
Network Working Group E. Rescorla
Request for Comments: 2660 RTFM, Inc.
Category: Experimental A. Schiffman
 Terisa Systems, Inc.
 August 1999

 The Secure HyperText Transfer Protocol

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This memo describes a syntax for securing messages sent using the
 Hypertext Transfer Protocol (HTTP), which forms the basis for the
 World Wide Web. Secure HTTP (S-HTTP) provides independently
 applicable security services for transaction confidentiality,
 authenticity/integrity and non-repudiability of origin.

 The protocol emphasizes maximum flexibility in choice of key
 management mechanisms, security policies and cryptographic algorithms
 by supporting option negotiation between parties for each
 transaction.

Table of Contents

 1. Introduction .. 3
 1.1 . Summary of Features ... 3
 1.2 . Changes ... 4
 1.3 . Processing Model .. 5
 1.4 . Modes of Operation .. 6
 1.5 . Implementation Options 7
 2. Message Format .. 7
 2.1 . Notational Conventions 8
 2.2 . The Request Line .. 8
 2.3 . The Status Line ... 8
 2.4 . Secure HTTP Header Lines 8
 2.5 . Content ... 12
 2.6 . Encapsulation Format Options 13

Rescorla & Schiffman Experimental [Page 1]

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 2.6.1 . Content-Privacy-Domain: CMS 13
 2.6.2 . Content-Privacy-Domain: MOSS 14
 2.6.3 . Permitted HTTP headers 14
 2.6.3.2 . Host .. 15
 2.6.3.3 . Connection .. 15
 3. Cryptographic Parameters 15
 3.1 . Options Headers ... 15
 3.2 . Negotiation Options ... 16
 3.2.1 . Negotiation Overview 16
 3.2.2 . Negotiation Option Format 16
 3.2.3 . Parametrization for Variable-length Key Ciphers 18
 3.2.4 . Negotiation Syntax .. 18
 3.3 . Non-Negotiation Headers 23
 3.3.1 . Encryption-Identity 23
 3.3.2 . Certificate-Info .. 23
 3.3.3 . Key-Assign .. 24
 3.3.4 . Nonces .. 25
 3.4 . Grouping Headers With SHTTP-Cryptopts 26
 3.4.1 . SHTTP-Cryptopts ... 26
 4. New Header Lines for HTTP 26
 4.1 . Security-Scheme ... 26
 5. (Retriable) Server Status Error Reports 27
 5.1 . Retry for Option (Re)Negotiation 27
 5.2 . Specific Retry Behavior 28
 5.3 . Limitations On Automatic Retries 29
 6. Other Issues .. 30
 6.1 . Compatibility of Servers with Old Clients 30
 6.2 . URL Protocol Type ... 30
 6.3 . Browser Presentation .. 31
 7. Implementation Notes .. 32
 7.1 . Preenhanced Data .. 32
 7.2 . Note:Proxy Interaction 34
 7.2.1 . Client-Proxy Authentication 34
 8. Implementation Recommendations and Requirements 34
 9. Protocol Syntax Summary 35
 10. An Extended Example .. 36
 Appendix: A Review of CMS .. 40
 Bibliography and References 41
 Security Considerations .. 43
 Authors’ Addresses ... 44
 Full Copyright Statement.. 45

Rescorla & Schiffman Experimental [Page 2]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

1. Introduction

 The World Wide Web (WWW) is a distributed hypermedia system which has
 gained widespread acceptance among Internet users. Although WWW
 browsers support other, preexisting Internet application protocols,
 the native and primary protocol used between WWW clients and servers
 is the HyperText Transfer Protocol (HTTP) [RFC-2616]. The ease of
 use of the Web has prompted its widespread employment as a
 client/server architecture for many applications. Many such
 applications require the client and server to be able to authenticate
 each other and exchange sensitive information confidentially. The
 original HTTP specification had only modest support for the
 cryptographic mechanisms appropriate for such transactions.

 Secure HTTP (S-HTTP) provides secure communication mechanisms between
 an HTTP client-server pair in order to enable spontaneous commercial
 transactions for a wide range of applications. Our design intent is
 to provide a flexible protocol that supports multiple orthogonal
 operation modes, key management mechanisms, trust models,
 cryptographic algorithms and encapsulation formats through option
 negotiation between parties for each transaction.

1.1 . Summary of Features

 Secure HTTP is a secure message-oriented communications protocol
 designed for use in conjunction with HTTP. It is designed to coexist
 with HTTP’s messaging model and to be easily integrated with HTTP
 applications.

 Secure HTTP provides a variety of security mechanisms to HTTP clients
 and servers, providing the security service options appropriate to
 the wide range of potential end uses possible for the World-Wide Web.
 The protocol provides symmetric capabilities to both client and
 server (in that equal treatment is given to both requests and
 replies, as well as for the preferences of both parties) while
 preserving the transaction model and implementation characteristics
 of HTTP.

 Several cryptographic message format standards may be incorporated
 into S-HTTP clients and servers, particularly, but in principle not
 limited to, [CMS] and [MOSS]. S-HTTP supports interoperation among a
 variety of implementations, and is compatible with HTTP. S-HTTP
 aware clients can communicate with S-HTTP oblivious servers and
 vice-versa, although such transactions obviously would not use S-HTTP
 security features.

 S-HTTP does not require client-side public key certificates (or
 public keys), as it supports symmetric key-only operation modes.

Rescorla & Schiffman Experimental [Page 3]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc2616

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 This is significant because it means that spontaneous private
 transactions can occur without requiring individual users to have
 an established public key. While S-HTTP is able to take advantage
 of ubiquitous certification infrastructures, its deployment does
 not require it.

 S-HTTP supports end-to-end secure transactions, in contrast with the
 original HTTP authorization mechanisms which require the client to
 attempt access and be denied before the security mechanism is
 employed. Clients may be "primed" to initiate a secure transaction
 (typically using information supplied in message headers); this may
 be used to support encryption of fill-out forms, for example. With
 S-HTTP, no sensitive data need ever be sent over the network in the
 clear.

 S-HTTP provides full flexibility of cryptographic algorithms, modes
 and parameters. Option negotiation is used to allow clients and
 servers to agree on transaction modes (e.g., should the request be
 signed or encrypted or both -- similarly for the reply?);
 cryptographic algorithms (RSA vs. DSA for signing, DES vs.
 RC2 for encrypting, etc.); and certificate selection
 (please sign with your "Block-buster Video certificate").

 S-HTTP attempts to avoid presuming a particular trust model, although
 its designers admit to a conscious effort to facilitate
 multiply-rooted hierarchical trust, and anticipate that principals may
 have many public key certificates.

 S-HTTP differs from Digest-Authentication, described in [RFC-2617] in
 that it provides support for public key cryptography and consequently
 digital signature capability, as well as providing confidentiality.

1.2 . Changes

 This document describes S-HTTP/1.4. It differs from the previous
 memo in that it differs from the previous memo in its support of
 the Cryptographic Message Syntax (CMS) [CMS], a successor to PKCS-7;
 and hence now supports the Diffie-Hellman and the (NIST) Digital
 Signature Standard cryptosystems. CMS used in RSA mode is bits on the
 wire compatible with PKCS-7.

Rescorla & Schiffman Experimental [Page 4]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc2617

RFC 2660 The Secure HyperText Transfer Protocol August 1999

1.3 . Processing Model

1.3.1 . Message Preparation

 The creation of an S-HTTP message can be thought of as a a function
 with three inputs:

 1. The cleartext message. This is either an HTTP message
 or some other data object. Note that since the cleartext message
 is carried transparently, headers and all, any version of HTTP
 can be carried within an S-HTTP wrapper.
 2. The receiver’s cryptographic preferences and keying material.
 This is either explicitly specified by the receiver or subject
 to some default set of preferences.
 3. The sender’s cryptographic preferences and keying material.
 This input to the function can be thought of as implicit
 since it exists only in the memory of the sender.

 In order to create an S-HTTP message, then, the sender integrates the
 sender’s preferences with the receiver’s preferences. The result of
 this is a list of cryptographic enhancements to be applied and keying
 material to be used to apply them. This may require some user
 intervention. For instance, there might be multiple keys available to
 sign the message. (See Section 3.2.4.9.3 for more on this topic.)
 Using this data, the sender applies the enhancements to the message
 clear-text to create the S-HTTP message.

 The processing steps required to transform the cleartext message into
 the S-HTTP message are described in Sections 2 and 3. The processing
 steps required to merge the sender’s and receiver’s preferences are
 described in Sections 3.2 .

1.3.2 . Message Recovery

 The recovery of an S-HTTP message can be thought of as a function of
 four distinct inputs:

 1. The S-HTTP message.
 2. The receiver’s stated cryptographic preferences and keying
 material. The receiver has the opportunity to remember what
 cryptographic preferences it provided in order for this
 document to be dereferenced.
 3. The receiver’s current cryptographic preferences and
 keying material.
 4. The sender’s previously stated cryptographic options.
 The sender may have stated that he would perform certain
 cryptographic operations in this message. (Again, see
 sections 4 and 5 for details on how to do this.)

Rescorla & Schiffman Experimental [Page 5]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 In order to recover an S-HTTP message, the receiver needs to read the
 headers to discover which cryptographic transformations were
 performed on the message, then remove the transformations using some
 combination of the sender’s and receiver’s keying material, while
 taking note of which enhancements were applied.

 The receiver may also choose to verify that the applied enhancements
 match both the enhancements that the sender said he would apply
 (input 4 above) and that the receiver requested (input 2 above) as
 well as the current preferences to see if the S-HTTP message was
 appropriately transformed. This process may require interaction with
 the user to verify that the enhancements are acceptable to the user.
 (See Section 6.4 for more on this topic.)

1.4 . Modes of Operation

 Message protection may be provided on three orthogonal axes:
 signature, authentication, and encryption. Any message may be signed,
 authenticated, encrypted, or any combination of these (including no
 protection).

 Multiple key management mechanisms are supported, including
 password-style manually shared secrets and public-key key exchange.
 In particular, provision has been made for prearranged (in an earlier
 transaction or out of band) symmetric session keys in order to send
 confidential messages to those who have no public key pair.

 Additionally, a challenge-response ("nonce") mechanism is provided to
 allow parties to assure themselves of transaction freshness.

1.4.1 . Signature

 If the digital signature enhancement is applied, an appropriate
 certificate may either be attached to the message (possibly along
 with a certificate chain) or the sender may expect the recipient to
 obtain the required certificate (chain) independently.

1.4.2 . Key Exchange and Encryption

 In support of bulk encryption, S-HTTP defines two key transfer
 mechanisms, one using public-key enveloped key exchange and another
 with externally arranged keys.

 In the former case, the symmetric-key cryptosystem parameter is
 passed encrypted under the receiver’s public key.

Rescorla & Schiffman Experimental [Page 6]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 In the latter mode, we encrypt the content using a prearranged
 session key, with key identification information specified on one of
 the header lines.

1.4.3 . Message Integrity and Sender Authentication

 Secure HTTP provides a means to verify message integrity and sender
 authenticity for a message via the computation of a Message
 Authentication Code (MAC), computed as a keyed hash over the document
 using a shared secret -- which could potentially have been arranged
 in a number of ways, e.g.: manual arrangement or ’inband’ key
 management. This technique requires neither the use of public key
 cryptography nor encryption.

 This mechanism is also useful for cases where it is appropriate to
 allow parties to identify each other reliably in a transaction
 without providing (third-party) non-repudiability for the
 transactions themselves. The provision of this mechanism is motivated
 by our bias that the action of "signing" a transaction should be
 explicit and conscious for the user, whereas many authentication
 needs (i.e., access control) can be met with a lighter-weight
 mechanism that retains the scalability advantages of public-key
 cryptography for key exchange.

1.4.4 . Freshness

 The protocol provides a simple challenge-response mechanism, allowing
 both parties to insure the freshness of transmissions. Additionally,
 the integrity protection provided to HTTP headers permits
 implementations to consider the Date: header allowable in HTTP
 messages as a freshness indicator, where appropriate (although this
 requires implementations to make allowances for maximum clock skew
 between parties, which we choose not to specify).

1.5 . Implementation Options

 In order to encourage widespread adoption of secure documents for the
 World-Wide Web in the face of the broad scope of application
 requirements, variability of user sophistication, and disparate
 implementation constraints, Secure HTTP deliberately caters to a
 variety of implementation options. See Section 8 for implementation
 recommendations and requirements.

2. Message Format

 Syntactically, Secure HTTP messages are the same as HTTP, consisting
 of a request or status line followed by headers and a body. However,
 the range of headers is different and the bodies are typically

Rescorla & Schiffman Experimental [Page 7]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 cryptographically enhanced.

2.1 . Notational Conventions

 This document uses the augmented BNF from HTTP [RFC-2616]. You should
 refer to that document for a description of the syntax.

2.2 . Request Line

 In order to differentiate S-HTTP messages from HTTP messages and
 allow for special processing, the request line should use the special
 Secure" method and use the protocol designator "Secure-HTTP/1.4".
 Consequently, Secure-HTTP and HTTP processing can be intermixed on
 the same TCP port, e.g. port 80. In order to prevent leakage of
 potentially sensitive information Request-URI should be "*". For
 example:

 Secure * Secure-HTTP/1.4

 When communicating via a proxy, the Request-URI should be consist of
 the AbsoluteURI. Typically, the rel path section should be replaced
 by "*" to minimize the information passed to in the clear. (e.g.
 http://www.terisa .com/*); proxies should remove the appropriate
 amount of this information to minimize the threat of traffic
 analysis. See Section 7.2.2.1 for a situation where providing more
 information is appropriate.

2.3 . The Status Line

 S-HTTP responses should use the protocol designator "Secure-
 HTTP/1.4". For example:

 Secure-HTTP/1.4 200 OK

 Note that the status in the Secure HTTP response line does not
 indicate anything about the success or failure of the unwrapped HTTP
 request. Servers should always use 200 OK provided that the Secure
 HTTP processing is successful. This prevents analysis of success or
 failure for any request, which the correct recipient can determine
 from the encapsulated data. All case variations should be accepted.

2.4 . Secure HTTP Header Lines

 The header lines described in this section go in the header of a
 Secure HTTP message. All except ’Content-Type’ and ’Content-Privacy-
 Domain’ are optional. The message body shall be separated from the
 header block by two successive CRLFs.

Rescorla & Schiffman Experimental [Page 8]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc2616
http://www.terisa/

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 All data and fields in header lines should be treated as case
 insensitive unless otherwise specified. Linear whitespace [RFC-822]
 should be used only as a token separator unless otherwise quoted.
 Long header lines may be line folded in the style of [RFC-822].

 This document refers to the header block following the S-HTTP
 request/response line and preceding the successive CRLFs collectively
 as "S-HTTP headers".

2.4.1 . Content-Privacy-Domain

 The two values defined by this document are ’MOSS’ and ’CMS’. CMS
 refers to the privacy enhancement specified in section 2.6.1 . MOSS
 refers to the format defined in [RFC-1847] and [RFC-1848].

2.4.2 . Content-Type for CMS

 Under normal conditions, the terminal encapsulated content (after all
 privacy enhancements have been removed) would be an HTTP message. In
 this case, there shall be a Content-Type line reading:

 Content-Type: message/http

 The message/http content type is defined in RFC-2616 .

 If the inner message is an S-HTTP message, then the content type
 shall be ’application/s-http’. (See Appendix for the definition of
 this.)

 It is intended that these types be registered with IANA as MIME
 content types.

 The terminal content may be of some other type provided that the type
 is properly indicated by the use of an appropriate Content-Type
 header line. In this case, the header fields for the encapsulation of
 the terminal content apply to the terminal content (the ’final
 headers’). But in any case, final headers should themselves always be
 S-HTTP encapsulated, so that the applicable S-HTTP/HTTP headers are
 never passed unenhanced.

 S-HTTP encapsulation of non-HTTP data is a useful mechanism for
 passing pre-enhanced data (especially presigned data) without
 requiring that the HTTP headers themselves be pre-enhanced.

Rescorla & Schiffman Experimental [Page 9]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc822
https://tools.ietf.org/pdf/rfc822
https://tools.ietf.org/pdf/rfc1847
https://tools.ietf.org/pdf/rfc1848
https://tools.ietf.org/pdf/rfc2616

RFC 2660 The Secure HyperText Transfer Protocol August 1999

2.4.3 . Content-Type for MOSS

 The Content-Type for MOSS shall be an acceptable MIME content type
 describing the cryptographic processing applied. (e.g.
 multipart/signed). The content type of the inner content is described
 in the content type line corresponding to that inner content, and for
 HTTP messages shall be ’message/http’.

2.4.4 . Prearranged-Key-Info

 This header line is intended to convey information about a key which
 has been arranged outside of the internal cryptographic format. One
 use of this is to permit in-band communication of session keys for
 return encryption in the case where one of the parties does not have
 a key pair. However, this should also be useful in the event that the
 parties choose to use some other mechanism, for instance, a one-time
 key list.

 This specification defines two methods for exchanging named keys,
 Inband, Outband. Inband indicates that the session key was exchanged
 previously, using a Key-Assign header of the corresponding method.
 Outband arrangements imply that agents have external access to key
 materials corresponding to a given name, presumably via database
 access or perhaps supplied immediately by a user from keyboard input.
 The syntax for the header line is:

 Prearranged-Key-Info =
 "Prearranged-Key-Info" ":" Hdr-Cipher "," CoveredDEK "," CoverKey-ID
 CoverKey-ID = method ":" key-name
 CoveredDEK = *HEX
 method = "inband" | "outband"

 While chaining ciphers require an Initialization Vector (IV) [FIPS-
 81] to start off the chaining, that information is not carried by
 this field. Rather, it should be passed internal to the cryptographic
 format being used. Likewise, the bulk cipher used is specified in
 this fashion.

 <Hdr-Cipher> should be the name of the block cipher used to encrypt
 the session key (see section 3.2.4.7)

 <CoveredDEK> is the protected Data Encryption Key (a.k.a. transaction
 key) under which the encapsulated message was encrypted. It should be
 appropriately (randomly) generated by the sending agent, then
 encrypted under the cover of the negotiated key (a.k.a. session key)
 using the indicated header cipher, and then converted into hex.

Rescorla & Schiffman Experimental [Page 10]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 In order to avoid name collisions, cover key namespaces must be
 maintained separately by host and port.

 Note that some Content-Privacy-Domains, notably likely future
 revisions of MOSS and CMS may have support for symmetric key
 management.

 The Prearranged-Key-Info field need not be used in such
 circumstances. Rather, the native syntax is preferred. Keys
 exchanged with Key-Assign, however, may be used in this situation.

2.4.5 . MAC-Info

 This header is used to supply a Message Authenticity Check, providing
 both message authentication and integrity, computed from the message
 text, the time (optional -- to prevent replay attack), and a shared
 secret between client and server. The MAC should be computed over the
 encapsulated content of the S-HTTP message. S-HTTP/1.1 defined that
 MACs should be computed using the following algorithm (’||’ means
 concatenation):

 MAC = hex(H(Message||[<time>]||<shared key>))

 The time should be represented as an unsigned 32 bit quantity
 representing seconds since 00:00:00 GMT January 1, 1970 (the UNIX
 epoch), in network byte order. The shared key format is a local
 matter.

 Recent research [VANO95] has demonstrated some weaknesses in this
 approach, and this memo introduces a new construction, derived from
 [RFC-2104]. In the name of backwards compatibility, we retain the
 previous constructions with the same names as before. However, we
 also introduce a new series of names (See Section 3.2.4.8 for the
 names) that obey a different (hopefully stronger) construction. (^
 means bitwise XOR)

 HMAC = hex(H(K’ ^ pad2 || H(K’ ^ pad1 ||[<time>]|| Message)))
 pad1 = the byte 0x36 repeated enough times to fill out a
 hash input block. (I.e. 64 times for both MD5 and SHA-1)
 pad2 = the byte 0x5c repeated enough times to fill out a
 hash input block.
 K’ = H(<shared key>)

 The original HMAC construction is for the use of a key with length
 equal to the length of the hash output. Although it is considered
 safe to use a key of a different length (Note that strength cannot be
 increased past the length of the hash function itself, but can be
 reduced by using a shorter key.) [KRAW96b] we hash the original key

Rescorla & Schiffman Experimental [Page 11]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc2104

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 to permit the use of shared keys (e.g. passphrases) longer than the
 length of the hash. It is noteworthy (though obvious) that this
 technique does not increase the strength of short keys.

 The format of the MAC-Info line is:

 MAC-Info =
 "MAC-Info" ":" [hex-time],
 hash-alg, hex-hash-data, key-spec
 hex-time = <unsigned seconds since Unix epoch represented as HEX>
 hash-alg = <hash algorithms from section 3.2.4.8 >
 hex-hash-data = <computation as described above represented as HEX>
 Key-Spec = "null" | "dek" | Key-ID

 Key-Ids can refer either to keys bound using the Key-Assign header
 line or those bound in the same fashion as the Outband method
 described later. The use of a ’Null’ key-spec implies that a zero
 length key was used, and therefore that the MAC merely represents a
 hash of the message text and (optionally) the time. The special
 key-spec ’DEK’ refers to the Data Exchange Key used to encrypt the
 following message body (it is an error to use the DEK key-spec in
 situations where the following message body is unencrypted).

 If the time is omitted from the MAC-Info line, it should simply not
 be included in the hash.

 Note that this header line can be used to provide a more advanced
 equivalent of the original HTTP Basic authentication mode in that the
 user can be asked to provide a username and password. However, the
 password remains private and message integrity can be assured.
 Moreover, this can be accomplished without encryption of any kind.

 In addition, MAC-Info permits fast message integrity verification (at
 the loss of non-repudiability) for messages, provided that the
 participants share a key (possibly passed using Key-Assign in a
 previous message).

 Note that some Content-Privacy-Domains, notably likely future
 revisions of MOSS and CMS may have support for symmetric integrity
 protection The MAC-Info field need not be used in such circumstances.
 Rather, the native syntax is preferred. Keys exchanged with Key-
 Assign, however, may be used in this situation.

2.5 . Content

 The content of the message is largely dependent upon the values of
 the Content-Privacy-Domain and Content-Transfer-Encoding fields.

Rescorla & Schiffman Experimental [Page 12]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 For a CMS message, with ’8BIT’ Content-Transfer-Encoding, the content
 should simply be the CMS message itself.

 If the Content-Privacy-Domain is MOSS, the content should consist of
 a MOSS Security Multipart as described in RFC1847.

 It is expected that once the privacy enhancements have been removed,
 the resulting (possibly protected) contents will be a normal HTTP
 request. Alternately, the content may be another Secure-HTTP message,
 in which case privacy enhancements should be unwrapped until clear
 content is obtained or privacy enhancements can no longer be removed.
 (This permits embedding of enhancements, such as sequential Signed
 and Enveloped enhancements.) Provided that all enhancements can be
 removed, the final de-enhanced content should be a valid HTTP request
 (or response) unless otherwise specified by the Content-Type line.

 Note that this recursive encapsulation of messages potentially
 permits security enhancements to be applied (or removed) for the
 benefit of intermediaries who may be a party to the transaction
 between a client and server (e.g., a proxy requiring client
 authentication). How such intermediaries should indicate such
 processing is described in Section 7.2.1 .

2.6 . Encapsulation Format Options

2.6.1 . Content-Privacy-Domain: CMS

 Content-Privacy-Domain ’CMS’ follows the form of the CMS standard
 (see Appendix).

 Message protection may proceed on two orthogonal axes: signature and
 encryption. Any message may be either signed, encrypted, both, or
 neither. Note that the ’auth’ protection mode of S-HTTP is provided
 independently of CMS coding via the MAC-Info header of section 2.3.6
 since CMS does not support a ’KeyDigestedData’ type, although it does
 support a ’DigestedData’ type.

2.6.1.1 . Signature

 This enhancement uses the ’SignedData’ type of CMS. When digital
 signatures are used, an appropriate certificate may either be
 attached to the message (possibly along with a certificate chain) as
 specified in CMS or the sender may expect the recipient to obtain its
 certificate (and/or chain) independently. Note that an explicitly
 allowed instance of this is a certificate signed with the private
 component corresponding to the public component being attested to.
 This shall be referred to as a self-signed certificate. What, if any,
 weight to give to such a certificate is a purely local matter. In

Rescorla & Schiffman Experimental [Page 13]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc1847

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 either case, a purely signed message is precisely CMS compliant.

2.6.1.2 . Encryption

2.6.1.2.1 . Encryption -- normal, public key

 This enhancement is performed precisely as enveloping (using either ’
 EnvelopedData’ types) under CMS. A message encrypted in this fashion,
 signed or otherwise, is CMS compliant. To have a message which is
 both signed and encrypted, one simply creates the CMS SignedData
 production and encapsulates it in EnvelopedData as described in CMS.

2.6.1.2.2 . Encryption -- prearranged key

 This uses the ’EncryptedData’ type of CMS. In this mode, we encrypt
 the content using a DEK encrypted under cover of a prearranged
 session key (how this key may be exchanged is discussed later), with
 key identification information specified on one of the header lines.
 The IV is in the EncryptedContentInfo type of the EncryptedData
 element. To have a message which is both signed and encrypted, one
 simply creates the CMS SignedData production and encapsulates it in
 EncryptedData as described in CMS.

2.6.2 . Content-Privacy-Domain: MOSS

 The body of the message should be a MIME compliant message with
 content type that matches the Content-Type line in the S-HTTP
 headers. Encrypted messages should use multipart/encrypted. Signed
 messages should use multipart/signed. However, since multipart/signed
 does not convey keying material, is is acceptable to use
 multipart/mixed where the first part is application/mosskey-data and
 the second part is multipart/mixed in order to convey certificates
 for use in verifying the signature.

 Implementation Note: When both encryption and signature are applied
 by the same agent, signature should in general be applied before
 encryption.

2.6.3 . Permitted HTTP headers

2.6.3.1 . Overview

 In general, HTTP [RFC-2616] headers should appear in the inner
 content (i.e. the message/http) of an S-HTTP message but should not
 appear in the S-HTTP message wrapper for security reasons. However,
 certain headers need to be visible to agents which do not have access
 to the encapsulated data. These headers may appear in the S-HTTP
 headers as well.

Rescorla & Schiffman Experimental [Page 14]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc2616

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 Please note that although brief descriptions of the general purposes
 of these headers are provided for clarity, the definitive reference
 is [RFC-2616].

2.6.3.2 . Host

 The host header specificies the internet host and port number of the
 resource being requested. This header should be used to disambiguate
 among multiple potential security contexts within which this message
 could be interpreted. Note that the unwrapped HTTP message will have
 it’s own Host field (assuming it’s an HTTP/1.1 message). If these
 fields do not match, the server should respond with a 400 status
 code.

2.6.3.3 . Connection

 The Connection field has precisely the same semantics in S-HTTP
 headers as it does in HTTP headers. This permits persistent
 connections to be used with S-HTTP.

3. Cryptographic Parameters

3.1 . Options Headers

 As described in Section 1.3.2 , every S-HTTP request is (at least
 conceptually) preconditioned by the negotiation options provided by
 the potential receiver. The two primary locations for these options
 are

 1. In the headers of an HTTP Request/Response.
 2. In the HTML which contains the anchor being dereferenced.

 There are two kinds of cryptographic options which may be provided:
 Negotiation options, as discussed in Section 3.2 convey a potential
 message recipient’s cryptographic preferences. Keying options, as
 discussed in Section 3.3 provide keying material (or pointers to
 keying material) which may be of use to the sender when enhancing a
 message.

 Binding cryptographic options to anchors using HTML extensions is the
 topic of the companion document [SHTML] and will not be treated here.

Rescorla & Schiffman Experimental [Page 15]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc2616

RFC 2660 The Secure HyperText Transfer Protocol August 1999

3.2 . Negotiation Options

3.2.1 . Negotiation Overview

 Both parties are able to express their requirements and preferences
 regarding what cryptographic enhancements they will permit/require
 the other party to provide. The appropriate option choices depend on
 implementation capabilities and the requirements of particular
 applications.

 A negotiation header is a sequence of specifications each conforming
 to a four-part schema detailing:

 Property -- the option being negotiated, such as bulk encryption
 algorithm.

 Value -- the value being discussed for the property, such as
 DES-CBC

 Direction -- the direction which is to be affected, namely:
 during reception or origination (from the perspective of the
 originator).

 Strength -- strength of preference, namely: required, optional,
 refused

 As an example, the header line:

 SHTTP-Symmetric-Content-Algorithms: recv-optional=DES-CBC,RC2

 could be thought to say: "You are free to use DES-CBC or RC2 for bulk
 encryption for encrypting messages to me."

 We define new headers (to be used in the encapsulated HTTP header,
 not in the S-HTTP header) to permit negotiation of these matters.

3.2.2 . Negotiation Option Format

 The general format for negotiation options is:

 Option = Field ":" Key-val ";" *(Key-val)
 Key-val = Key "=" Value *("," Value)
 Key = Mode"-"Action ; This is represented as one
 ; token without whitespace
 Mode = "orig" | "recv"
 Action = "optional" | "required" | "refused"

Rescorla & Schiffman Experimental [Page 16]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 The <Mode> value indicates whether this <Key-val> refers to what the
 agent’s actions are upon sending privacy enhanced messages as opposed
 to upon receiving them. For any given mode-action pair, the
 interpretation to be placed on the enhancements (<Value>s) listed is:

 ’recv-optional:’ The agent will process the enhancement if the
 other party uses it, but will also gladly process messages
 without the enhancement.

 ’recv-required:’ The agent will not process messages without
 this enhancement.

 ’recv-refused:’ The agent will not process messages with this
 enhancement.

 ’orig-optional:’ When encountering an agent which refuses this
 enhancement, the agent will not provide it, and when
 encountering an agent which requires it, this agent will provide
 it.

 ’orig-required:’ The agent will always generate the enhancement.

 ’orig-refused:’ The agent will never generate the enhancement.

 The behavior of agents which discover that they are communicating
 with an incompatible agent is at the discretion of the agents. It is
 inappropriate to blindly persist in a behavior that is known to be
 unacceptable to the other party. Plausible responses include simply
 terminating the connection, or, in the case of a server response,
 returning ’Not implemented 501’.

 Optional values are considered to be listed in decreasing order of
 preference. Agents are free to choose any member of the intersection
 of the optional lists (or none) however.

 If any <Key-Val> is left undefined, it should be assumed to be set to
 the default. Any key which is specified by an agent shall override
 any appearance of that key in any <Key-Val> in the default for that
 field.

Rescorla & Schiffman Experimental [Page 17]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

3.2.3 . Parametrization for Variable-length Key Ciphers

 For ciphers with variable key lengths, values may be parametrized
 using the syntax <cipher>’[’<length>’]’

 For example, ’RSA[1024]’ represents a 1024 bit key for RSA. Ranges
 may be represented as

 <cipher>’[’<bound1>’-’<bound2>’]’

 For purposes of preferences, this notation should be treated as if it
 read (assuming x and y are integers)

 <cipher>[x], <cipher>[x+1],...<cipher>[y] (if x<y)

 and

 <cipher>[x], <cipher>[x-1],...<cipher>[y] (if x>y)

 The special value ’inf’ may be used to denote infinite length.

 Using simply <cipher> for such a cipher shall be read as the maximum
 range possible with the given cipher.

3.2.4 . Negotiation Syntax

3.2.4.1 . SHTTP-Privacy-Domains

 This header refers to the Content-Privacy-Domain type of section
 2.3.1 . Acceptable values are as listed there. For instance,

 SHTTP-Privacy-Domains: orig-required=cms;
 recv-optional=cms,MOSS

 would indicate that the agent always generates CMS compliant
 messages, but can read CMS or MOSS (or, unenhanced messages).

3.2.4.2 . SHTTP-Certificate-Types

 This indicates what sort of Public Key certificates the agent will
 accept. Currently defined values are ’X.509’ and ’X.509v3’.

3.2.4.3 . SHTTP-Key-Exchange-Algorithms

 This header indicates which algorithms may be used for key exchange.
 Defined values are ’DH’, ’RSA’, ’Outband’ and ’Inband’. DH refers to
 Diffie-Hellman X9.42 style enveloping. [DH] RSA refers to RSA
 enveloping. Outband refers to some sort of external key agreement.

Rescorla & Schiffman Experimental [Page 18]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 Inband refers to section 3.3.3.1 .

 The expected common configuration of clients having no certificates
 and servers having certificates would look like this (in a message
 sent by the server):

 SHTTP-Key-Exchange-Algorithms: orig-optional=Inband, DH;
 recv-required=DH

3.2.4.4 . SHTTP-Signature-Algorithms

 This header indicates what Digital Signature algorithms may be used.
 Defined values are ’RSA’ [PKCS-1] and ’NIST-DSS’ [FIPS-186] Since
 NIST-DSS and RSA use variable length moduli the parametrization
 syntax of section 3.2.3 should be used. Note that a key length
 specification may interact with the acceptability of a given
 certificate, since keys (and their lengths) are specified in public-
 key certificates.

3.2.4.5 . SHTTP-Message-Digest-Algorithms

 This indicates what message digest algorithms may be used.
 Previously defined values are ’RSA-MD2’ [RFC-1319], ’RSA-MD5’ [RFC-
 1321], ’NIST-SHS’ [FIPS-180].

3.2.4.6 . SHTTP-Symmetric-Content-Algorithms

 This header specifies the symmetric-key bulk cipher used to encrypt
 message content. Defined values are:

 DES-CBC -- DES in Cipher Block Chaining (CBC) mode [FIPS-81]
 DES-EDE-CBC -- 2 Key 3DES using Encrypt-Decrypt-Encrypt in outer
 CBC mode
 DES-EDE3-CBC -- 3 Key 3DES using Encrypt-Decrypt-Encrypt in outer
 CBC mode
 DESX-CBC -- RSA’s DESX in CBC mode
 IDEA-CBC -- IDEA in CBC mode
 RC2-CBC -- RSA’s RC2 in CBC mode
 CDMF-CBC -- IBM’s CDMF (weakened key DES) [JOHN93] in CBC mode

 Since RC2 keys are variable length, the syntax of section 3.2.3
 should be used.

Rescorla & Schiffman Experimental [Page 19]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc1319

RFC 2660 The Secure HyperText Transfer Protocol August 1999

3.2.4.7 . SHTTP-Symmetric-Header-Algorithms

 This header specifies the symmetric-key cipher used to encrypt
 message headers.

 DES-ECB -- DES in Electronic Codebook (ECB) mode [FIPS-81]
 DES-EDE-ECB -- 2 Key 3DES using Encrypt-Decrypt-Encrypt in ECB mode
 DES-EDE3-ECB -- 3 Key 3DES using Encrypt-Decrypt-Encrypt in ECB mode
 DESX-ECB -- RSA’s DESX in ECB mode
 IDEA-ECB -- IDEA
 RC2-ECB -- RSA’s RC2 in ECB mode
 CDMF-ECB -- IBM’s CDMF in ECB mode

 Since RC2 is variable length, the syntax of section 3.2.3 should be
 used.

3.2.4.8 . SHTTP-MAC-Algorithms

 This header indicates what algorithms are acceptable for use in
 providing a symmetric key MAC. ’RSA-MD2’, ’RSA-MD5’ and ’NIST-SHS’
 persist from S-HTTP/1.1 using the old MAC construction. The tokens ’
 RSA-MD2-HMAC’, ’RSA-MD5-HMAC’ and ’NIST-SHS-HMAC’ indicate the new
 HMAC construction of 2.3.6 with the MD2, MD5, and SHA-1 algorithms
 respectively.

3.2.4.9 . SHTTP-Privacy-Enhancements

 This header indicates security enhancements to apply. Possible
 values are ’sign’, ’encrypt’ and ’auth’ indicating whether messages
 are signed, encrypted, or authenticated (i.e., provided with a MAC),
 respectively.

3.2.4.10 . Your-Key-Pattern

 This is a generalized pattern match syntax to describe identifiers
 for a large number of types of keying material. The general syntax
 is:

 Your-Key-Pattern =
 "Your-Key-Pattern" ":" key-use "," pattern-info
 key-use = "cover-key" | "auth-key" | "signing-key"

Rescorla & Schiffman Experimental [Page 20]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

3.2.4.10.1 . Cover Key Patterns

 This header specifies desired values for key names used for
 encryption of transaction keys using the Prearranged-Key-Info syntax
 of section 2.3.5 . The pattern-info syntax consists of a series of
 comma separated regular expressions. Commas should be escaped with
 backslashes if they appear in the regexps. The first pattern should
 be assumed to be the most preferred.

3.2.4.10.2 . Auth key patterns

 Auth-key patterns specify name forms desired for use for MAC
 authenticators. The pattern-info syntax consists of a series of
 comma separated regular expressions. Commas should be escaped with
 backslashes if they appear in the regexps. The first pattern should
 be assumed to be the most preferred.

3.2.4.10.3 . Signing Key Pattern

 This parameter describes a pattern or patterns for what keys are
 acceptable for signing for the digital signature enhancement. The
 pattern-info syntax for signing-key is:

 pattern-info = name-domain "," pattern-data

 The only currently defined name-domain is ’DN-1779’. This parameter
 specifies desired values for fields of Distinguished Names. DNs are
 considered to be represented as specified in RFC1779, the order of
 fields and whitespace between fields is not significant.

 All RFC1779 values should use ’,’ as a separator rather than ’;’,
 since ’;’ is used as a statement separator in S-HTTP.

 Pattern-data is a modified RFC1779 string, with regular expressions
 permitted as field values. Pattern match is performed field-wise,
 unspecified fields match any value (and therefore leaving the DN-
 Pattern entirely unspecified allows for any DN). Certificate chains
 may be matched as well (to allow for certificates without name
 subordination). DN chains are considered to be ordered left-to-right
 with the issuer of a given certificate on its immediate right,
 although issuers need not be specified. A trailing ’.’ indicates that
 the sequence of DNs is absolute. I.e. that the one furthest to the
 right is a root.

Rescorla & Schiffman Experimental [Page 21]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc1779
https://tools.ietf.org/pdf/rfc1779
https://tools.ietf.org/pdf/rfc1779

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 The syntax for the pattern values is,

 Value = DN-spec *("," Dn-spec)["."]
 Dn-spec = "/" *(Field-spec) "/"
 Field-spec := Attr = "Pattern"
 Attr = "CN" | "L" | "ST" | "O" |
 "OU" | "C" | <or as appropriate>
 Pattern = <POSIX 1003.2 regular expressions>

 For example, to request that the other agent sign with a key
 certified by the RSA Persona CA (which uses name subordination) one
 could use the expression below. Note the use of RFC1779 quoting to
 protect the comma (an RFC1779 field separator) and the POSIX 1003.2
 quoting to protect the dot (a regular expression metacharacter).

 Your-Key-Pattern: signing-key, DN-1779,
 /OU=Persona Certificate, O="RSA Data Security,
 Inc\."/

3.2.4.11 . Example

 A representative header block for a server follows.

 SHTTP-Privacy-Domains: recv-optional=MOSS, CMS;
 orig-required=CMS
 SHTTP-Certificate-Types: recv-optional=X.509;
 orig-required=X.509
 SHTTP-Key-Exchange-Algorithms: recv-required=DH;
 orig-optional=Inband,DH
 SHTTP-Signature-Algorithms: orig-required=NIST-DSS;
 recv-required=NIST-DSS
 SHTTP-Privacy-Enhancements: orig-required=sign;
 orig-optional=encrypt

3.2.4.12 . Defaults

 Explicit negotiation parameters take precedence over default values.
 For a given negotiation option type, defaults for a given mode-action
 pair (such as ’orig-required’) are implicitly merged unless
 explicitly overridden.

 The default values (these may be negotiated downward or upward) are:

 SHTTP-Privacy-Domains: orig-optional=CMS;
 recv-optional=CMS
 SHTTP-Certificate-Types: orig-optional=X.509;
 recv-optional=X.509
 SHTTP-Key-Exchange-Algorithms: orig-optional=DH,Inband,Outband;

Rescorla & Schiffman Experimental [Page 22]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc1779
https://tools.ietf.org/pdf/rfc1779

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 recv-optional=DH,Inband,Outband
 SHTTP-Signature-Algorithms: orig-optional=NIST-DSS;
 recv-optional=NIST-DSS
 SHTTP-Message-Digest-Algorithms: orig-optional=RSA-MD5;
 recv-optional=RSA-MD5
 SHTTP-Symmetric-Content-Algorithms: orig-optional=DES-CBC;
 recv-optional=DES-CBC
 SHTTP-Symmetric-Header-Algorithms: orig-optional=DES-ECB;
 recv-optional=DES-ECB
 SHTTP-Privacy-Enhancements: orig-optional=sign,encrypt, auth;
 recv-required=encrypt;
 recv-optional=sign, auth
3.3 . Non-Negotiation Headers

 There are a number of options that are used to communicate or
 identify the potential recipient’s keying material.

3.3.1 . Encryption-Identity

 This header identifies a potential principal for whom the message
 described by these options could be encrypted; Note that this
 explicitly permits return encryption under (say) public key without
 the other agent signing first (or under a different key than that of
 the signature). The syntax of the Encryption-Identity line is:

 Encryption-Identity =
 "Encryption Identity" ":" name-class,key-sel,name-arg
 name-class = "DN-1779" | MOSS name forms

 The name-class is an ASCII string representing the domain within
 which the name is to be interpreted, in the spirit of MOSS. In
 addition to the MOSS name forms of RFC1848, we add the DN-1779 name
 form to represent a more convenient form of distinguished name.

3.3.1.1 . DN-1779 Name Class

 The argument is an RFC-1779 encoded DN.

3.3.2 . Certificate-Info

 In order to permit public key operations on DNs specified by
 Encryption-Identity headers without explicit certificate fetches by
 the receiver, the sender may include certification information in the
 Certificate-Info option. The format of this option is:

 Certificate-Info: <Cert-Fmt>’,’<Cert-Group>

 <Cert-Fmt> should be the type of <Cert-Group> being presented.

Rescorla & Schiffman Experimental [Page 23]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc1848
https://tools.ietf.org/pdf/rfc1779

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 Defined values are ’PEM’ and ’CMS’. CMS certificate groups are
 provided as a base-64 encoded CMS SignedData message containing
 sequences of certificates with or without the SignerInfo field. A PEM
 format certificate group is a list of comma-separated base64-encoded
 PEM certificates.

 Multiple Certificate-Info lines may be defined.

3.3.3 . Key-Assign

 This option serves to indicate that the agent wishes to bind a key to
 a symbolic name for (presumably) later reference.

 The general syntax of the key-assign header is:

 Key-Assign =
 "Key-Assign" ":" Method "," Key-Name ","
 Lifetime "," Ciphers ";" Method-args

 Key-name = string
 Lifetime = "this" | "reply" | ""
 Method ="inband"
 Ciphers = "null" | Cipher+
 Cipher" = <Header cipher from section 3.2.4.7 >
 kv = "4" | "5"

 Key-Name is the symbolic name to which this key is to be bound.
 Ciphers is a list of ciphers for which this key is potentially
 applicable (see the list of header ciphers in section 3.2.4.7). The
 keyword ’null’ should be used to indicate that it is inappropriate
 for use with ANY cipher. This is potentially useful for exchanging
 keys for MAC computation.

 Lifetime is a representation of the longest period of time during
 which the recipient of this message can expect the sender to accept
 that key. ’this’ indicates that it is likely to be valid only for
 reading this transmission. ’reply’ indicates that it is useful for a
 reply to this message. If a Key-Assign with the reply lifetime
 appears in a CRYPTOPTS block, it indicates that it is good for at
 least one (but perhaps only one) dereference of this anchor. An
 unspecified lifetime implies that this key may be reused for an
 indefinite number of transactions.

 Method should be one of a number of key exchange methods. The only
 currently defined value is ’inband’ referring to Inband keys (i.e.,
 direct assignment).

Rescorla & Schiffman Experimental [Page 24]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 This header line may appear either in an unencapsulated header or in
 an encapsulated message, though when an uncovered key is being
 directly assigned, it may only appear in an encrypted encapsulated
 content. Assigning to a key that already exists causes that key to be
 overwritten.

 Keys defined by this header are referred to elsewhere in this
 specification as Key-IDs, which have the syntax:

 Key-ID = method ":" key-name

3.3.3.1 . Inband Key Assignment

 This refers to the direct assignment of an uncovered key to a
 symbolic name. Method-args should be just the desired session key
 encoded in hexidecimal as in:

 Key-Assign: inband,akey,reply,DES-ECB;0123456789abcdef

 Short keys should be derived from long keys by reading bits from left
 to right.

 Note that inband key assignment is especially important in order to
 permit confidential spontaneous communication between agents where
 one (but not both) of the agents have key pairs. However, this
 mechanism is also useful to permit key changes without public key
 computations. The key information is carried in this header line must
 be in the inner secured HTTP request, therefore use in unencrypted
 messages is not permitted.

3.3.4 . Nonces

 Nonces are opaque, transient, session-oriented identifiers which may
 be used to provide demonstrations of freshness. Nonce values are a
 local matter, although they are might well be simply random numbers
 generated by the originator. The value is supplied simply to be
 returned by the recipient.

3.3.4.1 . Nonce

 This header is used by an originator to specify what value is to be
 returned in the reply. The field may be any value. Multiple nonces
 may be supplied, each to be echoed independently.

 The Nonce should be returned in a Nonce-Echo header line. See section
 4.1.1 .

Rescorla & Schiffman Experimental [Page 25]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

3.4 . Grouping Headers With SHTTP-Cryptopts

 In order for servers to bind a group of headers to an HTML anchor, it
 is possible to combine a number of headers on a single S-HTTP
 Cryptopts header line. The names of the anchors to which these
 headers apply is indicated with a ’scope’ parameter.

3.4.1 . SHTTP-Cryptopts

 This option provides a set of cryptopts and a list of references to
 which it applies. (For HTML, these references would be named using
 the NAME tag). The names are provided in the scope attribute as a
 comma separated list and separated from the next header line by a
 semicolon. The format for the SHTTP-Cryptopts line is:

SHTTP-Cryptopts =
 "SHTTP-Cryptopts" ":" scope ";" cryptopt-list
scope = "scope="<tag-spec> ; This is all one token without whitespace
tag-spec = tag *("," tag) | ""
cryptopt-list = cryptopt *(";" cryptopt)
cryptopt = <S-HTTP cryptopt lines described below>
tag = <value used in HTML anchor NAME attribute>

 For example:

SHTTP-Cryptopts: scope=tag1,tag2;
 SHTTP-Privacy-Domains:
 orig-required=cms; recv-optional=cms,MOSS

 If a message contains both S-HTTP negotiation headers and headers
 grouped on SHTTP-Cryptopts line(s), the other headers shall be taken
 to apply to all anchors not bound on the SHTTP-Cryptopts line(s).
 Note that this is an all-or-nothing proposition. That is, if a
 SHTTP-Cryptopts header binds options to a reference, then none of
 these global options apply, even if some of the options headers do
 not appear in the bound options. Rather, the S-HTTP defaults found in
 Section 3.2.4.11 apply.

4. New Header Lines for HTTP

 Two non-negotiation header lines for HTTP are defined here.

4.1 . Security-Scheme

 All S-HTTP compliant agents must generate the Security-Scheme header
 in the headers of all HTTP messages they generate. This header
 permits other agents to detect that they are communicating with an
 S-HTTP compliant agent and generate the appropriate cryptographic

Rescorla & Schiffman Experimental [Page 26]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 options headers.

 For implementations compliant with this specification, the value must
 be ’S-HTTP/1.4’.

4.1.1 . Nonce-Echo

 The header is used to return the value provided in a previously
 received Nonce: field. This has to go in the encapsulated headers so
 that it an be cryptographically protected.

5. (Retriable) Server Status Error Reports

 We describe here the special processing appropriate for client
 retries in the face of servers returning an error status.

5.1 . Retry for Option (Re)Negotiation

 A server may respond to a client request with an error code that
 indicates that the request has not completely failed but rather that
 the client may possibly achieve satisfaction through another request.
 HTTP already has this concept with the 3XX redirection codes.

 In the case of S-HTTP, it is conceivable (and indeed likely) that the
 server expects the client to retry his request using another set of
 cryptographic options. E.g., the document which contains the anchor
 that the client is dereferencing is old and did not require digital
 signature for the request in question, but the server now has a
 policy requiring signature for dereferencing this URL. These options
 should be carried in the header of the encapsulated HTTP message,
 precisely as client options are carried.

 The general idea is that the client will perform the retry in the
 manner indicated by the combination of the original request and the
 precise nature of the error and the cryptographic enhancements
 depending on the options carried in the server response.

 The guiding principle in client response to these errors should be to
 provide the user with the same sort of informed choice with regard to
 dereference of these anchors as with normal anchor dereference. For
 instance, in the case above, it would be inappropriate for the client
 to sign the request without requesting permission for the action.

Rescorla & Schiffman Experimental [Page 27]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

5.2 . Specific Retry Behavior

5.2.1 . Unauthorized 401, PaymentRequired 402

 The HTTP errors ’Unauthorized 401’, ’PaymentRequired 402’ represent
 failures of HTTP style authentication and payment schemes. While S-
 HTTP has no explicit support for these mechanisms, they can be
 performed under S-HTTP while taking advantage of the privacy services
 offered by S-HTTP. (There are other errors for S-HTTP specific
 authentication errors.)

5.2.2 . 420 SecurityRetry

 This server status reply is provided so that the server may inform
 the client that although the current request is rejected, a retried
 request with different cryptographic enhancements is worth
 attempting. This header shall also be used in the case where an HTTP
 request has been made but an S-HTTP request should have been made.
 Obviously, this serves no useful purpose other than signalling an
 error if the original request should have been encrypted, but in
 other situations (e.g. access control) may be useful.

5.2.2.1 . SecurityRetries for S-HTTP Requests

 In the case of a request that was made as an SHTTP request, it
 indicates that for some reason the cryptographic enhancements applied
 to the request were unsatisfactory and that the request should be
 repeated with the options found in the response header. Note that
 this can be used as a way to force a new public key negotiation if
 the session key in use has expired or to supply a unique nonce for
 the purposes of ensuring request freshness.

5.2.2.2 . SecurityRetries for HTTP Requests

 If the 420 code is returned in response to an HTTP request, it
 indicates that the request should be retried using S-HTTP and the
 cryptographic options indicated in the response header.

5.2.3 . 421 BogusHeader

 This error code indicates that something about the S-HTTP request was
 bad. The error code is to be followed by an appropriate explanation,
 e.g.:

 421 BogusHeader Content-Privacy-Domain must be specified

Rescorla & Schiffman Experimental [Page 28]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

5.2.4 . 422 SHTTP Proxy Authentication Required

 This response is analagous to the 420 response except that the
 options in the message refer to enhancements that the client must
 perform in order to satisfy the proxy.

5.2.5 . 320 SHTTP Not Modifed

 This response code is specifically for use with proxy-server
 interaction where the proxy has placed the If-Modified-Since header
 in the S-HTTP headers of its request. This response indicates that
 the following S-HTTP message contains sufficient keying material for
 the proxy to forward the cached document for the new requestor.

 In general, this takes the form of an S-HTTP message where the actual
 enhanced content is missing, but all the headers and keying material
 are retained. (I.e. the optional content section of the CMS message
 has been removed.) So, if the original response was encrypted, the
 response contains the original DEK re-covered for the new recipient.
 (Notice that the server performs the same processing as it would have
 in the server side caching case of 7.1 except that the message body
 is elided.)

5.2.6 . Redirection 3XX

 These headers are again internal to HTTP, but may contain S-HTTP
 negotiation options of significance to S-HTTP. The request should be
 redirected in the sense of HTTP, with appropriate cryptographic
 precautions being observed.

5.3 . Limitations On Automatic Retries

 Permitting automatic client retry in response to this sort of server
 response permits several forms of attack. Consider for the moment
 the simple credit card case:

 The user views a document which requires his credit card. The
 user verifies that the DN of the intended recipient is acceptable
 and that the request will be encrypted and dereferences the
 anchor. The attacker intercepts the server’s reply and responds
 with a message encrypted under the client’s public key containing
 the Moved 301 header. If the client were to automatically perform
 this redirect it would allow compromise of the user’s credit
 card.

Rescorla & Schiffman Experimental [Page 29]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

5.3.1 . Automatic Encryption Retry

 This shows one possible danger of automatic retries -- potential
 compromise of encrypted information. While it is impossible to
 consider all possible cases, clients should never automatically
 reencrypt data unless the server requesting the retry proves that he
 already has the data. So, situations in which it would be acceptable
 to reencrypt would be if:

 1. The retry response was returned encrypted under an inband key
 freshly generated for the original request.
 2. The retry response was signed by the intended recipient of the
 original request.
 3. The original request used an outband key and the response is
 encrypted under that key.

 This is not an exhaustive list, however the browser author would be
 well advised to consider carefully before implementing automatic
 reencryption in other cases. Note that an appropriate behavior in
 cases where automatic reencryption is not appropriate is to query the
 user for permission.

5.3.2 . Automatic Signature Retry

 Since we discourage automatic (without user confirmation) signing in
 even the usual case, and given the dangers described above, it is
 prohibited to automatically retry signature enchancement.

5.3.3 . Automatic MAC Authentication Retry

 Assuming that all the other conditions are followed, it is
 permissible to automatically retry MAC authentication.

6. Other Issues

6.1 . Compatibility of Servers with Old Clients

 Servers which receive requests in the clear which should be secured
 should return ’SecurityRetry 420’ with header lines set to indicate
 the required privacy enhancements.

6.2 . URL Protocol Type

 We define a new URL protocol designator, ’shttp’. Use of this
 designator as part of an anchor URL implies that the target server is
 S-HTTP capable, and that a dereference of this URL should undergo S-
 HTTP processing.

Rescorla & Schiffman Experimental [Page 30]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 Note that S-HTTP oblivious agents should not be willing to
 dereference a URL with an unknown protocol specifier, and hence
 sensitive data will not be accidentally sent in the clear by users of
 non-secure clients.

6.3 . Browser Presentation

6.3.1 . Transaction Security Status

 While preparing a secure message, the browser should provide a visual
 indication of the security of the transaction, as well as an
 indication of the party who will be able to read the message. While
 reading a signed and/or enveloped message, the browser should
 indicate this and (if applicable) the identity of the signer. Self-
 signed certificates should be clearly differentiated from those
 validated by a certification hierarchy.

6.3.2 . Failure Reporting

 Failure to authenticate or decrypt an S-HTTP message should be
 presented differently from a failure to retrieve the document.
 Compliant clients may at their option display unverifiable documents
 but must clearly indicate that they were unverifiable in a way
 clearly distinct from the manner in which they display documents
 which possessed no digital signatures or documents with verifiable
 signatures.

6.3.3 . Certificate Management

 Clients shall provide a method for determining that HTTP requests are
 to be signed and for determining which (assuming there are many)
 certificate is to be used for signature. It is suggested that users
 be presented with some sort of selection list from which they may
 choose a default. No signing should be performed without some sort of
 explicit user interface action, though such action may take the form
 of a persistent setting via a user preferences mechanism (although
 this is discouraged.)

6.3.4 . Anchor Dereference

 Clients shall provide a method to display the DN and certificate
 chain associated with a given anchor to be dereferenced so that users
 may determine for whom their data is being encrypted. This should be
 distinct from the method for displaying who has signed the document
 containing the anchor since these are orthogonal pieces of encryption
 information.

Rescorla & Schiffman Experimental [Page 31]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

7. Implementation Notes

7.1 . Preenhanced Data

 While S-HTTP has always supported preenhanced documents, in previous
 versions it was never made clear how to actually implement them.
 This section describes two methods for doing so: preenhancing the
 HTTP request/response and preenhancing the underlying data.

7.1.1 . Motivation

 The two primary motivations for preenhanced documents are security
 and performance. These advantages primarily accrue to signing but may
 also under special circumstances apply to confidentiality or
 repudiable (MAC-based) authentication.

 Consider the case of a server which repeatedly serves the same
 content to multiple clients. One such example would be a server which
 serves catalogs or price lists. Clearly, customers would like to be
 able to verify that these are actual prices. However, since the
 prices are typically the same to all comers, confidentiality is not
 an issue. (Note: see Section 7.1.5 below for how to deal with this
 case as well).

 Consequently, the server might wish to sign the document once and
 simply send the cached signed document out when a client makes a new
 request, avoiding the overhead of a private key operation each time.
 Note that conceivably, the signed document might have been generated
 by a third party and placed in the server’s cache. The server might
 not even have the signing key! This illustrates the security benefit
 of presigning: Untrusted servers can serve authenticated data without
 risk even if the server is compromised.

7.1.2 . Presigned Requests/Responses

 The obvious implementation is simply to take a single
 request/response, cache it, and send it out in situations where a new
 message would otherwise be generated.

7.1.3 . Presigned Documents

 It is also possible using S-HTTP to sign the underlying data and send
 it as an S-HTTP messsage. In order to do this, one would take the
 signed document (a CMS or MOSS message) and attach both S-HTTP
 headers (e.g. the S-HTTP request/response line, the Content-Privacy-
 Domain) and the necessary HTTP headers (including a Content-Type that
 reflects the inner content).

Rescorla & Schiffman Experimental [Page 32]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 SECURE * Secure-HTTP/1.4
 Content-Type: text/html
 Content-Privacy-Domain: CMS

 Random signed message here...

 This message itself cannot be sent, but needs to be recursively
 encapsulated, as described in the next section.

7.1.4 . Recursive Encapsulation

 As required by Section 7.3 , the result above needs to be itself
 encapsulated to protect the HTTP headers. the obvious case [and the
 one illustrated here] is when confidentiality is required, but the
 auth enhancement or even the null transform might be applied instead.
 That is, the message shown above can be used as the inner content of
 a new S-HTTP message, like so:

 SECURE * Secure-HTTP/1.4
 Content-Type: application/s-http
 Content-Privacy-Domain: CMS

 Encrypted version of the message above...

 To unfold this, the receiver would decode the outer S-HTTP message,
 reenter the (S-)HTTP parsing loop to process the new message, see
 that that too was S-HTTP, decode that, and recover the inner content.

 Note that this approach can also be used to provide freshness of
 server activity (though not of the document itself) while still
 providing nonrepudiation of the document data if a NONCE is included
 in the request.

7.1.5 . Preencrypted Messages

 Although preenhancement works best with signature, it can also be
 used with encryption under certain conditions. Consider the situation
 where the same confidential document is to be sent out repeatedly.
 The time spent to encrypt can be saved by caching the ciphertext and
 simply generating a new key exchange block for each recipient. [Note
 that this is logically equivalent to a multi- recipient message as
 defined in both MOSS and CMS and so care must be taken to use proper
 PKCS-1 padding if RSA is being used since otherwise, one may be open
 to a low encryption exponent attack [HAST96].

Rescorla & Schiffman Experimental [Page 33]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

7.2 . Proxy Interaction

 The use of S-HTTP presents implementation issues to the use of HTTP
 proxies. While simply having the proxy blindly forward responses is
 straightforward, it would be preferable if S-HTTP aware proxies were
 still able to cache responses in at least some circumstances. In
 addition, S-HTTP services should be usable to protect client-proxy
 authentication. This section describes how to achieve those goals
 using the mechanisms described above.

7.2.1 . Client-Proxy Authentication

 When an S-HTTP aware proxy receives a request (HTTP or S-HTTP) that
 (by whatever access control rules it uses) it requires to be S-HTTP
 authenticated (and if it isn’t already so), it should return the 422
 response code (5.7.4).

 When the client receives the 422 response code, it should read the
 cryptographic options that the proxy sent and determine whether or
 not it is willing to apply that enhancement to the message. If the
 client is willing to meet these requirements, it should recursively
 encapsulate the request it previously sent using the appropriate
 options. (Note that since the enhancement is recursively applied,
 even clients which are unwilling to send requests to servers in the
 clear may be willing to send the already encrypted message to the
 proxy without further encryption.) (See Section 7.1 for another
 example of a recursively encapsulated message)

 When the proxy receives such a message, it should strip the outer
 encapsulation to recover the message which should be sent to the
 server.

8. Implementation Recommendations and Requirements

 All S-HTTP agents must support the MD5 message digest and MAC
 authentication. As of S-HTTP/1.4, all agents must also support the
 RSA-MD5-HMAC construction.

 All S-HTTP agents must support Outband, Inband, and DH key exchange.

 All agents must support encryption using DES-CBC.

 Agents must support signature generation and verification using
 NIST-DSS.

Rescorla & Schiffman Experimental [Page 34]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

9. Protocol Syntax Summary

 We present below a summary of the main syntactic features of S-
 HTTP/1.4, excluding message encapsulation proper.

9.1 . S-HTTP (Unencapsulated) Headers

 Content-Privacy-Domain: (’CMS’ | ’MOSS’)
 Prearranged-Key-Info: <Hdr-Cipher>,<Key>,<Key-ID>
 Content-Type: ’message/http’
 MAC-Info: [hex(timeofday)’,’]<hash-alg>’,’hex(<hash-data>)’,’
 <key-spec>

9.2 . HTTP (Encapsulated) Non-negotiation Options

 Key-Assign: <Method>’,’<Key-Name>’,’<Lifetime>’,’
 <Ciphers>’;’<Method-args>
 Encryption-Identity: <name-class>’,’<key-sel>’,’<name-args>
 Certificate-Info: <Cert-Fmt>’,’<Cert-Group>
 Nonce: <string>
 Nonce-Echo: <string>

9.3 . Encapsulated Negotiation Options

 SHTTP-Cryptopts: <scope>’;’<string>(,<string>)*
 SHTTP-Privacy-Domains: (’CMS’ | ’MOSS’)
 SHTTP-Certificate-Types: (’X.509’)
 SHTTP-Key-Exchange-Algorithms: (’DH’, ’RSA’ | ’Inband’ | ’Outband’)
 SHTTP-Signature-Algorithms: (’RSA’ | ’NIST-DSS’)
 SHTTP-Message-Digest-Algorithms: (’RSA-MD2’ | ’RSA-MD5’ | ’NIST-SHS’
 ’RSA-MD2-HMAC’, ’RSA-MD5-HMAC’, ’NIST-SHS-HMAC’)
 SHTTP-Symmetric-Content-Algorithms: (’DES-CBC’ | ’DES-EDE-CBC’ |
 ’DES-EDE3-CBC’ | ’DESX-CBC’ | ’CDMF-CBC’ | ’IDEA-CBC’ |
 ’RC2-CBC’)
 SHTTP-Symmetric-Header-Algorithms: (’DES-ECB’ | ’DES-EDE-ECB’ |
 ’DES-EDE3-EBC’ | ’DESX-ECB’ | ’CDMF-ECB’ | ’IDEA-ECB’ |
 ’RC2-ECB’)
 SHTTP-Privacy-Enhancements: (’sign’ | ’encrypt’ | ’auth’)
 Your-Key-Pattern: <key-use>’,’<pattern-info>

9.4 . HTTP Methods

 Secure * Secure-HTTP/1.4

Rescorla & Schiffman Experimental [Page 35]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

9.5 . Server Status Reports

 Secure-HTTP/1.4 200 OK
 SecurityRetry 420
 BogusHeader 421 <reason>

10. An Extended Example

 We provide here a contrived example of a series of S-HTTP requests
 and replies. Rows of equal signs are used to set off the narrative
 from sample message traces. Note that the actual encrypted or signed
 message bodies would normally be binary garbage. In an attempt to
 preserve readability while still using (mostly) genuine messages, the
 bodies of the requests have been base64 encoded. To regenerate actual
 S-HTTP messages, it is necessary to remove the base64 encoding from
 the message body.

10.1 . A request using RSA key exchange with Inband key reply

 Alice, using an S-HTTP-capable client, begins by making an HTTP
 request which yields the following response page:

 ==
 200 OK HTTP/1.0
 Server-Name: Navaho-0.1.3.3alpha
 Certificate-Info: CMS,MIAGCSqGSIb3DQEHAqCAMIACAQExADCABgkqh
 kiG9w0BBwEAAKCAM
 IIBrTCCAUkCAgC2MA0GCSqGSIb3DQEBAgUAME0xCzAJBgNVBAYTAlVTMSAwH
 gYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEcMBoGA1UECxMTUGVyc
 29uYSBDZXJ0aWZpY2F0ZTAeFw05NDA0MDkwMDUwMzdaFw05NDA4MDIxODM4N
 TdaMGcxCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSU0EgRGF0YSBTZWN1cml0e
 SwgSW5jLjEcMBoGA1UECxMTUGVyc29uYSBDZXJ0aWZpY2F0ZTEYMBYGA1UEA
 xMPU2V0ZWMgQXN0cm9ub215MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAMy8Q
 cW7RMrB4sTdQ8Nmb2DFmJmkWn+el+NdeamIDElX/qw9mIQu4xNj1FfepfJNx
 zPvA0OtMKhy6+bkrlyMEU8CAwEAATANBgkqhkiG9w0BAQIFAANPAAYn7jDgi
 rhiIL4wnP8nGzUisGSpsFsF4/7z2P2wqne6Qk8Cg/Dstu3RyaN78vAMGP8d8
 2H5+Ndfhi2mRp4YHiGHz0HlK6VbPfnyvS2wdjCCAccwggFRAgUCQAAAFDANB
 gkqhkiG9w0BAQIFADBfMQswCQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhd
 GEgU2VjdXJpdHksIEluYy4xLjAsBgNVBAsTJUxvdyBBc3N1cmFuY2UgQ2Vyd
 GlmaWNhdGlvbiBBdXRob3JpdHkwHhcNOTQwMTA3MDAwMDAwWhcNOTYwMTA3M
 jM1OTU5WjBNMQswCQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2Vjd
 XJpdHksIEluYy4xHDAaBgNVBAsTE1BlcnNvbmEgQ2VydGlmaWNhdGUwaTANB
 gkqhkiG9w0BAQEFAANYADBVAk4GqghQDa9Xi/2zAdYEqJVIcYhlLN1FpI9tX
 Q1m6zZ39PYXK8Uhoj0Es7kWRv8hC04vqkOKwndWbzVtvoHQOmP8nOkkuBi+A
 QvgFoRcgOUCAwEAATANBgkqhkiG9w0BAQIFAANhAD/5Uo7xDdp49oZm9GoNc
 PhZcW1e+nojLvHXWAU/CBkwfcR+FSf4hQ5eFu1AjYv6Wqf430Xe9Et5+jgnM
 Tiq4LnwgTdA8xQX4elJz9QzQobkE3XVOjVAtCFcmiin80RB8AAAMYAAAAAAA
 AAAAA==

Rescorla & Schiffman Experimental [Page 36]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 Encryption-Identity: DN-1779, null, CN=Setec Astronomy, OU=Persona
 Certificate,O="RSA Data Security, Inc.", C=US;
 SHTTP-Privacy-Enhancements: recv-required=encrypt

 Don’t read this.
 ==

 An appropriate HTTP request to dereference this URL would be:

 ==
 GET /secret HTTP/1.0
 Security-Scheme: S-HTTP/1.4
 User-Agent: Web-O-Vision 1.2beta
 Accept: *.*
 Key-Assign: Inband,1,reply,des-ecb;7878787878787878

 ==

 The added Key-Assign line that would not have been in an ordinary
 HTTP request permits Bob (the server) to encrypt his reply to Alice,
 even though Alice does not have a public key, since they would share
 a key after the request is received by Bob. This request has the
 following S-HTTP encapsulation:

 ==
 Secure * Secure-HTTP/1.4
 Content-Type: message/http
 Content-Privacy-Domain: CMS

 MIAGCSqGSIb3DQEHA6CAMIACAQAxgDCBqQIBADBTME0xCzAJBgNVBAYTAlVTMSAw
 HgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEcMBoGA1UECxMTUGVyc29u
 YSBDZXJ0aWZpY2F0ZQICALYwDQYJKoZIhvcNAQEBBQAEQCU/R+YCJSUsV6XLilHG
 cNVzwqKcWzmT/rZ+duOv8Ggb7oO/d8H3xUVGQ2LsX4kYGq2szwj8Q6eWhsmhf4oz
 lvMAADCABgkqhkiG9w0BBwEwEQYFKw4DAgcECFif7BadXlw3oIAEgZBNcMexKe16
 +mNxx8YQPukBCL0bWqS86lvws/AgRkKPELmysBi5lco8MBCsWK/fCyrnxIRHs1oK
 BXBVlsAhKkkusk1kCf/GbXSAphdSgG+d6LxrNZwHbBFOX6A2hYS63Iczd5bOVDDW
 Op2gcgUtMJq6k2LFrs4L7HHqRPPlqNJ6j5mFP4xkzOCNIQynpD1rV6EECMIk/T7k
 1JLSAAAAAAAAAAAAAA==
 ==

 The data between the delimiters is a CMS message, RSA enveloped for
 Setec Astronomy.

 Bob decrypts the request, finds the document in question, and is
 ready to serve it back to Alice.

Rescorla & Schiffman Experimental [Page 37]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 An appropriate HTTP server response would be:

 ==
 HTTP/1.0 200 OK
 Security-Scheme: S-HTTP/1.4
 Content-Type: text/html

 Congratulations, you’ve won.
 <A href="/prize.html"
 CRYPTOPTS="Key-Assign: Inband,alice1,reply,des-ecb;020406080a0c0e0f;
 SHTTP-Privacy-Enhancements: recv-required=auth">Click here to
 claim your prize
 ==

 This HTTP response, encapsulated as an S-HTTP message becomes:

 ==
 Secure * Secure-HTTP/1.4
 Content-Type: message/http
 Prearranged-Key-Info: des-ecb,697fa820df8a6e53,inband:1
 Content-Privacy-Domain: CMS

 MIAGCSqGSIb3DQEHBqCAMIACAQAwgAYJKoZIhvcNAQcBMBEGBSsOAwIHBAifqtdy
 x6uIMYCCARgvFzJtOZBn773DtmXlx037ck3giqnV0WC0QAx5f+fesAiGaxMqWcir
 r9XvT0nT0LgSQ/8tiLCDBEKdyCNgdcJAduy3D0r2sb5sNTT0TyL9uydG3w55vTnW
 aPbCPCWLudArI1UHDZbnoJICrVehxG/sYX069M8v6VO8PsJS7//hh1yM+0nekzQ5
 l1p0j7uWKu4W0csrlGqhLvEJanj6dQAGSTNCOoH3jzEXGQXntgesk8poFPfHdtj0
 5RH4MuJRajDmoEjlrNcnGl/BdHAd2JaCo6uZWGcnGAgVJ/TVfSVSwN5nlCK87tXl
 nL7DJwaPRYwxb3mnPKNq7ATiJPf5u162MbwxrddmiE7e3sST7naSN+GS0ateY5X7
 AAAAAAAAAAA=
 ==

 The data between the delimiters is a CMS message encrypted under a
 randomly-chosen DEK which can be recovered by computing:

 DES-DECRYPT(inband:1,697fa820df8a6e53)

 where ’inband:1’ is the key exchanged in the Key-Assign line in the
 original request.

Rescorla & Schiffman Experimental [Page 38]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

10.2 . A request using the auth enhancement

 There is a link on the HTML page that was just returned, which Alice
 dereferences, creating the HTTP message:

==
GET /prize.html HTTP/1.0
Security-Scheme: S-HTTP/1.4
User-Agent: Web-O-Vision 1.1beta
Accept: *.*

==

Which, when encapsulated as an S-HTTP message, becomes:

==
Secure * Secure-HTTP/1.4
Content-Type: message/http
MAC-Info:31ff8122,rsa-md5,b3ca4575b841b5fc7553e69b0896c416,inband:alice1
Content-Privacy-Domain: CMS

MIAGCSqGSIb3DQEHAaCABGNHRVQgL3ByaXplLmh0bWwgSFRUUC8xLjAKU2VjdXJp
dHktU2NoZW1lOiBTLUhUVFAvMS4xClVzZXItQWdlbnQ6IFdlYi1PLVZpc2lvbiAx
LjFiZXRhCkFjY2VwdDogKi4qCgoAAAAA
==

 The data between the delimiters is a CMS ’Data’ representation of the
 request.

Rescorla & Schiffman Experimental [Page 39]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

Appendix: A Review of CMS

 CMS ("Cryptographic Message Syntax Standard") is a cryptographic
 message encapsulation format, similar to PEM, based on RSA’s PKCS-7
 cryptographic messaging syntax.

 CMS is only one of two encapsulation formats supported by S-HTTP, but
 it is to be preferred since it permits the least restricted set of
 negotiable options, and permits binary encoding. In the interest of
 making this specification more self-contained, we summarize CMS here.

 CMS is defined in terms of OSI’s Abstract Syntax Notation (ASN.1,
 defined in X.208), and is concretely represented using ASN.1’s Basic
 Encoding Rules (BER, defined in X.209). A CMS message is a sequence
 of typed content parts. There are six content types, recursively
 composable:

 Data -- Some bytes, with no enhancement.

 SignedData -- A content part, with zero or more signature
 blocks, and associated keying materials. Keying materials
 can be transported via the degenerate case of no signature
 blocks and no data.

 EnvelopedData -- One or more (per recipient) key exchange
 blocks and an encrypted content part.

 DigestedData -- A content part with a single digest block.

 EncryptedData -- An encrypted content part, with key
 materials externally provided.

 Here we will dispense with convention for the sake of ASN.1-impaired
 readers, and present a syntax for CMS in informal BNF (with much
 gloss). In the actual encoding, most productions have explicit tag
 and length fields.

 Message = *Content
 Content = Data | SignedData | EnvelopedData |
 DigestedData | EncryptedData
 Data = Bytes
 SignedData = *DigestAlg Content *Certificates
 CRLs SignerInfo
 EnvelopedData = *RecipientInfo BulkCryptAlg
 Encrypted(Content)

Rescorla & Schiffman Experimental [Page 40]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 DigestedData = DigestAlg Content DigestBytes
 EncryptedData = BulkCryptAlg Encrypted(Bytes)
 SignerInfo = CertID ... Encrypted(DigestBytes) ...
 RecipientInfo = CertID KeyCryptAlg Encrypted(DEK)

Appendix: Internet Media Type message/s-http

 In addition to defining the S-HTTP/1.4 protocol, this document serves
 as the specification for the Internet media type "message/s-http".
 The following is to be registered with IANA.

 Media Type name: message
 Media subtype name: s-http
 Required parameters: none
 Optional parameters: version, msgtype

 version: The S-HTTP version number of the enclosed message
 (e.g. "1.4"). If not present, the version can be
 determined from the first line of the body.

 msgtype: The message type -- "request" or "response".
 If not present, the type can be determined from the
 first line of the body.

 Encoding considerations: only "7bit", "8bit", or "binary"
 are permitted.

 Security considerations: this is a security protocol.

Bibliography and References

 [BELL96] Bellare, M., Canetti, R., Krawczyk, H., "Keying Hash
 Functions for Message Authentication", Preprint.

 [FIPS-46-1] Federal Information Processing Standards Publication
 (FIPS PUB) 46-1, Data Encryption Standard, Reaffirmed
 1988 January 22 (supersedes FIPS PUB 46, 1977 January
 15).

 [FIPS-81] Federal Information Processing Standards Publication
 (FIPS PUB) 81, DES Modes of Operation, 1980 December 2.

 [FIPS-180] Federal Information Processing Standards Publication
 (FIPS PUB) 180-1, "Secure Hash Standard", 1995 April 17.

 [FIPS-186] Federal Information Processing Standards Publication
 (FIPS PUB) 186, Digital Signature Standard, 1994 May 19.

Rescorla & Schiffman Experimental [Page 41]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 [HAST86] Hastad, J., "On Using RSA With Low Exponents in a Public
 Key Network," Advances in Cryptology-CRYPTO 95
 Proceedings, Springer-Verlag, 1986.

 [JOHN93] Johnson, D.B., Matyas, S.M., Le, A.V., Wilkins, J.D.,
 "Design of the Commercial Data Masking Facility Data
 Privacy Algorithm," Proceedings 1st ACM Conference on
 Computer & Communications Security, November 1993,
 Fairfax, VA., pp. 93-96.

 [KRAW96b] Krawczyk, H. personal communication.

 [LAI92] Lai, X. "On the Design and Security of Block Ciphers,"
 ETH Series in Information Processing, v. 1, Konstanz:
 Hartung-Gorre Verlag, 1992.

 [PKCS-6] RSA Data Security, Inc. "Extended Certificate Syntax
 Standard", PKCS-6, Nov 1, 1993.

 [CMS] Housley, R., "Cryptographic Message Syntax", RFC 2630 ,
 June 1999.

 [RFC-822] Crocker, D., "Standard For The Format Of ARPA Internet
 Text Messages", STD 11, RFC 822 , August 1982.

 [RFC-1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC
 1319 , April 1992.

 [RFC-1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321 ,
 April 1992.

 [RFC-1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421 , February 1993.

 [RFC-1422] Kent, S., "Privacy Enhancement for Internet Electronic
 Mail: Part II: Certificate-Based Key Management", RFC
 1422 , February 1993.

 [RFC-1779] Kille, S., "A String Representation of Distinguished
 Names", RFC 1779 , March 1995.

 [RFC-2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045 , September 1993.

 [RFC-1738] T. Berners-Lee, "Uniform Resource Locators (URLs)", RFC
 1738 , December 1994.

Rescorla & Schiffman Experimental [Page 42]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc2630
https://tools.ietf.org/pdf/rfc822
https://tools.ietf.org/pdf/rfc1319
https://tools.ietf.org/pdf/rfc1319
https://tools.ietf.org/pdf/rfc1321
https://tools.ietf.org/pdf/rfc1421
https://tools.ietf.org/pdf/rfc1422
https://tools.ietf.org/pdf/rfc1422
https://tools.ietf.org/pdf/rfc1779
https://tools.ietf.org/pdf/rfc2045
https://tools.ietf.org/pdf/rfc1738
https://tools.ietf.org/pdf/rfc1738

RFC 2660 The Secure HyperText Transfer Protocol August 1999

 [RFC-1847] Galvin, J., Murphy, S., Crocker, S., and N. Freed,
 "Security Muliparts for MIME: Multipart/Signed and
 Multipart/Encrypted", RFC 1847 , October 1995.

 [RFC-1848] Crocker, S., Freed, N., Galvin, J., and S. Murphy, "MIME
 Object Security Services", RFC 1848 , October 1995.

 [RFC-1864] Myers, J. and M. Rose, "The Content-MD5 Header Field",
 RFC 1864 , October 1995.

 [RFC-2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1" RFC 2616 , June 1999.

 [RFC-2617] Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P.,
 Luotonen, A. and L. Stewart, "HTTP Authentication: Basic
 and Digest Access Authentication", RFC 2617 , June 1999.

 [RFC-2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104 , February
 1997.

 [SHTML] Rescorla, E. and A. Schiffman, "Security Extensions For
 HTML", RFC 2659 , August 1999.

 [VANO95] B. Prennel and P. van Oorschot, "On the security of two
 MAC algorithms", to appear Eurocrypt’96.

 [X509] CCITT Recommendation X.509 (1988), "The Directory -
 Authentication Framework".

Security Considerations

 This entire document is about security.

Rescorla & Schiffman Experimental [Page 43]

https://tools.ietf.org/pdf/rfc2660
https://tools.ietf.org/pdf/rfc1847
https://tools.ietf.org/pdf/rfc1848
https://tools.ietf.org/pdf/rfc1864
https://tools.ietf.org/pdf/rfc2616
https://tools.ietf.org/pdf/rfc2617
https://tools.ietf.org/pdf/rfc2104
https://tools.ietf.org/pdf/rfc2659

RFC 2660 The Secure HyperText Transfer Protocol August 1999

Authors’ Addresses

 Eric Rescorla
 RTFM, Inc.
 30 Newell Road, #16
 East Palo Alto, CA 94303

 Phone: (650) 328-8631
 EMail: ekr@rtfm.com

 Allan M. Schiffman
 SPYRUS/Terisa
 5303 Betsy Ross Drive
 Santa Clara, CA 95054

 Phone: (408) 327-1901
 EMail: ams@terisa.com

Rescorla & Schiffman Experimental [Page 44]

https://tools.ietf.org/pdf/rfc2660

RFC 2660 The Secure HyperText Transfer Protocol August 1999

15. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rescorla & Schiffman Experimental [Page 45]

https://tools.ietf.org/pdf/rfc2660

