Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. This memo obsoletes RFC 2239, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs) using SMIV2". This memo extends that specification by including management information useful for the management of 1000 Mb/s MAUs.

Ethernet technology, as defined by the 802.3 Working Group of the IEEE, continues to evolve, with scalable increases in speed, new types of cabling and interfaces, and new features. This evolution may require changes in the managed objects in order to reflect this new functionality. This document, as with other documents issued by this working group, reflects a certain stage in the evolution of Ethernet technology. In the future, this document might be revised,
or new documents might be issued by the Ethernet Interfaces and Hub MIB Working Group, in order to reflect the evolution of Ethernet technology.

Table of Contents

1. Introduction ... 2
2. The SNMP Management Framework 3
3. Overview .. 4
3.1. Relationship to RFC 2239 4
3.2. Relationship to RFC 1515 4
3.3. MAU Management ... 4
3.4. Relationship to Other MIBs 5
3.4.1. Relationship to the Interfaces MIB 5
3.4.2. Relationship to the 802.3 Repeater MIB 5
3.5. Management of Internal MAUs 5
4. Definitions .. 6
5. Intellectual Property 49
6. Acknowledgements .. 49
7. References .. 50
8. Security Considerations 52
9. Authors’ Addresses .. 53
10. Appendix: Change Log 55
11. Full Copyright Statement 57

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing IEEE 802.3 Medium Attachment Units (MAUs).

This memo also includes a MIB module. This MIB module extends the list of managed objects specified in the earlier version of this MIB: RFC 2239 [21].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [20].
The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2571 [1].
- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in STD 58, RFC 2578 [5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7].
- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574 [12].
- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13].
- A set of fundamental applications described in RFC 2573 [14] and the view-based access control mechanism described in RFC 2575 [15].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.

This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.
3. Overview

3.1. Relationship to RFC 2239

This MIB is intended to be a superset of that defined by RFC 2239 [21], which will go to historic status. This MIB includes all of the objects contained in that MIB, plus several new ones which provide additional capabilities. Implementors are encouraged to support all applicable conformance groups in order to make the best use of the new functionality provided by this MIB. The new objects provide management support for:

- management of 1000 Mb/s devices
- management of PAUSE negotiation
- management of remote fault status

3.2. Relationship to RFC 1515

RFC 2239 was a replacement for RFC 1515 [22], which is now historic. RFC 2239 defined a superset of RFC 1515 which contained all of the objects defined in RFC 1515, plus several new ones which provided additional capabilities. The new objects in RFC 2239 provided management support for:

- management of 100 Mb/s devices
- auto-negotiation on interface MAUs
- jack management

3.3. MAU Management

Instances of these object types represent attributes of an IEEE 802.3 MAU. Several types of MAUs are defined in the IEEE 802.3 CSMA/CD standard [16]. These MAUs may be connected to IEEE 802.3 repeaters or to 802.3 (Ethernet-like) interfaces. For convenience this document refers to these devices as "repeater MAUs" and "interface MAUs."

The definitions presented here are based on Section 30.5, "Layer Management for 10, 100 & 1000 Mb/s Medium Attachment Units (MAUs)", and Annex 30A, "GDMO Specifications for 802.3 managed object classes" of IEEE Std. 802.3, 1998 edition [16]. That specification includes definitions for 10Mb/s, 100Mb/s and 1000Mb/s devices. This specification is intended to serve the same purpose: to provide for management of all types of Ethernet/802.3 MAUs.
3.4. Relationship to Other MIBs

It is assumed that an agent implementing this MIB will also implement (at least) the ‘system’ group defined in MIB-II [18]. The following sections identify other MIBs that such an agent should implement.

3.4.1. Relationship to the Interfaces MIB.

The sections of this document that define interface MAU-related objects specify an extension to the Interfaces MIB [19]. An agent implementing these interface-MAU related objects MUST also implement the relevant groups of Interface MIB. The value of the object ifMauIfIndex is the same as the value of ‘ifIndex’ used to instantiate the interface to which the given MAU is connected.

It is expected that an agent implementing the interface-MAU related objects in this MIB will also implement the Ethernet-like Interfaces MIB, [23].

(Note that repeater ports are not represented as interfaces in the Interface MIB.)

3.4.2. Relationship to the 802.3 Repeater MIB

The section of this document that defines repeater MAU-related objects specifies an extension to the 802.3 Repeater MIB defined in [17]. An agent implementing these repeater-MAU related objects MUST also implement the 802.3 Repeater MIB.

The values of ‘rpMauGroupIndex’ and ‘rpMauPortIndex’ used to instantiate a repeater MAU variable SHALL be the same as the values of ‘rptrPortGroupIndex’ and ‘rptrPortIndex’ used to instantiate the port to which the given MAU is connected.

3.5. Management of Internal MAUs

In some situations, a MAU can be "internal" -- i.e., its functionality is implemented entirely within a device. For example, a managed repeater may contain an internal repeater-MAU and/or an internal interface-MAU through which management communications originating on one of the repeater’s external ports pass in order to reach the management agent associated with the repeater. Such internal MAUs may or may not be managed. If they are managed, objects describing their attributes should appear in the appropriate MIB subtree: dot3RpMauBasicGroup for internal repeater-MAUs and dot3IfMauBasicGroup for internal interface-MAUs.
4. Definitions

MAU-MIB DEFINITIONS ::= BEGIN

IMPORTS Counter32, Integer32, OBJECT-TYPE, MODULE-IDENTITY, NOTIFICATION-TYPE, OBJECT-IDENTITY, mib-2 FROM SNMPv2-SMI TruthValue, TEXTUAL-CONVENTION FROM SNMPv2-TC OBJECT-GROUP, MODULE-COMPLIANCE, NOTIFICATION-GROUP FROM SNMPv2-CONF;

mauMod MODULE-IDENTITY
LAST-UPDATED "9908240400Z" -- August 24, 1999
ORGANIZATION "IETF Ethernet Interfaces and Hub MIB Working Group"
CONTACT-INFO
 WG E-mail: hubmib@hprnd.rose.hp.com
 To subscribe: hubmib-request@hprnd.rose.hp.com

 Chair: Dan Romascanu
 Postal: Lucent Technologies
 Atidim Technology Park, Bldg. 3
 Tel Aviv 61131
 Israel
 Tel: +972 3 645 8414, 6458458
 Fax: +972 3 648 7146
 E-mail: dromasca@lucent.com

 Editors: Andrew Smith
 Postal: Extreme Networks, Inc.
 10460 Bandley Drive
 Cupertino, CA 95014
 USA
 Tel: +1 408 579-2821
 E-mail: andrew@extremenetworks.com

 John Flick
 Postal: Hewlett-Packard Company
 8000 Foothills Blvd. M/S 5557
 Roseville, CA 95747-5557
 USA
 Tel: +1 916 785 4018
 Fax: +1 916 785 1199
 E-mail: johnf@rose.hp.com

Smith, et al. Standards Track [Page 6]
The following reference is used throughout this MIB module:

[IEEE 802.3 Std] refers to

Of particular interest is Clause 30, '10Mb/s, 100Mb/s and 1000Mb/s Management'.

REVISION "9908240400Z" -- August 24, 1999
DESCRIPTION "This version published as RFC 2668. Updated to include support for 1000 Mb/sec MAUs and flow control negotiation."

REVISION "9710310000Z" -- October 31, 1997
DESCRIPTION "This version published as RFC 2239."

REVISION "9309300000Z" -- September 30, 1993
DESCRIPTION "Initial version, published as RFC 1515."

::= { snmpDot3MauMgt 6 }

snmpDot3MauMgt OBJECT IDENTIFIER ::= { mib-2 26 }

-- textual conventions

JackType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "Common enumeration values for repeater and interface MAU jack types."
SYNTAX INTEGER {
 other(1),
 rj45(2),
 rj45S(3), -- rj45 shielded
 db9(4),
 bnc(5),
 fAUI(6), -- female aui
 mAUI(7), -- male aui
 fiberSC(8),
 fiberMIC(9),
 fiberST(10),
 telco(11),
 mtrj(12), -- fiber MT-RJ
 hssdc(13) -- fiber channel style-2
}

dot3RpMauBasicGroup
 OBJECT IDENTIFIER ::= { snmpDot3MauMgt 1 }
dot3IfMauBasicGroup
 OBJECT IDENTIFIER ::= { snmpDot3MauMgt 2 }
dot3BroadMauBasicGroup
 OBJECT IDENTIFIER ::= { snmpDot3MauMgt 3 }
dot3IfMauAutoNegGroup
 OBJECT IDENTIFIER ::= { snmpDot3MauMgt 5 }

-- object identities for MAU types
-- (see rpMauType and ifMauType for usage)
dot3MauType
 OBJECT IDENTIFIER ::= { snmpDot3MauMgt 4 }
dot3MauTypeAUI OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "no internal MAU, view from AUI"
 ::= { dot3MauType 1 }
dot3MauType10Base5 OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "thick coax MAU (per 802.3 section 8)"
 ::= { dot3MauType 2 }
dot3MauTypeFoirl OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "FOIRL MAU (per 802.3 section 9.9)"
 ::= { dot3MauType 3 }
dot3MauType10Base2 OBJECT-IDENTITY
 STATUS current

DESCRIPTION "thin coax MAU (per 802.3 section 10)"
::= { dot3MauType 4 }

dot3MauType10BaseT OBJECT-IDENTITY
STATUS current
DESCRIPTION "UTP MAU (per 802.3 section 14).
Note that it is strongly recommended that
agents return either dot3MauType10BaseTHD or
dot3MauType10BaseTFD if the duplex mode is
known. However, management applications should
be prepared to receive this MAU type value from
older agent implementations."
::= { dot3MauType 5 }

dot3MauType10BaseFP OBJECT-IDENTITY
STATUS current
DESCRIPTION "passive fiber MAU (per 802.3 section 16)"
::= { dot3MauType 6 }

dot3MauType10BaseFB OBJECT-IDENTITY
STATUS current
DESCRIPTION "sync fiber MAU (per 802.3 section 17)"
::= { dot3MauType 7 }

dot3MauType10BaseFL OBJECT-IDENTITY
STATUS current
DESCRIPTION "async fiber MAU (per 802.3 section 18)
Note that it is strongly recommended that
agents return either dot3MauType10BaseFLHD or
dot3MauType10BaseFLFD if the duplex mode is
known. However, management applications should
be prepared to receive this MAU type value from
older agent implementations."
::= { dot3MauType 8 }

dot3MauType10Broad36 OBJECT-IDENTITY
STATUS current
DESCRIPTION "broadband DTE MAU (per 802.3 section 11).
Note that 10BROAD36 MAUs can be attached to
interfaces but not to repeaters."
::= { dot3MauType 9 }

------- new since RFC 1515:
dot3MauType10BaseTHD OBJECT-IDENTITY
STATUS current
DESCRIPTION "UTP MAU (per 802.3 section 14), half duplex
mode"
::= { dot3MauType 10 }
dot3MauType10BaseTFD OBJECT-IDENTITY
STATUS current
DESCRIPTION "UTP MAU (per 802.3 section 14), full duplex mode"
 ::= { dot3MauType 11 }

dot3MauType10BaseFLHD OBJECT-IDENTITY
STATUS current
DESCRIPTION "async fiber MAU (per 802.3 section 18), half duplex mode"
 ::= { dot3MauType 12 }

dot3MauType10BaseFLFD OBJECT-IDENTITY
STATUS current
DESCRIPTION "async fiber MAU (per 802.3 section 18), full duplex mode"
 ::= { dot3MauType 13 }

dot3MauType100BaseT4 OBJECT-IDENTITY
STATUS current
DESCRIPTION "4 pair categ. 3 UTP (per 802.3 section 23)"
 ::= { dot3MauType 14 }

dot3MauType100BaseTXHD OBJECT-IDENTITY
STATUS current
DESCRIPTION "2 pair categ. 5 UTP (per 802.3 section 25), half duplex mode"
 ::= { dot3MauType 15 }

dot3MauType100BaseTXFD OBJECT-IDENTITY
STATUS current
DESCRIPTION "2 pair categ. 5 UTP (per 802.3 section 25), full duplex mode"
 ::= { dot3MauType 16 }

dot3MauType100BaseFXHD OBJECT-IDENTITY
STATUS current
DESCRIPTION "X fiber over PMT (per 802.3 section 26), half duplex mode"
 ::= { dot3MauType 17 }

dot3MauType100BaseFXFD OBJECT-IDENTITY
STATUS current
DESCRIPTION "X fiber over PMT (per 802.3 section 26), full duplex mode"
 ::= { dot3MauType 18 }

dot3MauType100BaseT2HD OBJECT-IDENTITY
STATUS current
DESCRIPTION "2 pair categ. 3 UTP (per 802.3 section 32), half duplex mode"
::= { dot3MauType 19 }

dot3MauType100BaseT2FD OBJECT-IDENTITY
STATUS current
DESCRIPTION "2 pair categ. 3 UTP (per 802.3 section 32), full duplex mode"
::= { dot3MauType 20 }

------ new since RFC 2239:

dot3MauType1000BaseXHD OBJECT-IDENTITY
STATUS current
DESCRIPTION "PCS/PMA (per 802.3 section 36), unknown PMD, half duplex mode"
::= { dot3MauType 21 }

dot3MauType1000BaseXFD OBJECT-IDENTITY
STATUS current
DESCRIPTION "PCS/PMA (per 802.3 section 36), unknown PMD, full duplex mode"
::= { dot3MauType 22 }

dot3MauType1000BaseLXHD OBJECT-IDENTITY
STATUS current
DESCRIPTION "Fiber over long-wavelength laser (per 802.3 section 38), half duplex mode"
::= { dot3MauType 23 }

dot3MauType1000BaseLXFD OBJECT-IDENTITY
STATUS current
DESCRIPTION "Fiber over long-wavelength laser (per 802.3 section 38), full duplex mode"
::= { dot3MauType 24 }

dot3MauType1000BaseSXHD OBJECT-IDENTITY
STATUS current
DESCRIPTION "Fiber over short-wavelength laser (per 802.3 section 38), half duplex mode"
::= { dot3MauType 25 }

dot3MauType1000BaseSXFD OBJECT-IDENTITY
STATUS current
DESCRIPTION "Fiber over short-wavelength laser (per 802.3 section 38), full duplex mode"
::= { dot3MauType 26 }
dot3MauType1000BaseCXHD OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Copper over 150-Ohm balanced cable (per 802.3
section 39), half duplex mode"
 ::= { dot3MauType 27 }

dot3MauType1000BaseCXFD OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Copper over 150-Ohm balanced cable (per 802.3
section 39), full duplex mode"
 ::= { dot3MauType 28 }

dot3MauType1000BaseTHD OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Four-pair Category 5 UTP (per 802.3 section
40), half duplex mode"
 ::= { dot3MauType 29 }

dot3MauType1000BaseTFD OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Four-pair Category 5 UTP (per 802.3 section
40), full duplex mode"
 ::= { dot3MauType 30 }

--
-- The Basic Repeater MAU Table
--

rpMauTable OBJECT-TYPE
 SYNTAX SEQUENCE OF RpMauEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "Table of descriptive and status information
about the MAU(s) attached to the ports of a
repeater."
 ::= { dot3RpMauBasicGroup 1 }

rpMauEntry OBJECT-TYPE
 SYNTAX RpMauEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "An entry in the table, containing information
about a single MAU."
 INDEX { rpMauGroupIndex, rpMauPortIndex, rpMauIndex }
 ::= { rpMauTable 1 }
RpMauEntry ::=
 SEQUENCE {
 rpMauGroupIndex Integer32,
 rpMauPortIndex Integer32,
 rpMauIndex Integer32,
 rpMauType OBJECT IDENTIFIER,
 rpMauStatus INTEGER,
 rpMauMediaAvailable INTEGER,
 rpMauMediaAvailableStateExits Counter32,
 rpMauJabberState INTEGER,
 rpMauJabberingStateEnters Counter32,
 rpMauFalseCarriers Counter32
 }

rpMauGroupIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This variable uniquely identifies the group
containing the port to which the MAU described
by this entry is connected.

Note: In practice, a group will generally be
a field-replaceable unit (i.e., module, card,
or board) that can fit in the physical system
enclosure, and the group number will correspond
to a number marked on the physical enclosure.

The group denoted by a particular value of this
object is the same as the group denoted by the
same value of rpMauGroupIndex."
REFERENCE "Reference RFC 2108, rpMauGroupIndex."
::= { rpMauEntry 1 }

rpMauPortIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This variable uniquely identifies the repeater
port within group rpMauGroupIndex to which the
MAU described by this entry is connected."
REFERENCE "Reference RFC 2108, rpMauPortIndex."
::= { rpMauEntry 2 }

rpMauIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This variable uniquely identifies the MAU described by this entry from among other MAUs connected to the same port (rpMauPortIndex)."
REFERENCE

::= { rpMauEntry 3 }

rpMauType OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object identifies the MAU type. An initial set of MAU types are defined above. The assignment of OBJECT IDENTIFIERS to new types of MAUs is managed by the IANA. If the MAU type is unknown, the object identifier

unknownMauType OBJECT IDENTIFIER ::= { 0 0 }

is returned. Note that unknownMauType is a syntactically valid object identifier, and any conformant implementation of ASN.1 and the BER must be able to generate and recognize this value."
REFERENCE

::= { rpMauEntry 4 }

rpMauStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 unknown(2),
 operational(3),
 standby(4),
 shutdown(5),
 reset(6)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The current state of the MAU. This object MAY be implemented as a read-only object by those agents and MAUs that do not implement software control of the MAU state. Some agents may not support setting the value of this object to some of the enumerated values.

The value other(1) is returned if the MAU is in a state other than one of the states 2 through 6."
The value unknown(2) is returned when the MAU’s true state is unknown; for example, when it is being initialized.

A MAU in the operational(3) state is fully functional, operates, and passes signals to its attached DTE or repeater port in accordance to its specification.

A MAU in standby(4) state forces DI and CI to idle and the media transmitter to idle or fault, if supported. Standby(4) mode only applies to link type MAUs. The state of rpMauMediaAvailable is unaffected.

A MAU in shutdown(5) state assumes the same condition on DI, CI, and the media transmitter as though it were powered down or not connected. The MAU MAY return other(1) value for the rpMauJabberState and rpMauMediaAvailable objects when it is in this state. For an AUI, this state will remove power from the AUI.

Setting this variable to the value reset(6) resets the MAU in the same manner as a power-off, power-on cycle of at least one-half second would. The agent is not required to return the value reset(6).

Setting this variable to the value operational(3), standby(4), or shutdown(5) causes the MAU to assume the respective state except that setting a mixing-type MAU or an AUI to standby(4) will cause the MAU to enter the shutdown state."

REFERENCE
"[IEEE 802.3 Std], 30.5.1.1.7, aMAUAdminState, 30.5.1.2.2, acMAUAdminControl, and 30.5.1.2.1, acResetMAU."

::= { rpMauEntry 5 }

rpMauMediaAvailable OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 unknown(2),
 available(3),
 notAvailable(4),
 remoteFault(5),
 invalidSignal(6),
remoteJabber(7),
remoteLinkLoss(8),
remoteTest(9),
offline(10),
autoNegError(11)
}

MAX-ACCESS read-only
STATUS current
DESCRIPTION "If the MAU is a link or fiber type (FOIRL,
10BASE-T, 10BASE-F) then this is equivalent to
the link test fail state/low light function.
For an AUI or a coax (including broadband) MAU
this indicates whether or not loopback is
detected on the DI circuit. The value of this
attribute persists between packets for MAU types
AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.

The value other(1) is returned if the
mediaAvailable state is not one of 2 through 11.

The value unknown(2) is returned when the MAU’s
ture state is unknown; for example, when it is
being initialized. At power-up or following a
reset, the value of this attribute will be
unknown for AUI, coax, and 10BASE-FP MAUs. For
these MAUs loopback will be tested on each
transmission during which no collision is
detected. If DI is receiving input when DO
returns to IDL after a transmission and there
has been no collision during the transmission
then loopback will be detected. The value of
this attribute will only change during
non-collided transmissions for AUI, coax, and
10BASE-FP MAUs.

For 100Mbps and 1000Mbps MAUs, the enumerations
match the states within the respective link
integrity state diagrams, fig 32-16, 23-12 and
24-15 of sections 32, 23 and 24 of [16]. Any
MAU which implements management of
auto-negotiation will map remote fault
indication to remote fault.

The value available(3) indicates that the link,
light, or loopback is normal. The value
notAvailable(4) indicates link loss, low light,
or no loopback.
The value remoteFault(5) indicates that a fault has been detected at the remote end of the link. This value applies to 10BASE-FB, 100BASE-T4 Far End Fault Indication and non-specified remote faults from a system running auto-negotiation. The values remoteJabber(7), remoteLinkLoss(8), and remoteTest(9) SHOULD be used instead of remoteFault(5) where the reason for remote fault is identified in the remote signaling protocol.

The value invalidSignal(6) indicates that an invalid signal has been received from the other end of the link. InvalidSignal(6) applies only to MAUs of type 10BASE-FB.

Where an IEEE Std 802.3u-1995 clause 22 MII is present, a logic one in the remote fault bit (reference section 22.2.4.2.8 of that document) maps to the value remoteFault(5), and a logic zero in the link status bit (reference section 22.2.4.2.10 of that document) maps to the value notAvailable(4). The value notAvailable(4) takes precedence over the value remoteFault(5).

Any MAU that implements management of clause 37 Auto-Negotiation will map the received Remote Fault (RF1 and RF2) bit values for Offline to offline(10), Link Failure to remoteFault(5) and Auto-Negotiation Error to autoNegError(11)."

REFERENCE
"[IEEE 802.3 Std], 30.5.1.1.4, aMediaAvailable."
 ::= { rpMauEntry 6 }

rpMauMediaAvailableStateExits OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the number of times that
rpMauMediaAvailable for this MAU instance leaves
the state available(3).

Discontinuities in the value of this counter can
occur at re-initialization of the management
system, and at other times as indicated by the
value of rpMauMediaAvailableStateExits."
REFERENCE
"[IEEE 802.3 Std], 30.5.1.1.5,
aLoseMediaCounter.
RFC 2108, rpMauMediaAvailableStateExits"
::= { rpMauEntry 7 }

rpMauJabberState OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 unknown(2),
 noJabber(3),
 jabbering(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value other(1) is returned if the jabber state is not 2, 3, or 4. The agent MUST always return other(1) for MAU type dot3MauTypeAUI.

The value unknown(2) is returned when the MAU’s true state is unknown; for example, when it is being initialized.

If the MAU is not jabbering the agent returns noJabber(3). This is the ‘normal’ state.

If the MAU is in jabber state the agent returns the jabbering(4) value."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.6, aJabber.jabberFlag."
::= { rpMauEntry 8 }

rpMauJabberingStateEnters OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the number of times that mauJabberState for this MAU instance enters the state jabbering(4). For MAUs of type dot3MauTypeAUI, dot3MauType100BaseT4, dot3MauType100BaseTX, dot3MauType100BaseFX and all 1000Mbps types, this counter will always indicate zero.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of rptrMonitorPortLastChange."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.6, aJabber.jabberCounter.
RFC 2108, rptrMonitorPortLastChange"
::= { rpMauEntry 9 }

rpMauFalseCarriers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the number of false carrier events during IDLE in 100BASE-X links. This counter does not increment at the symbol rate. It can increment after a valid carrier completion at a maximum rate of once per 100 ms until the next carrier event.

This counter increments only for MAUs of type dot3MauType100BaseT4, dot3MauType100BaseTX, and dot3MauType100BaseFX and all 1000Mbps types. For all other MAU types, this counter will always indicate zero.

The approximate minimum time for rollover of this counter is 7.4 hours.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of rpMauGroupBasicGroupIndex.

REFERENCE
[IEEE 802.3 Std], 30.5.1.1.10, aFalseCarriers.
RFC 2108, rpMauGroupBasicGroupIndex"

::= { rpMauEntry 10 }

-- The rpJackTable applies to MAUs attached to repeaters
-- which have one or more external jacks (connectors).

rpJackTable OBJECT-TYPE
SYNTAX SEQUENCE OF RpJackEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about the external jacks attached to MAUs attached to the ports of a repeater."

::= { dot3MauGroupIndex, rpMauGroupBasicGroupIndex, rpMauEntry 2 }

rpJackEntry OBJECT-TYPE
SYNTAX RpJackEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in the table, containing information about a particular jack."
INDEX { rpMauGroupIndex, rpMauEntry 2 }
rpMauPortIndex,
rpMauIndex,
rpJackIndex

::= { rpJackTable 1 }

RpJackEntry ::=
 SEQUENCE {
 rpJackIndex Integer32,
 rpJackType JackType
 }

rpJackIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This variable uniquely identifies the jack
described by this entry from among other jacks
attached to the same MAU (rpMauIndex)."
 ::= { rpJackEntry 1 }

rpJackType OBJECT-TYPE
SYNTAX JackType
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The jack connector type, as it appears on the
outside of the system."
 ::= { rpJackEntry 2 }

--
-- The Basic Interface MAU Table
--

ifMauTable OBJECT-TYPE
SYNTAX SEQUENCE OF IfMauEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Table of descriptive and status information
about MAU(s) attached to an interface."
 ::= { dot3IfMauBasicGroup 1 }

ifMauEntry OBJECT-TYPE
SYNTAX IfMauEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in the table, containing information
about a single MAU."
INDEX { ifMauIfIndex,
ifMauIndex
}
 ::= { ifMauTable 1 }

IfMauEntry ::= SEQUENCE {
 ifMauIfIndex Integer32,
 ifMauIndex Integer32,
 ifMauType OBJECT IDENTIFIER,
 ifMauStatus INTEGER,
 ifMauMediaAvailable INTEGER,
 ifMauMediaAvailableStateExits Counter32,
 ifMauJabberState INTEGER,
 ifMauJabberingStateEnters Counter32,
 ifMauFalseCarriers Counter32,
 ifMauTypeList INTEGER32,
 ifMauDefaultType OBJECT IDENTIFIER,
 ifMauAutoNegSupported TruthValue,
 ifMauTypeListBits BITS
}

ifMauIfIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This variable uniquely identifies the interface to which the MAU described by this entry is connected."
REFERENCE "RFC 1213, ifIndex"
 ::= { ifMauEntry 1 }

ifMauIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This variable uniquely identifies the MAU described by this entry from among other MAUs connected to the same interface (ifMauIfIndex)."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
 ::= { ifMauEntry 2 }

ifMauType OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object identifies the MAU type. An initial set of MAU types are defined above. The assignment of OBJECT IDENTIFIERS to new types of
MAUs is managed by the IANA. If the MAU type is unknown, the object identifier

unknownMauType OBJECT IDENTIFIER ::= { 0 0 }

is returned. Note that unknownMauType is a syntactically valid object identifier, and any conformant implementation of ASN.1 and the BER must be able to generate and recognize this value.

This object represents the operational type of the MAU, as determined by either (1) the result of the auto-negotiation function or (2) if auto-negotiation is not enabled or is not implemented for this MAU, by the value of the object ifMauDefaultType. In case (2), a set to the object ifMauDefaultType will force the MAU into the new operating mode."

REFERENCE
"[IEEE 802.3 Std], 30.5.1.1.2, aMAUType."

::= { ifMauEntry 3 }

ifMauStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 unknown(2),
 operational(3),
 standby(4),
 shutdown(5),
 reset(6)
}

MAX-ACCESS read-write
STATUS current
DESCRIPTION "The current state of the MAU. This object MAY be implemented as a read-only object by those agents and MAUs that do not implement software control of the MAU state. Some agents may not support setting the value of this object to some of the enumerated values.

The value other(1) is returned if the MAU is in a state other than one of the states 2 through 6.

The value unknown(2) is returned when the MAU’s true state is unknown; for example, when it is being initialized."
A MAU in the operational(3) state is fully functional, operates, and passes signals to its attached DTE or repeater port in accordance to its specification.

A MAU in standby(4) state forces DI and CI to idle and the media transmitter to idle or fault, if supported. Standby(4) mode only applies to link type MAUs. The state of ifMauMediaAvailable is unaffected.

A MAU in shutdown(5) state assumes the same condition on DI, CI, and the media transmitter as though it were powered down or not connected. The MAU MAY return other(1) value for the ifMauJabberState and ifMauMediaAvailable objects when it is in this state. For an AUI, this state will remove power from the AUI.

Setting this variable to the value reset(6) resets the MAU in the same manner as a power-off, power-on cycle of at least one-half second would. The agent is not required to return the value reset (6).

Setting this variable to the value operational(3), standby(4), or shutdown(5) causes the MAU to assume the respective state except that setting a mixing-type MAU or an AUI to standby(4) will cause the MAU to enter the shutdown state."

REFERENCE "[IEEE 802.3 Std], 30.5.1.1.7, aMAUAdminState, 30.5.1.2.2, acMAUAdminControl, and 30.5.1.2.1, acResetMAU."

::= { ifMauEntry 4 }

ifMauMediaAvailable OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 unknown(2),
 available(3),
 notAvailable(4),
 remoteFault(5),
 invalidSignal(6),
 remoteJabber(7),
 remoteLinkLoss(8),
 remoteTest(9),
 offline(10),
 autoNegError(11)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "If the MAU is a link or fiber type (FOIRL,
10BASE-T, 10BASE-F) then this is equivalent to
the link test fail state/low light function.
For an AUI or a coax (including broadband) MAU
this indicates whether or not loopback is
detected on the DI circuit. The value of this
attribute persists between packets for MAU types
AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.
The value other(1) is returned if the
mediaAvailable state is not one of 2 through 11.
The value unknown(2) is returned when the MAU’s
true state is unknown; for example, when it is
being initialized. At power-up or following a
reset, the value of this attribute will be
unknown for AUI, coax, and 10BASE-FP MAUs. For
these MAUs loopback will be tested on each
transmission during which no collision is
detected. If DI is receiving input when DO
returns to IDL after a transmission and there
has been no collision during the transmission
then loopback will be detected. The value of
this attribute will only change during
non-collided transmissions for AUI, coax, and
10BASE-FP MAUs.
For 100Mbps and 1000Mbps MAUs, the enumerations
match the states within the respective link
integrity state diagrams, fig 32-16, 23-12 and
24-15 of sections 32, 23 and 24 of [16]. Any
MAU which implements management of
auto-negotiation will map remote fault
indication to remote fault.
The value available(3) indicates that the link,
light, or loopback is normal. The value
notAvailable(4) indicates link loss, low light,
or no loopback.
The value remoteFault(5) indicates that a fault
has been detected at the remote end of the link.
This value applies to 10BASE-FB, 100BASE-T4 Far
End Fault Indication and non-specified remote
faults from a system running auto-negotiation.
The values remoteJabber(7), remoteLinkLoss(8), and remoteTest(9) SHOULD be used instead of remoteFault(5) where the reason for remote fault is identified in the remote signaling protocol.

The value invalidSignal(6) indicates that an invalid signal has been received from the other end of the link. InvalidSignal(6) applies only to MAUs of type 10BASE-FB.

Where an IEEE Std 802.3u-1995 clause 22 MII is present, a logic one in the remote fault bit (reference section 22.2.4.2.8 of that document) maps to the value remoteFault(5), and a logic zero in the link status bit (reference section 22.2.4.2.10 of that document) maps to the value notAvailable(4). The value notAvailable(4) takes precedence over the value remoteFault(5).

Any MAU that implements management of clause 37 Auto-Negotiation will map the received RF1 and RF2 bit values for Offline to offline(10), Link Failure to remoteFault(5) and Auto-Negotiation Error to autoNegError(11)."

REFERENCE "[IEEE 802.3 Std], 30.5.1.1.4, aMediaAvailable." ::= { ifMauEntry 5 }

ifMauMediaAvailableStateExits OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the number of times that ifMauMediaAvailable for this MAU instance leaves the state available(3). Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.5, aLoseMediaCounter. RFC 2233, ifCounterDiscontinuityTime." ::= { ifMauEntry 6 }

ifMauJabberState OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 unknown(2),
 noJabber(3),
 unknown(4),
 jabber(5),
 jabberResponse(6),
 invalid(7),
 test(8),
 invalidTest(9),
 testResponse(10),
 offline(11),
 remoteFault(12),
 remoteLinkLoss(13),
 remoteTest(14),
 invalidSignal(15),
 notAvailable(16),
 autoNegError(17),
 notAvailableAndKeep(18)}
jabbering(4)

MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value other(1) is returned if the jabber state is not 2, 3, or 4. The agent MUST always return other(1) for MAU type dot3MauTypeAUI.

The value unknown(2) is returned when the MAU’s true state is unknown; for example, when it is being initialized.

If the MAU is not jabbering the agent returns noJabber(3). This is the ‘normal’ state.

If the MAU is in jabber state the agent returns the jabbering(4) value."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.6, aJabber.jabberFlag."
 ::= { ifMauEntry 7 }

ifMauJabberingStateEnters OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the number of times that mauJabberState for this MAU instance enters the state jabbering(4). This counter will always indicate zero for MAUs of type dot1MauTypeAUI and those of speeds above 10Mbps.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.6, aJabber.jabberCounter.
RFC 2233, ifCounterDiscontinuityTime."
 ::= { ifMauEntry 8 }

ifMauFalseCarriers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the number of false carrier events during IDLE in 100BASE-X and 1000BASE-X links.

For all other MAU types, this counter will
always indicate zero. This counter does not increment at the symbol rate.

It can increment after a valid carrier completion at a maximum rate of once per 100 ms for 100BASE-X and once per 10us for 1000BASE-X until the next CarrierEvent.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime."

REFERENCE
"[IEEE 802.3 Std], 30.5.1.1.10, aFalseCarriers.
RFC 2233, ifCounterDiscontinuityTime."

::= { ifMauEntry 9 }

ifMauTypeList OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED **********
A value that uniquely identifies the set of possible IEEE 802.3 types that the MAU could be. The value is a sum which initially takes the value zero. Then, for each type capability of this MAU, 2 raised to the power noted below is added to the sum. For example, a MAU which has the capability to be only 10BASE-T would have a value of 512 (2**9). In contrast, a MAU which supports both 10Base-T (full duplex) and 100BASE-TX (full duplex) would have a value of ((2**11) + (2**16)) or 67584.

The powers of 2 assigned to the capabilities are these:

<table>
<thead>
<tr>
<th>Power</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>other or unknown</td>
</tr>
<tr>
<td>1</td>
<td>AUI</td>
</tr>
<tr>
<td>2</td>
<td>10BASE-5</td>
</tr>
<tr>
<td>3</td>
<td>FOIRL</td>
</tr>
<tr>
<td>4</td>
<td>10BASE-2</td>
</tr>
<tr>
<td>5</td>
<td>10BASE-T duplex mode unknown</td>
</tr>
<tr>
<td>6</td>
<td>10BASE-FP</td>
</tr>
<tr>
<td>7</td>
<td>10BASE-FB</td>
</tr>
<tr>
<td>8</td>
<td>10BASE-FL duplex mode unknown</td>
</tr>
<tr>
<td>9</td>
<td>10BROAD36</td>
</tr>
</tbody>
</table>
10 10BASE-T half duplex mode
11 10BASE-T full duplex mode
12 10BASE-FL half duplex mode
13 10BASE-FL full duplex mode
14 100BASE-T4
15 100BASE-TX half duplex mode
16 100BASE-TX full duplex mode
17 100BASE-FX half duplex mode
18 100BASE-FX full duplex mode
19 100BASE-T2 half duplex mode
20 100BASE-T2 full duplex mode

If auto-negotiation is present on this MAU, this object will map to ifMauAutoNegCapability.

This object has been deprecated in favour of ifMauTypeListBits.

::= { ifMauEntry 10 }

ifMauDefaultType OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This object identifies the default administrative baseband MAU type, to be used in conjunction with the operational MAU type denoted by ifMauType.

The set of possible values for this object is the same as the set defined for the ifMauType object.

This object represents the administratively-configured type of the MAU. If auto-negotiation is not enabled or is not implemented for this MAU, the value of this object determines the operational type of the MAU. In this case, a set to this object will force the MAU into the specified operating mode.

If auto-negotiation is implemented and enabled for this MAU, the operational type of the MAU is determined by auto-negotiation, and the value of this object denotes the type to which the MAU will automatically revert if/when auto-negotiation is later disabled.

NOTE TO IMPLEMENTORS: It may be necessary to
provide for underlying hardware implementations which do not follow the exact behavior specified above. In particular, when ifMauAutoNegAdminStatus transitions from enabled to disabled, the agent implementation MUST ensure that the operational type of the MAU (as reported by ifMauType) correctly transitions to the value specified by this object, rather than continuing to operate at the value earlier determined by the auto-negotiation function.

REFERENCE "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID, and 22.2.4.1.4."

::= { ifMauEntry 11 }

ifMauAutoNegSupported OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object indicates whether or not auto-negotiation is supported on this MAU."
 ::= { ifMauEntry 12 }

ifMauTypeListBits OBJECT-TYPE
SYNTAX BITS {
 bOther(0), -- other or unknown
 bAUI(1), -- AUI
 b10base5(2), -- 10BASE-5
 bFoirl(3), -- FOIRL
 b10base2(4), -- 10BASE-2
 b10baseT(5), -- 10BASE-T duplex mode unknown
 b10baseFP(6), -- 10BASE-FP
 b10baseFB(7), -- 10BASE-FB
 b10baseFL(8), -- 10BASE-FL duplex mode unknown
 b10broad36(9), -- 10BROAD36
 b10baseTHD(10), -- 10BASE-T half duplex mode
 b10baseTFD(11), -- 10BASE-T full duplex mode
 b10baseFLHD(12), -- 10BASE-FL half duplex mode
 b10baseFLFD(13), -- 10BASE-FL full duplex mode
 b100baseT4(14), -- 100BASE-T4
 b100baseTXHD(15), -- 100BASE-TX half duplex mode
 b100baseTXFD(16), -- 100BASE-TX full duplex mode
 b100baseFXHD(17), -- 100BASE-FX half duplex mode
 b100baseFXFD(18), -- 100BASE-FX full duplex mode
 b100baseT2HD(19), -- 100BASE-T2 half duplex mode
 b100baseT2FD(20), -- 100BASE-T2 full duplex mode
 }
b1000baseXHD(21), -- 1000BASE-X half duplex mode
b1000baseXFD(22), -- 1000BASE-X full duplex mode
b1000baseLXHD(23), -- 1000BASE-LX half duplex mode
b1000baseLXFD(24), -- 1000BASE-LX full duplex mode
b1000baseSXHD(25), -- 1000BASE-SX half duplex mode
b1000baseSXFD(26), -- 1000BASE-SX full duplex mode
b1000baseCXHD(27), -- 1000BASE-CX half duplex mode
b1000baseCXFD(28), -- 1000BASE-CX full duplex mode
b1000baseTHD(29), -- 1000BASE-T half duplex mode
b1000baseTFD(30) -- 1000BASE-T full duplex mode

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A value that uniquely identifies the set of possible IEEE 802.3 types that the MAU could be. If auto-negotiation is present on this MAU, this object will map to ifMauAutoNegCapability.

Note that this MAU may be capable of operating as a MAU type that is beyond the scope of this MIB. This is indicated by returning the bit value bOther in addition to any bit values for capabilities that are listed above."
 ::= { ifMauEntry 13 }

-- The ifJackTable applies to MAUs attached to interfaces
-- which have one or more external jacks (connectors).

ifJackTable OBJECT-TYPE
SYNTAX SEQUENCE OF IfJackEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about the external jacks attached to MAUs attached to an interface."
 ::= { dot3IfMauBasicGroup 2 }

ifJackEntry OBJECT-TYPE
SYNTAX IfJackEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in the table, containing information about a particular jack."
INDEX { ifMauIfIndex,
 ifMauIndex,
 ifJackIndex
 }
 ::= { ifJackTable 1 }
IfJackEntry ::=
SEQUENCE {
 ifJackIndex Integer32,
 ifJackType JackType
}

ifJackIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This variable uniquely identifies the jack described by this entry from among other jacks attached to the same MAU."
 ::= { ifJackEntry 1 }

ifJackType OBJECT-TYPE
SYNTAX JackType
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The jack connector type, as it appears on the outside of the system."
 ::= { ifJackEntry 2 }

-- The ifMauAutoNegTable applies to systems in which -- auto-negotiation is supported on one or more MAUs -- attached to interfaces. Note that if auto-negotiation -- is present and enabled, the ifMauType object reflects -- the result of the auto-negotiation function.

ifMauAutoNegTable OBJECT-TYPE
SYNTAX SEQUENCE OF IfMauAutoNegEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Configuration and status objects for the auto-negotiation function of MAUs attached to interfaces."
 ::= { dot3IfMauAutoNegGroup 1 }

ifMauAutoNegEntry OBJECT-TYPE
SYNTAX IfMauAutoNegEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in the table, containing configuration and status information for the auto-negotiation function of a particular MAU."
INDEX { ifMauIfIndex, ifMauIndex }
::= { ifMauAutoNegTable 1 }

IfMauAutoNegEntry ::= SEQUENCE {
 ifMauAutoNegAdminStatus INTEGER,
 ifMauAutoNegRemoteSignaling INTEGER,
 ifMauAutoNegConfig INTEGER,
 ifMauAutoNegCapability Integer32,
 ifMauAutoNegCapAdvertised Integer32,
 ifMauAutoNegCapReceived Integer32,
 ifMauAutoNegRestart INTEGER,
 ifMauAutoNegCapabilityBits BITS,
 ifMauAutoNegCapAdvertisedBits BITS,
 ifMauAutoNegCapReceivedBits BITS,
 ifMauAutoNegRemoteFaultAdvertised INTEGER,
 ifMauAutoNegRemoteFaultReceived INTEGER
}

ifMauAutoNegAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
 enabled(1),
 disabled(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "Setting this object to enabled(1) will cause the interface which has the auto-negotiation signaling ability to be enabled.

If the value of this object is disabled(2) then the interface will act as it would if it had no auto-negotiation signaling. Under these conditions, an IEEE 802.3 MAU will immediately be forced to the state indicated by the value of the object ifMauDefaultType.

NOTE TO IMPLEMENTORS: When ifMauAutoNegAdminStatus transitions from enabled to disabled, the agent implementation MUST ensure that the operational type of the MAU (as reported by ifMauType) correctly transitions to the value specified by the ifMauDefaultType object, rather than continuing to operate at the value earlier determined by the auto-negotiation function."

REFERENCE "[IEEE 802.3 Std], 30.6.1.1.2,
aAutoNegAdminState and 30.6.1.2.2,
aAutoNegAdminControl."
::= { ifMauAutoNegEntry 1 }

ifMauAutoNegRemoteSignaling OBJECT-TYPE
SYNTAX INTEGER {
 detected(1),
 notdetected(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A value indicating whether the remote end of
the link is using auto-negotiation signaling. It
takes the value detected(1) if and only if,
during the previous link negotiation, FLP Bursts
were received."
REFERENCE "[IEEE 802.3 Std], 30.6.1.1.3,
aAutoNegRemoteSignaling."
::= { ifMauAutoNegEntry 2 }

ifMauAutoNegConfig OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 configuring(2),
 complete(3),
 disabled(4),
 parallelDetectFail(5)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A value indicating the current status of the
auto-negotiation process. The enumeration
parallelDetectFail(5) maps to a failure in
parallel detection as defined in 28.2.3.1 of
[IEEE 802.3 Std]."
REFERENCE "[IEEE 802.3 Std], 30.6.1.1.4,
aAutoNegAutoConfig."
::= { ifMauAutoNegEntry 4 }

ifMauAutoNegCapability OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED **********
A value that uniquely identifies the set of
capabilities of the local auto-negotiation
entity. The value is a sum which initially
takes the value zero. Then, for each capability
of this interface, 2 raised to the power noted"
below is added to the sum. For example, an interface which has the capability to support only 100Base-TX half duplex would have a value of 32768 (2**15). In contrast, an interface which supports both 100Base-TX half duplex and and 100Base-TX full duplex would have a value of 98304 ((2**15) + (2**16)).

The powers of 2 assigned to the capabilities are these:

<table>
<thead>
<tr>
<th>Power</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>other or unknown</td>
</tr>
<tr>
<td>(1-9)</td>
<td>(reserved)</td>
</tr>
<tr>
<td>10</td>
<td>10BASE-T half duplex mode</td>
</tr>
<tr>
<td>11</td>
<td>10BASE-T full duplex mode</td>
</tr>
<tr>
<td>12</td>
<td>(reserved)</td>
</tr>
<tr>
<td>13</td>
<td>(reserved)</td>
</tr>
<tr>
<td>14</td>
<td>100BASE-T4</td>
</tr>
<tr>
<td>15</td>
<td>100BASE-Tx half duplex mode</td>
</tr>
<tr>
<td>16</td>
<td>100BASE-Tx full duplex mode</td>
</tr>
<tr>
<td>17</td>
<td>(reserved)</td>
</tr>
<tr>
<td>18</td>
<td>(reserved)</td>
</tr>
<tr>
<td>19</td>
<td>100BASE-T2 half duplex mode</td>
</tr>
<tr>
<td>20</td>
<td>100BASE-T2 full duplex mode</td>
</tr>
</tbody>
</table>

Note that interfaces that support this MIB may have capabilities that extend beyond the scope of this MIB. This object has been deprecated in favour of ifMauAutoNegCapabilityBits.

REFERENCE

"[IEEE 802.3 Std], 30.6.1.1.5, aAutoNegLocalTechnologyAbility."

::= { ifMauAutoNegEntry 5 }

ifMauAutoNegCapAdvertised OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED **********

A value that uniquely identifies the set of capabilities advertised by the local auto-negotiation entity. Refer to ifMauAutoNegCapability for a description of the possible values of this object.

Capabilities in this object that are not
available in ifMauAutoNegCapability cannot be enabled.

This object has been deprecated in favour of
ifMauAutoNegCapAdvertisedBits"
REFERENCE "[IEEE 802.3 Std], 30.6.1.1.6,
aAutoNegAdvertisedTechnologyAbility."
::= { ifMauAutoNegEntry 6 }

ifMauAutoNegCapReceived OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED **********
A value that uniquely identifies the set of
capabilities received from the remote
auto-negotiation entity. Refer to
ifMauAutoNegCapability for a description of the
possible values of this object.

Note that interfaces that support this MIB may
be attached to remote auto-negotiation entities
which have capabilities beyond the scope of this
MIB.

This object has been deprecated in favour of
ifMauAutoNegCapReceivedBits"
REFERENCE "[IEEE 802.3 Std], 30.6.1.1.7,
aAutoNegReceivedTechnologyAbility." ::= { ifMauAutoNegEntry 7 }

ifMauAutoNegRestart OBJECT-TYPE
SYNTAX INTEGER {
 restart(1),
 norestart(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "If the value of this object is set to
restart(1) then this will force auto-negotiation
to begin link renegotiation. If auto-negotiation
signaling is disabled, a write to this object
has no effect.

Setting the value of this object to norestart(2)
has no effect."
REFERENCE "[IEEE 802.3 Std], 30.6.1.2.1,
acAutoNegRestartAutoConfig.

::= {ifMauAutoNegEntry 8}

ifMauAutoNegCapabilityBits OBJECT-TYPE
SYNTAX Bits {
 bOther(0), -- other or unknown
 b10baseT(1), -- 10BASE-T half duplex mode
 b10baseTFD(2), -- 10BASE-T full duplex mode
 b100baseT4(3), -- 100BASE-T4
 b100baseTX(4), -- 100BASE-TX half duplex mode
 b100baseTXFD(5), -- 100BASE-TX full duplex mode
 b100baseT2(6), -- 100BASE-T2 half duplex mode
 b100baseT2FD(7), -- 100BASE-T2 full duplex mode
 bfdxPause(8), -- PAUSE for full-duplex links
 bfdxAPause(9), -- Asymmetric PAUSE for full-duplex links
 bfdxSPause(10), -- Symmetric PAUSE for full-duplex links
 bfdxBPause(11), -- Asymmetric and Symmetric PAUSE for full-duplex links
 b1000baseX(12), -- 1000BASE-X, -LX, -SX, -CX half duplex mode
 b1000baseXFD(13), -- 1000BASE-X, -LX, -SX, -CX full duplex mode
 b1000baseT(14), -- 1000BASE-T half duplex mode
 b1000baseTFD(15) -- 1000BASE-T full duplex mode
}

MAX-ACCESS read-only
STATUS current
DESCRIPTION "A value that uniquely identifies the set of capabilities
of the local auto-negotiation entity. Note that interfaces that support
this MIB may have capabilities that extend beyond the scope of this MIB.

Note that the local auto-negotiation entity may support some capabilities beyond the scope of this MIB. This is indicated by returning the bit value bOther in addition to any bit values for capabilities that are listed above."

REFERENCE "[IEEE 802.3 Std], 30.6.1.1.5, aAutoNegLocalTechnologyAbility."

::= {ifMauAutoNegEntry 9}

ifMauAutoNegCapAdvertisedBits OBJECT-TYPE
SYNTAX Bits {
 bOther(0), -- other or unknown
 b10baseT(1), -- 10BASE-T half duplex mode

Smith, et al. Standards Track [Page 36]
RFC 2668

802.3 MAU MIB August 1999

b10baseTFD(2), -- 10BASE-T full duplex mode
b100baseT4(3), -- 100BASE-T4
b100baseTX(4), -- 100BASE-TX half duplex mode
b100baseTXFD(5), -- 100BASE-TX full duplex mode
b100baseT2(6), -- 100BASE-T2 half duplex mode
b100baseT2FD(7), -- 100BASE-T2 full duplex mode
bFdxPause(8), -- PAUSE for full-duplex links
bFdxAPause(9), -- Asymmetric PAUSE for full-duplex links
bFdxSPause(10), -- Symmetric PAUSE for full-duplex links
bFdxBPause(11), -- Asymmetric and Symmetric PAUSE for full-duplex links
b1000baseX(12), -- 1000BASE-X, -LX, -SX, -CX half duplex mode
b1000baseXFD(13), -- 1000BASE-X, -LX, -SX, -CX full duplex mode
b1000baseT(14), -- 1000BASE-T half duplex mode
b1000baseTFD(15) -- 1000BASE-T full duplex mode

MAX-ACCESS read-write
STATUS current
DESCRIPTION "A value that uniquely identifies the set of capabilities advertised by the local auto-negotiation entity.
Capabilities in this object that are not available in ifMauAutoNegCapabilityBits cannot be enabled.
Note that the local auto-negotiation entity may advertise some capabilities beyond the scope of this MIB. This is indicated by returning the bit value bOther in addition to any bit values for capabilities that are listed above."
REFERENCE "[IEEE 802.3 Std], 30.6.1.1.6, aAutoNegAdvertisedTechnologyAbility."
::= { ifMauAutoNegEntry 10 }

ifMauAutoNegCapReceivedBits OBJECT-TYPE
SYNTAX BITS {
 bOther(0), -- other or unknown
 b10baseT(1), -- 10BASE-T half duplex mode
 b10baseTFD(2), -- 10BASE-T full duplex mode
 b100baseT4(3), -- 100BASE-T4
 b100baseTX(4), -- 100BASE-TX half duplex mode
 b100baseTXFD(5), -- 100BASE-TX full duplex mode
 b100baseT2(6), -- 100BASE-T2 half duplex mode
 b100baseT2FD(7), -- 100BASE-T2 full duplex mode
}
bFdxPause(8), -- PAUSE for full-duplex links
bFdxAPause(9), -- Asymmetric PAUSE for full-duplex
 -- links
bFdxSPause(10), -- Symmetric PAUSE for full-duplex
 -- links
bFdxBPause(11), -- Asymmetric and Symmetric PAUSE for
 -- full-duplex links
b1000baseX(12), -- 1000BASE-X, -LX, -SX, -CX half
 -- duplex mode
b1000baseXFD(13), -- 1000BASE-X, -LX, -SX, -CX full
 -- duplex mode
b1000baseT(14), -- 1000BASE-T half duplex mode
b1000baseTFD(15) -- 1000BASE-T full duplex mode

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A value that uniquely identifies the set of
capabilities received from the remote
auto-negotiation entity.

Note that interfaces that support this MIB may
be attached to remote auto-negotiation entities
which have capabilities beyond the scope of this
MIB. This is indicated by returning the bit
value bOther in addition to any bit values for
capabilities that are listed above."

REFERENCE "[IEEE 802.3 Std], 30.6.1.1.7,
aAutoNegReceivedTechnologyAbility."

::= { ifMauAutoNegEntry 11 }

ifMauAutoNegRemoteFaultAdvertised OBJECT-TYPE
SYNTAX INTEGER {
 noError(1),
 offline(2),
 linkFailure(3),
 autoNegError(4)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "A value that identifies any local fault
indications that this MAU has detected and will
advertise at the next auto-negotiation
interaction for 1000Mbps MAUs."

REFERENCE "[IEEE 802.3 Std], 30.6.1.1.6,
aAutoNegAdvertisedTechnologyAbility."

::= { ifMauAutoNegEntry 12 }

ifMauAutoNegRemoteFaultReceived OBJECT-TYPE
SYNTAX INTEGER {

Smith, et al. Standards Track [Page 38]
noError(1),
oFramed(2),
linkFailure(3),
autoNegError(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A value that identifies any fault indications received from the far end of a link by the local auto-negotiation entity for 1000Mbps MAUs."
REFERENCE "[IEEE 802.3 Std], 30.6.1.1.7, aAutoNegReceivedTechnologyAbility."
 ::= { ifMauAutoNegEntry 13 }

--
-- The Basic Broadband MAU Table
--

broadMauBasicTable OBJECT-TYPE
SYNTAX SEQUENCE OF BroadMauBasicEntry
MAX-ACCESS not-accessible
STATUS deprecated
DESCRIPTION "********* THIS OBJECT IS DEPRECATED **********
Table of descriptive and status information about the broadband MAUs connected to interfaces."
 ::= { dot3BroadMauBasicGroup 1 }
broadMauBasicEntry OBJECT-TYPE
SYNTAX BroadMauBasicEntry
MAX-ACCESS not-accessible
STATUS deprecated
DESCRIPTION "********* THIS OBJECT IS DEPRECATED **********
An entry in the table, containing information about a single broadband MAU."
INDEX
{ broadMauIfIndex,
broadMauIndex
 }
 ::= { broadMauBasicTable 1 }

BroadMauBasicEntry ::= SEQUENCE {
broadMauIfIndex Integer32,
broadMauIndex Integer32,
broadMauXmtRcvSplitType INTEGER,
broadMauXmtCarrierFreq Integer32,
broadMauTranslationFreq Integer32

broadMauIfIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED **********
This variable uniquely identifies the interface
to which the MAU described by this entry is
connected."
REFERENCES "Reference RFC 1213, ifIndex."
 ::= { broadMauBasicEntry 1 }

broadMauIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED **********
This variable uniquely identifies the MAU
connected to interface broadMauIfIndex that is
described by this entry."
REFERENCES "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
 ::= { broadMauBasicEntry 2 }

broadMauXmtRcvSplitType OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 single(2),
 dual(3)
 }
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED **********
This object indicates the type of frequency
multiplexing/cabling system used to separate the
transmit and receive paths for the 10BROAD36
MAU.

The value other(1) is returned if the split type
is not either single or dual.

The value single(2) indicates a single cable
system. The value dual(3) indicates a dual
cable system, offset normally zero."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.8,
 aBbMAUXmitRcvSplitType."
 ::= { broadMauBasicEntry 3 }

broadMauXmtCarrierFreq OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********* THIS OBJECT IS DEPRECATED **********

This variable indicates the transmit carrier
frequency of the 10BROAD36 MAU in MHz/4; that
is, in units of 250 kHz."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.9,
 aBroadbandFrequencies.xmitCarrierFrequency."
 ::= { broadMauBasicEntry 4 }

broadMauTranslationFreq OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "********* THIS OBJECT IS DEPRECATED **********

This variable indicates the translation offset
frequency of the 10BROAD36 MAU in MHz/4; that
is, in units of 250 kHz."
REFERENCE "[IEEE 802.3 Std], 30.5.1.1.9,
 aBroadbandFrequencies.translationFrequency."
 ::= { broadMauBasicEntry 5 }

-- Notifications for use by 802.3 MAUs

snmpDot3MauTraps OBJECT IDENTIFIER ::= { snmpDot3MauMgt 0 }

rpMauJabberTrap NOTIFICATION-TYPE
OBJECTS { rpMauJabberState }
STATUS current
DESCRIPTION "This trap is sent whenever a managed repeater
MAU enters the jabber state.

The agent MUST throttle the generation of
consecutive rpMauJabberTraps so that there is at
least a five-second gap between them."
REFERENCE "[IEEE 802.3 Mgt], 30.5.1.3.1, nJabber
notification."
 ::= { snmpDot3MauTraps 1 }

Smith, et al. Standards Track [Page 41]
ifMauJabberTrap NOTIFICATION-TYPE
OBJECTS { ifMauJabberState }
STATUS current
DESCRIPTION "This trap is sent whenever a managed interface
MAU enters the jabber state.
The agent MUST throttle the generation of
consecutive ifMauJabberTraps so that there is at
least a five-second gap between them."
REFERENCE "[IEEE 802.3 Mgt], 30.5.1.3.1, nJabber
notification."
 ::= { snmpDot3MauTraps 2 }

-- Conformance information

mauModConf
OBJECT IDENTIFIER ::= { mau 1 }
mauModCompls
OBJECT IDENTIFIER ::= { mauModConf 1 }
mauModObjGrps
OBJECT IDENTIFIER ::= { mauModConf 2 }
mauModNotGrps
OBJECT IDENTIFIER ::= { mauModConf 3 }

-- Object groups

mauRpGrpBasic OBJECT-GROUP
OBJECTS { rpMauGroupIndex,
rpMauPortIndex,
rpMauIndex,
rpMauType,
rpMauStatus,
rpMauMediaAvailable,
rpMauMediaAvailableStateExits,
rpMauJabberState,
rpMauJabberingStateEnters }
STATUS current
DESCRIPTION "Basic conformance group for MAUs attached to
repeater ports. This group is also the
conformance specification for RFC 1515
implementations."
 ::= { mauModObjGrps 1 }

mauRpGrp100Mbs OBJECT-GROUP
OBJECTS { rpMauFalseCarriers }
STATUS current
DESCRIPTION "Conformance group for MAUs attached to
repeater ports with 100 Mb/s or greater
mauRptGrpJack OBJECT-GROUP
OBJECTS { rpJackType }
STATUS current
DESCRIPTION "Conformance group for MAUs attached to
repeater ports with managed jacks."
 ::= { mauModObjGrps 3 }

mauIfGrpBasic OBJECT-GROUP
OBJECTS { ifMauIfIndex,
 ifMauIndex,
 ifMauType,
 ifMauStatus,
 ifMauMediaAvailable,
 ifMauMediaAvailableStateExits,
 ifMauJabberState,
 ifMauJabberingStateEnters
 }
STATUS current
DESCRIPTION "Basic conformance group for MAUs attached to
interfaces. This group also provides a
conformance specification for RFC 1515
implementations."
 ::= { mauModObjGrps 4 }

mauIfGrp100Mbs OBJECT-GROUP
OBJECTS { ifMauFalseCarriers,
 ifMauTypeList,
 ifMauDefaultType,
 ifMauAutoNegSupported
 }
STATUS deprecated
DESCRIPTION "********** THIS GROUP IS DEPRECATED **********

Conformance group for MAUs attached to
interfaces with 100 Mb/s capability.

This object group has been deprecated in favor
of mauIfGrpHighCapacity."
 ::= { mauModObjGrps 5 }

mauIfGrpJack OBJECT-GROUP
OBJECTS { ifJackType }
STATUS current
DESCRIPTION "Conformance group for MAUs attached to
interfaces with managed jacks."
mauIfGrpAutoNeg OBJECT-GROUP
 OBJECTS { ifMauAutoNegAdminStatus,
 ifMauAutoNegRemoteSignaling,
 ifMauAutoNegConfig,
 ifMauAutoNegCapability,
 ifMauAutoNegCapAdvertised,
 ifMauAutoNegCapReceived,
 ifMauAutoNegRestart
 }
 STATUS deprecated
 DESCRIPTION "********** THIS GROUP IS DEPRECATED **********

 Conformance group for MAUs attached to interfaces with managed auto-negotiation.

 This object group has been deprecated in favor of mauIfGrpAutoNeg2."

mauBroadBasic OBJECT-GROUP
 OBJECTS { broadMauIfIndex,
 broadMauIndex,
 broadMauXmtRcvSplitType,
 broadMauXmtCarrierFreq,
 broadMauTranslationFreq
 }
 STATUS deprecated
 DESCRIPTION "********** THIS GROUP IS DEPRECATED **********

 Conformance group for broadband MAUs attached to interfaces.

 This object group is deprecated. There have been no reported implementations of this group, and it was felt to be unlikely that there will be any future implementations."

mauIfGrpHighCapacity OBJECT-GROUP
 OBJECTS { ifMauFalseCarriers,
 ifMauTypeListBits,
 ifMauDefaultType,
 ifMauAutoNegSupported
 }
 STATUS current
 DESCRIPTION "Conformance group for MAUs attached to
interfaces with 100 Mb/s or greater capability."
::= { mauModObjGrps 9 }

mauIfGrpAutoNeg2 OBJECT-GROUP
OBJECTS { ifMauAutoNegAdminStatus,
ifMauAutoNegRemoteSignaling,
ifMauAutoNegConfig,
ifMauAutoNegCapabilityBits,
ifMauAutoNegCapAdvertisedBits,
ifMauAutoNegCapReceivedBits,
ifMauAutoNegRestart
}
STATUS current
DESCRIPTION "Conformance group for MAUs attached to
interfaces with managed auto-negotiation."
::= { mauModObjGrps 10 }

mauIfGrpAutoNeg1000Mbps OBJECT-GROUP
OBJECTS { ifMauAutoNegRemoteFaultAdvertised,
ifMauAutoNegRemoteFaultReceived
}
STATUS current
DESCRIPTION "Conformance group for 1000Mbps MAUs attached to
interfaces with managed auto-negotiation."
::= { mauModObjGrps 11 }

-- Notification groups

rpMauNotifications NOTIFICATION-GROUP
NOTIFICATIONS { rpMauJabberTrap }
STATUS current
DESCRIPTION "Notifications for repeater MAUs."
::= { mauModNotGrps 1 }

ifMauNotifications NOTIFICATION-GROUP
NOTIFICATIONS { ifMauJabberTrap }
STATUS current
DESCRIPTION "Notifications for interface MAUs."
::= { mauModNotGrps 2 }

-- Compliances

mauModRpCompl MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION "********** THIS COMPLIANCE IS DEPRECATED **********
Compliance for MAUs attached to repeater ports.
Smith, et al. Standards Track [Page 45]"
This compliance is deprecated and replaced by mauModRpCompl2, which corrects an oversight by allowing rpMauStatus to be implemented read-only.

MODULE -- this module
MANDATORY-GROUPS { mauRpGrpBasic }

GROUP mauRpGrp100Mbs
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have 100Mb/s or greater capability."

GROUP mauRpGrpJack
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have one or more external jacks."

GROUP rpMauNotifications
DESCRIPTION "Implementation of this group is recommended for MAUs attached to repeater ports."

::= { mauModCompls 1 }

mauModIfCompl MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION "******** THIS COMPLIANCE IS DEPRECATED ********

Compliance for MAUs attached to interfaces.

This compliance is deprecated and replaced by mauModIfCompl2."

MODULE -- this module
MANDATORY-GROUPS { mauIfGrpBasic }

GROUP mauIfGrp100Mbs
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have 100Mb/s capability."

GROUP mauIfGrpJack
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have one or more external jacks."

GROUP mauIfGrpAutoNeg
DESCRIPTION "Implementation of this group is mandatory for MAUs which support managed
auto-negotiation."

GROUP mauBroadBasic
DESCRIPTION "Implementation of this group is mandatory for broadband MAUs."

GROUP ifMauNotifications
DESCRIPTION "Implementation of this group is recommended for MAUs attached to interfaces."
::= { mauModCompls 2 }

 mauModIfComp12 MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "Compliance for MAUs attached to interfaces."

MODULE -- this module
MANDATORY-GROUPS { mauIfGrpBasic }

GROUP mauIfGrpHighCapacity
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have 100Mb/s or greater capability."

GROUP mauIfGrpJack
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have one or more external jacks."

GROUP mauIfGrpAutoNeg2
DESCRIPTION "Implementation of this group is mandatory for MAUs which support managed auto-negotiation."

GROUP mauIfGrpAutoNeg1000Mbps
DESCRIPTION "Implementation of this group is mandatory for MAUs which have 1000Mb/s or greater capability and support managed auto-negotiation."

GROUP ifMauNotifications
DESCRIPTION "Implementation of this group is recommended for MAUs attached to interfaces."

OBJECT ifMauStatus
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."
::= { mauModCompls 3 }
mauModRpCompl2 MODULE-COMPLIANCE
STATUS current
DESCRIPTION "Compliance for MAUs attached to repeater ports."

MODULE -- this module
MANDATORY-GROUPS { mauRpGrpBasic }

GROUP mauRpGrp100Mbs
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have 100Mb/s or greater capability."

GROUP mauRpGrpJack
DESCRIPTION "Implementation of this optional group is recommended for MAUs which have one or more external jacks."

GROUP rpMauNotifications
DESCRIPTION "Implementation of this group is recommended for MAUs attached to repeater ports."

OBJECT rpMauStatus
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."
::= { mauModCompls 4 }

END

5. Intellectual Property

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

6. Acknowledgements

This document was produced by the IETF Ethernet Interfaces and Hub MIB Working Group, whose efforts were greatly advanced by the contributions of the following people:

Chuck Black
John Flick
Jeff Johnson
Leon Leong
Mike Lui
Dave Perkins
Geoff Thompson
Maurice Turcotte
Paul Woodruff

Special thanks as well to Dave Perkins for his excellent work on the SMICng compiler, which made it easy to take advantage of the latest SNMPv2 constructs in this MIB.

7. References

8. Security Considerations

There are a number of management objects defined in this MIB that have a MAX-ACCESS clause of read-write. Setting these objects can have a serious effect on the operation of the network, including:

- enabling or disabling a MAU
- changing a MAU’s default type
- enabling, disabling or restarting autonegotiation
- modifying the capabilities that a MAU advertizes during autonegotiation.

Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

SNMPv1 by itself is such an insecure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2574 [12] and the View-based Access Control Model RFC 2575 [15] is recommended.
It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to those objects only to those principals (users) that have legitimate rights to access them.

9. Authors’ Addresses

Andrew Smith
Extreme Networks, Inc.
3585 Monroe St.
Santa Clara, CA 95051 USA

Phone: +1 408 579-2821
EMail: andrew@extremenetworks.com

John Flick
Hewlett-Packard Company
8000 Foothills Blvd. M/S 5557
Roseville, CA 95747-5557

Phone: +1 916 785 4018
EMail: johnf@rose.hp.com

Kathryn de Graaf
Argon Networks
25 Porter Road
Littleton, MA 01460 USA

Phone: +1 978 486 0665 x163
Fax: +1 978 486 9379
EMail: kdegraaf@argon.com

Dan Romascanu
Lucent Technologies
Atidim Technology Park, Bldg. 3
Tel Aviv 61131
Israel

Phone: 972 3 645 8414, 6458458
Fax: 972 3 648 7146
EMail: dromasca@lucent.com
Donna McMaster
Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408 526 5260
EMail: mcmaster@cisco.com

Keith McCloghrie
Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408 526 5260
EMail: kzm@cisco.com

Sam Roberts
Farallon Computing, Inc.
2470 Mariner Square Loop
Alameda, CA 94501-1010
Phone: +1 510 814 5215
EMail: sroberts@farallon.com
Appendix

Change Log

This section enumerates the changes made to RFC 2239 to produce this document.

(1) The MODULE-IDENTITY has been updated to reflect the changes in the MIB.

(2) OBJECT-IDENTITY definitions have been added for gigabit MAU types.

(3) The ifMauTypeList, ifMauAutoNegCapability, ifMauAutoNegCapAdvertised and ifMauAutoNegCapReceived objects have been deprecated and replaced by ifMauTypeListBits, ifMauAutoNegCapabilityBits, ifMauAutoNegCapAdvertisedBits and ifMauAutoNegCapReceivedBits.

(4) Two new objects, ifMauAutoNegRemoteFaultAdvertised and ifMauAutoNegRemoteFaultReceived have been added.

(5) Enumerations for ‘offline’ and ‘autoNegError’ have been added for the rpMauMediaAvailable and ifMauMediaAvailable objects.

(6) The broadMauBasicTable and mauBroadBasic object group have been deprecated.

(7) The mauIfGrp100Mbs and mauIfGrpAutoNeg object groups have been deprecated and replaced by mauIfGrpHighCapacity and mauIfGrpAutoNeg2.

(8) A new object group, mauIfGrpAutoNeg1000Mbps, has been added.

(9) The mauModIfCompl and mauModRpCompl compliances have been deprecated and replaced by mauModIfCompl2 and mauModRpCompl2.

(10) Added section on relationship to RFC 2239.

(11) Updated the SNMP Network Management Framework boilerplate.
(12) Refer to the Interfaces MIB, rather than the interfaces group of MIB-II.

(13) Updated references to refer to latest edition of IEEE 802.3.

(14) An intellectual property notice was added, as required by RFC 2026.
11. Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.