Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP based internets. In particular, it defines two MIB modules for managing the new capabilities of MAC bridges defined by the IEEE 802.1D-1998 MAC Bridges and the IEEE 802.1Q-1998 Virtual LAN (VLAN) standards for bridging between Local Area Network (LAN) segments. One MIB module defines objects for managing the ‘Traffic Classes’ and ‘Enhanced Multicast Filtering’ components of IEEE 802.1D-1998. The other MIB module defines objects for managing IEEE 802.1Q VLANs.

Provisions are made for support of transparent bridging. Provisions are also made so that these objects apply to bridges connected by subnetworks other than LAN segments. This memo also includes several MIB modules in a manner that is compliant to the SMIv2 [V2SMI].

This memo supplements RFC 1493 [BRIDGEMIB] and (to a lesser extent) RFC 1525 [SBRIDGEMIB].
RFC 2674

Bridge MIB Extensions

August 1999

Table of Contents

1. The SNMP Management Framework .. 3
2. Overview ... 4
2.1 Scope .. 4
3. Structure of MIBs ... 5
3.1 Structure of Extended Bridge MIB module 5
3.1.1 Relationship to IEEE 802.1D-1998 Manageable Objects 6
3.1.2 Relationship to IEEE 802.1Q Manageable Objects 8
3.1.3 The dot1dExtBase Group .. 8
3.1.4 The dot1dPriority Group .. 9
3.1.5 The dot1dGarp Group .. 9
3.1.6 The dot1dGmrp Group ... 9
3.1.7 The dot1dHcPortTable ... 9
3.1.8 The dot1dPortOverflowTable 9
3.2 Structure of Virtual Bridge MIB module 9
3.2.1 Relationship to IEEE 802.1Q Manageable Objects 9
3.2.2 The dot1qBase Group .. 13
3.2.3 The dot1qTp Group .. 13
3.2.4 The dot1qStatic Group .. 13
3.2.5 The dot1qVlan Group ... 13
3.3 Textual Conventions ... 13
3.4 Relationship to Other MIBs .. 14
3.4.1 Relationship to the ‘system’ group 14
3.4.2 Relation to Interfaces MIB 14
3.4.2.1 Layering Model .. 15
3.4.2.2 ifStackTable .. 16
3.4.2.3 ifRcvAddressTable ... 16
3.4.3 Relation to Original Bridge MIB 16
3.4.3.1 The dot1dBase Group 16
3.4.3.2 The dot1dStp Group 17
3.4.3.3 The dot1dTp Group 17
3.4.3.4 The dot1dStatic Group 17
3.4.3.5 Additions to the Original Bridge MIB 18
4. Definitions for Extended Bridge MIB 18
5. Definitions for Virtual Bridge MIB 39
6. Acknowledgments ... 80
7. Security Considerations .. 80
8. References .. 81
9. Authors’ Addresses ... 84
10. Intellectual Property .. 85
11. Full Copyright Statement .. 86
1. The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in an Architecture for Describing SNMP Management Frameworks [ARCH].

- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [V1SMI], STD 16, RFC 1212 [V1CONCISE] and RFC 1215 [V1TRAPS]. The second version, called SMIv2, is described in STD 58, RFC 2578 [V2SMI], STD 58, RFC 2579 [V2TC] and STD 58, RFC 2580 [V2CONFORM].

- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [V1PROTO]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [V2COMMUNITY] and RFC 1906 [V2TRANS]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [V2TRANS], Message Processing and Dispatching [V3MPC] and User-based Security Model [V3USM].

- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [V1PROTO]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [V2PROTO].

- A set of fundamental applications described in SNMPv3 Applications [V3APPS] and the view-based access control mechanism described in View-based Access Control Model [V3VACM].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.

This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.

2. Overview

A common device present in many networks is the Bridge. This device is used to connect Local Area Network segments below the network layer. These devices are often known as ‘layer 2 switches’.

There are two major modes defined for this bridging: Source-Route and transparent. Source-Route bridging is described by IEEE 802.5 [802.5]. and is not discussed further in this document.

The transparent method of bridging is defined by IEEE 802.1D-1998 [802.1D] which is an update to the original IEEE 802.1D specification [802.1D-ORIG]. Managed objects for that original specification of transparent bridging were defined in RFC 1493 [BRIDGEMIB].

The original IEEE 802.1D is augmented by IEEE 802.1Q-1998 [802.1Q] to provide support for ‘virtual bridged LANs’ where a single bridged physical LAN network may be used to support multiple logical bridged LANs, each of which offers a service approximately the same as that defined by IEEE 802.1D. Such virtual LANs (VLANs) are an integral feature of switched LAN networks. A VLAN can be viewed as a group of end-stations on multiple LAN segments and can communicate as if they were on a single LAN. IEEE 802.1Q defines port-based Virtual LANs where membership is determined by the bridge port on which data frames are received. This memo defines the objects needed for the management of port-based VLANs in bridge entities.

This memo defines those objects needed for the management of a bridging entity operating in the transparent mode, as well as some objects applicable to all types of bridges. Managed objects for Source-Route bridging are defined in RFC 1525 [SRBRIDGEMIB].

2.1. Scope

This MIB includes a comprehensive set of managed objects which attempts to match the set defined in IEEE 802.1D and IEEE 802.1Q. However, to be consistent with the spirit of the SNMP Framework, a subjective judgement was made to omit the objects from those standards most ‘costly’ to implement in an agent and least ‘essential’ for fault and configuration management. The omissions are described in section 3 below.
Historical note:

The original bridge MIB [BRIDGEMIB] used the following principles for determining inclusion of an object in the BRIDGE-MIB module:

1. Start with a small set of essential objects and add only as further objects are needed.
2. Require objects be essential for either fault or configuration management.
3. Consider evidence of current use and/or utility.
4. Limit the total of objects.
5. Exclude objects which are simply derivable from others in this or other MIBs.
6. Avoid causing critical sections to be heavily instrumented. The guideline that was followed is one counter per critical section per layer.

3. Structure of MIBs

This document defines additional objects, on top of those existing in the original BRIDGE-MIB module defined in [BRIDGEMIB]: that MIB module is to be maintained unchanged for backwards compatibility. Section 3.4.3 of the present document contains some recommendations regarding usage of objects in the original bridge MIB by devices implementing the enhancements defined here.

Two MIB modules are defined here:

1. Managed objects for an extended bridge MIB module P-BRIDGE-MIB for the traffic class and multicast filtering enhancements defined by IEEE 802.1D-1998 [802.1D].
2. Managed objects for a virtual bridge MIB module Q-BRIDGE-MIB for the Virtual LAN bridging enhancements defined by IEEE 802.1Q-1998 [802.1Q].

3.1. Structure of Extended Bridge MIB module

Objects in this MIB are arranged into groups. Each group is organized as a set of related objects. The overall structure and assignment of objects to their groups is shown below.
3.1.1. Relationship to IEEE 802.1D-1998 Manageable Objects

This section contains a cross-reference to the objects defined in IEEE 802.1D-1998 [802.1D]. It also details those objects that are not considered necessary in this MIB module.

Some objects defined by IEEE 802.1D-1998 have been included in the virtual bridge MIB module rather than this one: entries in dot1qTpGroupTable, dot1qForwardAllTable and dot1qForwardUnregisteredTable are required for virtual bridged LANs with additional indexing (e.g. per-VLAN, per-FDB) and so are not defined here. Instead, devices which do not implement virtual bridged LANs but do implement the Extended Forwarding Services defined by IEEE 802.1D (i.e. dynamic learning of multicast group addresses and group service requirements in the filtering database) should implement these tables with a fixed value for dot1qFdbId (the value 1 is recommended) or dot1qVlanIndex (the value 1 is recommended). Devices which support Extended Filtering Services should support dot1qTpGroupTable, dot1qForwardAllTable and dot1qForwardUnregisteredTable.
<table>
<thead>
<tr>
<th>Extended Bridge MIB Name</th>
<th>IEEE 802.1D-1998 Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1dExtBase</td>
<td>Bridge</td>
</tr>
<tr>
<td>dot1dDeviceCapabilities</td>
<td></td>
</tr>
<tr>
<td>dot1dExtendedFilteringServices</td>
<td></td>
</tr>
<tr>
<td>dot1dTrafficClasses</td>
<td></td>
</tr>
<tr>
<td>dot1dTrafficClassesEnabled</td>
<td>.ApplicantAdministrativeControl</td>
</tr>
<tr>
<td>dot1dGmrpStatus</td>
<td>.UserPriority</td>
</tr>
<tr>
<td>dot1dPriority</td>
<td></td>
</tr>
<tr>
<td>dot1dPortPriorityTable</td>
<td>.UserPriorityRegenerationTable</td>
</tr>
<tr>
<td>dot1dPortDefaultUserPriority</td>
<td></td>
</tr>
<tr>
<td>dot1dPortUserPriority</td>
<td>.UserPriorityRegenUserPriority</td>
</tr>
<tr>
<td>dot1dTrafficClassTable</td>
<td>.TrafficClassTable</td>
</tr>
<tr>
<td>dot1dTrafficClassPriority</td>
<td></td>
</tr>
<tr>
<td>dot1dTrafficClass</td>
<td></td>
</tr>
<tr>
<td>dot1dPortOutboundAccessPriorityTable</td>
<td>.OutboundAccessPriorityTable</td>
</tr>
<tr>
<td>dot1dPortOutboundAccessPriority</td>
<td></td>
</tr>
<tr>
<td>dot1dGarp</td>
<td></td>
</tr>
<tr>
<td>dot1dPortGarpTable</td>
<td>.JoinTime</td>
</tr>
<tr>
<td>dot1dPortGarpLeaveTime</td>
<td>.LeaveTime</td>
</tr>
<tr>
<td>dot1dPortGarpLeaveAllTime</td>
<td>.LeaveAllTime</td>
</tr>
<tr>
<td>dot1dGmrp</td>
<td></td>
</tr>
<tr>
<td>dot1dPortGmrpTable</td>
<td>.ApplicantAdministrativeControl</td>
</tr>
<tr>
<td>dot1dPortGmrpFailedRegistrations</td>
<td>.FailedRegistrations</td>
</tr>
<tr>
<td>dot1dPortGmrpLastPduOrigin</td>
<td>.OriginatorOfLastPDU</td>
</tr>
<tr>
<td>dot1dTp</td>
<td></td>
</tr>
<tr>
<td>dot1dTpHCPortTable</td>
<td>.BridgePort.FramesReceived</td>
</tr>
<tr>
<td>dot1dTpHCPortInFrames</td>
<td>.ForwardOutBound</td>
</tr>
<tr>
<td>dot1dTpHCPortOutFrames</td>
<td>.DiscardInbound</td>
</tr>
<tr>
<td>dot1dTpPortInDiscards</td>
<td></td>
</tr>
<tr>
<td>dot1dTpPortOverflowTable</td>
<td>.DiscardInbound</td>
</tr>
<tr>
<td>dot1dTpPortInOverflowFrames</td>
<td>.BridgePort.FramesReceived</td>
</tr>
<tr>
<td>dot1dTpPortOutOverflowFrames</td>
<td>.ForwardOutBound</td>
</tr>
<tr>
<td>dot1dTpPortInOverflowDiscards</td>
<td>.DiscardInbound</td>
</tr>
</tbody>
</table>
The following IEEE 802.1D-1998 management objects have not been included in the Bridge MIB for the indicated reasons.

<table>
<thead>
<tr>
<th>IEEE 802.1D-1998 Object</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge.StateValue</td>
<td>not considered useful</td>
</tr>
<tr>
<td>Bridge.Applicant</td>
<td>not provided per-attribute (e.g. per-VLAN, per-Group). Only per-{device, port, application} control is provided in this MIB.</td>
</tr>
</tbody>
</table>

3.1.2. Relationship to IEEE 802.1Q Manageable Objects

This section contains section number cross-references to manageable objects defined in IEEE 802.1Q-1998 [802.1Q]. These objects have been included in this MIB as they provide a natural fit with the IEEE 802.1D objects with which they are co-located.

<table>
<thead>
<tr>
<th>Extended Bridge MIB Name</th>
<th>IEEE 802.1Q-1998 Section and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1dExtBase</td>
<td>Bridge</td>
</tr>
<tr>
<td>dot1dDeviceCapabilities</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticEntry</td>
<td>5.2 implementation options</td>
</tr>
<tr>
<td>dot1qIVLCapable</td>
<td></td>
</tr>
<tr>
<td>dot1qSVLCapable</td>
<td></td>
</tr>
<tr>
<td>dot1qHybridCapable</td>
<td></td>
</tr>
<tr>
<td>dot1qConfigurablePvidTagging</td>
<td>12.10.1.1 read bridge vlan config</td>
</tr>
<tr>
<td>dot1dLocalVlanCapable</td>
<td></td>
</tr>
<tr>
<td>dot1dPortCapabilities</td>
<td></td>
</tr>
<tr>
<td>dot1qDot1qTagging</td>
<td>5.2 implementation options</td>
</tr>
<tr>
<td>dot1qConfigurableAcceptableFrameTypes</td>
<td>5.2 implementation options</td>
</tr>
<tr>
<td>dot1qIngressFiltering</td>
<td>5.2 implementation options</td>
</tr>
</tbody>
</table>

3.1.3. The dot1dExtBase Group

This group contains the objects which are applicable to all bridges implementing the traffic class and multicast filtering features of IEEE 802.1D-1998 [802.1D]. It includes per-device configuration of GARP and GMRP protocols. This group will be implemented by all devices which implement the extensions defined in 802.1D-1998.
3.1.4. The dot1dPriority Group

This group contains the objects for configuring and reporting status of priority-based queuing mechanisms in a bridge. This includes per-port user_priority treatment, mapping of user_priority in frames into internal traffic classes and outbound user_priority and access_priority.

3.1.5. The dot1dGarp Group

This group contains the objects for configuring and reporting on operation of the Generic Attribute Registration Protocol (GARP).

3.1.6. The dot1dGmrp Group

This group contains the objects for configuring and reporting on operation of the GARP Multicast Registration Protocol (GMRP).

3.1.7. The dot1dTpHCPortTable

This table extends the dot1dTp group from the original bridge MIB [BRIDGEMIB] and contains the objects for reporting port bridging statistics for high capacity network interfaces.

3.1.8. The dot1dTpPortOverflowTable

This table extends the dot1dTp group from the original bridge MIB [BRIDGEMIB] and contains the objects for reporting the upper bits of port bridging statistics for high capacity network interfaces for when 32-bit counters are inadequate.

3.2. Structure of Virtual Bridge MIB module

Objects in this MIB are arranged into groups. Each group is organized as a set of related objects. The overall structure and assignment of objects to their groups is shown below. Some manageable objects defined in the original bridge MIB [BRIDGEMIB] need to be indexed differently when they are used in a VLAN bridging environment: these objects are, therefore, effectively duplicated by new objects with different indexing which are defined in the Virtual Bridge MIB.

3.2.1. Relationship to IEEE 802.1Q Manageable Objects

This section contains section-number cross-references to manageable objects defined in clause 12 of IEEE 802.1Q-1998 [802.1Q]. It also details those objects that are not considered necessary in this MIB module.
Note: unlike IEEE 802.1D-1998, IEEE 802.1Q-1998 did not define exact syntax for a set of managed objects: the following cross-references indicate the section numbering of the descriptions of management operations from clause 12 in the latter document.

<table>
<thead>
<tr>
<th>Virtual Bridge MIB object</th>
<th>IEEE 802.1Q-1998 Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1qBase</td>
<td></td>
</tr>
<tr>
<td>dot1qVlanVersionNumber</td>
<td>12.10.1.1 read bridge vlan config</td>
</tr>
<tr>
<td>dot1qMaxVlanId</td>
<td>12.10.1.1 read bridge vlan config</td>
</tr>
<tr>
<td>dot1qMaxSupportedVlans</td>
<td>12.10.1.1 read bridge vlan config</td>
</tr>
<tr>
<td>dot1qNumVlans</td>
<td>12.10.1.1 read bridge vlan config</td>
</tr>
<tr>
<td>dot1qGvrpStatus</td>
<td>12.9.2.1/2 read/set garp applicant controls</td>
</tr>
<tr>
<td>dot1qTp</td>
<td></td>
</tr>
<tr>
<td>dot1qFdbTable</td>
<td></td>
</tr>
<tr>
<td>dot1qFdbId</td>
<td></td>
</tr>
<tr>
<td>dot1qFdbDynamicCount</td>
<td>12.7.1.1.3 read filtering d/base</td>
</tr>
<tr>
<td>dot1qTpFdbTable</td>
<td></td>
</tr>
<tr>
<td>dot1qTpFdbAddress</td>
<td></td>
</tr>
<tr>
<td>dot1qTpFdbPort</td>
<td></td>
</tr>
<tr>
<td>dot1qTpFdbStatus</td>
<td></td>
</tr>
<tr>
<td>dot1qTpGroupTable</td>
<td>12.7.7.1 read filtering entry</td>
</tr>
<tr>
<td>dot1qTpGroupAddress</td>
<td></td>
</tr>
<tr>
<td>dot1qTpGroupEgressPorts</td>
<td></td>
</tr>
<tr>
<td>dot1qTpGroupLearnt</td>
<td></td>
</tr>
<tr>
<td>dot1qForwardAllTable</td>
<td>12.7.7.1 read filtering entry</td>
</tr>
<tr>
<td>dot1qForwardAllPorts</td>
<td></td>
</tr>
<tr>
<td>dot1qForwardAllStaticPorts</td>
<td></td>
</tr>
<tr>
<td>dot1qForwardAllForbiddenPorts</td>
<td></td>
</tr>
<tr>
<td>dot1qForwardUnregisteredTable</td>
<td>12.7.7.1 read filtering entry</td>
</tr>
<tr>
<td>dot1qForwardUnregisteredPorts</td>
<td></td>
</tr>
<tr>
<td>dot1qForwardUnregisteredStaticPorts</td>
<td></td>
</tr>
<tr>
<td>dot1qForwardUnregisteredForbiddenPorts</td>
<td></td>
</tr>
<tr>
<td>dot1qStatic</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticUnicastTable</td>
<td>12.7.7.1 create/delete/read filtering entry</td>
</tr>
<tr>
<td>dot1qStaticUnicastAddress</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticUnicastReceivePort</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticUnicastAllowedToGoTo</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticUnicastStatus</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticMulticastTable</td>
<td>12.7.7.1 create/delete/read filtering entry</td>
</tr>
<tr>
<td>dot1qStaticMulticastAddress</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticMulticastReceivePort</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticMulticastAllowedToGoTo</td>
<td></td>
</tr>
<tr>
<td>dot1qStaticMulticastStatus</td>
<td></td>
</tr>
<tr>
<td>Dot1qMibExtension</td>
<td>Example Usage</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>dot1qStaticMulticastForbiddenEgressPorts</td>
<td>12.10.2.1 read vlan configuration</td>
</tr>
<tr>
<td>dot1qStaticMulticastStatus</td>
<td>12.10.3.5 read VID to FID allocations</td>
</tr>
<tr>
<td>dot1qVlan</td>
<td>12.10.3.6 read FID allocated to VID</td>
</tr>
<tr>
<td>dot1qVlanNumDeletes</td>
<td>12.10.3.7 read VIDs allocated to FID</td>
</tr>
<tr>
<td>dot1qVlanCurrentTable</td>
<td>12.7.7.1/2/3 create/delete/read filtering entry</td>
</tr>
<tr>
<td>dot1qVlanIndex</td>
<td>12.7.6.1 read permanent database</td>
</tr>
<tr>
<td>dot1qVlanFdbId</td>
<td>12.10.2.2 create vlan config</td>
</tr>
<tr>
<td>dot1qVlanCurrentEgressPorts</td>
<td>12.10.2.3 delete vlan config</td>
</tr>
<tr>
<td>dot1qVlanCurrentUntaggedPorts</td>
<td>12.4.1.3 set bridge name</td>
</tr>
<tr>
<td>dot1qVlanStatus</td>
<td></td>
</tr>
<tr>
<td>dot1qVlanCreationTime</td>
<td></td>
</tr>
<tr>
<td>dot1qVlanStaticTable</td>
<td>12.10.1.1 read bridge vlan configuration</td>
</tr>
<tr>
<td>dot1qVlanStaticName</td>
<td>12.10.1.2 configure PVID values</td>
</tr>
<tr>
<td>dot1qVlanStaticEgressPorts</td>
<td>12.10.1.3 configure acceptable frame types parameter</td>
</tr>
<tr>
<td>dot1qVlanStaticForbiddenEgressPorts</td>
<td>12.10.1.4 configure ingress filtering parameters</td>
</tr>
<tr>
<td>dot1qVlanStaticUntaggedPorts</td>
<td>12.9.2.2 read/set garp applicant controls</td>
</tr>
<tr>
<td>dot1qVlanStaticRowStatus</td>
<td></td>
</tr>
<tr>
<td>dot1qNextFreeLocalVlanIndex</td>
<td></td>
</tr>
<tr>
<td>dot1qPortVlanTable</td>
<td>12.6.1.1 read forwarding port counters</td>
</tr>
<tr>
<td>dot1qPvid</td>
<td></td>
</tr>
<tr>
<td>dot1qPortAcceptableFrameTypes</td>
<td></td>
</tr>
<tr>
<td>dot1qPortIngressFiltering</td>
<td></td>
</tr>
<tr>
<td>dot1qPortGvrpStatus</td>
<td></td>
</tr>
<tr>
<td>dot1qPortGvrpFailedRegistrations</td>
<td></td>
</tr>
<tr>
<td>dot1qPortGvrpLastPduOrigin</td>
<td></td>
</tr>
<tr>
<td>dot1qPortVlanStatisticsTable</td>
<td></td>
</tr>
<tr>
<td>dot1qTpVlanPortInFrames</td>
<td></td>
</tr>
<tr>
<td>dot1qTpVlanPortOutFrames</td>
<td></td>
</tr>
<tr>
<td>dot1qTpVlanPortInDiscards</td>
<td></td>
</tr>
<tr>
<td>dot1qTpVlanPortInOverFlowFrames</td>
<td></td>
</tr>
<tr>
<td>dot1qTpVlanPortOutOverFlowFrames</td>
<td></td>
</tr>
<tr>
<td>dot1qTpVlanPortInOverFlowDiscards</td>
<td></td>
</tr>
</tbody>
</table>
The following IEEE 802.1Q management objects have not been included in the Bridge MIB for the indicated reasons.

IEEE 802.1Q-1998 Operation	Disposition
reset bridge (12.4.1.4) | not considered useful
reset vlan bridge (12.10.1.5) | not considered useful
read forwarding port counters (12.6.1.1) | not considered useful
discard on error details | not considered useful
read permanent database (12.7.6.1) | not considered useful
permanent database size | count rows in
number of static filtering entries | dot1qStaticUnicastTable + dot1qStaticMulticastTable
number of static VLAN registration entries | count rows in dot1qVlanStaticTable
read filtering entry range (12.7.7.4) | use GetNext operation.
read filtering database (12.7.1.1) | not considered useful
filtering database size | count rows applicable to each FDB in dot1dTpGroupTable
number of dynamic group address entries (12.7.1.3) |
read garp state (12.9.3.1) not considered useful

notify vlan registration failure (12.10.1.6) not considered useful

notify learning constraint violation (12.10.3.10) not considered useful

3.2.2. The dot1qBase Group

This mandatory group contains the objects which are applicable to all bridges implementing IEEE 802.1Q virtual LANs.

3.2.3. The dot1qTp Group

This group contains objects that control the operation and report the status of transparent bridging. This includes management of the dynamic Filtering Databases for both unicast and multicast forwarding. This group will be implemented by all bridges that perform destination-address filtering.

3.2.4. The dot1qStatic Group

This group contains objects that control static configuration information for transparent bridging. This includes management of the static entries in the Filtering Databases for both unicast and multicast forwarding.

3.2.5. The dot1qVlan Group

This group contains objects that control configuration and report status of the Virtual LANs known to a bridge. This includes management of the statically configured VLANs as well as reporting VLANs discovered by other means e.g. GVRP. It also controls configuration and reports status of per-port objects relating to VLANs and reports traffic statistics. It also provides for management of the VLAN Learning Constraints.

3.3. Textual Conventions

The datatypes MacAddress, BridgeId, Timeout, EnabledStatus, PortList, VlanIndex and VlanId are used as textual conventions in this document. These textual conventions have NO effect on either the syntax nor the semantics of any managed object. Objects defined using these conventions are always encoded by means of the rules that define their primitive type. Hence, no changes to the SMI or the SNMP are necessary to accommodate these textual conventions which are adopted merely for the convenience of readers.
3.4. Relationship to Other MIBs

As described above, some IEEE 802.1D management objects have not been included in this MIB because they overlap with objects in other MIBs applicable to a bridge implementing this MIB. In particular, it is assumed that a bridge implementing this MIB will also implement (at least) the ‘system’ group defined in MIB-II [MIB2], the ‘interfaces’ group defined in [INTERFACEMIB] and the original bridge MIB [BRIDGEMIB].

3.4.1. Relationship to the ‘system’ group

In MIB-II, the ‘system’ group is defined as being mandatory for all systems such that each managed entity contains one instance of each object in the ‘system’ group. Thus, those objects apply to the entity as a whole irrespective of whether the entity’s sole functionality is bridging, or whether bridging is only a subset of the entity’s functionality.

3.4.2. Relation to Interfaces MIB

The Interfaces Group MIB [INTERFACEMIB], requires that any MIB which is an adjunct of the Interfaces Group MIB, clarify specific areas within the Interfaces Group MIB. These areas were intentionally left vague in the Interfaces Group MIB to avoid over-constraining the MIB, thereby precluding management of certain media-types.

The Interfaces Group MIB enumerates several areas which a media-specific MIB must clarify. Each of these areas is addressed in a following subsection. The implementor is referred to the Interfaces Group MIB in order to understand the general intent of these areas.

In the Interfaces Group MIB, the ‘interfaces’ group is defined as being mandatory for all systems and contains information on an entity’s interfaces, where each interface is thought of as being attached to a ‘subnetwork’. (Note that this term is not to be confused with ‘subnet’ which refers to an addressing partitioning scheme used in the Internet suite of protocols.) The term ‘segment’ is used in this memo to refer to such a subnetwork, whether it be an Ethernet segment, a ‘ring’, a WAN link, or even an X.25 virtual circuit.

Implicit in this Extended Bridge MIB is the notion of ports on a bridge. Each of these ports is associated with one interface of the ‘interfaces’ group (one row in ifTable) and, in most situations, each port is associated with a different interface. However, there are situations in which multiple ports are associated with the same
interface. An example of such a situation would be several ports each corresponding one-to-one with several X.25 virtual circuits but all on the same interface.

Each port is uniquely identified by a port number. A port number has no mandatory relationship to an interface number, but in the simple case a port number will have the same value as the corresponding interface’s interface number. Port numbers are in the range (1..dot1dBaseNumPorts).

Some entities perform other functionality as well as bridging through the sending and receiving of data on their interfaces. In such situations, only a subset of the data sent/received on an interface is within the domain of the entity’s bridging functionality. This subset is considered to be delineated according to a set of protocols, with some protocols being bridged, and other protocols not being bridged. For example, in an entity which exclusively performed bridging, all protocols would be considered as being bridged, whereas in an entity which performed IP routing on IP datagrams and only bridged other protocols, only the non-IP data would be considered as being bridged. Thus, this Extended Bridge MIB (and in particular, its counters) is applicable only to that subset of the data on an entity’s interfaces which is sent/received for a protocol being bridged. All such data is sent/received via the ports of the bridge.

3.4.2.1. Layering Model

This memo assumes the interpretation of the Interfaces Group to be in accordance with the Interfaces Group MIB [INTERFACEMIB] which states that the interfaces table (ifTable) contains information on the managed resource’s interfaces and that each sub-layer below the internetwork layer of a network interface is considered an interface.

This document recommends that, within an entity, VLANs which are instantiated as an entry in dot1qVlanCurrentTable by either management configuration through dot1qVlanStaticTable or by dynamic means (e.g. through GVRP), are NOT also represented by an entry in ifTable.

Where an entity contains higher-layer protocol entities e.g. IP-layer interfaces that transmit and receive traffic to/from a VLAN, these should be represented in the ifTable as interfaces of type propVirtual(53). Protocol-specific types such as 13ipxvlan(137) should not be used here since there is no implication that the bridge will perform any protocol filtering before delivering up to these virtual interfaces.
3.4.2.2. ifStackTable

In addition, the Interfaces Group MIB [INTERFACEMIB] defines a table 'ifStackTable' for describing the relationship between logical interfaces within an entity. It is anticipated that implementors will use this table to describe the binding of e.g. IP interfaces to physical ports, although the presence of VLANs makes the representation less than perfect for showing connectivity: the ifStackTable cannot represent the full capability of the IEEE 802.1Q VLAN bridging standard since that makes a distinction between VLAN bindings on 'ingress' to and 'egress' from a port: these relationships may or may not be symmetrical whereas Interface MIB Evolution assumes a symmetrical binding for transmit and receive. This makes it necessary to define other manageable objects for configuring which ports are members of which VLANs.

3.4.2.3. ifRcvAddressTable

This table contains all MAC addresses, unicast, multicast, and broadcast, for which an interface will receive packets and forward them up to a higher layer entity for local consumption. Note that this does not include addresses for data-link layer control protocols such as Spanning-Tree, GMRP or GVRP. The format of the address, contained in ifRcvAddressAddress, is the same as for ifPhysAddress.

This table does not include unicast or multicast addresses which are accepted for possible forwarding out some other port. This table is explicitly not intended to provide a bridge address filtering mechanism.

3.4.3. Relation to Original Bridge MIB

This section defines how objects in the original bridge MIB module [BRIDGEMIB] should be represented for devices which implement the extensions: some of the old objects are less useful in such devices but must still be implemented for reasons of backwards compatibility. Note that formal conformance statements for that MIB module do not exist since it is defined in SMIv1.

3.4.3.1. The dot1dBase Group

This mandatory group contains the objects which are applicable to all types of bridges. Interpretation of this group is unchanged.
3.4.3.2. The dot1dStp Group

This group contains the objects that denote the bridge’s state with respect to the Spanning Tree Protocol. Interpretation of this group is unchanged.

3.4.3.3. The dot1dTp Group

This group contains objects that describe the entity’s state with respect to transparent bridging.

In a device operating with a single Filtering Database, interpretation of this group is unchanged.

In a device supporting multiple Filtering Databases, this group is interpreted as follows:

- **dot1dTpLearnedEntryDiscards**
 The number of times that *any* of the FDBs became full.

- **dot1dTpAgingTime**
 This applies to all Filtering Databases.

- **dot1dTpFdbTable**
 Report MAC addresses learned on each port, regardless of which Filtering Database they have been learnt in. If an address has been learnt in multiple databases on a single port, report it only once. If an address has been learnt in multiple databases on more than one port, report the entry on any one of the valid ports.

- **dot1dTpPortTable**
 This table is port-based and is not affected by multiple Filtering Databases or multiple VLANs. The counters should include frames received or transmitted for all VLANs. Note that equivalent 64-bit port statistics counters, as well as other objects to represent the upper 32 bits of these counters, are defined in this document for high capacity network interfaces. These have conformance statements to indicate for which speeds of interface they are required.

3.4.3.4. The dot1dStatic Group

This optional group contains objects that describe the configuration of destination-address filtering.

In a device operating with a single Filtering Database, interpretation of this group is unchanged.
In a device supporting multiple Filtering Databases, this group is interpreted as follows:

dot1dStaticTable
Entries read from this table include all static entries from all of the Filtering Databases. Entries for the same MAC address and receive port in more than one Filtering Database must appear only once since these are the indices of this table. This table should be implemented as read-only in devices that support multiple Forwarding Databases - instead, write access should be provided through dot1qStaticUnicastTable and dot1qStaticMulticastTable, as defined in this document.

3.4.3.5. Additions to the Original Bridge MIB

In addition to the objects in the original bridge MIB [BRIDGEMIB], this document contains:

(1) support for multiple traffic classes and dynamic multicast filtering as per IEEE 802.1D-1998 [802.1D].

(2) support for bridged Virtual LANs as per IEEE 802.1Q-1998 [802.1Q].

(3) support for 64-bit versions of original bridge MIB [BRIDGEMIB] port counters.

4. Definitions for Extended Bridge MIB

P-BRIDGE-MIB DEFINITIONS ::= BEGIN

-- ---
-- MIB for IEEE 802.1p devices
-- ---

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Counter32, Counter64
FROM SNMPv2-SMI
TruthValue, TimeInterval, MacAddress, TEXTUAL-CONVENTION
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF
dot1dTp, dot1dTpPort, dot1dBridge,
dot1dBasePortEntry, dot1dBasePort
FROM BRIDGE-MIB;
pBridgeMIB MODULE-IDENTITY
LAST-UPDATED "99082500000Z"
ORGANIZATION "IETF Bridge MIB Working Group"
CONTACT-INFO
 Les Bell
 Postal: 3Com Europe Ltd.
 3Com Centre, Boundary Way
 Hemel Hempstead, Herts. HP2 7YU
 UK
 Phone: +44 1442 438025
 Email: Les_Bell@3Com.com

 Andrew Smith
 Postal: Extreme Networks
 3585 Monroe St.
 Santa Clara CA 95051
 USA
 Phone: +1 408 579 2821
 Email: andrew@extremenetworks.com

 Paul Langille
 Postal: Newbridge Networks
 5 Corporate Drive
 Andover, MA 01810
 USA
 Phone: +1 978 691 4665
 Email: langille@newbridge.com

 Anil Rijhsinghani
 Postal: Cabletron Systems
 50 Minuteman Road
 Andover, MA 01810
 USA
 Phone: +1 978 684 1295
 Email: anil@cabletron.com

 Keith McCloghrie
 Postal: cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 USA
 Phone: +1 408 526 5260
 Email: kzm@cisco.com

DESCRIPTION
"The Bridge MIB Extension module for managing Priority
and Multicast Filtering, defined by IEEE 802.1D-1998."
-- revision history

REVISION "9908250000Z"
DESCRIPTION "Initial version, published as RFC 2674."
 ::= { dot1dBridge 6 }

pBridgeMIBObjects OBJECT IDENTIFIER ::= { pBridgeMIB 1 }

-- Textual Conventions

EnabledStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "A simple status value for the object."
 SYNTAX INTEGER { enabled(1), disabled(2) }

-- groups in the P-BRIDGE MIB

dot1dExtBase OBJECT IDENTIFIER ::= { pBridgeMIBObjects 1 }
dot1dPriority OBJECT IDENTIFIER ::= { pBridgeMIBObjects 2 }
dot1dGarp OBJECT IDENTIFIER ::= { pBridgeMIBObjects 3 }
dot1dGmrp OBJECT IDENTIFIER ::= { pBridgeMIBObjects 4 }

dot1dDeviceCapabilities OBJECT-TYPE
 SYNTAX BITS {
 dot1dExtendedFilteringServices(0),
 -- can perform filtering of
 -- individual multicast addresses
 -- controlled by GMRP.
 dot1dTrafficClasses(1),
 -- can map user priority to
 -- multiple traffic classes.
dot1qStaticEntryIndividualPort(2),
 -- dot1qStaticUnicastReceivePort &
 -- dot1qStaticMulticastReceivePort
 -- can represent non-zero entries.

dot1qIVLCapable(3), -- Independent VLAN Learning.
dot1qSVLCapable(4), -- Shared VLAN Learning.
dot1qHybridCapable(5),
 -- both IVL & SVL simultaneously.
dot1qConfigurablePvidTagging(6),
 -- whether the implementation
 -- supports the ability to
 -- override the default PVID
 -- setting and its egress status
 -- (VLAN-Tagged or Untagged) on
 -- each port.

dot1dLocalVlanCapable(7)
 -- can support multiple local
 -- bridges, outside of the scope
 -- of 802.1Q defined VLANs.

} MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Indicates the optional parts of IEEE 802.1D and 802.1Q
that are implemented by this device and are manageable
through this MIB. Capabilities that are allowed on a
per-port basis are indicated in dot1dPortCapabilities."

REFERENCE
"ISO/IEC 15802-3 Section 5.2,
IEEE 802.1Q/D11 Section 5.2, 12.10.1.1.3/b/2"
::= { dot1dExtBase 1 }

dot1dTrafﬁcClassesEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value true(1) indicates that Traffic Classes are
enabled on this bridge. When false(2), the bridge
operates with a single priority level for all traffic."
DEFVAL { true }
::= { dot1dExtBase 2 }

dot1dGmrpStatus OBJECT-TYPE
SYNTAX EnabledStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The administrative status requested by management for GMRP. The value enabled(1) indicates that GMRP should be enabled on this device, in all VLANs, on all ports for which it has not been specifically disabled. When disabled(2), GMRP is disabled, in all VLANs, on all ports and all GMRP packets will be forwarded transparently. This object affects both Applicant and Registrar state machines. A transition from disabled(2) to enabled(1) will cause a reset of all GMRP state machines on all ports."

DEFVAL { enabled }
::= { dot1dExtBase 3 }

-- Port Capabilities Table

-- Port Capabilities Table

dot1dPortCapabilitiesTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table that contains capabilities information about every port that is associated with this bridge."
::= { dot1dPortCapabilitiesTable 1 }

Dot1dPortCapabilitiesEntry OBJECT-TYPE
SYNTAX Dot1dPortCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A set of capabilities information about this port indexed by dot1dBasePort."
AUGMENTS { dot1dBasePortEntry }
::= { dot1dPortCapabilitiesEntry 1 }

Dot1dPortCapabilitiesEntry ::= SEQUENCE {
 dot1dPortCapabilities
 BITS
}

dot1dPortCapabilities OBJECT-TYPE
SYNTAX BITS {
 dot1qDot1qTagging(0), -- supports 802.1Q VLAN tagging of
 -- frames and GVRP.
 dot1qConfigurableAcceptableFrameTypes(1),
 -- allows modified values of
dot1qIngressFiltering(2) supports the discarding of any frame received on a Port whose VLAN classification does not include that Port in its Member set.

MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the parts of IEEE 802.1D and 802.1Q that are optional on a per-port basis that are implemented by this device and are manageable through this MIB."
REFERENCE "ISO/IEC 15802-3 Section 5.2,
 IEEE 802.1Q/D11 Section 5.2"
::= { dot1dPortCapabilitiesEntry 1 }

-- the dot1dPriority group

-- Port Priority Table

dot1dPortPriorityTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table that contains information about every port that is associated with this transparent bridge."
::= { dot1dPriority 1 }

Dot1dPortPriorityEntry OBJECT-TYPE
SYNTAX Dot1dPortPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A list of Default User Priorities for each port of a transparent bridge. This is indexed by dot1dBasePort."
AUGMENTS { dot1dBasePortEntry }
::= { dot1dPortPriorityTable 1 }

Dot1dPortPriorityEntry ::= SEQUENCE {
dot1dPortDefaultUserPriority
 INTEGER,
 dot1dPortNumTrafficClasses
 INTEGER
}

dot1dPortDefaultUserPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The default ingress User Priority for this port. This
 only has effect on media, such as Ethernet, that do not
 support native User Priority."
 ::= { dot1dPortPriorityEntry 1 }

dot1dPortNumTrafficClasses OBJECT-TYPE
SYNTAX INTEGER (1..8)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The number of egress traffic classes supported on this
 port. This object may optionally be read-only."
 ::= { dot1dPortPriorityEntry 2 }

-- User Priority Regeneration Table

-- User Priority Regeneration Table

dot1dUserPriorityRegenTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dUserPriorityRegenEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A list of Regenerated User Priorities for each received
 User Priority on each port of a bridge. The Regenerated
 User Priority value may be used to index the Traffic
 Class Table for each input port. This only has effect
 on media that support native User Priority. The default
 values for Regenerated User Priorities are the same as
 the User Priorities."
REFERENCE
 "ISO/IEC 15802-3 Section 6.4"
 ::= { dot1dPriority 2 }
dot1dUserPriorityRegenEntry OBJECT-TYPE
SYNTAX Dot1dUserPriorityRegenEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A mapping of incoming User Priority to a Regenerated User Priority."
INDEX { dot1dBasePort, dot1dUserPriority }
::= { dot1dUserPriorityRegenTable 1 }

Dot1dUserPriorityRegenEntry ::= SEQUENCE {
 dot1dUserPriority INTEGER,
 dot1dRegenUserPriority INTEGER
}

dot1dUserPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The User Priority for a frame received on this port."
::= { dot1dUserPriorityRegenEntry 1 }

dot1dRegenUserPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The Regenerated User Priority the incoming User Priority is mapped to for this port."
::= { dot1dUserPriorityRegenEntry 2 }

-- ---
-- Traffic Class Table
-- ---

dot1dTrafﬁcClassTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTrafficClassEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table mapping evaluated User Priority to Traffic Class, for forwarding by the bridge. Traffic class is a number in the range (0..(dot1dPortNumTrafficClasses-1))."

REFERENCE

Bell, et al. Standards Track [Page 25]
"ISO/IEC 15802-3 Table 7-2"
::= { dot1dPriority 3 }

dot1dTrafficClassEntry OBJECT-TYPE
SYNTAX Dot1dTrafficClassEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"User Priority to Traffic Class mapping."
INDEX { dot1dBasePort, dot1dTrafficClassPriority }
::= { dot1dTrafficClassTable 1 }

Dot1dTrafficClassEntry ::= SEQUENCE {
dot1dTrafficClassPriority
INTEGER,
dot1dTrafficClass
INTEGER
}

dot1dTrafficClassPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Priority value determined for the received frame.
This value is equivalent to the priority indicated in
the tagged frame received, or one of the evaluated
priorities, determined according to the media-type.

For untagged frames received from Ethernet media, this
value is equal to the dot1dPortDefaultUserPriority value
for the ingress port.

For untagged frames received from non-Ethernet media,
this value is equal to the dot1dRegenUserPriority value
for the ingress port and media-specific user priority."
::= { dot1dTrafficClassEntry 1 }

dot1dTrafficClass OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The Traffic Class the received frame is mapped to."
::= { dot1dTrafficClassEntry 2 }

-- ---
-- Outbound Access Priority Table
-- ---

dot1dPortOutboundAccessPriorityTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortOutboundAccessPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table mapping Regenerated User Priority to Outbound Access Priority. This is a fixed mapping for all port types, with two options for 802.5 Token Ring."
REFERENCE
"ISO/IEC 15802-3 Table 7-3"
::= { dot1dPriority 4 }
dot1dPortOutboundAccessPriorityEntry OBJECT-TYPE
SYNTAX Dot1dPortOutboundAccessPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Regenerated User Priority to Outbound Access Priority mapping."
INDEX { dot1dBasePort, dot1dRegenUserPriority }
::= { dot1dPortOutboundAccessPriorityTable 1 }

Dot1dPortOutboundAccessPriorityEntry ::=
SEQUENCE {
 dot1dPortOutboundAccessPriority
 INTEGER
 }

Dot1dPortOutboundAccessPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Outbound Access Priority the received frame is mapped to."
::= { dot1dPortOutboundAccessPriorityEntry 1 }

-- ---
-- the dot1dGarp group
-- ---

Bell, et al. Standards Track [Page 27]
dot1dPortGarpTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dot1dPortGarpEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of GARP control information about every bridge
 port. This is indexed by dot1dBasePort."
 ::= { dot1dGarp 1 }

dot1dPortGarpEntry OBJECT-TYPE
 SYNTAX Dot1dPortGarpEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "GARP control information for a bridge port."
 AUGMENTS { dot1dBasePortEntry }
 ::= { dot1dPortGarpTable 1 }

Dot1dPortGarpEntry ::= SEQUENCE {
 dot1dPortGarpJoinTime TimeInterval,
 dot1dPortGarpLeaveTime TimeInterval,
 dot1dPortGarpLeaveAllTime TimeInterval
}

dot1dPortGarpJoinTime OBJECT-TYPE
 SYNTAX TimeInterval
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The GARP Join time, in centiseconds."
 DEFVAL { 20 }
 ::= { dot1dPortGarpEntry 1 }

dot1dPortGarpLeaveTime OBJECT-TYPE
 SYNTAX TimeInterval
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The GARP Leave time, in centiseconds."
 DEFVAL { 60 }
 ::= { dot1dPortGarpEntry 2 }
dot1dPortGarpLeaveAllTime OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The GARP LeaveAll time, in centiseconds."
DEFVAL { 1000 }
 ::= { dot1dPortGarpEntry 3 }

-- The GMRP Port Configuration and Status Table

dot1dPortGmrpTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortGmrpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table of GMRP control and status information about every bridge port. Augments the dot1dBasePortTable."
 ::= { dot1dGmrp 1 }

dot1dPortGmrpEntry OBJECT-TYPE
SYNTAX Dot1dPortGmrpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "GMRP control and status information for a bridge port."
AUGMENTS { dot1dBasePortEntry }
 ::= { dot1dPortGmrpTable 1 }

Dot1dPortGmrpEntry ::= SEQUENCE {
 dot1dPortGmrpStatus
 EnabledStatus,
 dot1dPortGmrpFailedRegistrations
 Counter32,
 dot1dPortGmrpLastPduOrigin
 MacAddress
}

dot1dPortGmrpStatus OBJECT-TYPE
SYNTAX EnabledStatus
MAX-ACCESS read-write
STATUS current

DESCRIPTION

"The administrative state of GMRP operation on this port. The value enabled(1) indicates that GMRP is enabled on this port in all VLANs as long as dot1dGmrpStatus is also enabled(1). A value of disabled(2) indicates that GMRP is disabled on this port in all VLANs: any GMRP packets received will be silently discarded and no GMRP registrations will be propagated from other ports. Setting this to a value of enabled(1) will be stored by the agent but will only take effect on the GMRP protocol operation if dot1dGmrpStatus also indicates the value enabled(1). This object affects all GMRP Applicant and Registrar state machines on this port. A transition from disabled(2) to enabled(1) will cause a reset of all GMRP state machines on this port."

DEFVAL { enabled }

::= { dot1dPortGmrpEntry 1 }

dot1dPortGmrpFailedRegistrations OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of failed GMRP registrations, for any reason, in all VLANs, on this port."

::= { dot1dPortGmrpEntry 2 }

dot1dPortGmrpLastPduOrigin OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Source MAC Address of the last GMRP message received on this port."

::= { dot1dPortGmrpEntry 3 }

-- ---
-- High Capacity Port Table for Transparent Bridges
-- ---

dot1dTpHCPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpHCPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table that contains information about every high capacity port that is associated with this transparent bridge."

::= { dot1dTp 5 }
dot1dTpHCPortEntry OBJECT-TYPE
SYNTAX Dot1dTpHCPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Statistics information for each high capacity port of a
transparent bridge."
INDEX { dot1dTpPort }
 ::= { dot1dTpHCPortTable 1 }

Dot1dTpHCPortEntry ::= SEQUENCE {
 dot1dTpHCPortInFrames Counter64,
 dot1dTpHCPortOutFrames Counter64,
 dot1dTpHCPortInDiscards Counter64
}

dot1dTpHCPortInFrames OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames that have been received by this
port from its segment. Note that a frame received on
the interface corresponding to this port is only counted
by this object if and only if it is for a protocol being
processed by the local bridging function, including
bridge management frames."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
 ::= { dot1dTpHCPortEntry 1 }

dot1dTpHCPortOutFrames OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames that have been transmitted by this
port to its segment. Note that a frame transmitted on
the interface corresponding to this port is only counted
by this object if and only if it is for a protocol being
processed by the local bridging function, including
bridge management frames."
REFERENCE

"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpHCPortEntry 2 }

dot1dTpHCPortInDiscards OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Count of valid frames that have been received by this
port from its segment which were discarded (i.e.,
filtered) by the Forwarding Process."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpHCPortEntry 3 }

-- --
-- Upper part of High Capacity Port Table for Transparent Bridges
-- --

dot1dTpPortOverflowTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpPortOverflowEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table that contains the most-significant bits of
statistics counters for ports that are associated with this
transparent bridge that are on high capacity interfaces, as
defined in the conformance clauses for this table. This table
is provided as a way to read 64-bit counters for agents which
support only SNMPv1.

Note that the reporting of most-significant and
least-significant counter bits separately runs the risk of
missing an overflow of the lower bits in the interval between
sampling. The manager must be aware of this possibility, even
within the same varbindlist, when interpreting the results of
a request or asynchronous notification."
::= { dot1dTp 6 }

dot1dTpPortOverflowEntry OBJECT-TYPE
SYNTAX Dot1dTpPortOverflowEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The most significant bits of statistics counters for a high
capacity interface of a transparent bridge. Each object is
associated with a corresponding object in dot1dTpPortTable
which indicates the least significant bits of the counter."
INDEX { dot1dTpPort }
:= { dot1dTpPortOverflowTable 1 }

Dot1dTpPortOverflowEntry ::=
 SEQUENCE {
 dot1dTpPortInOverflowFrames Counter32,
 dot1dTpPortOutOverflowFrames Counter32,
 dot1dTpPortInOverflowDiscards Counter32
 }

dot1dTpPortInOverflowFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of times the associated dot1dTpPortInFrames
counter has overflowed."
REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3"
:= { dot1dTpPortOverflowEntry 1 }

dot1dTpPortOutOverflowFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of times the associated dot1dTpPortOutFrames
counter has overflowed."
REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3"
:= { dot1dTpPortOverflowEntry 2 }

dot1dTpPortInOverflowDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the associated
dot1dTpPortInDiscards counter has overflowed."

REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpPortOverflowEntry 3 }

-- ---
-- IEEE 802.1p MIB - Conformance Information
-- ---

pBridgeConformance OBJECT IDENTIFIER ::= { pBridgeMIB 2 }
pBridgeGroups OBJECT IDENTIFIER ::= { pBridgeConformance 1 }
pBridgeCompliances OBJECT IDENTIFIER ::= { pBridgeConformance 2 }

-- units of conformance
-- ---

pBridgeExtCapGroup OBJECT-GROUP
OBJECTS {
 dot1dDeviceCapabilities,
 dot1dPortCapabilities
}
STATUS current
DESCRIPTION
"A collection of objects indicating the optional
capabilities of the device."
::= { pBridgeGroups 1 }

pBridgeDeviceGmrpGroup OBJECT-GROUP
OBJECTS {
 dot1dGmrpStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing device-level control
for the Multicast Filtering extended bridge services."
::= { pBridgeGroups 2 }

Bell, et al. Standards Track [Page 34]
pBridgeDevicePriorityGroup OBJECT-GROUP
 OBJECTS {
 dot1dTrafficClassesEnabled
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing device-level control for the Priority services."
 ::= { pBridgeGroups 3 }

pBridgeDefaultPriorityGroup OBJECT-GROUP
 OBJECTS {
 dot1dPortDefaultUserPriority
 }
 STATUS current
 DESCRIPTION
 "A collection of objects defining the User Priority applicable to each port for media which do not support native User Priority."
 ::= { pBridgeGroups 4 }

pBridgeRegenPriorityGroup OBJECT-GROUP
 OBJECTS {
 dot1dRegenUserPriority
 }
 STATUS current
 DESCRIPTION
 "A collection of objects defining the User Priorities applicable to each port for media which support native User Priority."
 ::= { pBridgeGroups 5 }

pBridgePriorityGroup OBJECT-GROUP
 OBJECTS {
 dot1dPortNumTrafficClasses,
 dot1dTrafficClass
 }
 STATUS current
 DESCRIPTION
 "A collection of objects defining the traffic classes within a bridge for each evaluated User Priority."
 ::= { pBridgeGroups 6 }

pBridgeAccessPriorityGroup OBJECT-GROUP
OBJECTS {
 dot1dPortOutboundAccessPriority
}
STATUS current
DESCRIPTION
"A collection of objects defining the media dependent outbound access level for each priority."
::= { pBridgeGroups 7 }

pBridgePortGarpGroup OBJECT-GROUP
OBJECTS {
 dot1dPortGarpJoinTime,
 dot1dPortGarpLeaveTime,
 dot1dPortGarpLeaveAllTime
}
STATUS current
DESCRIPTION
"A collection of objects providing port level control and status information for GARP operation."
::= { pBridgeGroups 8 }

pBridgePortGmrpGroup OBJECT-GROUP
OBJECTS {
 dot1dPortGmrpStatus,
 dot1dPortGmrpFailedRegistrations,
 dot1dPortGmrpLastPduOrigin
}
STATUS current
DESCRIPTION
"A collection of objects providing port level control and status information for GMRP operation."
::= { pBridgeGroups 9 }

pBridgeHCPortGroup OBJECT-GROUP
OBJECTS {
 dot1dTpHCPortInFrames,
 dot1dTpHCPortOutFrames,
 dot1dTpHCPortInDiscards
}
STATUS current
DESCRIPTION
"A collection of objects providing 64-bit statistics counters for high capacity bridge ports."
::= { pBridgeGroups 10 }
pBridgePortOverflowGroup OBJECT-GROUP
OBJECTS {
 dot1dTpPortInOverflowFrames,
 dot1dTpPortOutOverflowFrames,
 dot1dTpPortInOverflowDiscards
}
STATUS current
DESCRIPTION
"A collection of objects providing overflow statistics
counters for high capacity bridge ports."
::= { pBridgeGroups 11 }

-- compliance statements
-- ---

pBridgeCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for device support of Priority
and Multicast Filtering extended bridging services."

MODULE
MANDATORY-GROUPS { pBridgeExtCapGroup }

GROUP pBridgeDeviceGmrpGroup
DESCRIPTION
"This group is mandatory for devices supporting the GMRP
application, defined by IEEE 802.1D Extended Filtering
Services."

GROUP pBridgeDevicePriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by IEEE
802.1D."

GROUP pBridgeDefaultPriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by the
extended bridge services with media types, such as
Ethernet, that do not support native User Priority."
GROUP pBridgeRegenPriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by IEEE 802.1D
and which have interface media types that support
native User Priority e.g. IEEE 802.5."

GROUP pBridgePriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by IEEE 802.1D."

GROUP pBridgeAccessPriorityGroup
DESCRIPTION
"This group is optional and is relevant only for devices
supporting the priority forwarding operations defined by
IEEE 802.1D and which have interface media types that support
native Access Priority e.g. IEEE 802.5."

GROUP pBridgePortGarpGroup
DESCRIPTION
"This group is mandatory for devices supporting any
of the GARP applications: e.g. GMRP, defined by the
extended filtering services of 802.1D; or GVRP,
defined by 802.1Q (refer to the Q-BRIDGE-MIB for
conformance statements for GVRP)."

GROUP pBridgePortGmrpGroup
DESCRIPTION
"This group is mandatory for devices supporting the
GMRP application, as defined by IEEE 802.1D Extended
Filtering Services."

GROUP pBridgeHCPortGroup
DESCRIPTION
"Support for this group in a device is mandatory for those
bridge ports which map to network interfaces that have the
value of the corresponding instance of ifSpeed
greater than 650,000,000 bits/second."

GROUP pBridgePortOverflowGroup
DESCRIPTION
"Support for this group in a device is mandatory for those
bridge ports which map to network interfaces that have the
value of the corresponding instance of ifSpeed
greater than 650,000,000 bits/second."
OBJECT dot1dPortNumTrafficClasses
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT dot1dTrafficClass
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT dot1dRegenUserPriority
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

::= { pBridgeCompliances 1 }

END

5. Definitions for Virtual Bridge MIB

Q-BRIDGE-MIB DEFINITIONS ::= BEGIN

-- MIB for IEEE 802.1Q Devices

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Counter32, Counter64, Unsigned32, TimeTicks
 FROM SNMPv2-SMI
 RowStatus, TruthValue, TEXTUAL-CONVENTION, MacAddress
 FROM SNMPv2-TC
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 dot1dBridge, dot1dBasePortEntry, dot1dBasePort
 FROM BRIDGE-MIB
 EnabledStatus
 FROM P-BRIDGE-MIB
 TimeFilter
 FROM RMON2-MIB;

qBridgeMIB MODULE-IDENTITY
LAST-UPDATED "9908250000Z"
ORGANIZATION "IETF Bridge MIB Working Group"
CONTACT-INFO

" Les Bell
 Postal: 3Com Europe Ltd.
 3Com Centre, Boundary Way
 Hemel Hempstead, Herts. HP2 7YU
 UK
 Phone: +44 1442 438025
 Email: Les_Bell@3Com.com

 Andrew Smith
 Postal: Extreme Networks
 3585 Monroe St.
 Santa Clara CA 95051
 USA
 Phone: +1 408 579 2821
 Email: andrew@extremenetworks.com

 Paul Langille
 Postal: Newbridge Networks
 5 Corporate Drive
 Andover, MA 01810
 USA
 Phone: +1 978 691 4665
 Email: langille@newbridge.com

 Anil Rijhsinghani
 Postal: Cabletron Systems
 50 Minuteman Road
 Andover, MA 01810
 USA
 Phone: +1 978 684 1295
 Email: anil@cabletron.com

 Keith McCloghrie
 Postal: cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 USA
 Phone: +1 408 526 5260
 Email: kzm@cisco.com"

DESCRIPTION

"The VLAN Bridge MIB module for managing Virtual Bridged Local Area Networks, as defined by IEEE 802.1Q-1998."
-- revision history

REVISION "9908250000Z"
DESCRIPTION
"Initial version, published as RFC 2674."

 ::= { dot1dBridge 7 }

qBridgeMIBObjects OBJECT IDENTIFIER ::= { qBridgeMIB 1 }

-- Textual Conventions

PortList ::= TEXTUAL-CONVENTION

STATUS current
DESCRIPTION
"Each octet within this value specifies a set of eight ports, with the first octet specifying ports 1 through 8, the second octet specifying ports 9 through 16, etc. Within each octet, the most significant bit represents the lowest numbered port, and the least significant bit represents the highest numbered port. Thus, each port of the bridge is represented by a single bit within the value of this object. If that bit has a value of ‘1’ then that port is included in the set of ports; the port is not included if its bit has a value of ‘0’.
"

SYNTAX OCTET STRING

VlanIndex ::= TEXTUAL-CONVENTION

STATUS current
DESCRIPTION
"A value used to index per-VLAN tables: values of 0 and 4095 are not permitted; if the value is between 1 and 4094 inclusive, it represents an IEEE 802.1Q VLAN-ID with global scope within a given bridged domain (see VlanId textual convention). If the value is greater than 4095 then it represents a VLAN with scope local to the particular agent, i.e. one without a global VLAN-ID assigned to it. Such VLANs are outside the scope of IEEE 802.1Q but it is convenient to be able to manage them in the same way using this MIB."

SYNTAX Unsigned32
VlanId ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "A 12-bit VLAN ID used in the VLAN Tag header."
 SYNTAX INTEGER (1..4094)

-- groups in the Q-BRIDGE MIB

-- dot1qBase group

dot1qVlanVersionNumber OBJECT-TYPE
 SYNTAX INTEGER {
 version1(1)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The version number of IEEE 802.1Q that this device supports."
 REFERENCE "IEEE 802.1Q/D11 Section 12.10.1.1"
 ::= { dot1qBase 1 }

dot1qMaxVlanId OBJECT-TYPE
 SYNTAX VlanId
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The maximum IEEE 802.1Q VLAN ID that this device supports."
 REFERENCE "IEEE 802.1Q/D11 Section 9.3.2.3"
 ::= { dot1qBase 2 }
dot1qMaxSupportedVlans OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The maximum number of IEEE 802.1Q VLANs that this device supports."
REFERENCE "IEEE 802.1Q/D11 Section 12.10.1.1"
::= { dot1qBase 3 }

dot1qNumVlans OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The current number of IEEE 802.1Q VLANs that are configured in this device."
REFERENCE "IEEE 802.1Q/D11 Section 12.7.1.1"
::= { dot1qBase 4 }

dot1qGvrpStatus OBJECT-TYPE
SYNTAX EnabledStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The administrative status requested by management for GVRP. The value enabled(1) indicates that GVRP should be enabled on this device, on all ports for which it has not been specifically disabled. When disabled(2), GVRP is disabled on all ports and all GVRP packets will be forwarded transparently. This object affects all GVRP Applicant and Registrar state machines. A transition from disabled(2) to enabled(1) will cause a reset of all GVRP state machines on all ports."
DEFVAL { enabled }
::= { dot1qBase 5 }

-- ---
-- the dot1qTp group
-- ---

-- the current Filtering Database Table
-- ---
dot1qFdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qFdbEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table that contains configuration and control
 information for each Filtering Database currently
 operating on this device. Entries in this table appear
 automatically when VLANs are assigned FDB IDs in the
dot1qVlanCurrentTable."
 ::= { dot1qTp 1 }

dot1qFdbEntry OBJECT-TYPE
SYNTAX Dot1qFdbEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Information about a specific Filtering Database."
INDEX { dot1qFdbId }
 ::= { dot1qFdbTable 1 }

Dot1qFdbEntry ::= SEQUENCE {
 dot1qFdbId Unsigned32,
 dot1qFdbDynamicCount Counter32
}

dot1qFdbId OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The identity of this Filtering Database."
 ::= { dot1qFdbEntry 1 }

dot1qFdbDynamicCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The current number of dynamic entries in this
 Filtering Database."
REFERENCE
 "IEEE 802.1Q/D11 Section 12.7.1.1.3"
 ::= { dot1qFdbEntry 2 }
dot1qTpFdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qTpFdbEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table that contains information about unicast entries for which the device has forwarding and/or filtering information. This information is used by the transparent bridging function in determining how to propagate a received frame."
REFERENCE
 "IEEE 802.1Q/D11 Section 12.7.7"
 ::= { dot1qTp 2 }

Dot1qTpFdbEntry OBJECT-TYPE
SYNTAX Dot1qTpFdbEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Information about a specific unicast MAC address for which the device has some forwarding and/or filtering information."
INDEX { dot1qFdbId, dot1qTpFdbAddress }
 ::= { dot1qTpFdbTable 1 }

Dot1qTpFdbEntry ::==
 SEQUENCE {
 dot1qTpFdbAddress
 MacAddress,
 dot1qTpFdbPort
 INTEGER,
 dot1qTpFdbStatus
 INTEGER
 }

dot1qTpFdbAddress OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unicast MAC address for which the device has
forwarding and/or filtering information."
::= { dot1qTpFdbEntry 1 }

dot1qTpFdbPort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Either the value ‘0’, or the port number of the port on
which a frame having a source address equal to the value
of the corresponding instance of dot1qTpFdbAddress has
been seen. A value of ‘0’ indicates that the port
number has not been learned but that the device does
have some forwarding/filtering information about this
address (e.g. in the dot1qStaticUnicastTable).
Implementors are encouraged to assign the port value to
this object whenever it is learned even for addresses
for which the corresponding value of dot1qTpFdbStatus is
not learned(3)."
::= { dot1qTpFdbEntry 2 }

dot1qTpFdbStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 invalid(2),
 learned(3),
 self(4),
 mgmt(5)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The status of this entry. The meanings of the values
are:

other(1) - none of the following. This may include
the case where some other MIB object (not the
corresponding instance of dot1qTpFdbPort, nor an
entry in the dot1qStaticUnicastTable) is being
used to determine if and how frames addressed to
the value of the corresponding instance of
dot1qTpFdbAddress are being forwarded.
invalid(2) - this entry is no longer valid (e.g., it
was learned but has since aged out), but has not
yet been flushed from the table.
learned(3) - the value of the corresponding instance
of dot1qTpFdbPort was learned and is being used.
self(4) - the value of the corresponding instance of dot1qTpFdbAddress represents one of the device’s addresses. The corresponding instance of dot1qTpFdbPort indicates which of the device’s ports has this address.

mgmt(5) - the value of the corresponding instance of dot1qTpFdbAddress is also the value of an existing instance of dot1qStaticAddress.

 ::= { dot1qTpFdbEntry 3 }

-- Dynamic Group Registration Table

dot1qTpGroupTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qTpGroupEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing filtering information for VLANs configured into the bridge by (local or network) management, or learnt dynamically, specifying the set of ports to which frames received on a VLAN for this FDB and containing a specific Group destination address are allowed to be forwarded."
 ::= { dot1qTp 3 }

Dot1qTpGroupEntry ::=
SEQUENCE {
 dot1qTpGroupAddress
 MacAddress,
 dot1qTpGroupEgressPorts
 PortList,
 dot1qTpGroupLearnt

dot1qTpGroupAddress OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The destination Group MAC address in a frame to which
this entry’s filtering information applies."
::= { dot1qTpGroupEntry 1 }

dot1qTpGroupEgressPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The complete set of ports, in this VLAN, to which
frames destined for this Group MAC address are currently
being explicitly forwarded. This does not include ports
for which this address is only implicitly forwarded, in
the dot1qForwardAllPorts list."
::= { dot1qTpGroupEntry 2 }

dot1qTpGroupLearnt OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The subset of ports in dot1qTpGroupEgressPorts which
were learnt by GMRP or some other dynamic mechanism, in
this Filtering database."
::= { dot1qTpGroupEntry 3 }

-- Service Requirements Group

-- --------------------------------------

dot1qForwardAllTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qForwardAllEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table containing forwarding information for each
VLAN, specifying the set of ports to which forwarding of
all multicasts applies, configured statically by
management or dynamically by GMRP. An entry appears in
this table for all VLANs that are currently

RFC 2674 Bridge MIB Extensions August 1999

instatiated.

REFERENCE

"IEEE 802.1Q/D11 Section 12.7.2, 12.7.7"

::= { dot1qTp 4 }

dot1qForwardAllEntry OBJECT-TYPE
SYNTAX Dot1qForwardAllEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Forwarding information for a VLAN, specifying the set
 of ports to which all multicasts should be forwarded,
 configured statically by management or dynamically by
 GMRP."
INDEX { dot1qVlanIndex }
::= { dot1qForwardAllTable 1 }

Dot1qForwardAllEntry ::=
SEQUENCE {
 dot1qForwardAllPorts
 PortList,
 dot1qForwardAllStaticPorts
 PortList,
 dot1qForwardAllForbiddenPorts
 PortList
}

dot1qForwardAllPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The complete set of ports in this VLAN to which all
 multicast group-addressed frames are to be forwarded.
 This includes ports for which this need has been
determined dynamically by GMRP, or configured statically
by management."
::= { dot1qForwardAllEntry 1 }

dot1qForwardAllStaticPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The set of ports configured by management in this VLAN to which all multicast group-addressed frames are to be forwarded. Ports entered in this list will also appear in the complete set shown by dot1qForwardAllPorts. This value will be restored after the device is reset. This only applies to ports that are members of the VLAN, defined by dot1qVlanCurrentEgressPorts. A port may not be added in this set if it is already a member of the set of ports in dot1qForwardAllForbiddenPorts. The default value is a string of ones of appropriate length, to indicate standard non-EFS behaviour, i.e. forward all multicasts to all ports."

::= { dot1qForwardAllEntry 2 }

dot1qForwardAllForbiddenPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The set of ports configured by management in this VLAN for which the Service Requirement attribute Forward All Multicast Groups may not be dynamically registered by GMRP. This value will be restored after the device is reset. A port may not be added in this set if it is already a member of the set of ports in dot1qForwardAllStaticPorts. The default value is a string of zeros of appropriate length."

::= { dot1qForwardAllEntry 3 }

dot1qForwardUnregisteredTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qForwardUnregisteredEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing forwarding information for each VLAN, specifying the set of ports to which forwarding of multicast group-addressed frames for which there is no more specific forwarding information applies. This is configured statically by management and determined dynamically by GMRP. An entry appears in this table for all VLANs that are currently instantiated."

REFERENCE
"IEEE 802.1Q/D11 Section 12.7.2, 12.7.7"

::= { dot1qTp 5 }

dot1qForwardUnregisteredEntry OBJECT-TYPE
SYNTAX Dot1qForwardUnregisteredEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Forwarding information for a VLAN, specifying the set
of ports to which all multicasts for which there is no
more specific forwarding information shall be forwarded.
This is configured statically by management or
dynamically by GMRP."
INDEX { dot1qVlanIndex } ::= { dot1qForwardUnregisteredTable 1 }

Dot1qForwardUnregisteredEntry ::=
SEQUENCE {
 dot1qForwardUnregisteredPorts
 PortList,
 dot1qForwardUnregisteredStaticPorts
 PortList,
 dot1qForwardUnregisteredForbiddenPorts
 PortList
}

dot1qForwardUnregisteredPorts OBJECT-TYPE
 SYNTAX PortList
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The complete set of ports in this VLAN to which
multicast group-addressed frames for which there is no
more specific forwarding information will be forwarded.
This includes ports for which this need has been
determined dynamically by GMRP, or configured statically
by management."
 ::= { dot1qForwardUnregisteredEntry 1 }

dot1qForwardUnregisteredStaticPorts OBJECT-TYPE
 SYNTAX PortList
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "The set of ports configured by management, in this
VLAN, to which multicast group-addressed frames for
which there is no more specific forwarding information
are to be forwarded. Ports entered in this list will
also appear in the complete set shown by
dot1qForwardUnregisteredPorts. This value will be
restored after the device is reset. A port may not be
added in this set if it is already a member of the set
of ports in dot1qForwardUnregisteredForbiddenPorts. The
default value is a string of zeros of appropriate length, although this has no effect with the default value of dot1qForwardAllStaticPorts.

::= { dot1qForwardUnregisteredEntry 2 }

dot1qForwardUnregisteredForbiddenPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The set of ports configured by management in this VLAN for which the Service Requirement attribute Forward Unregistered Multicast Groups may not be dynamically registered by GMRP. This value will be restored after the device is reset. A port may not be added in this set if it is already a member of the set of ports in dot1qForwardUnregisteredStaticPorts. The default value is a string of zeros of appropriate length."

::= { dot1qForwardUnregisteredEntry 3 }

-- ---
-- The Static (Destination-Address Filtering) Database
-- ---

dot1qStaticUnicastTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qStaticUnicastEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing filtering information for Unicast MAC addresses for each Filtering Database, configured into the device by (local or network) management specifying the set of ports to which frames received from specific ports and containing specific unicast destination addresses are allowed to be forwarded. A value of zero in this table as the port number from which frames with a specific destination address are received, is used to specify all ports for which there is no specific entry in this table for that particular destination address. Entries are valid for unicast addresses only."

REFERENCE
"IEEE 802.1Q/D11 Section 12.7.7,
ISO/IEC 15802-3 Section 7.9.1"

::= { dot1qStatic 1 }
dot1qStaticUnicastEntry OBJECT-TYPE
SYNTAX Dot1qStaticUnicastEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Filtering information configured into the device by (local or network) management specifying the set of ports to which frames received from a specific port and containing a specific unicast destination address are allowed to be forwarded."
INDEX {
 dot1qFdbId,
 dot1qStaticUnicastAddress,
 dot1qStaticUnicastReceivePort
}
::= { dot1qStaticUnicastTable 1 }

Dot1qStaticUnicastEntry ::= SEQUENCE {
 dot1qStaticUnicastAddress MacAddress,
 dot1qStaticUnicastReceivePort INTEGER,
 dot1qStaticUnicastAllowedToGoTo PortList,
 dot1qStaticUnicastStatus INTEGER
}

dot1qStaticUnicastAddress OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The destination MAC address in a frame to which this entry’s filtering information applies. This object must take the value of a unicast address."
::= { dot1qStaticUnicastEntry 1 }

dot1qStaticUnicastReceivePort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Either the value ‘0’, or the port number of the port from which a frame must be received in order for this entry’s filtering information to apply. A value of zero indicates that this entry applies on all ports of the
device for which there is no other applicable entry.
 ::= { dot1qStaticUnicastEntry 2 }

dot1qStaticUnicastAllowedToGoTo OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The set of ports for which a frame with a specific
 unicast address will be flooded in the event that it
 has not been learned. It also specifies the set of
 ports a specific unicast address may be dynamically
 learnt on. The dot1qTpFdbTable will have an equivalent
 entry with a dot1qTpFdbPort value of '0' until this
 address has been learnt, when it will be updated with
 the port the address has been seen on. This only
 applies to ports that are members of the VLAN, defined
 by dot1qVlanCurrentEgressPorts. The default value of
 this object is a string of ones of appropriate length."
REFERENCE
 "IEEE 802.1Q/D11 Table 8-5, ISO/IEC 15802-3 Table 7-5"
 ::= { dot1qStaticUnicastEntry 3 }

dot1qStaticUnicastStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 invalid(2),
 permanent(3),
 deleteOnReset(4),
 deleteOnTimeout(5)
 }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This object indicates the status of this entry.
 other(1) - this entry is currently in use but
 the conditions under which it will remain
 so differ from the following values.
 invalid(2) - writing this value to the object
 removes the corresponding entry.
 permanent(3) - this entry is currently in use
 and will remain so after the next reset of
 the bridge.
 deleteOnReset(4) - this entry is currently in
 use and will remain so until the next
 reset of the bridge.
deleteOnTimeout(5) - this entry is currently in use and will remain so until it is aged out."

DEFVAL { permanent }
::= { dot1qStaticUnicastEntry 4 }

dot1qStaticMulticastTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qStaticMulticastEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION
"A table containing filtering information for Multicast and Broadcast MAC addresses for each VLAN, configured into the device by (local or network) management specifying the set of ports to which frames received from specific ports and containing specific Multicast and Broadcast destination addresses are allowed to be forwarded. A value of zero in this table as the port number from which frames with a specific destination address are received, is used to specify all ports for which there is no specific entry in this table for that particular destination address. Entries are valid for Multicast and Broadcast addresses only."

REFERENCE
"IEEE 802.1Q/D11 Section 12.7.7,
ISO/IEC 15802-3 Section 7.9.1"
::= { dot1qStatic 2 }

dot1qStaticMulticastEntry OBJECT-TYPE
SYNTAX Dot1qStaticMulticastEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION
"Filtering information configured into the device by (local or network) management specifying the set of ports to which frames received from this specific port for this VLAN and containing this Multicast or Broadcast destination address are allowed to be forwarded."

INDEX {
 dot1qVlanIndex,
 dot1qStaticMulticastAddress,
 dot1qStaticMulticastReceivePort
}
::= { dot1qStaticMulticastTable 1 }
Dot1qStaticMulticastEntry ::=
 SEQUENCE {
 dot1qStaticMulticastAddress MacAddress,
 dot1qStaticMulticastReceivePort INTEGER,
 dot1qStaticMulticastStaticEgressPorts PortList,
 dot1qStaticMulticastForbiddenEgressPorts PortList,
 dot1qStaticMulticastStatus INTEGER
 }

dot1qStaticMulticastAddress OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The destination MAC address in a frame to which this entry’s filtering information applies. This object must take the value of a Multicast or Broadcast address."
::= { dot1qStaticMulticastEntry 1 }

dot1qStaticMulticastReceivePort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Either the value ‘0’, or the port number of the port from which a frame must be received in order for this entry’s filtering information to apply. A value of zero indicates that this entry applies on all ports of the device for which there is no other applicable entry."
::= { dot1qStaticMulticastEntry 2 }

dot1qStaticMulticastStaticEgressPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The set of ports to which frames received from a
specific port and destined for a specific Multicast or
Broadcast MAC address must be forwarded, regardless of
any dynamic information e.g. from GMRP. A port may not
be added in this set if it is already a member of the
set of ports in dot1qStaticMulticastForbiddenEgressPorts.
The default value of this object is a string of ones of
appropriate length."
::= { dot1qStaticMulticastEntry 3 }

dot1qStaticMulticastForbiddenEgressPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The set of ports to which frames received from a
specific port and destined for a specific Multicast or
Broadcast MAC address must not be forwarded, regardless
of any dynamic information e.g. from GMRP. A port may
not be added in this set if it is already a member of the
set of ports in dot1qStaticMulticastStaticEgressPorts.
The default value of this object is a string of zeros of
appropriate length."
::= { dot1qStaticMulticastEntry 4 }

dot1qStaticMulticastStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 invalid(2),
 permanent(3),
 deleteOnReset(4),
 deleteOnTimeout(5)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object indicates the status of this entry.
other(1) - this entry is currently in use but
the conditions under which it will remain
so differ from the following values.
invalid(2) - writing this value to the object
removes the corresponding entry.
permanent(3) - this entry is currently in use
and will remain so after the next reset of
the bridge."
deleteOnReset(4) - this entry is currently in use and will remain so until the next reset of the bridge.
deleteOnTimeout(5) - this entry is currently in use and will remain so until it is aged out."
DEFVAL { permanent }
 ::= { dot1qStaticMulticastEntry 5 }

-- The Current VLAN Database
-- ---

dot1qVlanNumDeletes OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times a VLAN entry has been deleted from the dot1qVlanCurrentTable (for any reason). If an entry is deleted, then inserted, and then deleted, this counter will be incremented by 2."
 ::= { dot1qVlan 1 }

dot1qVlanCurrentTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dot1qVlanCurrentEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table containing current configuration information for each VLAN currently configured into the device by (local or network) management, or dynamically created as a result of GVRP requests received."
 ::= { dot1qVlan 2 }

dot1qVlanCurrentEntry OBJECT-TYPE
 SYNTAX Dot1qVlanCurrentEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information for a VLAN configured into the device by (local or network) management, or dynamically created as a result of GVRP requests received."
 INDEX { dot1qVlanTimeMark, dot1qVlanIndex }
 ::= { dot1qVlanCurrentTable 1 }
Dot1qVlanCurrentEntry ::= SEQUENCE {
 dot1qVlanTimeMark TimeFilter,
 dot1qVlanIndex VlanIndex,
 dot1qVlanFdbId Unsigned32,
 dot1qVlanCurrentEgressPorts PortList,
 dot1qVlanCurrentUntaggedPorts PortList,
 dot1qVlanStatus INTEGER,
 dot1qVlanCreationTime TimeTicks
}

dot1qVlanTimeMark OBJECT-TYPE
SYNTAX TimeFilter
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A TimeFilter for this entry. See the TimeFilter textual convention to see how this works."
::= { dot1qVlanCurrentEntry 1 }

dot1qVlanIndex OBJECT-TYPE
SYNTAX VlanIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The VLAN-ID or other identifier refering to this VLAN."
::= { dot1qVlanCurrentEntry 2 }

dot1qVlanFdbId OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The Filtering Database used by this VLAN. This is one of the dot1qFdbId values in the dot1qFdbTable. This value is allocated automatically by the device whenever the VLAN is created: either dynamically by GVRP, or by
management, in dot1qVlanStaticTable. Allocation of this value follows the learning constraints defined for this VLAN in dot1qLearningConstraintsTable.

::= { dot1qVlanCurrentEntry 3 }

dot1qVlanCurrentEgressPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The set of ports which are transmitting traffic for this VLAN as either tagged or untagged frames."
REFERENCE
"IEEE 802.1Q/D11 Section 12.10.2.1"
::= { dot1qVlanCurrentEntry 4 }

dot1qVlanCurrentUntaggedPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The set of ports which are transmitting traffic for this VLAN as untagged frames."
REFERENCE
"IEEE 802.1Q/D11 Section 12.10.2.1"
::= { dot1qVlanCurrentEntry 5 }

dot1qVlanStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 permanent(2),
 dynamicGvrp(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the status of this entry.
other(1) - this entry is currently in use but the conditions under which it will remain so differ from the following values.
permanent(2) - this entry, corresponding to an entry in dot1qVlanStaticTable, is currently in use and will remain so after the next reset of the device. The port lists for this entry include ports from the equivalent dot1qVlanStaticTable entry and ports learnt dynamically.
dynamicGvrp(3) - this entry is currently in use..."
and will remain so until removed by GVRP. There is no static entry for this VLAN and it will be removed when the last port leaves the VLAN.

\[::= \{ \text{dot1qVlanCurrentEntry} 6 \} \]

dot1qVlanCreationTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of sysUpTime when this VLAN was created."

\[::= \{ \text{dot1qVlanCurrentEntry} 7 \} \]

-- ---
-- The Static VLAN Database
-- ---

dot1qVlanStaticTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qVlanStaticEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table containing static configuration information for each VLAN configured into the device by (local or network) management. All entries are permanent and will be restored after the device is reset."

\[::= \{ \text{dot1qVlan} 3 \} \]

dot1qVlanStaticEntry OBJECT-TYPE
SYNTAX Dot1qVlanStaticEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Static information for a VLAN configured into the device by (local or network) management."

INDEX { dot1qVlanIndex }

\[::= \{ \text{dot1qVlanStaticTable} 1 \} \]

Dot1qVlanStaticEntry ::=
SEQUENCE {
 dot1qVlanStaticName
 SnmpAdminString,
 dot1qVlanStaticEgressPorts
 PortList,
 dot1qVlanForbiddenEgressPorts
 PortList,
}
dot1qVlanStaticUntaggedPorts
 PortList,
 dot1qVlanStaticRowStatus
 RowStatus
}

dot1qVlanStaticName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-create
STATUS current
DESCRIPTION "An administratively assigned string, which may be used to identify the VLAN."
REFERENCE "IEEE 802.1Q/D11 Section 12.10.2.1"
::= { dot1qVlanStaticEntry 1 }

dot1qVlanStaticEgressPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The set of ports which are permanently assigned to the egress list for this VLAN by management. Changes to a bit in this object affect the per-port per-VLAN Registrar control for Registration Fixed for the relevant GVRP state machine on each port. A port may not be added in this set if it is already a member of the set of ports in dot1qVlanForbiddenEgressPorts. The default value of this object is a string of zeros of appropriate length, indicating not fixed."
REFERENCE "IEEE 802.1Q/D11 Section 12.7.7.3, 11.2.3.2.3"
::= { dot1qVlanStaticEntry 2 }

dot1qVlanForbiddenEgressPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The set of ports which are prohibited by management from being included in the egress list for this VLAN. Changes to this object that cause a port to be included or excluded affect the per-port per-VLAN Registrar
control for Registration Forbidden for the relevant GVRP
state machine on each port. A port may not be added in
this set if it is already a member of the set of ports
in dot1qVlanStaticEgressPorts. The default value of
this object is a string of zeros of appropriate length,
excluding all ports from the forbidden set.

REFERENCE
"IEEE 802.1Q/D11 Section 12.7.7.3, 11.2.3.2.3"
::= { dot1qVlanStaticEntry 3 }

dot1qVlanStaticUntaggedPorts OBJECT-TYPE
SYNTAX PortList
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The set of ports which should transmit egress packets
for this VLAN as untagged. The default value of this
object for the default VLAN (dot1qVlanIndex = 1) is a string
of appropriate length including all ports. There is no
specified default for other VLANs. If a device agent cannot
support the set of ports being set then it will reject the
set operation with an error. An example might be if a
manager attempts to set more than one VLAN to be untagged
on egress where the device does not support this IEEE 802.1Q
option."
REFERENCE
"IEEE 802.1Q/D11 Section 12.10.2.1"
::= { dot1qVlanStaticEntry 4 }

dot1qVlanStaticRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates the status of this entry."
::= { dot1qVlanStaticEntry 5 }

dot1qNextFreeLocalVlanIndex OBJECT-TYPE
SYNTAX INTEGER (0|4096..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The next available value for dot1qVlanIndex of a local
VLAN entry in dot1qVlanStaticTable. This will report
values >=4096 if a new Local VLAN may be created or else
the value 0 if this is not possible."
A row creation operation in this table for an entry with a local VlanIndex value may fail if the current value of this object is not used as the index. Even if the value read is used, there is no guarantee that it will still be the valid index when the create operation is attempted - another manager may have already got in during the intervening time interval. In this case, dot1qNextFreeLocalVlanIndex should be re-read and the creation re-tried with the new value.

This value will automatically change when the current value is used to create a new row.

::= { dot1qVlan 4 }

The VLAN Port Configuration Table

dot1qPortVlanTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qPortVlanEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing per port control and status information for VLAN configuration in the device."
::= { dot1qVlan 5 }

dot1qPortVlanEntry OBJECT-TYPE
SYNTAX Dot1qPortVlanEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information controlling VLAN configuration for a port on the device. This is indexed by dot1dBasePort."
AUGMENTS { dot1dBasePortEntry }
::= { dot1qPortVlanTable 1 }

Dot1qPortVlanEntry ::= SEQUENCE {
 dot1qPvid
 VlanIndex,
 dot1qPortAcceptableFrameTypes
 INTEGER,
 dot1qPortIngressFiltering
 TruthValue,
 dot1qPortGvrpStatus
 EnabledStatus,
 ...}
dot1qPortGvrpFailedRegistrations
 Counter32,
dot1qPortGvrpLastPduOrigin
 MacAddress
}

dot1qPvid OBJECT-TYPE
SYNTAX VlanIndex
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The PVID, the VLAN ID assigned to untagged frames or Priority-Tagged frames received on this port."
REFERENCE "IEEE 802.1Q/D11 Section 12.10.1.1"
DEFVAL { 1 }
::= { dot1qPortVlanEntry 1 }

dot1qPortAcceptableFrameTypes OBJECT-TYPE
SYNTAX INTEGER {
 admitAll(1),
 admitOnlyVlanTagged(2)
 }
MAX-ACCESS read-write
STATUS current
DESCRIPTION "When this is admitOnlyVlanTagged(2) the device will discard untagged frames or Priority-Tagged frames received on this port. When admitAll(1), untagged frames or Priority-Tagged frames received on this port will be accepted and assigned to the PVID for this port.

This control does not affect VLAN independent BPDU frames, such as GVRP and STP. It does affect VLAN dependent BPDU frames, such as GMRP."
REFERENCE "IEEE 802.1Q/D11 Section 12.10.1.3"
DEFVAL { admitAll }
::= { dot1qPortVlanEntry 2 }

dot1qPortIngressFiltering OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"When this is true(1) the device will discard incoming frames for VLANs which do not include this Port in its Member set. When false(2), the port will accept all incoming frames.

This control does not affect VLAN independent BPDU frames, such as GVRP and STP. It does affect VLAN dependent BPDU frames, such as GMRP."

REFERENCE
"IEEE 802.1Q/D11 Section 12.10.1.4"

DEFVAL { false }
::= { dot1qPortVlanEntry 3 }

dot1qPortGvrpStatus OBJECT-TYPE
SYNTAX EnabledStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The state of GVRP operation on this port. The value enabled(1) indicates that GVRP is enabled on this port, as long as dot1qGvrpStatus is also enabled for this device. When disabled(2) but dot1qGvrpStatus is still enabled for the device, GVRP is disabled on this port: any GVRP packets received will be silently discarded and no GVRP registrations will be propagated from other ports. This object affects all GVRP Applicant and Registrar state machines on this port. A transition from disabled(2) to enabled(1) will cause a reset of all GVRP state machines on this port."

DEFVAL { enabled }
::= { dot1qPortVlanEntry 4 }

dot1qPortGvrpFailedRegistrations OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of failed GVRP registrations, for any reason, on this port."
::= { dot1qPortVlanEntry 5 }

dot1qPortGvrpLastPduOrigin OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Source MAC Address of the last GVRP message received on this port."
::= { dot1qPortVlanEntry 6 }

-- ---
-- Per port VLAN Statistics Table
-- ---

dot1qPortVlanStatisticsTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qPortVlanStatisticsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing per-port, per-VLAN statistics for traffic received. Separate objects are provided for both the most-significant and least-significant bits of statistics counters for ports that are associated with this transparent bridge. The most-significant bit objects are only required on high capacity interfaces, as defined in the conformance clauses for these objects. This mechanism is provided as a way to read 64-bit counters for agents which support only SNMPv1. Note that the reporting of most-significant and least-significant counter bits separately runs the risk of missing an overflow of the lower bits in the interval between sampling. The manager must be aware of this possibility, even within the same varbindlist, when interpreting the results of a request or asynchronous notification."
::= { dot1qVlan 6 }

dot1qPortVlanStatisticsEntry OBJECT-TYPE
SYNTAX Dot1qPortVlanStatisticsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Traffic statistics for a VLAN on an interface."
INDEX { dot1dBasePort, dot1qVlanIndex }
::= { dot1qPortVlanStatisticsTable 1 }

Dot1qPortVlanStatisticsEntry ::= SEQUENCE {
dot1qTpVlanPortInFrames
 Counter32,
dot1qTpVlanPortOutFrames
 Counter32,
dot1qTpVlanPortInDiscards
 Counter32,
dot1qTpVlanPortInOverflowFrames
 Counter32,
dot1qTpVlanPortOutOverflowFrames
 Counter32,
dot1qTpVlanPortInOverflowDiscards
 Counter32
}

dot1qTpVlanPortInFrames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of valid frames received by this port from
 its segment which were classified as belonging to this
 VLAN. Note that a frame received on this port is
 counted by this object if and only if it is for a
 protocol being processed by the local forwarding process
 for this VLAN. This object includes received bridge
 management frames classified as belonging to this VLAN
 (e.g. GMRP, but not GVRP or STP)."
 REFERENCE
 "IEEE 802.1Q/D11 Section 12.6.1.1.3(a)"
 ::= { dot1qPortVlanStatisticsEntry 1 }

dot1qTpVlanPortOutFrames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of valid frames transmitted by this port to
 its segment from the local forwarding process for this
 VLAN. This includes bridge management frames originated
 by this device which are classified as belonging to this
 VLAN (e.g. GMRP, but not GVRP or STP)."
 REFERENCE
 "IEEE 802.1Q/D11 Section 12.6.1.1.3(d)"
 ::= { dot1qPortVlanStatisticsEntry 2 }
dot1qTpVlanPortInDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of valid frames received by this port from its segment which were classified as belonging to this VLAN which were discarded due to VLAN related reasons. Specifically, the IEEE 802.1Q counters for Discard Inbound and Discard on Ingress Filtering."
REFERENCE "IEEE 802.1Q/D11 Section 12.6.1.1.3"
 ::= { dot1qPortVlanStatisticsEntry 3 }

dot1qTpVlanPortInOverflowFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of times the associated dot1qTpVlanPortInFrames counter has overflowed."
REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3"
 ::= { dot1qPortVlanStatisticsEntry 4 }

dot1qTpVlanPortOutOverflowFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of times the associated dot1qTpVlanPortOutFrames counter has overflowed."
REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3"
 ::= { dot1qPortVlanStatisticsEntry 5 }

dot1qTpVlanPortInOverflowDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of times the associated dot1qTpVlanPortInDiscards counter has overflowed."
REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3"
 ::= { dot1qPortVlanStatisticsEntry 6 }
dot1qPortVlanHCStatisticsTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qPortVlanHCStatisticsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table containing per port, per VLAN statistics for traffic on high capacity interfaces."
 ::= { dot1qVlan 7 }

Dot1qPortVlanHCStatisticsEntry OBJECT-TYPE
SYNTAX Dot1qPortVlanHCStatisticsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Traffic statistics for a VLAN on a high capacity interface."
INDEX { dot1dBasePort, dot1qVlanIndex }
 ::= { dot1qPortVlanHCStatisticsTable 1 }

Dot1qPortVlanHCStatisticsEntry ::= SEQUENCE {
 dot1qTpVlanPortHCInFrames Counter64,
 dot1qTpVlanPortHCOutFrames Counter64,
 dot1qTpVlanPortHCInDiscards Counter64
}

Dot1qTpVlanPortHCInFrames OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of valid frames received by this port from its segment which were classified as belonging to this VLAN. Note that a frame received on this port is counted by this object if and only if it is for a protocol being processed by the local forwarding process for this VLAN. This object includes received bridge management frames classified as belonging to this VLAN (e.g. GMRP, but not GVRP or STP)."
REFERENCE
 "IEEE 802.1Q/D11 Section 12.6.1.1.3(a)"
 ::= { dot1qPortVlanHCStatisticsEntry 1 }
dot1qTpVlanPortHCOutFrames OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of valid frames transmitted by this port to
 its segment from the local forwarding process for this
 VLAN. This includes bridge management frames originated
 by this device which are classified as belonging to this
 VLAN (e.g. GMRP, but not GVRP or STP)."
REFERENCE
 "IEEE 802.1Q/D11 Section 12.6.1.1.3(d)"
::= { dot1qPortVlanHCStatisticsEntry 2 }

dot1qTpVlanPortHCInDiscards OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of valid frames received by this port from
 its segment which were classified as belonging to this
 VLAN which were discarded due to VLAN related reasons.
 Specifically, the IEEE 802.1Q counters for Discard
 Inbound and Discard on Ingress Filtering."
REFERENCE
 "IEEE 802.1Q/D11 Section 12.6.1.1.3"
::= { dot1qPortVlanHCStatisticsEntry 3 }

-- The VLAN Learning Constraints Table
-- ---

dot1qLearningConstraintsTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1qLearningConstraintsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table containing learning constraints for sets of
 Shared and Independent VLANs."
REFERENCE
 "IEEE 802.1Q/D11 Section 12.10.3.1"
::= { dot1qVlan 8 }

dot1qLearningConstraintsEntry OBJECT-TYPE
SYNTAX Dot1qLearningConstraintsEntry
MAX-ACCESS not-accessible
STATUS current
A learning constraint defined for a VLAN.

INDEX { dot1qConstraintVlan, dot1qConstraintSet }
 ::= { dot1qLearningConstraintsTable 1 }

Dot1qLearningConstraintsEntry ::=
 SEQUENCE {
 dot1qConstraintVlan VlanIndex,
 dot1qConstraintSet INTEGER,
 dot1qConstraintType INTEGER,
 dot1qConstraintStatus RowStatus
 }

dot1qConstraintVlan OBJECT-TYPE
 SYNTAX VlanIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The index of the row in dot1qVlanCurrentTable for the
 VLAN constrained by this entry."
 ::= { dot1qLearningConstraintsEntry 1 }

dot1qConstraintSet OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The identity of the constraint set to which
dot1qConstraintVlan belongs. These values may be chosen
by the management station."
 ::= { dot1qLearningConstraintsEntry 2 }

dot1qConstraintType OBJECT-TYPE
 SYNTAX INTEGER {
 independent(1),
 shared(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The type of constraint this entry defines.
 independent(1) - the VLAN, dot1qConstraintVlan,
 uses an independent filtering database from all
other VLANs in the same set, defined by
 dot1qConstraintSet.
 shared(2) - the VLAN, dot1qConstraintVlan, shares
 the same filtering database as all other VLANs
 in the same set, defined by dot1qConstraintSet.

::= { dot1qLearningConstraintsEntry 3 }

dot1qConstraintStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The status of this entry."

::= { dot1qLearningConstraintsEntry 4 }

dot1qConstraintSetDefault OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "The identity of the constraint set to which a VLAN
 belongs, if there is not an explicit entry for that VLAN
 in dot1qLearningConstraintsTable."

::= { dot1qVlan 9 }

dot1qConstraintTypeDefault OBJECT-TYPE
 SYNTAX INTEGER { independent(1),
 shared(2) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "The type of constraint set to which a VLAN belongs, if
 there is not an explicit entry for that VLAN in
 dot1qLearningConstraintsTable. The types are as defined
 for dot1qConstraintType."

::= { dot1qVlan 10 }
-- -------------------------------
-- IEEE 802.1Q MIB - Conformance Information
-- ---

qBridgeConformance OBJECT IDENTIFIER ::= { qBridgeMIB 2 }

qBridgeGroups OBJECT IDENTIFIER ::= { qBridgeConformance 1 }

qBridgeCompliances OBJECT IDENTIFIER ::= { qBridgeConformance 2 }

-- -------------------------------
-- units of conformance
-- ---

qBridgeBaseGroup OBJECT-GROUP
OBJECTS {
 dot1qVlanVersionNumber,
 dot1qMaxVlanId,
 dot1qMaxSupportedVlans,
 dot1qNumVlans,
 dot1qGvrpStatus
}
STATUS current
DESCRIPTION "A collection of objects providing device level control
and status information for the Virtual LAN bridge
services."
 ::= { qBridgeGroups 1 }

qBridgeFdbUnicastGroup OBJECT-GROUP
OBJECTS {
 dot1qFdbDynamicCount,
 dot1qTpFdbPort,
 dot1qTpFdbStatus
}
STATUS current
DESCRIPTION "A collection of objects providing information about all
unicast addresses, learnt dynamically or statically
configured by management, in each Filtering Database."
 ::= { qBridgeGroups 2 }

qBridgeFdbMulticastGroup OBJECT-GROUP
OBJECTS {
 dot1qTpGroupEgressPorts,
 dot1qTpGroupLearnt
}
STATUS current
DESCRIPTION
"A collection of objects providing information about all multicast addresses, learnt dynamically or statically configured by management, in each Filtering Database."
 ::= { qBridgeGroups 3 }

qBridgeServiceRequirementsGroup OBJECT-GROUP
OBJECTS {
 dot1qForwardAllPorts,
 dot1qForwardAllStaticPorts,
 dot1qForwardAllForbiddenPorts,
 dot1qForwardUnregisteredPorts,
 dot1qForwardUnregisteredStaticPorts,
 dot1qForwardUnregisteredForbiddenPorts
}
STATUS current
DESCRIPTION
"A collection of objects providing information about service requirements, learnt dynamically or statically configured by management, in each Filtering Database."
 ::= { qBridgeGroups 4 }

qBridgeFdbStaticGroup OBJECT-GROUP
OBJECTS {
 dot1qStaticUnicastAllowedToGoTo,
 dot1qStaticUnicastStatus,
 dot1qStaticMulticastStaticEgressPorts,
 dot1qStaticMulticastForbiddenEgressPorts,
 dot1qStaticMulticastStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing information about unicast and multicast addresses statically configured by management, in each Filtering Database or VLAN."
 ::= { qBridgeGroups 5 }

qBridgeVlanGroup OBJECT-GROUP
OBJECTS {
 dot1qVlanNumDeletes,
 dot1qVlanFdbId,
 dot1qVlanCurrentEgressPorts,
 dot1qVlanCurrentUntaggedPorts,
 dot1qVlanStatus,
 dot1qVlanCreationTime
}
STATUS current
DESCRIPTION
"A collection of objects providing information about all VLANs currently configured on this device."
::= { qBridgeGroups 6 }

qBridgeVlanStaticGroup OBJECT-GROUP
OBJECTS {
dot1qVlanStaticName,
dot1qVlanStaticEgressPorts,
dot1qVlanForbiddenEgressPorts,
dot1qVlanStaticUntaggedPorts,
dot1qVlanStaticRowStatus,
dot1qNextFreeLocalVlanIndex
}
STATUS current
DESCRIPTION
"A collection of objects providing information about VLANs statically configured by management."
::= { qBridgeGroups 7 }

qBridgePortGroup OBJECT-GROUP
OBJECTS {
dot1qPvid,
dot1qPortAcceptableFrameTypes,
dot1qPortIngressFiltering,
dot1qPortGvrpStatus,
dot1qPortGvrpFailedRegistrations,
dot1qPortGvrpLastPduOrigin
}
STATUS current
DESCRIPTION
"A collection of objects providing port level VLAN control and status information for all ports."
::= { qBridgeGroups 8 }

qBridgeVlanStatisticsGroup OBJECT-GROUP
OBJECTS {
dot1qTpVlanPortInFrames,
dot1qTpVlanPortOutFrames,
dot1qTpVlanPortInDiscards
}
STATUS current
DESCRIPTION
"A collection of objects providing per-port packet statistics for all VLANs currently configured on this device."
::= { qBridgeGroups 9 }
qBridgeVlanStatisticsOverflowGroup OBJECT-GROUP
OBJECTS {
 dot1qTpVlanPortInOverflowFrames,
 dot1qTpVlanPortOutOverflowFrames,
 dot1qTpVlanPortInOverflowDiscards
}
STATUS current
DESCRIPTION
 "A collection of objects providing overflow counters for per-port packet statistics for all VLANs currently configured on this device for high capacity interfaces, defined as those that have the value of the corresponding instance of ifSpeed greater than 650,000,000 bits/second."
 ::= { qBridgeGroups 10 }

qBridgeVlanHCStatisticsGroup OBJECT-GROUP
OBJECTS {
 dot1qTpVlanPortHCInFrames,
 dot1qTpVlanPortHCOutFrames,
 dot1qTpVlanPortHCInDiscards
}
STATUS current
DESCRIPTION
 "A collection of objects providing per-port packet statistics for all VLANs currently configured on this device for high capacity interfaces, defined as those that have the value of the corresponding instance of ifSpeed greater than 650,000,000 bits/second."
 ::= { qBridgeGroups 11 }

qBridgeLearningConstraintsGroup OBJECT-GROUP
OBJECTS {
 dot1qConstraintType,
 dot1qConstraintStatus
}
STATUS current
DESCRIPTION
 "A collection of objects defining the Filtering Database constraints all VLANs have with each other."
 ::= { qBridgeGroups 12 }

qBridgeLearningConstraintDefaultGroup OBJECT-GROUP
OBJECTS {
 dot1qConstraintSetDefault,
 dot1qConstraintTypeDefault
}
A collection of objects defining the default Filtering Database constraints for VLANs which have no specific constraints defined.

 ::= { qBridgeGroups 13 }
GROUP qBridgeVlanStatisticsGroup
DESCRIPTION
"This group is optional as there may be significant implementation cost associated with its support."

GROUP qBridgeVlanStatisticsOverflowGroup
DESCRIPTION
"This group is optional as there may be significant implementation cost associated with its support. It is most relevant for high capacity interfaces where the SNMP agent supports only SNMPv1."

GROUP qBridgeVlanHCStatisticsGroup
DESCRIPTION
"This group is optional as there may be significant implementation cost associated with its support. It is most relevant for high capacity interfaces."

GROUP qBridgeLearningConstraintsGroup
DESCRIPTION
"This group is mandatory for devices implementing both Independent VLAN Learning (IVL) and Shared VLAN Learning (SVL) modes of operation of the filtering database, as defined by IEEE 802.1Q."

GROUP qBridgeLearningConstraintDefaultGroup
DESCRIPTION
"This group is mandatory for devices implementing both Independent VLAN Learning (IVL) and Shared VLAN Learning (SVL) modes of operation of the filtering database, as defined by IEEE 802.1Q."

OBJECT dot1qPortAcceptableFrameTypes
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required as this is an optional capability in IEEE 802.1Q."

OBJECT dot1qPortIngressFiltering
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required as this is an optional capability in IEEE 802.1Q."
OBJECT dot1qConstraintSetDefault
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required as this is an optional
capability in IEEE 802.1Q."

OBJECT dot1qConstraintTypeDefault
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required as this is an optional
capability in IEEE 802.1Q."

 ::= { qBridgeCompliances 1 }

END

6. Acknowledgments

This document expands upon previous work which resulted in the
original bridge MIB [BRIDGEMIB].

Much of the groundwork for this document was performed by the IEEE
802.1 working group during the definition of the IEEE 802.1D updates
[802.1D] and IEEE 802.1Q [802.1Q].

The authors wish to thank the members of the Bridge Working Group and
David Harrington in particular for their many comments and
suggestions which improved this effort.

7. Security Considerations

There are a number of management objects defined in this MIB that
have a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations.

SNMPv1 by itself is not a secure environment. Even if the network
itself is secure (for example by using IPSec), even then, there is no
control as to who on the secure network is allowed to access and
GET/SET (read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security
features as provided by the SNMPv3 framework. Specifically, the use
of the User-based Security Model [USM] and the View-based Access
Control Model [VACM] is recommended.
It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

8. References

[ARCH]

[V1PROTO]

[V1SMI]

[V1CONCISE]

[V1TRAPS]

[V2SMI]

[V2TC]

[V2CONF]

[V2COMMUNITY]
[V2TRANS]

[V2PROTO]

[V3INTRO]

[V3MPC]

[V3USM]

[V3APPS]

[V3VACM]

[ASN1]

[ASN1BER]

[802.1D-ORIG]
ISO/IEC 10038, ANSI/IEEE Std 802.1D-1993 "MAC Bridges".

9. Authors’ Addresses

Les Bell
3Com Europe Limited
3Com Centre, Boundary Way
Hemel Hempstead
Herts. HP2 7YU
UK
Phone: +44 1442 438025
EMail: Les_Bell@3Com.com

Andrew Smith
Extreme Networks
3585 Monroe St.
Santa Clara, CA 95051
USA
Phone: +1 408 579 2821
EMail: andrew@extremenetworks.com

Paul Langille
Newbridge Networks
5 Corporate Drive
Andover, MA 01810
USA
Phone: +1 978 691 4665
EMail: langille@newbridge.com

Anil Rijhsinghani
Cabletron Systems
50 Minuteman Road
Andover, MA 01810
USA
Phone: +1 978 684 1295
EMail: anil@cabletron.com

Keith McCloghrie
cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
Phone: +1 408 526 5260
EMail: kzm@cisco.com
10. Intellectual Property

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.
11. Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.