail-11=route::node::localpart;
917:

'yy' on a line without 'yyyy' found at line 918:
916: DD.Mail-11=route::node::localpart;
917: (see sect. 5.2 for explication of 'xx','yyy','zzz','ooo','uuu
918(continued): ','net')
919:
920: maps into

'yy' on a line without 'yyyy' found at line 926:
924: and for DECnet/OSI addresses
925: C=xx; ADMD=yyy; PRMD=zzz; O=ooo; OU=uuu; DD.Dnet=net;
926: DD.Mail-11=node-clns::localpart;
927:

'yy' on a line without 'yyyy' found at line 937:
935: described into section 5.4 apply:
936: C=xx; ADMD=yyy; PRMD=www; DD.Dnet=net;
937: DD.Mail-11=route::node::localpart;
938:

'yy' on a line without 'yyyy' found at line 942:
940: maps into
941: gwnode::gw"C=xx;ADMD=yyy;PRMD=www;DD.Dnet=net;
942: DD.Mail-11=route::node::localpart;"
943:

'yy' on a line without 'yyyy' found at line 961:
959: Again for DECnet/OSI addresses:
960: C=xx; ADMD=yyy; PRMD=www; DD.Dnet=net;
961: DD.Mail-11=node-clns::localpart;
962:

'yy' on a line without 'yyyy' found at line 966:
964: maps into
965: gwnode::gw"C=xx;ADMD=yyy;PRMD=www;DD.Dnet=net;
966: DD.Mail-11=node-clns::localpart;"
967:

'yy' on a line without 'yyyy' found at line 1095:
1093: maps into
1094:
1095: C=xx; ADMD=yyy; DD.Dnet=net;
1096: DD.Mail-11=route::gwnode::gw(p)(q)x400-text-address(q);
1097:

(yy' on a line without ‘yyyy’ found at line 1104:
1102: maps into
1103:
1104: C=xx; ADMD=yyy; DD.Dnet=net;
1105: DD.Mail-11=gwnode::gw(p)(q)x400-text-address(q);
1106:

2digit found at line 1026:
1024:
1025: year = 4digit
1026: month = 2digit
1027: day = 2digit
1028: hour = 2digit

2digit found at line 1027:
1025: year = 4digit
1026: month = 2digit
1027: day = 2digit
1028: hour = 2digit
1029: minute = 2digit

2digit found at line 1028:
1026: month = 2digit
1027: day = 2digit
1028: hour = 2digit
1029: minute = 2digit
1030: second = 2digit

2digit found at line 1029:
1027: day = 2digit
1028: hour = 2digit
1029: minute = 2digit
1030: second = 2digit
1031: milli-second = 3digit

2digit found at line 1030:
1028: hour = 2digit
1029: minute = 2digit
1030: second = 2digit
1031: milli-second = 3digit
1032: host-name = dns-char *(dns-char / ".")
2digit found at line 3186:
3184:
3185: year = 4digit
3186: month = 2digit
3187: day = 2digit
3188: hour = 2digit

2digit found at line 3187:
3185: year = 4digit
3186: month = 2digit
3187: day = 2digit
3188: hour = 2digit
3189: minute = 2digit

2digit found at line 3188:
3186: month = 2digit
3187: day = 2digit
3188: hour = 2digit
3189: minute = 2digit
3190: second = 2digit

2digit found at line 3189:
3187: day = 2digit
3188: hour = 2digit
3189: minute = 2digit
3190: second = 2digit
3191:

2digit found at line 3190:
3188: hour = 2digit
3189: minute = 2digit
3190: second = 2digit
3191:
3192:

2000 found at line 1229:
1227: C -class rwhois.net domain host
1228: S %class domain:description:Domain information
1229: S %class domain:version:19970103101232000
1230: S %class
1231:

2000 found at line 3626:
3624: soa 000800h
3625: status 001000h
3626: xfer 002000h
3627: X 004000h
3628:
2000 found at line 427:
425: Server: MyAgent/1.0
426: ATM-Service: CBR
428: Content-type: video/mpeg
428(continued):
429:

2000 found at line 464:
462: Server: MyAgent/1.0 ATM.
462(continued): address
463: ATM-Service: CBR
465: Content-type: video/mpeg
465(continued):
466:

2000 found at line 292:
290: a setuid file anywhere in the system, including those on NF
290(continued): S
291: mounted partitions.
292: * "find / -group kmem -perm -2000 -print" will do the same fo
292(continued): r kmem
293: group permissions.
294:

2000 found at line 495:
493:
494: Instead, for this example, set the primary’s serial number to
494(continued):
495: 2000000000, and wait for the secondary servers to update to t
495(continued): hat
496: zone. The value 2000000000 is chosen as a value a lot bigger
496(continued): than
497: the current value, but less that 2^31 bigger (2^31 is 2147483
497(continued): 648).

2000 found at line 496:
494: Instead, for this example, set the primary’s serial number to
494(continued):
495: 2000000000, and wait for the secondary servers to update to t
495(continued): hat
496: zone. The value 2000000000 is chosen as a value a lot bigger
496(continued): than
497: the current value, but less that 2^31 bigger (2^31 is 2147483
497(continued): 648).
498: This is then an increment of the serial number [RFC1982].

2000 found at line 502:
500: Next, after all servers needing updating have the zone with t
500(continued): hat
501: serial number, the serial number can be set to 4000000000.
502: 4000000000 is 2000000000 more than 2000000000 (fairly clearly
502(continued):), and
503:
504:

+=+=+=+=+ File rfc2183.txt +=+=+=+=

'yy' on a line without 'yyyy' found at line 587:
585: Rens Troost
586: New Century Systems
587: 324 East 41st Street #804
588: New York, NY, 10017 USA

'yy' on a line without 'yyyy' found at line 593:
591: Phone: +1 (212) 557-2050
592: Fax: +1 (212) 557-2049
593: EMail: rens@century.com
594:
595:

+=+=+=+=+ File rfc2195.txt +=+=+=+

'yy' on a line without 'yyyy' found at line 131:
129: C: A0001 AUTHENTICATE CRAM-MD5
130: S: + PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2UucmVzdGVzdG9uLm1jaS5uZX
130(continued): Q+
131: C: dGl1TG15MTNhNjAyYzd1ZGE3YTQ5NW10ZTZlNzMzNGQzODkw
132: S: A0001 OK CRAM authentication successful
133:

'yy' on a line without 'yyyy' found at line 161:
159: AUTHENTICATE command (or the similar POP3 AUTH command), y
159(continued): ielding
160:
161: dGltIGI5MTNhNjAyYzdlZGE3YTQ5NWI0ZTZlNzMzNGQzODkw
162:
163:

File rfc2200.txt

'yy' on a line without 'yyyy' found at line 2118:
2116: The text version is sent.
2116(continued):
2117:
2118: file /ftp/rfc/rfcnnnn.yyy where 'nnnn' is the RFC n
2118(continued): umber.
2119: and 'yyy' is 'txt' or 'ps
2119(continued): .
2120:

'yy' on a line without 'yyyy' found at line 2119:
2117:
2118: file /ftp/rfc/rfcnnnn.yyy where 'nnnn' is the RFC n
2118(continued): umber.
2119: and 'yyy' is 'txt' or 'ps
2119(continued): .
2120:
2121: help to get information on how
2121(continued): to use

2000 found at line 9:
7: Network Working Group Internet Architectu
7(continued): re Board
8: Request for Comments: 2200 J. Postel
8(continued): , Editor
9(continued): une 1997
10: 1720, 1610, 1600, 1540, 1500, 1410, 1360,
11: 1280, 1250, 1200, 1140, 1130, 1100, 1083

2000 found at line 921:
919: level of standard.
920:
921: 2099 - Request for Comments Summary - RFC Numbers 2000-209
921(continued): 9
922:
923: This is an information document and does not spec
923(continued): y any
2000 found at line 1096:
1094: GSS_S_GAP_TOKEN 0x00000010
1095: GSS_S_BAD_MECH 0x00010000
1096: GSS_S_BAD_NAME 0x00020000
1097: GSS_S_BAD_NAMETYPE 0x00030000
1098: GSS_S_BAD_BINDINGS 0x00040000

2000 found at line 1113:
1111: GSS_S_UNAVAILABLE 0x00100000
1112: GSS_S_DUPLICATE_ELEMENT 0x00110000
1113: GSS_S_NAME_NOT_MN 0x00120000
1114: GSS_S_CALL_INACCESSIBLE_READ 0x01000000
1115: GSS_S_CALL_INACCESSIBLE_WRITE 0x02000000
1116: GSS_S_CALL_BAD_STRUCTURE 0x03000000

2000 found at line 1115:
1113: GSS_S_NAME_NOT_MN 0x00120000
1114: GSS_S_CALL_INACCESSIBLE_READ 0x01000000
1115: GSS_S_CALL_INACCESSIBLE_WRITE 0x02000000
1116: GSS_S_CALL_BAD_STRUCTURE 0x03000000

2000 found at line 1117:
1115: GSS_S_CALL_INACCESSIBLE_WRITE 0x02000000

-yyyy on a line without ‘yyyy’ found at line 1866:
1864: | 1 | SFIDDSN | Virtual File Dataset Name | V
1864(continued): X(26) |
1865: | 27 | SFIDRSV1 | Reserved | F
1865(continued): X(9) |
1866: | 36 | SFIDDATE | Virtual File Date stamp, (YYMMDD) | V
1866(continued): X(6) |
1867: | 42 | SFIDTIME | Virtual File Time stamp, (HHMMSS) | V
1867(continued): X(6) |
1868: | 48 | SFIDUSER | User Data | V
1868(continued): X(8) |

-yyyy on a line without ‘yyyy’ found at line 1895:
1893: SFIDDATE Virtual File Date stamp S
1893(continued): tring(6)
1894: Format: ‘YYMMDD’ 6 decimal digits representing the year, m

Nesser Informational [Page 232]
1895 (continued): onth
1896: and day respectively [ISO-8601].
1897:

(yy) on a line without ‘yyyy’ found at line 2394:
2392: | 1 | EERPDSN | Virtual File Dataset Name | V
2392 (continued): | X(26) |
2393: | 27 | EERPRESV1 | Reserved | F
2393 (continued): | X(9) |
2394: | 36 | EERPDATE | Virtual File Date stamp, (YYMMDD) | V
2394 (continued): | X(6) |
2395: | 42 | EERPDATE | Virtual File Date stamp, (MMDDYY) | V
2395 (continued): | X(6) |
2396: | 48 | EERPUSER | User Data | V
2396 (continued): | X(8) |

(yy) on a line without ‘yyyy’ found at line 2429:
2427: EERPDATE Virtual File Date stamp S
2427 (continued): | string(6) |
2428: 2429: Format: ‘YYMMDD’ 6 decimal digits representing the year, month
2429 (continued): | onth |
2430: | and day respectively [ISO-8601]. |
2431: 2000 found at line 304:
302: field. Since the ODETTE-FTP only uses this information to identify a
302 (continued): particular Virtual File it will continue to operate correctly
303: in the
304: year 2000 and beyond.
305: 306: The User Monitor may use the Virtual File Date attribute in local
306 (continued): processes involving date comparisons and calculations. Any such use
307: falls outside the scope of this protocol and year 2000 handling is a
308 (continued): local implementation issue.
310: 2000 found at line 308:
306: The User Monitor may use the Virtual File Date attribute in local
306 (continued): processes involving date comparisons and calculations. Any such use
307: falls outside the scope of this protocol and year 2000 handling is a
308 (continued): local implementation issue.
310: ++ File rfc2227.txt +++++
2000 found at line 1949:
1947: Toward the Development of Web Measurement Standards. Thi
s is a

draft paper, currently available at http://

ww2000.ogsm.vanderbilt.edu/novak/web.stand.

html.

Cited by permission of the author; do not quote or cite w

ithout

permission.

That is, exactly \(<N>\) occurrences of \(<element>\). Thus 2DIGIT

is a

2-digit number, and 3ALPHA is a string of three alphabetic

characters.

2-digit found at line 424:

\(<n>^*<n>element\)

That is, exactly \(<N>\) occurrences of \(<element>\). Thus 2DIGIT

is a

2-digit number, and 3ALPHA is a string of three alphabetic

characters.

2000th RFC: "Internet Official Protocol Standards"

71,618 mailing lists registered at Liszt, a mailing list di

rectory

2-digit found at line 3555:

\(\text{time-day} = \text{2DIGIT} \); 01-31

\(\text{time-hour} = \text{2DIGIT} \); 00-23

2-digit found at line 3557:

\(\text{time-day} = \text{2DIGIT} \); 01-31

\(\text{time-hour} = \text{2DIGIT} \); 00-23

\(\text{time-minute} = \text{2DIGIT} \); 00-59
2digit found at line 3559:
3557: time-hour = 2DIGIT ;; 00-23
3558: time-minute = 2DIGIT ;; 00-59
3560: time-month = 2DIGIT ;; 01-12
3561: time-second = 2DIGIT ;; 00-60

2digit found at line 3561:
3559: time-minute = 2DIGIT ;; 00-59
3560: time-month = 2DIGIT ;; 01-12
3562: time-second = 2DIGIT ;; 00-60
3563: time-subsecond = *DIGIT

2000 found at line 2217:
2215: criteria);
2216: AND COMPARE "modtime" ";i;octet" "19951206103400"
2217: COMPARE "modtime" ";-i;octet" "19960112000000"
2218: refers to all entries modified between 10:34 December 6 19
2219: midnight January 12, 1996 UTC.

UTCTime found at line 1300:
1298:
1299: Values in this syntax are encoded as if they were printable s
1299(continued): trings
1300: with the strings containing a UTCTime value. This is histori
1300(continued): cal; new
1301: attribute definitions SHOULD use GeneralizedTime instead.
1302:
2000 found at line 1923:
1921:
1922: snmpFrameworkMIB MODULE-IDENTITY
1923: LAST-UPDATED "9711200000Z" -- 20 November 1997
1923(continued):
1924: ORGANIZATION "SNMPv3 Working Group"
1925: CONTACT-INFOWG-email: snmpv3@tis.com

Nesser Informational [Page 235]
Nesser Informational [Page 236]
2000 found at line 554:
552: snmpVacmMIB MODULE-IDENTITY
553: LAST-UPDATED "9711200000Z" -- 20 Nov 1997, midnig
554(continued): ht
555: ORGANIZATION "SNMPv3 Working Group"
556: CONTACT-INFO "WG-email: snmpv3@tis.com

2000 found at line 555:
557: snmpVacmMIB MODULE-IDENTITY
558: LAST-UPDATED "9711200000Z" -- 20 Nov 1997, midnig
559(continued): ht
560: ORGANIZATION "SNMPv3 Working Group"
561: CONTACT-INFO "WG-email: snmpv3@tis.com

2000 found at line 2119:
2117: flap_damp(1000, 2000, 750, 900, 900, 20000)
2120: That is, a penalty of 1000 is assigned at each route flap, th
2121(continued): e route

2000 found at line 2122:
2120: That is, a penalty of 1000 is assigned at each route flap, th
2121(continued): e route
2122: is suppressed when penalty reaches 2000. The penalty is redu
2123(continued): ced in
2123: half after 15 minutes (900 seconds) of stability regardless o
2124(continued): f
2124: whether the route is up or down. A supressed route is reused
2124(continued): when

2000 found at line 854:
852: Santa Clara, CA 95054
853: Phone: (408) 327-1900
854: EMail: tli@juniper.net
856:
1900 found at line 863:
861: Santa Clara, CA 95054
862:
863: Phone: (408) 327-1900
864: EMail: cole@juniper.net
865:

+=+=+=+=+= File rfc2287.txt +=+=+=+=+=

(yy) on a line without (yyyy) found at line 1439:
1437: DESCRIPTION
1438: "The full path and filename of the process.
1439: For example, '/opt/MYYpkg/bin/myyproc' would
1440: be returned for process 'myyproc' whose execution
1441: path is '/opt/MYYpkg/bin/myyproc'."

(yy) on a line without (yyyy) found at line 1440:
1438: "The full path and filename of the process.
1439: For example, '/opt/MYYpkg/bin/myyproc' would
1440: be returned for process 'myyproc' whose execution
1441: path is '/opt/MYYpkg/bin/myyproc'."
1442: ::= { sysApplElmtRunEntry 7 }

(yy) on a line without (yyyy) found at line 1441:
1438: "The full path and filename of the process.
1439: For example, '/opt/MYYpkg/bin/myyproc' would
1440: be returned for process 'myyproc' whose execution
1441: path is '/opt/MYYpkg/bin/myyproc'."
1442: ::= { sysApplElmtRunEntry 7 }
1443:

(yy) on a line without (yyyy) found at line 1706:
1704: DESCRIPTION
1705: "The full path and filename of the process.
1706: For example, '/opt/MYYpkg/bin/myyproc' would
1707: be returned for process 'myyproc' whose execution
1708: path was '/opt/MYYpkg/bin/myyproc'."

(yy) on a line without (yyyy) found at line 1707:
1705: "The full path and filename of the process.
1706: For example, '/opt/MYYpkg/bin/myyproc' would
1707: be returned for process 'myyproc' whose execution
1708: path was '/opt/MYYpkg/bin/myyproc'."
1709: ::= { sysApplElmtPastRunEntry 6 }

Nesser Informational [Page 238]
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

'yy' on a line without 'yyyy' found at line 1708:
1706: For example, '/opt/MYYpkg/bin/myyproc' would
1707: be returned for process 'myyproc' whose execution
1708: path was '/opt/MYYpkg/bin/myyproc'.
1709: ::= { sysApplElmtPastRunEntry 6 }
1710:

2000 found at line 402:
400:
401: sysApplMIB MODULE-IDENTITY
402: LAST-UPDATED "97102000002"
403: ORGANIZATION "IETF Applications MIB Working Group"
404: CONTACT-INFO

2000 found at line 547:
545: #define ND_NA_FLAG_ROUTER 0x80000000
546: #define ND_NA_FLAG_SOLICITED 0x40000000
547: #define ND_NA_FLAG_OVERRIDE 0x20000000
548: else /* BYTE_ORDER == LITTLE_ENDIAN */
549: #define ND_NA_FLAG_ROUTER 0x00000080

2000 found at line 1310:
1308: Date: Wed, 20 Sep 1995 00:19:00 (EDT) -0400
1309: From: Joe Recipient <Joe_Recipient@mega.edu>
1310: Message-Id: <199509200019.12345@mega.edu>
1311: Subject: Disposition notification
1312: To: Jane Sender <Jane_Sender@huge.com>

2000 found at line 9:
7: Network Working Group Internet Architectu
7(continued): re Board
8: Request for Comments: 2300 J. Postel
8(continued): , Editor
9: Obsoletes: 2200, 2000, 1920, 1880, 1800,
9(continued): May 1998
10: 1780, 1720, 1610, 1600, 1540, 1500, 1410,
11: 1360, 1280, 1250, 1200, 1140, 1130, 1100, 1083

Nesser Informational [Page 239]
EXAMPLE. 65799 IN NS NS2.YY.EXAMPLE.

EXAMPLE. 65799 IN SIG NS ... XX.EXAMPLE. ...

'yy' on a line without 'yyyy' found at line 874:

EXAMPLE. 65799 IN NS NS2.YY.EXAMPLE.

EXAMPLE. 65799 IN SIG NS ... XX.EXAMPLE. ...

'yy' on a line without 'yyyy' found at line 879:

NS1.YY.EXAMPLE. 65799 IN A 10.100.0.1

NS2.YY.EXAMPLE. 65799 IN A 10.100.0.2

'yy' on a line without 'yyyy' found at line 881:

NS1.YY.EXAMPLE. 65799 IN A 10.100.0.1

NS2.YY.EXAMPLE. 65799 IN A 10.100.0.2

NS3.YY.EXAMPLE. 65799 IN A 10.100.0.2

'yy' on a line without 'yyyy' found at line 883:

EXAMPLE. 65799 IN KEY 0x4100 1 1 ...

'yy' on a line without 'yyyy' found at line 884:

EXAMPLE. 65799 IN SIG KEY

2000 found at line 805:

$ORIGIN XX.EXAMPLE.

@ IN SOA NS1.XX.EXAMPLE. HOSTMATER.XX.EXA

MPLE. (

1997102000 ; serial

1800 ; refresh (30 mins)

900 ; retry (15 mins)
Sending agents MUST encode signing time through the year 2049 as UTCTime; signing times in 2050 or later MUST be encoded as GeneralizedTime. Agents MUST interpret the year field (YY) as follows: if YY is greater than or equal to 50, the year is interpreted as 19YY; if YY is less than 50, the year is interpreted as 20YY.

2.5.2 S/MIME Capabilities Attribute

UTCTime found at line 268:

Sending agents MUST encode signing time through the year 2049 as UTCTime; signing times in 2050 or later MUST be encoded as GeneralizedTime. Agents MUST interpret the year field (YY) as follows: if YY is greater than or equal to 50, the year is interpreted as 19YY; if YY is less than 50, the year is interpreted as 20YY.

1900 found at line 1972:
1970: Mountain View, CA 94043
1971: Phone: (415) 254-1900
1973: EMail: repka@netscape.com
1974:
+=+=+=+=+= File rfc2312.txt +=+=+=+=+
1900 found at line 1049:
1047: Mountain View, CA 94043
1048: Phone: (415) 254-1900
1050: EMail: jsw@netscape.com
1051:
+=+=+=+=+= File rfc2326.txt +=+=+=+=+
2digit found at line 906:
904: smpte-type = "smpte" | "smpte-30-drop" | "smpte-25"
905: ; other timecodes may be added
905(continued): d
906: smpte-time = 1*2DIGIT ":" 1*2DIGIT ":" 1*2DIGIT [":" 1*2DIGIT]
906(continued): DIGIT
907: [":." 1*2DIGIT]
908:
2digit found at line 907:
905: ; other timecodes may be added
905(continued): d
906: smpte-time = 1*2DIGIT ":" 1*2DIGIT ":" 1*2DIGIT [":" 1*2DIGIT]
906(continued): DIGIT
907: [":." 1*2DIGIT]
908:
Examples:
2digit found at line 940:
938: npt-hhmmss = npt-hh ":" npt-mm ":" npt-ss [":." *DIGIT]
939: npt-hh = 1*DIGIT ; any positive number
940: npt-mm = 1*2DIGIT ; 0-59
941: npt-ss = 1*2DIGIT ; 0-59
942:
2digit found at line 941:
939: npt-hh = 1*DIGIT ; any positive number
940: npt-mm = 1*2DIGIT ; 0-59
941: npt-ss = 1*2DIGIT ; 0-59
942:
943: Examples:
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

1900 found at line 2839:
2837: 1620 Tuckerstown Road 3260 Jay St.
2838: Dresher, PA 19025 USA Santa Clara, CA 95054
2839: Phone: +1 215 830 0692 Phone: +1 408 327 1900
2840: EMail: dave@corecom.com EMail: bcole@jnx.com
2841:

2000 found at line 209:
209: native IP DLC, this field is not used to convey a port number
209(continued): for
210: replies; moreover, the zero setting is not used. IANA has re
210(continued): gistered
211: port numbers 12000 through 12004 for use in these two fields
211(continued): by the
212: native IP DLC; use of these port numbers allows prioritizatio
212(continued): n in the
213: IP network. For more details of the use of these fields, see
213(continued): 2.6.1,

2000 found at line 1694:
1692:
1693: At an intermediate HPR node, link activation failure can be r
1693(continued): eported
1694: with sense data X’08010000’ or X’80020000’. At a node with r
1694(continued): oute-
1695: selection responsibility, such failure can be reported with s
1695(continued): ense
1696: data X’80140001’.

2000 found at line 1839:
1839: Link failure | X’800
1839(continued): |
1840: Route selection services has determined that no path | X’801
1840(continued):
1841: Link failure |
1841(continued): -------+
1842: Route selection services has determined that no path |
1842(continued): -------+

2000 found at line 1866:
1866: will be able to exploit routers that provide priority functio
1866(continued): n.
1867:
1868: The 5 UDP port numbers, 12000-12004 (decimal), have been assi
1869(continued): the Internet Assigned Number Authority (IANA). Four of these
1869(continued): port numbers are used for ANR-routed network layer packets (NLPs)
1870(continued): and

2000 found at line 1872:
1870: numbers are used for ANR-routed network layer packets (NLPs)
1870(continued): and
1871: correspond to the APPN transmission priorities (network, 1200
1871(continued): 1; high,
1872: 12002; medium, 12003; and low, 12004), and one port number (1
1872(continued): 2000) is
1873: used for a set of LLC commands (i.e., XID, TEST, DISC, and DM
1873(continued):) and
1874: function-routed NLPs (i.e., XID_DONE_RQ and XID_DONE_RSP). The
1874(continued):

2000 found at line 2417:
2415: the source port number is not relevant. That is, the firewall
2415(continued): should accept traffic with the IP addresses of the HPR/IP nodes and
2416(continued): with destination port numbers in the range 12000 to 12004. Second
2417(continued): , the possibility exists for an attack using forged UDP datagrams;
2418(continued): such attacks could cause the RTP connection to fail or even introd
2419(continued): uc

+++++++ File rfc2355.txt ++++++++ File rfc2361.txt ++++++++
2000 found at line 1488:
1486: 0x00 Command Reject 0x10030000
1487: 1488: 0x01 Intervention Required 0x08020000
1489: 1490: 0x02 Operation Check 0x10050000

+++++++ File rfc2361.txt ++++++++ ‘yy’ on a line without ‘yyyy’ found at line 30:
28: * video/vnd.avi; codec=XXX identifies a specific video codec
28(continued): (i.e.,
29: XXX) within the AVI Registry.
30: * audio/vnd.wave; codec=YYY identifies a specific audio codec
30(continued):
31: (i.e., YYY) within the WAVE Registry.
32:
'yy' on a line without 'yyyy' found at line 31:
29: XXX) within the AVI Registry.
30: * audio/vnd.wave; codec=YYY identifies a specific audio codec
30(continued):
31: (i.e., YYY) within the WAVE Registry.
32:
33: Appendix A and Appendix B provides an authoritative reference
33(continued):

2000 found at line 354:
352: Compaq Computer Corporation
353: 20555 SH 249
354: Houston, TX 77269-2000 USA
355:
356: A.6 IBM CVSD

2000 found at line 1474:
1472: PO Box 582
1473: Stellenbosch Stellenbosch South Africa
1474: 27 21 888 2000
1475:
1476: A.75 DF GSM610

2000 found at line 1487:
1485: PO Box 582
1486: Stellenbosch 7600 South Africa
1487: 27 21 888 2000
1488:
1489: A.76 ISIAudio

2000 found at line 1545:
1543: 4900 Old Ironsides Drive
1544: Santa Clara, California 95054 USA
1545: (408) 492-2000
1546:
1547: A.79 Dolby AC3 SPDIF

2000 found at line 1993:
1991: A.104 DVM
1992:
1993: WAVE form Registration Number (hex): 0x2000
1994: Codec ID in the IANA Namespace: audio/vnd.wave; codec=2
1994(continued): 000
1995: WAVE form wFormatTag ID: WAVE_FORMAT_DVM

2000 found at line 1994:
1992:
1993: WAVE form Registration Number (hex): 0x2000
1994: Codec ID in the IANA Namespace: audio/vnd.wave;codec=2
1994(continued): 000
1995: WAVE form wFormatTag ID: WAVE_FORMAT_DVM
1996: Contact:

2000 found at line 3180:
3178: 707 California Street
3179: Mountain View, California 94041 USA
3180: 650-526-2000
3181:
3182:

2000 found at line 3211:
3209: 707 California Street
3210: Mountain View, California 94041 USA
3211: 650-526-2000
3212:
3213: B.83 TrueMotion 2.0

2000 found at line 3239:
3237: 707 California Street
3238: Mountain View, California 94041 USA
3239: 650-526-2000
3240:
3241:

+=+=+=+=+= File rfc2368.txt +=+=+=+=+=
two-digit found at line 240:
238: scheme is not a problem: those characters may appear in mailt
238(continued): o URLs,
239: they just may not appear in unencoded form. The standard URL
239(continued): encoding
240: mechanisms ("%" followed by a two-digit hex number) must be u
240(continued): sed in
certain cases.

+=+=+=+=+= File rfc2373.txt +=+=+=+=+=
2digit found at line 1192:
1190: IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DI
1190(continued): GIT
1191:
1192: IPv6prefix = hexpart "/" 1*2DIGIT
1193:
1194: hexpart = hexseq | hexseq "::" [hexseq] | "::" [hexseq
1194(continued):]

Nesser Informational [Page 246]
2digit found at line 1078:
1076: response = code [index] [field] text CRLF
1077: code = [-] LDIG 2DIGIT ":"
1079: index = number ":"
1080: field = 1*SPACE attribute ":" 1*SPACE

2digit found at line 133:
131: error-response = error-code SP *TCHAR CRLF
133: error-code = ("4" / "5") 2DIGIT
134: Note that in ABNF, strings literals are case insensitive. Th
135: at
135(continued): at

(yy on a line without 'yyyy' found at line 107:
105: a/TPg7JpJhxyenzoWTB6X0cx0KjgBzi4diinWGdkF8kjdfnycQZxZeYGejm
105(continued): Jl
106: ZeG19i2icVqaNVa1T65iJ90m6mvuTS4OK05M0vDk0Q4XUtwwKOzrcd3iq9u
106(continued): is
107: F81M10IcR71EewwcLp7tuNNkM3uNna3F2JQFo97Vriy/X14/1fcf5WwZxyym7
107(continued): PH
108: hhx4dbgYKAAA7"
109: ALT="Larry">

yyyy on a line without 'yyyy' found at line 107:
105: a/TPg7JpJhxyenzoWTB6X0cx0KjgBzi4diinWGdkF8kjdfnycQZxZeYGejm
105(continued): Jl
106: ZeG19i2icVqaNVa1T65iJ90m6mvuTS4OK05M0vDk0Q4XUtwwKOzrcd3iq9u
106(continued): is
107: F81M10IcR71EewwcLp7tuNNkM3uNna3F2JQFo97Vriy/X14/1fcf5WwZxyym7
107(continued): PH
108: hhx4dbgYKAAA7"
109: ALT="Larry">

2000 found at line 9:
7: Network Working Group Internet Architecture
7(continued): re Board
8: Request for Comments: 2400 J
8(continued): . Postel
9(continued): Reynolds
10: 1800, 1780, 1720, 1610, 1600, 1540, 1500, 1410,
10(continued): Editors
11: 1360, 1280, 1250, 1200, 1140, 1130, 1100, 1083 September
11(continued): ber 1998

2000 found at line 832:
830:
831: Attribute #2:
RFC 2626 The Internet and the Millennium Problem (Year 2000) June 1999

832: 0x00020004 (AF = 0, type = SA Duration, length = 4 bytes
832(continued):)
833: 0x00015180 (value = 0x15180 = 86400 seconds = 24 hours)
834:

2000 found at line 848:
846:
847: Attribute #4:
848: 0x00020004 (AF = 0, type = SA Duration, length = 4 bytes
848(continued):)
849: 0x000186A0 (value = 0x186A0 = 100000KB = 100MB)
850:

2000 found at line 1257:
1255: Field Size: 185
1256: Group Prime/Irreducible Polynomial:
1257: 0x020000000000000000000000000000200000000000
1257(continued): 000001
1258: Group Generator One: 0x18
1259: Group Curve A: 0x0

2000 found at line 1689:
1687: As of early 1996, it appears that for 90 bits of cryptographi
1687(continued): c
1688: strength, one should use a modular exponentiation group modul
1688(continued): us of
1689: 2000 bits. For 128 bits of strength, a 3000 bit modulus is r
1689(continued): equired.
1690:
1691: 3. Specifying and Deriving Security Associations

2000 found at line 2761:
2759: Length (32 bit words): 6
2760: Data (hex):
2761: 02000000 00000000 00000000 00000020 00000000 00000000
2761(continued): 1
2762: Generator:
2763: X coordinate: 22 (decimal)

2000 found at line 2976:
2974:
2975: [Stinson] Stinson, Douglas, Cryptography Theory and Practi
2975(continued): ce. CRC

Nesser Informational [Page 248]
2-digit found at line 372:
370: and minutes (e.g., +hh:mm). The time is specified as a 24-hour clock.
371: Hour values are from 00 to 23, and minute values are from 00 to 59.
372: Hour and minutes are 2-digits with high order zeroes required.
373: maintain digit count. The extended format for ISO 8601 UTC of
374: MUST be used. The extended format makes use of a colon character as a
2digit found at line 2051:
2049:
2050: utc-offset-value = ("+" / "+") time-hour ":" time-minute
2051: time-hour = 2DIGIT ;00-23
2052: time-minute = 2DIGIT ;00-59
2053:
2054: 5. Differences From vCard v2.1

+r RFC 2440.txt +++++++++++++++++++++++ File
2000 found at line 3227:
3225: Encryption Standard. This algorithm will work with (at least)
3226:(continued): 128, 192, and 256-bit keys. We expect that this algorithm will be
3227:(continued): selected
3228: from the candidate algorithms in the year 2000.
3229: 12.8. OpenPGP CFB mode

+r RFC 2445.txt +++++++++++++++++++++++ File
yy’ on a line without ‘yyyy’ found at line 2234:
2232: (";" "BYDAY" "=" bywdaylist) /
2233: (";" "BYMONTHDAY" "=" bymodaylist) /
2234: (";" "BYYEARDAY" "=" byyrdaylist) /
2235: (";" "BYWEEKNO" "=" bywkno list) /
2236: (";" "BYMONTH" "=" bymolist) /

‘yy’ on a line without ’yyyy’ found at line 2288:
2286: ordmoday = 1DIGIT / 2DIGIT ;1 to 31
byyrdaylist = yeardaynum / (yeardaynum * ("," yeardaynum))

byrdaynum = ([plus] ordyrday) / (minus ordyrday)

The BYYEARDAY rule part specifies a COMMA character (US-ASCII decimal 44) separated list of days of the year. Valid values are 1 to 366 or -366 to -1. For example, -1 represents the last day of the year.

Note: Since none of the BYDAY, BYMONTHDAY or BYYEARDAY components are specified, the day is gotten from DTSTART.

(2000 9:00 AM EDT) June 10; July 10

(2001 9:00 AM EDT) June 10; July 10

(1997 9:00 AM EST) January 1

(19970101T090000)

RRULE:FREQ=YEARLY;INTERVAL=3;COUNT=10;BYYEARDAY=1,100,200

=> (1997 9:00 AM EST) January 1

of values. The format for the value type is expressed as the ISO 8601 complete representation, basic format for a calendar date. The textual format specifies a four-digit year, two-digit month,
two-digit found at line 1920:
1918: 8601] complete representation, basic format for a calendar da
1919: textual format specifies a four-digit year, two-digit month, and
two-digit day of the month. There are no separator characters
between the year, month and day component text.
1920: two-digit day of the month. There are no separator characters
between the year, month and day component text.
1921:
1922:

two-digit found at line 2610:
2608: of day. The format is based on the [ISO 8601] complete
2609: representation, basic format for a time of day. The text form
2610: consists of a two-digit 24-hour of the day (i.e., values 0-23
2611: digit minute in the hour (i.e., values 0-59), and two-digit s
2612: in the minute (i.e., values 0-60). The seconds value of 60 MU
2613: to be used to account for "leap" seconds. Fractions of a seco
two-digit found at line 4583:
4581: Values for latitude and longitude shall be expressed as decim
4582: fractions of degrees. Whole degrees of latitude shall be repr
4583: esented
by a two-digit decimal number ranging from 0 through 90. Whole
degrees of longitude shall be represented by a decimal number
ranging from 0 through 180. When a decimal fraction of a degree is sp
2digit found at line 1911:
1909:
1910:
1911: date-month = 2DIGIT ;01-12
1912: date-mday = 2DIGIT ;01-28, 01-29, 01-30, 01-31
1912(continued): -31
1913; based on month/year
2digit found at line 1912:
1910:
1911: date-month = 2DIGIT ;01-12
1912: date-mday = 2DIGIT ;01-28, 01-29, 01-30, 01-31
1912(continued): -31
1913; based on month/year
1914:
2digit found at line 2258:
2256: byseclist = seconds / (seconds *(""," seconds))
2257:
2258: seconds = 1DIGIT / 2DIGIT ;0 to 59
2259:
2260: byminlist = minutes / (minutes *(""," minutes))
2digit found at line 2262:
2260: byminlist = minutes / (minutes *(""," minutes))
2261:
2262: minutes = 1DIGIT / 2DIGIT ;0 to 59
2263:
2264: byhrlist = hour / (hour *(""," hour))
2digit found at line 2266:
2264: byhrlist = hour / (hour *(""," hour))
2265:
2266: hour = 1DIGIT / 2DIGIT ;0 to 23
2267:
2268: bywdaylist = weekdaynum / (weekdaynum *(""," weekdaynum))
2digit found at line 2276:
2274: minus = "-"
2275:
2276: ordwk = 1DIGIT / 2DIGIT ;1 to 53
weekday = "SU" / "MO" / "TU" / "WE" / "TH" / "FR" / "SA"

monthdaynum = ([plus] ordmoday) / (minus ordmoday)

ordmoday = 1DIGIT / 2DIGIT ; 1 to 31

byyrdaylist = yeardaynum / (yeardaynum *""," yeardaynum))

yeardaynum = ([plus] ordyrday) / (minus ordyrday)

ordyrday = 1DIGIT / 2DIGIT / 3DIGIT ; 1 to 366

bywknolist = weeknum / (weeknum *""," weeknum))

bymolist = monthnum / (monthnum *""," monthnum))

monthnum = 1DIGIT / 2DIGIT ; 1 to 12

bysplist = setposday / (setposday *""," setposday))

time = time-hour time-minute time-second [time-utc]

time-hour = 2DIGIT ; 00-23

time-minute = 2DIGIT ; 00-59

time-second = 2DIGIT ; 00-60

; The "60" value is used to account for "leap" seconds.

time-hour = 2DIGIT ; 00-23

time-minute = 2DIGIT ; 00-59

time-second = 2DIGIT ; 00-60

; The "60" value is used to account for "leap" seconds.
found at line 2988:
2986: DTSTAMP:19970901T1300Z
2987: DTSTART:19970903T163000Z
2988: DTEND:19970903T190000Z
2989: SUMMARY:Annual Employee Review
2990: CLASS:PRIVATE

found at line 1716:
1714: The following are examples of this property parameter:
1715: DTSTART;TZID=US-Eastern:19980119T020000
1717: DTEND;TZID=US-Eastern:19980119T030000

found at line 2029:
2027: New York on January 19, 1998:
2028: DTSTART;TZID=US-Eastern:19980119T020000
2030: Example: The following represents July 14, 1997, at 1:30 PM i
2031(continued):

found at line 2822:
2820(continued): Property names, parameter names and enumerated parameter valu
2821(continued): es are
2821(continued): case insensitive. For example, the property name "DUE" is the
2821(continued): same as
2822(continued): "due" and "Due", DTSTART;TZID=US-Eastern:19980714T120000 is t
2822(continued): he same
2823(continued): as DtStart;TzID=US-Eastern:19980714T120000.

found at line 2823:
2821(continued): case insensitive. For example, the property name "DUE" is the
2821(continued): same as
2822(continued): "due" and "Due", DTSTART;TZID=US-Eastern:19980714T120000 is t
2822(continued): he same
2823(continued): as DtStart;TzID=US-Eastern:19980714T120000.
2824:
2825: 4.6 Calendar Components

found at line 3566:
3564: Time took effect in Fall 1967 for New York City:
3565:
3566: DTSTART:19671029T020000
3567:
3568: TZOFFSETFROM:-0400
2000 found at line 3704:
3702:
3703: BEGIN:DAYLIGHT
3704: DTSTART:19870405T020000
3705: RRULE:FREQ=YEARLY;BYDAY=1SU;BYMONTH=4;UNTIL=19980404T070000
3705(continued): Z
3706: TZOFFSETFROM:-0500

2000 found at line 3721:
3719: LAST-MODIFIED:19870101T000000Z
3720: BEGIN:STANDARD
3721: DTSTART:19671029T020000
3722: RRULE:FREQ=YEARLY;BYDAY=-1SU;BYMONTH=10
3723: TZOFFSETFROM:-0400

2000 found at line 3728:
3726: END:STANDARD
3727: BEGIN:DAYLIGHT
3728: DTSTART:19870405T020000
3729: RRULE:FREQ=YEARLY;BYDAY=1SU;BYMONTH=4;UNTIL=19980404T070000
3729(continued): Z
3730: TZOFFSETFROM:-0500

2000 found at line 3735:
3733: END:DAYLIGHT
3734: BEGIN:DAYLIGHT
3735: DTSTART:19990424T020000
3736: RRULE:FREQ=YEARLY;BYDAY=-1SU;BYMONTH=4
3737: TZOFFSETFROM:-0500

2000 found at line 5352:
5350: FREEBUSY;FBTYPE=BUSY-UNAVAILABLE:19970308T160000Z/PT8H30M
5351: FREEBUSY;FBTYPE=FREE:19970308T160000Z/PT3H,19970308T200000Z
5352(continued): /PT1H
5353:
5354: FREEBUSY;FBTYPE=FREE:19970308T160000Z/PT3H,19970308T200000Z
5354(continued): /PT1H,

2000 found at line 5354:
5352: FREEBUSY;FBTYPE=FREE:19970308T160000Z/PT3H,19970308T200000Z
5352(continued): /PT1H
5353:
5354: FREEBUSY;FBTYPE=FREE:19970308T160000Z/PT3H,19970308T200000Z
5354(continued): /PT1H,
5355: 19970308T230000Z/19970309T000000Z
5356:
2000 found at line 6069:
6067: RECURRENCE-ID;VALUE=DATE:19960401
6068: RECURRENCE-ID;RANGE=THISANDFUTURE:19960120T120000Z
6070: 4.8.4.5 Related To

2000 found at line 6507:
6505: RDATE;TZID=US-EASTERN:19970714T083000
6506: RDATE;VALUE=PERIOD:19960403T020000Z/19960404T040000Z,
6508: 19960404T010000Z/PT3H
6509:

2000 found at line 6623:
6621: DTSTART;TZID=US-Eastern:19980101T090000
6623: RRULE:FREQ=YEARLY;UNTIL=20000131T090000Z;
6624: BYMONTH=1;BYDAY=SU,MO,TU,WE,TH,FR,SA
6625: or

2000 found at line 6626:
6624: BYMONTH=1;BYDAY=SU,MO,TU,WE,TH,FR,SA
6625: or
6626: RRULE:FREQ=DAILY;UNTIL=20000131T090000Z;BYMONTH=1
6627:
6628: ==> (1998 9:00 AM EDT)January 1-31

2000 found at line 6630:
6628: ==> (1998 9:00 AM EDT)January 1-31
6629: (1999 9:00 AM EDT)January 1-31
6630: (2000 9:00 AM EDT)January 1-31
6631:
6632: Weekly for 10 occurrences

2000 found at line 6802:
6800: (1998 9:00 AM EDT)June 10;July 10
6801: (1999 9:00 AM EDT)June 10;July 10
6802: (2000 9:00 AM EDT)June 10;July 10
6803: (2001 9:00 AM EDT)June 10;July 10
6804: Note: Since none of the BYDAY, BYMTHDAY or BYYEARDAY comp
6804(continued): onents

2000 found at line 6824:
6822: ==> (1997 9:00 AM EST)January 1
6823: (1997 9:00 AM EDT)April 10;July 19
3374: DTSTART:19970701T210000Z
3375: DTEND:19970701T230000Z

1900 found at line 3410:
3408: SEQUENCE:2
3409: UID:0981234-1234234-23@example.com
3410: DTSTAMP:19970613T190000Z
3411: END:VEVENT
3412: END:VCALENDAR

1900 found at line 3461:
3459: DTEND;TZID=America-Chicago:19970701T180000
3460: DTSTART;TZID=America-Chicago:19970702T160000
3461: DTSTAMP:19970614T190000Z
3462: STATUS:CONFIRMED
3463: LOCATION;VALUE=URI:http://www.midwaystadium.com/

1900 found at line 3505:
3503: BEGIN:VEVENT
3504: ORGANIZER:mailto:a@example.com
3505: DTSTAMP:19970614T190000Z
3506: UID:0981234-1234234-23@example.com
3507: DTSTART;VALUE=DATE:19970714

1900 found at line 3594:
3592: ATTENDEE;RSVP=FALSE;TYPE=ROOM:conf_Big@example.com
3593: ATTENDEE;ROLE=NON-PARTICIPANT;RSVP=FALSE:mailto:E@example.com
3593(continued):
3594: DTSTART:19970701T190000Z
3595: DTSTART:19970701T200000Z
3596: DTEND:19970701T200000Z

1900 found at line 3618:
3616: SEQUENCE:0
3617: REQUEST-STATUS:2.0;Success
3618: DTSTAMP:19970612T190000Z
3619: END:VEVENT
3620: END:VCALENDAR

1900 found at line 3655:
3653: ATTENDEE;ROLE=NON-PARTICIPANT;RSVP=FALSE:Mailto:E@example.com
3653(continued):
3654: DTSTART:19970701T180000Z
3655: DTEND:19970701T190000Z
3656: SUMMARY:Phone Conference
3657: UID:calsvr.example.com-873970198738777@example.com
1900 found at line 3659:
3657: UID:calsrv.example.com-873970198738777@example.com
3658: SEQUENCE:1
3659: DTSTAMP:19970613T190000Z
3660: STATUS:CONFIRMED
3661: END:VEVENT

1900 found at line 3680:
3678: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:Mailto:B@example.com
3679: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:Mailto:C@example.com
3680: DTSTART:19970701T190000Z
3681: DTEND:19970701T200000Z
3682: SUMMARY:Discuss the Merits of the election results

1900 found at line 3686:
3684: UID:calsrv.example.com-873970198738777a@example.com
3685: SEQUENCE:0
3686: DTSTAMP:19970611T190000Z
3687: STATUS:CONFIRMED
3688: END:VEVENT

1900 found at line 3713:
3711: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:Mailto:C@example.com
3712: DTSTART:19970701T160000Z
3713: DTEND:19970701T190000Z
3714: DTSTAMP:19970612T190000Z
3715: SUMMARY:Discuss the Merits of the election results

1900 found at line 3714:
3712: DTSTART:19970701T160000Z
3713: DTEND:19970701T190000Z
3714: DTSTAMP:19970612T190000Z
3715: SUMMARY:Discuss the Merits of the election results
3716: LOCATION:Green Conference Room

1900 found at line 3721:
3719: UID:calsrv.example.com-873970198738777a@example.com
3720: SEQUENCE:0
3721: DTSTAMP:19970611T190000Z
3722: END:VEVENT
3723: END:VCALENDAR

1900 found at line 3738:
3736: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:Mailto:B@example.com
3737: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:Mailto:C@example.com
3738: DTSTART:19970613T190000Z
3739: DTEND:19970701T160000Z
3740: DTSTART:19970701T190000Z
1900 found at line 3740:
3738: DTSTAMP:19970613T190000Z
3739: DTSTART:19970701T160000Z
3740: DTEND:19970701T190000Z
3741: SUMMARY:Discuss the Merits of the election results - changed
3741(continued): to
3742: meet B’s schedule

1900 found at line 3769:
3767: UID:calsrv.example.com-873970198738777@example.com
3768: SEQUENCE:0
3769: DTSTAMP:19970614T190000Z
3770: END:VEVENT
3771: END:VCALENDAR

1900 found at line 3884:
3882: SEQUENCE:0
3883: REQUEST-STATUS:2.0;Success
3884: DTSTAMP:19970611T190000Z
3885: END:VEVENT
3886: END:VCALENDAR

1900 found at line 3906:
3904: SEQUENCE:0
3905: STATUS:CONFIRMED
3906: DTSTAMP:19970611T190000Z
3907: END:VEVENT
3908: END:VCALENDAR

1900 found at line 3936:
3934: SEQUENCE:0
3935: REQUEST-STATUS:2.0;Success
3936: DTSTAMP:19970614T190000Z
3937: END:VEVENT
3938: END:VCALENDAR

1900 found at line 3967:
3965: SEQUENCE:0
3966: REQUEST-STATUS:2.0;Success
3967: DTSTAMP:19970614T190000Z
3968: END:VEVENT
3969: END:VCALENDAR

1900 found at line 4072:
4070: SEQUENCE:1
4071: STATUS:CANCELLED
4072: DTSTAMP:19970613T190000Z
4073: END:VEVENT
1900 found at line 5193:
5190: to each of the start of each recurring instance. Hence, if th
5191(continued): e
5192: initial "VTODO" calendar component specifies a "DTSTART" prop
5192(continued): erty
5193: value of "19970701T190000Z" and a "DUE" property value of
5194: "19970801T190000Z" the interval of one day which is applied t
5194(continued): o each
5195: recurring instance of the "VTODO" calendar component to deter
5195(continued): mine the
5196: "DUE" date of the instance.

2000 found at line 3346:
3344: BEGIN:VEVENT
3345: ORGANIZER:mailto:a@example.com
3346: DTSTART:19970701T200000Z
3347: DTSTAMP:19970611T190000Z
3348: SUMMARY:ST. PAUL SAINTS -VS- DULUTH-SUPERIOR DUKES

2000 found at line 3437:
3435: TZURL:http://zones.stds_r_us.net/tz/America-Chicago
3436: BEGIN:STANDARD
3437: DTSTART:19671029T020000
3438: RRULE:FREQ=YEARLY;BYDAY=-1SU;BYMONTH=10
3439: TZOFFSETFROM:-0500

2000 found at line 3444:
3442: END:STANDARD
3443: BEGIN:DAYLIGHT
3444: DTSTART:19870405T020000
3445: RRULE:FREQ=YEARLY;BYDAY=1SU;BYMONTH=4
3446: TZOFFSETFROM:-0600

2000 found at line 3595:
3593: ATTENDEE;ROLE=NON-PARTICIPANT;RSVP=FALSE:Mailto:E@example.com
3593(continued):
2000 found at line 4194:
4192: ATTENDEE;TYPE=INDIVIDUAL:Mailto:D@example.com
4193: DTSTAMP:19970611T190000Z
4194: DTSTART:19970701T200000Z
4195: DTEND:19970701T203000Z
4196: RRULE:FREQ=WEEKLY

2000 found at line 4233:
4231: DTEND:19980107T124200Z
4232: FREEBUSY:19980101T180000Z/19980101T190000Z
4233: FREEBUSY:19980103T020000Z/19980103T050000Z
4234: FREEBUSY:19980107T020000Z/19980107T050000Z
4235: FREEBUSY:19980111T000000Z/19980111T010000Z

2000 found at line 4234:
4232: FREEBUSY:19980101T180000Z/19980101T190000Z
4233: FREEBUSY:19980103T020000Z/19980103T050000Z
4234: FREEBUSY:19980107T020000Z/19980107T050000Z
4235: FREEBUSY:19980111T000000Z/19980111T010000Z
4236: FREEBUSY:19980115T190000Z/19980115T200000Z

2000 found at line 4236:
4234: FREEBUSY:19980107T020000Z/19980107T050000Z
4235: FREEBUSY:19980111T000000Z/19980111T010000Z
4236: FREEBUSY:19980115T190000Z/19980115T200000Z
4237: FREEBUSY:19980115T220000Z/19980115T230000Z
4238: FREEBUSY:19980116T013000Z/19980116T043000Z

2000 found at line 4237:
4235: FREEBUSY:19980111T000000Z/19980111T010000Z
4236: FREEBUSY:19980111T190000Z/19980111T200000Z
4237: FREEBUSY:19980115T220000Z/19980115T230000Z
4238: FREEBUSY:19980116T013000Z/19980116T043000Z
4239: END:VFREEBUSY

2000 found at line 4290:
4288: DTSTAMP:19970613T190000Z
4289: DTSTART:19970701T080000Z
4290: DTEND:19970701T200000
4291: UID:calsrv.example.com-873970198738777@example.com
4292: END:VFREEBUSY

2000 found at line 4308:
4306: ATTENDEE:Mailto:B@example.com
4307: DTSTART:19970701T080000Z
4308: DTEND:19970701T200000Z
4309: UID:calsrv.example.com-873970198738777@example.com
4310: FREEBUSY:19970701T090000Z/PT1H,19970701T140000Z/PT30M
2000 found at line 4340:
4338: TZURL:http://zones.stds_r_us.net/tz/America-SanJose
4339: BEGIN:STANDARD
4340: DTSTART:19671029T020000
4341: RRULE:FREQ=YEARLY;BYDAY=-1SU;BYMONTH=10
4342: TZOFFSETFROM:-0700

2000 found at line 4347:
4345: END:STANDARD
4346: BEGIN:DAYLIGHT
4347: DTSTART:19870405T020000
4348: RRULE:FREQ=YEARLY;BYDAY=1SU;BYMONTH=4
4349: TZOFFSETFROM:-0800

2000 found at line 4446:
4444: SUMMARY:IETF Calendaring Working Group Meeting
4445: DTSTART:19970601T210000Z
4446: DTEND:19970601T220000Z
4447: LOCATION:Conference Call
4448: DTSTAMP:19970526T083000Z

2000 found at line 4473:
4471: SUMMARY:IETF Calendaring Working Group Meeting
4472: DTSTART:19970901T210000Z
4473: DTEND:19970901T220000Z
4474: LOCATION:Building 32, Microsoft, Seattle, WA
4475: DTSTAMP:19970526T083000Z

2000 found at line 4565:
4563: SUMMARY:IETF Calendaring Working Group Meeting
4564: DTSTART:19970901T210000Z
4565: DTEND:19970901T220000Z
4566: LOCATION:Building 32, Microsoft, Seattle, WA
4567: DTSTAMP:19970526T083000Z

2000 found at line 4610:
4608: SUMMARY:IETF Calendaring Working Group Meeting
4609: DTSTART:19970715T210000Z
4610: DTEND:19970715T220000Z
4611: LOCATION:Conference Call
4612: DTSTAMP:19970526T083000Z

2000 found at line 4631:
4629: SUMMARY:Review Accounts
4630: DTSTART:19980303T210000Z
4631: DTEND:19980303T220000Z
4632: LOCATION:The White Room
4633: DTSTAMP:19980303T210000Z
Nesser Informational [Page 269]
2000 found at line 5018:
5016: UID:calsrv.example.com-873970198738777-00@example.com
5017: SEQUENCE:0
5018: DTSTAMP:19970717T200000Z
5019: STATUS:Needs Action
5020: END:VTODO

2000 found at line 5179:
5177: UID:calsrv.example.com-873970198738777-00@example.com
5178: SEQUENCE:0
5179: DTSTAMP:19970717T200000Z
5180: STATUS:NEEDS ACTION
5181: PRIORITY:1

2000 found at line 5236:
5234: VERSION:2.0
5235: BEGIN:VJOURNAL
5236: DTSTART:19971002T200000Z
5237: ORGANIZER:MAILTO:A@Example.com
5238: SUMMARY:Phone conference minutes

2000 found at line 5358:
5356: SEQUENCE:3
5357: RRULE:FREQ=WEEKLY
5358: RDATE;VALUE=PERIOD:19970819T210000Z/19970819T220000Z
5359: ORGANIZER:Mailto:A@example.com
5360: ATTENDEE;ROLE=CHAIR;PARTSTAT=ACCEPTED:Mailto:A@example.com

2000 found at line 5365:
5363: SUMMARY:IETF Calendaring Working Group Meeting
5364: DTSTART:19970801T210000Z
5365: DTEND:19970801T220000Z
5366: RECURRANCE-ID:19970809T210000Z
5367: DTSTAMP:19970726T083000

== File rfc2447.txt ==

1900 found at line 421:
419: ATTENDEE;ROLE=CHAIR;ATTSTAT=ACCEPTED:mailto:sman@netscape.com
419(continued):
420: ATTENDEE;RSVP=YES:mailto:stevesil@microsoft.com
421: DTSTAMP:19970611T190000Z
422: DTSTART:19970701T210000Z
423: DTEND:19970701T230000Z
Since this object incorporates the Year 2000-unfriendly
2-digit year specified in SMI for the LAST-UPDATED file
1d, and

determining the level of the MIB supported by an agent.
Since this object incorporates the Year 2000-unfriendly
2-digit year specified in SMI for the LAST-UPDATED file,
and

The main IETF standards-track document on the HTTP protocol is
RFC2068 on HTTP 1.1. It notes that historically three different date
formats have been used, and that one of them uses a two-digit year
field. In section 3.3.1 it requires HTTP 1.1 implementations to
generate this RFC1123 format:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

instead of this RFC850 format:

Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

Unfortunately, many existing servers, serving on the order of one
fifth of the current HTTP traffic, send dates in the ambiguous RFC850
format.
Section 19.3 of the RFC2068 says this:

- HTTP/1.1 clients and caches should assume that an RFC-850 date which appears to be more than 50 years in the future is in fact in the past (this helps solve the "year 2000" problem).

This avoids a "stale cache" problem, which would cause the user to see out-of-date data.

But to avoid unnecessary delays and bandwidth indicated in Scenario 2 below, this should be extended to say that a date which appears to be more than 50 years in the past may be assumed to be in the future, if a future date is legal for that field.

Scenario 3 indicates that servers may also want to follow these rules.

Here is some more background and justification for these arguments.

The following headers use full dates:

HTTP/1.0:
Date:
Expires: # can be in the future
If-Modified-Since: # required to be in the past
Last-Modified: # required to be in the past
Retry-After: # can be in the future, also takes
 # relative time - number of seconds

HTTP/1.1:
If-Range:
If-Unmodified-Since: # required to be in the past

Note that clock skew between hosts can lead to confusion here - see the RFC for details.

Here are some scenarios of the implications of RFC850 dates, which include stale caches, unnecessary requests for things, which are validly cached, delays for the user, extra bandwidth, and presenting incorrect information to the user.

Some cases involve comparisons with the current time, and others may involve comparisons between dates from different sources. The abbreviation "/99" is used to imply an RFC850 date with the value "99" for the year.
Scenario 1:
If a client gets an Expires /99 date after the year 2000, it should interpret it as 1999, to avoid ending up with a stale cache entry.

This is as already specified in RFC2068.

Scenario 2:
If a client gets an Expires /00 date before the year 2000, and subsequently is faced with a choice to either retrieve the document from its cache or look for an updated copy, it may interpret it as the year 2000, to avoid the unnecessary delay and bandwidth of an extra request.

Scenario 3:
If a server gets an If-Modified-Since /99 date from a client after the year 2000, it should interpret it as 1999 when comparing with the local modification date, in order to possibly avoid sending a full GET response rather than a HEAD response.

Note that an If-Modified-Since header must never be in the future.
Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.