Definitions of Managed Objects
for Frame Relay Service

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This memo defines an extension to the Management Information Base (MIB) for use with network management protocols in Transmission Control Protocol/Internet Protocol-based (TCP/IP) internets. In particular, it defines objects for managing the frame relay service.

This document obsoletes RFC 1604.

Table of Contents

1 The SNMP Management Framework 2
2 Overview .. 3
2.1 Scope of MIB .. 3
2.2 Transiting Multiple Frame Relay Networks 5
2.3 Access Control .. 5
2.4 Frame Relay Service MIB Terminology 6
2.5 Relation to Other MIBs .. 8
2.5.1 System Group ... 8
2.5.2 Interfaces Table (ifTable, ifXtable) 8
2.5.3 Stack Table for DS1/E1 Environment 12
2.5.4 Stack Table for V.35 Environments 14
2.5.5 The Frame Relay/ATM PVC Service Interworking MIB 14
2.6 Textual Convention Change 15
3 Object Definitions ... 15
3.1 The Frame Relay Service Logical Port 17
1. The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2571 [1].

- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in STD 58, RFC 2578 [5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7].

- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574 [12].

- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13].

- A set of fundamental applications described in RFC 2573 [14] and the view-based access control mechanism described in RFC 2575 [15].
A more detailed introduction to the current SNMP Management Framework can be found in RFC 2570 [16].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.

This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.

2. Overview

These objects are used to manage a frame relay Service. At present, this applies to the following value of the ifType variable in the IF-MIB [26]:

\[
\text{frameRelayService (44)}
\]

This section provides an overview and background of how to use this MIB and other potential MIBs to manage a frame relay service.

2.1. Scope of MIB

The Frame Relay Service MIB supports Customer Network Management (CNM) of a frame relay network service. Through the use of this and other related MIBs, a frame relay service customer’s NMS can monitor the customer’s UNI/NNI logical ports and PVCs. It provides customers with access to configuration data, performance monitoring information, and fault detection for the delivered frame relay service. As an option, an SNMP agent supporting the Frame Relay Service MIB may allow customer-initiated PVC management operations such as creation, deletion, modification, activation, and deactivation of individual PVCs. However, internal aspects of the network (e.g., switching elements, line cards, and network routing tables) are beyond the scope of this MIB.

The Frame Relay Service MIB models all interfaces and PVCs delivered by a frame relay service within a single virtual SNMP system for the purpose of comprehensively representing the customer’s frame relay service. The customer’s interfaces and PVCs may physically exist on one or more devices within the network topology. An SNMP agent
providing support for the Frame Relay Service MIB as well as other appropriate MIBs to model a single virtual frame relay network service is referred to as a Frame Relay Service (FRS) agent. Internal communication mechanisms between the FRS agent and individual devices within the frame relay network delivering the service are implementation specific and beyond the scope of this MIB.

The customer’s NMS will typically access the SNMP agent implementing the Frame Relay Service MIB over a frame relay permanent virtual connection (PVC). SNMP access over a frame relay PVC is achieved through the use of SNMP over UDP over IP encapsulated in Frame Relay according to STD 55, RFC2427 and ITU X.36 Annex D [23]. Alternate access mechanisms and SNMP agent implementations are possible.

This MIB will NOT be implemented on user equipment (e.g., DTE). Such devices are managed using the Frame Relay DTE MIB (RFC2115[18]). However, concentrators may use the Frame Relay Service MIB instead of the Frame Relay DTE MIB.

This MIB does not define managed objects for the physical layer. Existing physical layer MIBs (e.g., DS1 MIB) and Interface MIB will be used as needed in FRS Agent implementations.

This MIB supports frame relay PVCs. This MIB may be extended at a later time to handle frame relay SVCs.

A switch implementation may support this MIB for the purpose of configuration and control of the frame relay service beyond the scope of traditional customer network management applications. A number of objects (e.g. frLportTypeAdmin) support administrative actions that impact the operation of frame relay switch equipment in the network. This is reflected in the differences between the two MIB compliance modules:

- the frame relay service compliance module (frnetservCompliance), and
- the frame relay switch compliance module (frnetSwitchCompliance).

The frame relay service compliance module does not support the administrative control objects used for switch management.
2.2. Transiting Multiple Frame Relay Networks

This MIB is only used to manage a single frame relay service offering from one network service provider. Therefore, if a customer PVC traverses multiple networks, then the customer must poll a different FRS agent within each frame relay network to retrieve the end-to-end view of service.

Figure 1 illustrates a customer ("User B") NMS accessing FRS agents in three different frame relay networks (I, J, and K).

```
+-------------------------------------+
| Customer Network Management Station |
| (SNMP based)                        |
+-------------------------------------+

^              ^               ^
|              |               |
| UNI          | NNI            | NNI            | UNI          |

Originating FR Network I FR Network J FR Network K Terminating
+--------+-------------+-------------+-------------+--------+

NNI = Network-to Network Interface
UNI = User-to-Network Interface
```

Figure 1, Multi-network PVC

2.3. Access Control

A frame relay network is shared amongst many frame relay subscribers. Each subscriber will only have access to their information (e.g., information with respect to their interfaces and PVCs). The FRS agent should provide instance level granularity for MIB views.
2.4. Frame Relay Service MIB Terminology

Access Channel – An access channel generically refers to the DS1/E1 or DS3/E3-based UNI access channel or NNI access channel across which frame relay data transits. An access channel is the access pathway for a single stream of user data.

Within a given DS1 line, an access channel can denote any one of the following:

- Unchannelized DS1 – the entire DS1 line is considered an access channel. Each access channel is comprised of 24 DS0 time slots.
- Channelized DS1 – an access channel is any one of 24 channels. Each access channel is comprised of a single DS0 time slot.
- Fractional DS1 – an access channel is a grouping of NxDS0 time slots (NX56/64 Kbps, where N = 1-23 DS0 time slots per Fractional DS1 Access Channel) that may be assigned in consecutive or non-consecutive order.

Within a given E1 line, a channel can denote any one of the following:

- Unchannelized E1 – the entire E1 line is considered a single access channel. Each access channel is comprised of 31 E1 time slots.
- Channelized E1 – an access channel is any one of 31 channels. Each access channel is comprised of a single E1 time slot.
- Fractional E1 – an access channel is a grouping of N E1 time slots (NX64 Kbps, where N = 1-30 E1 time slots per FE1 access channel) that may be assigned in consecutive or non-consecutive order.

Within a given unformatted line, the entire unformatted line is considered an access channel. Examples include RS-232, V.35, V.36 and X.21 (non-switched), and unframed E1 (G.703 without G.704).

Access Rate – The data rate of the access channel, expressed in bits/second. The speed of the user access channel determines how rapidly the end user can inject data into the network.

Bc – The Committed Burst Size (Bc) is the maximum amount of subscriber data (expressed in bits) that the network agrees to transfer, under normal conditions, during a time interval Tc.
Be - The Excess Burst Size (Be) is the maximum amount of subscriber data (expressed in bits) in excess of Bc that the network will attempt to deliver during the time interval Tc. This data (Be) is delivered in general with a lower probability than Bc.

CIR - The Committed Information Rate (CIR) is the subscriber data rate (expressed in bits/second) that the network commits to deliver under normal network conditions. CIR is averaged over the time interval Tc (CIR = Bc/Tc).

DLCI - Data Link Connection Identifier

Logical Port - This term is used to model the frame relay "interface" on a device.

NNI - Network to Network Interface

Permanent Virtual Connection (PVC) - A virtual connection that has its end-points and bearer capabilities defined at subscription time.

Time slot (E1) - An octet within the 256-bit information field in each E1 frame is defined as a time slot. Time slots are position sensitive within the 256-bit information field. Fractional E1 service is provided in contiguous or non-contiguous time slot increments.

Time slot (DS0) - An octet within the 192-bit information field in each DS1 frame is defined as a time slot. Time slots are position sensitive within the 192-bit information field. Fractional DS1 service is provided in contiguous or non-contiguous time slot increments.

UNI - User to Network Interface

N391 - Full status (status of all PVCs) polling counter

N392 - Error threshold

N393 - Monitored events count

T391 - Link integrity verification polling timer

T392 - Polling verification timer

nT3 - Status enquiry timer

nN3 - Maximum status enquiry counter
2.5. Relation to Other MIBs

2.5.1. System Group

Use the System Group of the SNMPv2-MIB [27] to describe the Frame Relay Service (FRS) agent. The FRS agent may be monitoring many frame relay devices in one network. The System Group does not describe frame relay devices monitored by the FRS agent.

sysDescr: ASCII string describing the FRS agent. Can be up to 255 characters long. This field is generally used to indicate the network providers identification and type of service offered.

sysObjectID: Unique OBJECT IDENTIFIER (OID) for the FRS agent.

sysUpTime: Clock in the FRS agent; TimeTicks in 1/100s of a second. Elapsed type since the FRS agent came on line.

sysContact: Contact for the FRS agent. ASCII string of up to 255 characters.

sysName: Domain name of the FRS agent, for example, acme.com

sysLocation: Location of the FRS agent. ASCII string of up to 255 characters.

sysServices: Services of the managed device. The value "2", which implies that the frame relay network is providing a subnetwork level service, is recommended.

2.5.2. Interfaces Table (ifTable, ifXtable)

This specifies how the Interfaces Group defined in the IF MIB [26] shall be used for the management of frame relay based interfaces, and in conjunction with the Frame Relay Service MIB module. This memo assumes the interpretation of the evolution of the Interfaces group to be in accordance with: "The interfaces table (ifTable) contains information on the managed resource’s interfaces. Each sub-layer below the internetwork layer of a network interface is considered an interface." Thus, the ifTable allows the following frame relay-based interfaces to be represented as table entries:
Frame relay interfaces in equipment (e.g., switches, routers or networks) supporting frame relay. This level is concerned with generic frame counts and not with individual virtual connections.

In accordance with the guidelines of ifTable, frame counts per virtual connection are not covered by ifTable, and are considered interface specific and covered in the Frame Relay Service MIB module. In order to interrelate the ifEntries properly, the Interfaces Stack Group shall be supported.

Some specific interpretations of ifTable for frame relay follow.

<table>
<thead>
<tr>
<th>Object</th>
<th>Use for the generic Frame Relay layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifIndex</td>
<td>Each frame relay port is represented by an ifEntry.</td>
</tr>
<tr>
<td>ifDescr</td>
<td>Description of the frame relay interface. ASCII string describing the UNI/NNI logical port. Can be up to 255 characters long.</td>
</tr>
<tr>
<td>ifType</td>
<td>The value allocated for Frame Relay Service is equal to 44.</td>
</tr>
<tr>
<td>ifMtu</td>
<td>Set to maximum frame size in octets for this frame relay logical port.</td>
</tr>
<tr>
<td>ifSpeed</td>
<td>Peak bandwidth in bits per second available for use. This could be the speed of the logical port and not the access rate. Actual user information transfer rate (i.e., access rate) of the UNI or NNI logical port in bits per second (this is not the clocking speed). For example, it is 1,536,000 bits per second for a DS1-based UNI/NNI logical port and 1,984,000 bits per second for an E1-based UNI/NNI logical port.</td>
</tr>
<tr>
<td>ifPhysAddress</td>
<td>The primary address for this logical port assigned by the frame relay interface provider. An octet string of zero length if no address is used for this logical port.</td>
</tr>
<tr>
<td>ifAdminStatus</td>
<td>The desired administrative status of the frame relay logical port.</td>
</tr>
</tbody>
</table>
ifOperStatus: The current operational status of the Frame Relay UNI or NNI logical port.

ifLastChange: The value of sysUpTime at the last re-initialization of the logical port. The value of sysUpTime at the time the logical port entered its current operational state. If the current state was entered prior to the last re-initialization of the local network management subsystem, then this object contains a zero value.

ifInOctets: The number of received octets. This counter only counts octets from the beginning of the frame relay header field to the end of user data.

ifInUcastPkts: The number of received unerrored, unicast frames.

ifInDiscards: The number of frames discarded. Specifically, frames discarded due to ingress buffer congestion and traffic policing.

ifInErrors: The number of frames that are discarded because of an error. Specifically, frames that are too long or too short, frames that are not a multiple of 8 bits in length, frames with an invalid or unrecognized DLCI, frames with an abort sequence, frames with improper flag delimitation, and frames that fail FCS.

ifInUnknownProtos: The number of packets discarded because of an unknown or unsupported protocol. For Frame Relay Service interfaces, this counter will always be zero.

ifOutOctets: The number of transmitted octets. This counter only counts octets from the beginning of the frame relay header field to the end of user data.

ifOutUcastPkts: The number of unerrored, unicast frames sent.

ifOutDiscards: The number of frames discarded in the egress direction. Possible reasons are as follows: policing, congestion.
ifOutErrors

The number of frames discarded in the egress direction because of an error. Specifically, frames that are aborted due to a transmitter underrun.

ifName

This variable is not applicable for Frame Relay Service interfaces, therefore, this variable contains a zero-length string.

ifInMulticastPkts

The number of received unerrored, multicast frames.

ifInBroadcastPkts

This variable is not applicable for Frame Relay Service interfaces, therefore, this counter is always zero.

ifOutMulticastPkts

The number of sent unerrored, multicast frames.

ifOutBroadcastPkts

This variable is not applicable for Frame Relay Service interfaces, therefore, this counter is always zero.

ifHCInOctets

Only used for DS3-based (and greater) Frame Relay logical ports. The number of received octets. This counter only counts octets from the beginning of the frame relay header field to the end of user data.

ifHCOutOctets

Only used for DS3-based (and greater) Frame Relay logical ports. The number of transmitted octets. This counter only counts octets from the beginning of the frame relay header field to the end of user data.

ifLinkUpDownTrapEnable

Set to true(1). It is recommended that the underlying physical layer notifications be disabled since both are not required. Notifications are enabled at the frame relay service layer specifically because PVC notifications are not to be sent if the frame relay interface fails. Without a linkUp/linkDown notification, the management station would receive no notification of the failure.
ifHighSpeed

Set to the user data rate of the frame relay logical port in millions of bits per second. If the user data rate is less than 1 Mbps, then this value is zero.

ifPromiscuousMode

Set to false(2).

ifConnectorPresent

Set to false(2).

Frame relay network service interfaces support the Interface Stack Group. Frame relay network service interfaces do not support any other groups or objects in the Interfaces group of the IF MIB.

2.5.3. Stack Table for DS1/E1 Environment

This section describes by example how to use ifStackTable to represent the relationship of frame relay service to ds0 and ds0Bundles with ds1 interfaces [20].

Example: A frame relay service is being carried on 4 ds0s of a ds1.

```
+---------------------+
| Frame Relay Service |
+---------------------+
    |                   |
    | ds0Bundle         |
    +---------------------+
        |                 |                 |
        | ds0 | ds0 | ds0 | ds0 |
        +-----+-----+-----+-----+
        |                 |                 |
        | ds1          |
        +-------------+

The assignment of the index values could for example be:

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FrameRelayService (type 44)</td>
</tr>
<tr>
<td>2</td>
<td>ds0Bundle (type 82)</td>
</tr>
<tr>
<td>3</td>
<td>ds0 #1 (type 81)</td>
</tr>
<tr>
<td>4</td>
<td>ds0 #2 (type 81)</td>
</tr>
<tr>
<td>5</td>
<td>ds0 #3 (type 81)</td>
</tr>
<tr>
<td>6</td>
<td>ds0 #4 (type 81)</td>
</tr>
<tr>
<td>7</td>
<td>ds1 (type 18)</td>
</tr>
</tbody>
</table>
```
The ifStackTable is then used to show the relationships between the various interfaces.

ifStackTable Entries

<table>
<thead>
<tr>
<th>HigherLayer</th>
<th>LowerLayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

In the case where the frame relay service is using a single ds0, then the ds0Bundle is not required.

```
+---------------------+
| Frame Relay Service |
+---------------------+
        |  
        +-----+
          |ds0|
        +-----+
        |  
        +---------------------+
          | ds1     |
        +---------------------+
```

The assignment of the index values could for example be:

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FrameRelayService (type 44)</td>
</tr>
<tr>
<td>2</td>
<td>ds0 (type 81)</td>
</tr>
<tr>
<td>3</td>
<td>ds1 (type 18)</td>
</tr>
</tbody>
</table>

The ifStackTable is then used to show the relationships between the various interfaces.
ifStackTable Entries

<table>
<thead>
<tr>
<th>HigherLayer</th>
<th>LowerLayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

2.5.4. Stack Table for V.35 Environments

This section describes by example how to use ifStackTable to represent the relationship of frame relay service with V.35 interfaces.

```
+---------------------+
| Frame Relay Service |
+---------------------+
| v35                 |
+---------------------+
```

An example of index values in this case could be:

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FrameRelayService (type 44)</td>
</tr>
<tr>
<td>2</td>
<td>v35 (type 33)</td>
</tr>
</tbody>
</table>

Note type 33 (RS232-like MIB) is used instead of type 45 (V.35). V35 does not pertain to this environment.

The ifStackTable is then used to show the relationships between the various interfaces.

ifStackTable Entries

<table>
<thead>
<tr>
<th>HigherLayer</th>
<th>LowerLayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

2.5.5. The Frame Relay/ATM PVC Service Interworking MIB

Connections between two frame relay endpoints are represented with an entry in the frPVCConnectTable of this MIB. Both endpoints are represented with rows in the frPVCEndptTable. The frPVCEndptConnectIdentifier object of each endpoint points to the frPVCConnectTable cross-connect table row for the connection.
In contrast, a connection that spans frame relay and ATM endpoints is represented with an entry in the frAtmIwfConnectionTable of the FR/ATM PVC Service Interworking MIB defined in [28].

In the case of an inter-worked connection, the frPVCEndptConnectIdentifier object is set to zero. Instead, the frPVCEndptAtmIwfConnIndex object is set to the index of the FR/ATM IWF cross-connect table row.

The frame relay PVC cross-connect table (frPVCConnectTable) does not contain an entry for the FR/ATM inter-worked connection.

2.6. Textual Convention Change

Version 1 of the Frame Relay Service MIB contains MIB objects defined with the DisplayString textual convention. In version 2 of this MIB, the syntax for these objects has been updated to use the (now preferred) SnmpAdminString textual convention. The new TC provides support for a greater variety of international character sets.

The working group realizes that this change is not strictly supported by SMIV2. In our judgment, the alternative of deprecating the old objects and defining new objects would have a more adverse impact on backward compatibility and interoperability, given the particular semantics of these objects.

3. Object Definitions

FRNETSERV-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
 NOTIFICATION-TYPE, transmission,
Counter32, Integer32 FROM SNMPv2-SMI
TimeStamp, RowStatus FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP,
NOTIFICATION-GROUP FROM SNMPv2-CONF
InterfaceIndex, ifIndex FROM IF-MIB
SnmpAdminString FROM SNMP-FRAMEWORK-MIB;

frnetservMIB MODULE-IDENTITY
LAST-UPDATED "200009280000Z" -- September 28, 2000
ORGANIZATION "IETF Frame Relay Service MIB Working Group"
CONTACT-INFO
"WG Charter:
http://www.ietf.org/html.charters/frnetmib-charter
WG-email:
frnetmib@sunroof.eng.sun.com"
Subscribe:
frnetmib-request@sunroof.eng.sun.com

Email Archive:
ftp://ftp.ietf.org/ietf-mail-archive/frnetmib

Chair: Andy Malis
Vivace Networks, Inc.
Email: Andy.Malis@vivacenetworks.com

WG editor: Kenneth Rehbehn
Megisto Systems, Inc.
Email: krehbehn@megisto.com

Co-author: David Fowler
Syndesis Limited,
Email: fowler@syndesis.com

DESCRIPTION
"The MIB module to describe generic objects for
Frame Relay Network Service."

--
-- Revision History
--

REVISION "200009280000Z"
DESCRIPTION
"Published as RFC 2954.

The major new features of this revision include:

 o Support for read-write capability to
 provision switch components providing service,

 o Support for cross-connection via a frame relay
 to ATM service interworking function,

 o Support for frame relay fragmentation,

 o Additional frame counters to track frame
 loss.

Refer to Appendix A for a comprehensive list of
changes since RFC 1604."

REVISION "1993111612000Z"
DESCRIPTION
"Published as RFC 1604."
::= { transmission 44 }
frnetservObjects
 OBJECT IDENTIFIER ::= { frnetservMIB 1 }

frnetservTraps
 OBJECT IDENTIFIER ::= { frnetservMIB 2 }

frnetservTrapsPrefix
 OBJECT IDENTIFIER ::= { frnetservTraps 0 }

--
-- The Frame Relay Service Logical Port
--
frLportTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrLportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The Frame Relay Logical Port Information table is
 an interface-specific addendum to the generic
 ifTable of the Interface MIB."
::= { frnetservObjects 1 }

frLportEntry OBJECT-TYPE
SYNTAX FrLportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry in the Frame Relay Logical Port
 Information table."
INDEX { ifIndex }
::= { frLportTable 1 }

FrLportEntry ::==
 SEQUENCE {
 frLportNumPlan INTEGER,
 frLportContact SnmpAdminString,
 frLportLocation SnmpAdminString,
 frLportType INTEGER,
 frLportAddrDLCILen INTEGER,
 frLportVCSigProtocol INTEGER,
 frLportVCSigPointer OBJECT IDENTIFIER,
 frLportDLCIIndexValue Integer32,
 frLportTypeAdmin INTEGER,
 frLportVCSigProtocolAdmin INTEGER,
 frLportFragControl INTEGER,
 frLportFragSize Integer32
 }
frLportNumPlan OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
e164(2),
x121(3),
 none(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the network address numbering plan for this UNI/NNI logical port. The network address is the object ifPhysAddress. The value none(4) implies that there is no ifPhysAddress. The FRS agent will return an octet string of zero length for ifPhysAddress. The value other(1) means that an address has been assigned to this interface, but the numbering plan is not enumerated here."

REFERENCE "E.164 [29]
X.121 [30]"
 ::= { frLportEntry 1 }

frLportContact OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the network contact for this UNI/NNI logical port."
 ::= { frLportEntry 2 }

frLportLocation OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the frame relay network location for this UNI/NNI logical port."
 ::= { frLportEntry 3 }

frLportType OBJECT-TYPE
SYNTAX INTEGER {
 uni(1),
nni(2)
}
MAX-ACCESS read-only
frLportAddrDLCILen OBJECT-TYPE
SYNTAX INTEGER {
 twoOctets10Bits(1),
 threeOctets10Bits(2),
 threeOctets16Bits(3),
 fourOctets17Bits(4),
 fourOctets23Bits(5)
 }
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the Q.922
 Address field length and DLCI length for this
 UNI/NNI logical port."
REFERENCE "Q.922 [25]"
::= { frLportEntry 5 }

frLportVCSigProtocol OBJECT-TYPE
SYNTAX INTEGER {
 none(1),
 lmi(2),
 ansiT1617D(3),
 ansiT1617B(4),
 ccittQ933A(5)
 }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the Local
 In-Channel Signaling Protocol that is used for
 this frame relay UNI/NNI logical port.

 none(1): Interface does not use a PVC
 signaling protocol

 lmi(2): Interface operates the Stratacom/
 Nortel/DEC Local Management
 Specification protocol

 ansiT1617D(3): Interface operates the ANSI T1.617
 Annex D PVC status protocol
ansiT1617B(4): Interface operates the ANSI T1.617 Annex B procedures

ccittQ933A(5): Interface operates the ITU Q.933 Annex A PVC status protocol

REFERENCE "LMI [24]
 T1.617 Annex D [17],
 Q.933 Annex A [22]"
::= { frLportEntry 6 }

frLportVCSigPointer OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
 "The value of this object is used as a pointer to the table that contains the Local In-Channel Signaling Protocol parameters and errors for this UNI/NNI logical port.

 This object has been deprecated to reflect the fact that the local in-channel signaling parameters are accessed from a single table (frMgtVCSigTable) that includes parameters for all possible signaling protocols. Early design anticipated multiple tables, one for each signaling protocol."
::= { frLportEntry 7 }

frLportDLCIIndexValue OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object contains a hint to be used for frPVCEndptDLCIIndex when creating entries in the frPVCEndptTable. The SYNTAX of this object matches the SYNTAX of the frPVCEndptDLCIIndex - an object that is restricted to legal Q.922 DLCI values for the size of the address field.

 The value 0 indicates that no unassigned entries are available.

 To obtain the frPVCEndptDLCIIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of
this object. After each retrieval, the agent must modify the value to the next unassigned index to prevent assignment of the same value to multiple management systems.

A management system should repeat the read to obtain a new value should an attempt to create the new row using the previously returned hint fail.

REFERENCE "Q.922 [25]"
 ::= { frLportEntry 8 }

frLportTypeAdmin OBJECT-TYPE
SYNTAX INTEGER {
 uni(1),
 nni(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object desired identifies the type of network interface for this logical port."
 ::= { frLportEntry 9 }

frLportVCSigProtocolAdmin OBJECT-TYPE
SYNTAX INTEGER {
 none(1),
 lmi(2),
 ansiT1617D(3),
 ansiT1617B(4),
 ccittQ933A(5)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object identifies the desired Local In-Channel Signaling Protocol that is used for this frame relay UNI/NNI logical port. This value must be made the active protocol as soon as possible on the device. Refer to frLportVCSigProtocol for a description of each signaling protocol choices."

REFERENCE "LMI [24]
T1.617 Annex D [17],
Q.933 Annex A [22]"
 ::= { frLportEntry 10 }

frLportFragControl OBJECT-TYPE
SYNTAX INTEGER {
 on(1),
 off(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This object controls the transmission and reception of fragmentation frames for this UNI or NNI interface.

on(1) Frames are fragmented using the interface fragmentation format
 Note: The customer side of the interface must also be configured to fragment frames.

off(2) Frames are not fragmented using the interface fragmentation format."
REFERENCE "FRF.12 [21]"
DEFVAL { off }
::= { frLportEntry 11 }

frLportFragSize OBJECT-TYPE
SYNTAX Integer32 (0..4096)
UNITS "Octets"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The value of this object is the size in octets of the maximum size of each fragment to be sent when fragmenting. This object is only used by the fragmentation transmitter, and the two sides of the interface may differ. The fragment size includes the octets for the frame relay header, the UI octet, the NLPID, the fragmentation header, and the fragment payload. If frLportFragControl is set to off, this value should be zero."
REFERENCE "FRF.12 [21]"
DEFVAL { 0 }
::= { frLportEntry 12 }

--
-- Frame Relay Management VC Signaling
--

frMgtVCSigTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrMgtVCSigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay Management VC Signaling
Parameters and Errors table."
 ::= { frnetservObjects 2 }

frMgtVCSigEntry OBJECT-TYPE
SYNTAX FrMgtVCSigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay Management VC
Signaling Parameters Errors table."
INDEX { ifIndex }
 ::= { frMgtVCSigTable 1 }

FrMgtVCSigEntry ::= SEQUENCE {
 frMgtVCSigProced INTEGER,
 frMgtVCSigUserN391 INTEGER,
 frMgtVCSigUserN392 INTEGER,
 frMgtVCSigUserN393 INTEGER,
 frMgtVCSigUserT391 INTEGER,
 frMgtVCSigNetN392 INTEGER,
 frMgtVCSigNetN393 INTEGER,
 frMgtVCSigNetT392 INTEGER,
 frMgtVCSigNetnN4 INTEGER,
 frMgtVCSigNetnT3 INTEGER,
 frMgtVCSigUserLinkRelErrors Counter32,
 frMgtVCSigUserProtErrors Counter32,
 frMgtVCSigUserChanInactive Counter32,
 frMgtVCSigNetLinkRelErrors Counter32,
 frMgtVCSigNetProtErrors Counter32,
 frMgtVCSigNetChanInactive Counter32,
 frMgtVCSigProcedAdmin INTEGER,
 frMgtVCSigUserN391Admin INTEGER,
 frMgtVCSigUserN392Admin INTEGER,
 frMgtVCSigUserN393Admin INTEGER,
 frMgtVCSigUserT391Admin INTEGER,
 frMgtVCSigNetN392Admin INTEGER,
 frMgtVCSigNetN393Admin INTEGER,
 frMgtVCSigNetT392Admin INTEGER,
 frMgtVCSigNetnT3Admin INTEGER
}

frMgtVCSigProced OBJECT-TYPE
SYNTAX INTEGER {
u2nnet(1),
bidirect(2),
u2nuser(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the local
in-channel signaling procedural role that is used
for this UNI/NNI logical port. Bidirectional
procedures implies that both user-side and
network-side procedural roles are used.

u2nnet(1) Logical port operates user to network
procedure in the role of the network side

bidirect(2) Logical port operates the
bidirectional procedure (both user
and network side roles)

u2nuser(3) Logical port operates user to network
procedure in the role of the user side"
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 1 }

frMgtVCSigUserN391 OBJECT-TYPE
SYNTAX INTEGER (1..255)
UNITS "Polls"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the User-side
N391 full status polling cycle value for this
UNI/NNI logical port. If the logical port is not
performing user-side (bidirectional) procedures,
then this object is not instantiated and an
attempt to read will result in the noSuchInstance
exception response."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
DEFVAL { 6 }
::= { frMgtVCSigEntry 2 }

frMgtVCSigUserN392 OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the User-side
 N392 error threshold value for this UNI/NNI
 logical port. If the logical port is not
 performing user-side (bidirectional) procedures,
 then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
 T1.617 Annex D [17]"
DEFVAL { 3 }
 ::= { frMgtVCSigEntry 3 }

frMgtVCSigUserN393 OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the User-side
 N393 monitored events count value for this UNI/NNI
 logical port. If the logical port is not
 performing user-side (bidirectional) procedures,
 then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
 T1.617 Annex D [17]"
DEFVAL { 4 }
 ::= { frMgtVCSigEntry 4 }

frMgtVCSigUserT391 OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the User-side
 T391 link integrity verification polling timer
 value for this UNI/NNI logical port. If the
 logical port is not performing user-side
 procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
 T1.617 Annex D [17]"
DEFVAL { 10 }
 ::= { frMgtVCSigEntry 5 }

frMgtVCSigNetN392 OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the Network-
side N392 error threshold value (nN2 for LMI) for
this UNI/NNI logical port. If the logical port is
not performing network-side procedures, then this
object is not instantiated."
REFERENCE "Q.933 Annex A [22],
 T1.617 Annex D [17],
 LMI [24]"
DEFVAL { 3 }
::= { frMgtVCSigEntry 6 }

frMgtVCSigNetN393 OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the Network-
side N393 monitored events count value (nN3 for
LMI) for this UNI/NNI logical port. If the
logical port is not performing network-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
 T1.617 Annex D [17],
 LMI [24]"
DEFVAL { 4 }
::= { frMgtVCSigEntry 7 }

frMgtVCSigNetT392 OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of this object identifies the Network-
side T392 polling verification timer value (nT2
for LMI) for this UNI/NNI logical port. If the
logical port is not performing network-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
 T1.617 Annex D [17],
 LMI [24]"
DEFVAL { 15 }
::= { frMgtVCSigEntry 8 }
frMgtVCSigNetnN4 OBJECT-TYPE
SYNTAX INTEGER (5..5)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Network-
side nN4 maximum status enquires received value
for this UNI/NNI logical port. If the logical
port is not performing network-side procedures or
is not performing LMI procedures, then this object
is not instantiated.

This object applies only to LMI and always has a
value of 5."
REFERENCE "LMI [24]"
::= { frMgtVCSigEntry 9 }

frMgtVCSigNetnT3 OBJECT-TYPE
SYNTAX INTEGER (5 | 10 | 15 | 20 | 25 | 30)
UNITS "Seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Network-
side nT3 timer (for nN4 status enquires received)
value for this UNI/NNI logical port. If the
logical port is not performing network-side
procedures or is not performing LMI procedures,
then this object is not instantiated.

This object applies only to LMI."
REFERENCE "LMI [24]"
DEFVAL { 20 }
::= { frMgtVCSigEntry 10 }

frMgtVCSigUserLinkRelErrors OBJECT-TYPE
SYNTAX Counter32
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of user-side local in-channel
signaling link reliability errors (i.e., non-
receipt of Status/Status Enquiry messages or
invalid sequence numbers in a Link Integrity
Verification Information Element) for this UNI/NNI
logical port. If the logical port is not
performing user-side procedures, then this object
is not instantiated."
::= { frMgtVCSigEntry 11 }

frMgtVCSigUserProtErrors OBJECT-TYPE
SYNTAX Counter32
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of user-side local in-channel
signaling protocol errors (i.e., protocol
discriminator, unnumbered information, message
type, call reference, and mandatory information
element errors) for this UNI/NNI logical port. If
the logical port is not performing user-side
procedures, then this object is not instantiated."
::= { frMgtVCSigEntry 12 }

frMgtVCSigUserChanInactive OBJECT-TYPE
SYNTAX Counter32
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the user-side channel was
declared inactive (i.e., N392 errors in N393
events) for this UNI/NNI logical port. If the
logical port is not performing user-side
procedures, then this object is not instantiated."
::= { frMgtVCSigEntry 13 }

frMgtVCSigNetLinkRelErrors OBJECT-TYPE
SYNTAX Counter32
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of network-side local in-channel
signaling link reliability errors (i.e., non-
receipt of Status/Status Enquiry messages or
invalid sequence numbers in a Link Integrity
Verification Information Element) for this UNI/NNI
logical port."
::= { frMgtVCSigEntry 14 }

frMgtVCSigNetProtErrors OBJECT-TYPE
SYNTAX Counter32
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of network-side local in-channel
signaling protocol errors (i.e., protocol
discriminator, message type, call reference, and
mandatory information element errors) for this
UNI/NNI logical port."
 ::= { frMgtVCSigEntry 15 }

frMgtVCSigNetChanInactive OBJECT-TYPE
SYNTAX Counter32
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the network-side channel was
declared inactive (i.e., N392 errors in N393
events) for this UNI/NNI logical port."
 ::= { frMgtVCSigEntry 16 }

frMgtVCSigProcedAdmin OBJECT-TYPE
SYNTAX INTEGER {
 u2nnet(1),
 bidirect(2),
 u2nuser(3)
 }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the local
in-channel signaling procedural role that is used
for this UNI/NNI logical port. Bidirectional
procedures implies that both user-side and
network-side procedural roles are used.

u2nnet(1) Logical port operates user to network
procedure in the role of the network
side

bidirect(2) Logical port operates the
bidirectional procedure (both user
and network side roles)

u2nuser(3) Logical port operates user to network
procedure in the role of the user
side"
DEFVAL { u2nnet }
::= { frMgtVCSigEntry 17 }

frMgtVCSigUserN391Admin OBJECT-TYPE
SYNTAX INTEGER (1..255)
UNITS "Polls"
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object identifies the desired User-side N391 full status polling cycle value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 18 }

frMgtVCSigUserN392Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object identifies the desired User-side N392 error threshold value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 19 }

frMgtVCSigUserN393Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object identifies the desired User-side N393 monitored events count value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 20 }

frMgtVCSigUserT391Admin OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object identifies the desired User-side T391 link integrity verification polling timer value for this UNI/NNI logical port. If the logical port is not performing user-side procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 21 }

frMgtVCSigNetN392Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object identifies the desired Network-side N392 error threshold value (nN2 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
::= { frMgtVCSigEntry 22 }

frMgtVCSigNetN393Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The value of this object identifies the desired Network-side N393 monitored events count value (nN3 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
::= { frMgtVCSigEntry 23 }
frMgtVCSigNetT392Admin OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired Network-side T392 polling verification timer value (nT2 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17], LMI [24]"
::= { frMgtVCSigEntry 24 }

frMgtVCSigNetnT3Admin OBJECT-TYPE
SYNTAX INTEGER (5 | 10 | 15 | 20 | 25 | 30)
UNITS "Seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired Network-side nT3 timer (for nN4 status enquiries received) value for this UNI/NNI logical port. If the logical port is not performing network-side procedures or is not performing LMI procedures, then this object is not instantiated. This object applies only to LMI."
REFERENCE "LMI [24]"
::= { frMgtVCSigEntry 25 }

-- Frame Relay PVC End-points
--

frPVCEndptTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrPVCEndptEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay PVC End-Point table. This table is used to model a PVC end-point. This table contains the traffic parameters and statistics for a PVC end-point.

This table is used to identify the traffic parameters for a bi-directional PVC segment end-
point, and it also provides statistics for a PVC segment end-point.

A PVC segment end-point is identified by a UNI/NNI logical port index value and DLCI index value.

If the frame relay service provider allows the frame relay CNM subscriber to create, modify or delete PVCs using SNMP, then this table is used to identify and reserve the requested traffic parameters of each PVC segment end-point. The Connection table is used to ‘connect’ the end-points together. Not all implementations will support the capability of creating/modifying/deleting PVCs using SNMP as a feature of frame relay CNM service.

Uni-directional PVCs are modeled with zero valued traffic parameters in one of the directions (In or Out direction) in this table.

To create a PVC, the following procedures shall be followed:

1) Create the entries for the PVC segment endpoints in the frPVCEndptTable by specifying the traffic parameters for the bi-directional PVC segment endpoints. As shown in figure 2, a point-to-point PVC has two endpoints, thus two entries in this table. Uni-directional PVCs are modeled with zero valued traffic parameters in one direction; all the ‘In’ direction parameters for one frame relay PVC End-point or all the ‘Out’ direction parameters for the other frame relay PVC Endpoint.

```
  In | Frame Relay Network | Out
  >>>>>>|_____________________|>>>>>>>
     |                        |   In
Out |                        | <<<<<<<<
  <<<<<<<| Frame Relay PVC | Frame Relay PVC
        | Endpoint             | Endpoint
```

Figure 2, PVC Terminology
2) Go to the Frame Relay Connection Group.

::= {frnetservObjects 3 }

frPVCEndptEntry OBJECT-TYPE
SYNTAX FrPVCEndptEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay PVC Endpoint table."
INDEX {ifIndex, frPVCEndptDLCIIndex }
::= {frPVCEndptTable 1 }

FrPVCEndptEntry ::= SEQUENCE {
 frPVCEndptDLCIIndex Integer32,
 frPVCEndptInMaxFrameSize Integer32,
 frPVCEndptInBc Integer32,
 frPVCEndptInBe Integer32,
 frPVCEndptInCIR Integer32,
 frPVCEndptOutMaxFrameSize Integer32,
 frPVCEndptOutBc Integer32,
 frPVCEndptOutBe Integer32,
 frPVCEndptOutCIR Integer32,
 frPVCEndptConnectIdentifier Integer32,
 frPVCEndptRowStatus RowStatus,
 frPVCEndptRcvdSigStatus INTEGER,
 frPVCEndptInFrames Counter32,
 frPVCEndptOutFrames Counter32,
 frPVCEndptInDEFrames Counter32,
 frPVCEndptInExcessFrames Counter32,
 frPVCEndptInDiscards Counter32,
 frPVCEndptInOctets Counter32,
 frPVCEndptOutOctets Counter32,
 frPVCEndptInDiscardsDESets Counter32,
 frPVCEndptInFramesFECNSet Counter32,
 frPVCEndptOutFramesFECNSet Counter32,
 frPVCEndptInFramesBECNSet Counter32,
 frPVCEndptOutFramesBECNSet Counter32,
 frPVCEndptInCongDiscards Counter32,
 frPVCEndptOutCongDiscards Counter32,
 frPVCEndptOutDECongDiscards Counter32,
 frPVCEndptOutDEFrames Counter32,
 frPVCEndptAtmIwfConnIndex Integer32
}
frPVCEndptDLCIIndex OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the DLCI
value for this PVC end-point.

The values are restricted to the legal range for
the size of address field supported by the logical
port (frLportAddrDLCILen)."
REFERENCE "Q.922 [25]"
 ::= { frPVCEndptEntry 1 }

frPVCEndptInMaxFrameSize OBJECT-TYPE
SYNTAX Integer32 (1..4096)
UNITS "Octets"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is the size in octets of
the largest frame relay information field for this
PVC end-point in the ingress direction (into the
frame relay network). The value of
frPVCEndptInMaxFrameSize must be less than or
equal to the corresponding ifMtu for this frame
relay UNI/NNI logical port."
REFERENCE "FRF.1 [31]
Q.922 [25]
Q.933 [22]"
DEFVAL { 1600 }
 ::= { frPVCEndptEntry 2 }

frPVCEndptInBc OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the
committed burst size (Bc) parameter (measured in
bits) for this PVC end-point in the ingress
direction (into the frame relay network).

Note that the max value of this range is lower
than the max value allowed by Q.933 (16383 *10**6)."
Note that the value is encoded in bits whilst the Q.933 Link layer core parameters information element encodes this information using octet units.

REFERENCE "Q.933 [22]"

::= { frPVCEndptEntry 3 }

frPVCEndptInBe OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The value of this object is equal to the excess burst size (Be) parameter (measured in bits) for this PVC end-point in the ingress direction (into the frame relay network).

Note that the max value of this range is lower than the max value allowed by Q.933 (16383 * 10**6).

Note that the value is encoded in bits whilst the Q.933 Link layer core parameters information element encodes this information using octet units."

REFERENCE "Q.933 [22]"

::= { frPVCEndptEntry 4 }

frPVCEndptInCIR OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits per Second"
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The value of this object is equal to the committed information rate (CIR) parameter (measured in bits per second) for this PVC end-point in the ingress direction (into the frame relay network).

Note that the max value of this range is lower than the max value allowed by Q.933 (2047 * 10**6)."

REFERENCE "Q.933 [22]"

::= { frPVCEndptEntry 5 }

frPVCEndptOutMaxFrameSize OBJECT-TYPE
SYNTAX Integer32 (1..4096)
UNITS "Octets"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is the size in octets of
the largest frame relay information field for this
PVC end-point in the egress direction (out of the
frame relay network). The value of
frPVCEndptOutMaxFrameSize must be less than or
equal to the corresponding ifMtu for this frame
relay UNI/NNI logical port."

REFERENCE "FRF.1 [31]
Q.922 [25]
Q.933 [22]"
DEFVAL { 1600 }
::= { frPVCEndptEntry 6 }

frPVCEndptOutBc OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the
committed burst size (Bc) parameter (measured in
bits) for this PVC end-point in the egress
direction (out of the frame relay network).

Note that the max value of this range is lower
than the max value allowed by Q.933 (16383 *
10**6).

Note that the value is encoded in bits whilst the
Q.933 Link layer core parameters information
element encodes this information using octet
units."

REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 7 }

frPVCEndptOutBe OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the excess
burst size (Be) parameter (measured in bits) for
this PVC end-point in the egress direction (out of
the frame relay network).

Note that the max value of this range is lower
than the max value allowed by Q.933 (16383 * 10**6).

Note that the value is encoded in bits whilst the
Q.933 Link layer core parameters information
element encodes this information using octet
units."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 8 }

frPVCEndptOutCIR OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits per Second"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The value of this object is equal to the
committed information rate (CIR) parameter
(measured in bits per second) for this PVC end-
point in the egress direction (out of the frame
relay network).

Note that the max value of this range is lower
than the max value allowed by Q.933 (2047 * 10**6)."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 9 }

frPVCEndptConnectIdentifier OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object is used to associate PVC end-points
as being part of one PVC segment connection. This
value of this object is equal to the value of
frPVCConnectIndex, which is used as one of the
indices into the frPVCConnectTable.

A connection that has been cross-connected via the
FR/ATM PVC Service IWF cross-connect table will
return the value zero when this object is read. In
case of these interworked connections, the
frPVCEndptAtmIwfConnIndex object must be accessed
to select the entry in the FR/ATM PVC Service IWF cross-connect table.

The value of this object is provided by the agent, after the associated entries in the frPVCConnectTable or frAtmIwfConnectionTable have been created.

::= {frPVCEndptEntry 10}

frPVCEndptRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION "This object is used to create new rows in this table, modify existing rows, and to delete existing rows. To create a new PVC, the entries for the PVC segment end-points in the frPVCEndptTable must first be created. Next, the frPVCConnectTable is used to associate the frame relay PVC segment end-points. In order for the manager to have the necessary error diagnostics, the frPVCEndptRowStatus object must initially be set to 'createAndWait(5)'. While the frPVCEndptRowStatus object is in the 'createAndWait(5)' state, the manager can set each columnar object and get the necessary error diagnostics. The frPVCEndptRowStatus object may not be set to 'active(1)' unless the following columnar objects exist in this row: frPVCEndptInMaxFrameSize, frPVCEndptInBc, frPVCEndptInBe, frPVCEndptInCIR, frPVCEndptOutMaxFrameSize, frPVCEndptOutBc, frPVCEndptOutBe, and frPVCEndptOutCIR."

::= {frPVCEndptEntry 11}

frPVCEndptRcvdSigStatus OBJECT-TYPE
SYNTAX INTEGER {
 deleted(1),
 active(2),
 inactive(3),
 none(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of this object identifies the PVC status received via the local in-channel signaling..."
procedures for this PVC end-point. This object is only pertinent for interfaces that perform the bidirectional procedures.

Each value has the following meaning:

- **deleted(1):** This PVC is not listed in the full status reports received from the user device. The object retains this value for as long as the PVC is not listed in the full status reports.

- **active(2):** This PVC is reported as active, or operational, by the user device.

- **inactive(3):** This PVC is reported as inactive, or non-operational, by the user device.

- **none(4):** This interface is only using the network-side in-channel signaling procedures, so this object does not apply.

```plaintext
::= { frPVCEndptEntry 12 }
```

```plaintext
frPVCEndptInFrames OBJECT-TYPE
SYNTAX      Counter32
UNITS       "Frames"
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
        "The number of frames received by the network (ingress) for this PVC end-point. This includes any frames discarded by the network due to submitting more than Bc + Be data or due to any network congestion recovery procedures."

::= { frPVCEndptEntry 13 }
```

```plaintext
frPVCEndptOutFrames OBJECT-TYPE
SYNTAX      Counter32
UNITS       "Frames"
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
        "The number of frames sent by the network (egress) regardless of whether they are Bc or Be frames for this PVC end-point."

::= { frPVCEndptEntry 14 }
```
frPVCEndptInDEFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network (ingress) with the DE bit set to (1) for this PVC end-point."
 ::= { frPVCEndptEntry 15 }

frPVCEndptInExcessFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network (ingress) for this PVC end-point which were treated as excess traffic. Frames which are sent to the network with DE set to zero are treated as excess when more than Bc bits are submitted to the network during the Committed Information Rate Measurement Interval (Tc). Excess traffic may or may not be discarded at the ingress if more than Bc + Be bits are submitted to the network during Tc. Traffic discarded at the ingress is not recorded in frPVCEndptInExcessFrames. Frames which are sent to the network with DE set to one are also treated as excess traffic."
 ::= { frPVCEndptEntry 16 }

frPVCEndptOutExcessFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress) for this PVC end-point which were treated as excess traffic. (The DE bit may be set to one.)"
 ::= { frPVCEndptEntry 17 }

frPVCEndptInDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network (ingress) that were discarded due to traffic enforcement for this PVC end-point. Congestion discards are not counted in this object."

 ::= { frPVCEndptEntry 18 }

frPVCEndptInOctets OBJECT-TYPE
SYNTAX Counter32
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets received by the network (ingress) for this PVC end-point. This counter should only count octets from the beginning of the frame relay header field to the end of user data. If the network supporting frame relay can not count octets, then this count should be an approximation."

 ::= { frPVCEndptEntry 19 }

frPVCEndptOutOctets OBJECT-TYPE
SYNTAX Counter32
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets sent by the network (egress) for this PVC end-point. This counter should only count octets from the beginning of the frame relay header field to the end of user data. If the network supporting frame relay can not count octets, then this count should be an approximation."

 ::= { frPVCEndptEntry 20 }

frPVCEndptInDiscardsDESets OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network (ingress) that were discarded with the DE bit set due to traffic enforcement for this PVC end-point. Congestion discards are not counted in this object."
::= { frPVCEndptEntry 21 }

frPVCEndptInFramesFECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network (ingress) that have the FECN bit set for this PVC end-point."
::= { frPVCEndptEntry 22 }

frPVCEndptOutFramesFECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress) that have the FECN bit set for this PVC end-point."
::= { frPVCEndptEntry 23 }

frPVCEndptInFramesBECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network (ingress) that have the BECN bit set for this PVC end-point."
::= { frPVCEndptEntry 24 }

frPVCEndptOutFramesBECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress) that have the BECN bit set for this PVC end-point."
::= { frPVCEndptEntry 25 }

frPVCEndptInCongDiscards OBJECT-TYPE
SYNTAX Counter32
The number of frames received by the network (ingress) that were discarded due to input buffer congestion, rather than traffic enforcement, for this PVC end-point.

::= { frPVCEndptEntry 26 }

frPVCEndptInDECongDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of frames counted by frPVCEndptInCongDiscards with the DE bit set to (1)."

::= { frPVCEndptEntry 27 }

frPVCEndptOutCongDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of frames sent by the network (egress) that were discarded due to output buffer congestion for this PVC end-point."

::= { frPVCEndptEntry 28 }

frPVCEndptOutDECongDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of frames counted by frPVCEndptOutCongDiscards with the DE bit set to (1)."

::= { frPVCEndptEntry 29 }

frPVCEndptOutDEFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress) with the DE bit set to (1) for this PVC end-point."
::= { frPVCEndptEntry 30 }

frPVCEndptAtmIwfConnIndex OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains the index value of the FR/ATM cross-connect table entry used to link the frame relay PVC with an ATM PVC.

Each row of the frPVCEndptTable that is not cross-connected with an ATM PVC must return the value zero when this object is read.

The value of this object is initialized by the agent after the associated entries in the frAtmIwfConnectionTable have been created.

The value of this object is reset to zero following destruction of the associated entry in the frAtmIwfConnectionTable"
::= { frPVCEndptEntry 31 }

-- Frame Relay PVC Connections
--

frPVCConnectIndexValue OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object returns a hint to be used for frPVCConnectIndex when creating entries in the frPVCConnectTable.

The value 0 indicates that no unassigned entries are available.

To obtain the frPVCConnectIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of this object. After each retrieval, the agent must
modify the value to the next unassigned index to prevent assignment of the same value to multiple management systems.

A management system should repeat the read to obtain a new value should an attempt to create the new row using the previously returned hint fail.

::= { fnetservObjects 4 }

frPVCConnectTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrPVCConnectEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay PVC Connect Table is used to model the bi-directional PVC segment flows including: point-to-point PVCs, point-to-multipoint PVCs, and multipoint-to-multipoint PVCs.

This table has read-create access and is used to associate PVC end-points together as belonging to one connection. The frPVCConnectIndex is used to associate all the bi-directional flows. Not all implementations will support the capability of creating/modifying/deleting PVCs using SNMP as a feature of frame relay CNM service.

Once the entries in the frPVCEndptTable are created, the following step are used to associate the PVC end-points as belonging to one PVC connection:

1) Obtain a unique frPVCConnectIndex using the frPVCConnectIndexValue object.

2) Connect the PVC segment endpoints together with the applicable frPVCConnectIndex value obtained via frPVCConnectIndexValue. The entries in this table are created by using the frPVCConnectRowStatus object.

3) The agent will provide the value of the corresponding instances of frPVCEndptConnectIdentifier with the frPVCConnectIndex value.

4) Set frPVCConnectAdminStatus to ‘active(1)’ in
all rows for this PVC segment to turn the PVC on.

For example, the Frame Relay PVC Connection Group models a bi-directional, point-to-point PVC segment as one entry in this table.

```
Frame Relay Network
Low Port  High Port

<table>
<thead>
<tr>
<th></th>
<th>&gt;&gt; from low to high PVC flow</th>
<th>&gt;&gt;</th>
<th>&lt;&lt; from high to low PVC flow</th>
<th>&lt;&lt;</th>
</tr>
</thead>
</table>
```

The terms low and high are chosen to represent numerical ordering of a PVC segment’s endpoints for representation in this table. That is, the endpoint with the lower value of ifIndex is termed ‘low’, while the opposite endpoint of the segment is termed ‘high’. This terminology is to provide directional information; for example the frPVCConnectL2hOperStatus and frPVCConnectH2lOperStatus as illustrated above.

If the Frame Relay Connection table is used to model a unidirectional PVC, then one direction (either from low to high or from high to low) has its Operational Status equal to down.

A PVC segment is a portion of a PVC that traverses one Frame Relay Network, and a PVC segment is identified by its two end-points (UNI/NNI logical port index value and DLCI index value) through one Frame Relay Network.

```::= { frnetservObjects 5 }
frPVCConnectEntry OBJECT-TYPE
SYNTAX FrPVCConnectEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in the Frame Relay PVC Connect table. This entry is used to model a PVC segment in two directions."
INDEX { frPVCConnectIndex, frPVCConnectLowIfIndex, frPVCConnectHighIfIndex, frPVCConnectL2hIfIndex, frPVCConnectH2lIfIndex, frPVCConnectLowIfIndex, frPVCConnectHighIfIndex, frPVCConnectL2hIfIndex, frPVCConnectH2lIfIndex, frPVCCon
frPVCConnectLowDLCIIndex,  
frPVCConnectHighIfIndex,  
frPVCConnectHighDLCIIndex }  
::= { frPVCConnectTable 1 }  

FrPVCConnectEntry ::=  
SEQUENCE {  
  frPVCConnectIndex            Integer32,  
  frPVCConnectLowIfIndex       InterfaceIndex,  
  frPVCConnectLowDLCIIndex     Integer32,  
  frPVCConnectHighIfIndex      InterfaceIndex,  
  frPVCConnectHighDLCIIndex    Integer32,  
  frPVCConnectAdminStatus      INTEGER,  
  frPVCConnectL2hOperStatus    INTEGER,  
  frPVCConnectH2lOperStatus    INTEGER,  
  frPVCConnectL2hLastChange    TimeStamp,  
  frPVCConnectH2lLastChange    TimeStamp,  
  frPVCConnectRowStatus        RowStatus,  
  frPVCConnectUserName         SnmpAdminString,  
  frPVCConnectProviderName     SnmpAdminString  
}  

frPVCConnectIndex OBJECT-TYPE  
SYNTAX      Integer32 (0..2147483647)  
MAX-ACCESS  not-accessible  
STATUS      current  
DESCRIPTION  
"The value of this object is equal to the  
frPVCConnectIndexValue obtained to uniquely  
identify this PVC segment connection."  
::= { frPVCConnectEntry 1 }  

frPVCConnectLowIfIndex OBJECT-TYPE  
SYNTAX      InterfaceIndex  
MAX-ACCESS  not-accessible  
STATUS      current  
DESCRIPTION  
"The value of this object is equal to IF-MIB  
ifIndex value of the UNI/NNI logical port for this  
PVC segment. The term low implies that this PVC  
segment end-point has the numerically lower  
ifIndex value than the connected/associated PVC  
segment end-point.  

RFC 1604 permitted a zero value for this object to  
identify termination at a non-frame relay  
interface. However, this cross-connect table is  
limited to frame relay connections. See the frame
relayed/ATM IWF MIB [28] for the cross-connect table
used for those types of connections.

::= { frPVCConnectEntry 2 }

frPVCConnectLowDLCIIndex OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the DLCI
value for this end-point of the PVC segment."
REFERENCE "Q.922 [25]"
::= { frPVCConnectEntry 3 }

frPVCConnectHighIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to IF-MIB
ifIndex value for the UNI/NNI logical port for
this PVC segment. The term high implies that this
PVC segment end-point has the numerically higher
ifIndex value than the connected/associated PVC
segment end-point."
::= { frPVCConnectEntry 4 }

frPVCConnectHighDLCIIndex OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the egress
dLCI value for this end-point of the PVC segment."
REFERENCE "Q.922 [25]"
::= { frPVCConnectEntry 5 }

frPVCConnectAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
   active(1),
   inactive(2),
   testing(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object identifies the desired
administrative status of this bi-directional PVC
segment. The active(1) state means the PVC segment is currently operational; the inactive(2) state means the PVC segment is currently not operational; the testing(3) state means the PVC segment is currently undergoing a test. This state is set by an administrative entity. This value affects the PVC status indicated across the ingress NNI/UNI of both end-points of the bi-directional PVC segment. When a PVC segment connection is created using this table, this object is initially set to ‘inactive(2)’. After the frPVCConnectRowStatus object is set to ‘active(1)’ (and the corresponding/associated entries in the frPVCEndptTable have their frPVCEndptRowStatus object set to ‘active(1)’), the frPVCConnectAdminStatus object may be set to ‘active(1)’ to turn on the PVC segment connection.

::= { frPVCConnectEntry 6 }

frPVCConnectL2hOperStatus OBJECT-TYPE
SYNTAX INTEGER {
  active(1),
  inactive(2),
  testing(3),
  unknown(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the current operational status of the PVC segment connection in one direction; (i.e., in the low to high direction). This value affects the PVC status indicated across the ingress NNI/UNI (low side) of the PVC segment.

The values mean:

active(1) - PVC is currently operational

inactive(2) - PVC is currently not operational. This may be because of an underlying LMI or DS1 failure.

testing(3) - PVC is currently undergoing a test. This may be because of an underlying frLport or DS1 undergoing a test."
unknown(4)  - the status of the PVC currently can
not be determined.

::= { frPVCConnectEntry 7 }

frPVCConnectH2lOperStatus OBJECT-TYPE
SYNTAX    INTEGER { active(1),
                     inactive(2),
                     testing(3),
                     unknown(4) }
MAX-ACCESS    read-only
STATUS     current
DESCRIPTION
"The value of this object identifies the current
operational status of the PVC segment connection
in one direction; (i.e., in the high to low
direction). This value affects the PVC status
indicated across the ingress NNI/UNI (high side)
of the PVC segment.

The values mean:

active(1)   - PVC is currently operational

inactive(2) - PVC is currently not operational.
              This may be because of an underlying
              LMI or DS1 failure.

testing(3)  - PVC is currently undergoing a test.
              This may be because of an underlying
              frLport or DS1 undergoing a test.

unknown(4)  - the status of the PVC currently can
not be determined."

::= { frPVCConnectEntry 8 }

frPVCConnectL2hLastChange OBJECT-TYPE
SYNTAX    TimeStamp
MAX-ACCESS    read-only
STATUS     current
DESCRIPTION
"The value of the Interface MIB's sysUpTime object
at the time this PVC segment entered its current
operational state in the low to high direction.
If the current state was entered prior to the last
re-initialization of the FRS agent, then this
object contains a zero value."
::= { frPVCConnectEntry 9 }

frPVCConnectH2lLastChange OBJECT-TYPE
SYNTAX      TimeStamp
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION  "The value of the Interface MIB’s sysUpTime object at the time this PVC segment entered its current operational state in the high to low direction. If the current state was entered prior to the last re-initialization of the FRS agent, then this object contains a zero value."
::= { frPVCConnectEntry 10 }

frPVCConnectRowStatus OBJECT-TYPE
SYNTAX      RowStatus
MAX-ACCESS  read-create
STATUS      current
DESCRIPTION  "The status of this entry in the frPVCConnectTable. This variable is used to create new connections for the PVC end-points and to change existing connections of the PVC end-points. This object must be initially set to ‘createAndWait(5)’. In this state, the agent checks the parameters in the associated entries in the frPVCEndptTable to verify that the PVC end-points can be connected (i.e., the In parameters for one PVC end-point are equal to the Out parameters for the other PVC end-point). This object can not be set to ‘active(1)’ unless the following columnar object exists in this row: frPVCConnectAdminStatus. The agent also supplies the associated value of frPVCConnectIndex for the frPVCEndptConnectIdentifier instances. To turn on a PVC segment connection, the frPVCConnectAdminStatus is set to ‘active(1)’.
::= { frPVCConnectEntry 11 }

frPVCConnectUserName OBJECT-TYPE
SYNTAX      SnmpAdminString
MAX-ACCESS  read-create
STATUS      current
DESCRIPTION  "This is a service user assigned textual representation of a PVC."
::= { frPVCConnectEntry 12 }
frPVCConnectProviderName OBJECT-TYPE
SYNTAX      SnmpAdminString
MAX-ACCESS  read-create
STATUS      current
DESCRIPTION
  "This is a system supplied textual representation
  of PVC. It is assigned by the service provider."
 ::= { frPVCConnectEntry 13 }

--
-- The Frame Relay Accounting
--

frAccountPVCTable OBJECT-TYPE
SYNTAX      SEQUENCE OF FrAccountPVCEntry
MAX-ACCESS  not-accessible
STATUS      current
DESCRIPTION
  "The Frame Relay Accounting PVC table. This table
  is used to perform accounting on a PVC segment
  end-point basis."
 ::= { frnetservObjects 6 }

frAccountPVCEntry OBJECT-TYPE
SYNTAX      FrAccountPVCEntry
MAX-ACCESS  not-accessible
STATUS      current
DESCRIPTION
  "An entry in the Frame Relay Accounting PVC
  table."
INDEX   {   ifIndex,
          frAccountPVCDLCIIndex }
 ::= { frAccountPVCTable 1 }

FrAccountPVCEntry ::= SEQUENCE {
    frAccountPVCDLCIIndex            Integer32,
    frAccountPVCSegmentSize          Integer32,
    frAccountPVCInSegments           Counter32,
    frAccountPVCOutSegments          Counter32
}

frAccountPVCDLCIIndex OBJECT-TYPE
SYNTAX      Integer32 (16..4194303)
MAX-ACCESS  not-accessible
STATUS      current
DESCRIPTION
  "The value of this object is equal to the DLCI
value for this PVC segment end-point."
REFERENCE   "Q.922 [25]"
::= { frAccountPVCEntry 1 }

frAccountPVCSegmentSize OBJECT-TYPE
SYNTAX      Integer32
UNITS       "Octets"
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
 "The value of this object is equal to the Segment
 Size for this PVC segment end-point."
::= { frAccountPVCEntry 2 }

frAccountPVCInSegments OBJECT-TYPE
SYNTAX      Counter32
UNITS       "Segments"
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
 "The value of this object is equal to the number
 of segments received by this PVC segment end-
 point."
::= { frAccountPVCEntry 3 }

frAccountPVCOutSegments OBJECT-TYPE
SYNTAX      Counter32
UNITS       "Segments"
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
 "The value of this object is equal to the number
 of segments sent by this PVC segment end-point."
::= { frAccountPVCEntry 4 }

--
-- Accounting on a Frame Relay Logical Port
--

frAccountLportTable OBJECT-TYPE
SYNTAX      SEQUENCE OF FrAccountLportEntry
MAX-ACCESS  not-accessible
STATUS      current
DESCRIPTION
 "The Frame Relay Accounting Logical Port table.
 This table is used to perform accounting on a
 UNI/NNI Logical Port basis."
::= { frnetservObjects 7 }
frAccountLportEntry OBJECT-TYPE
SYNTAX   FrAccountLportEntry
MAX-ACCESS not-accessible
STATUS   current
DESCRIPTION
   "An entry in the Frame Relay Accounting Logical Port table."
INDEX   {   ifIndex }
 ::= { frAccountLportTable 1 }

FrAccountLportEntry ::= 
SEQUENCE {
   frAccountLportSegmentSize
       Integer32,
   frAccountLportInSegments
       Counter32,
   frAccountLportOutSegments
       Counter32
}

frAccountLportSegmentSize OBJECT-TYPE
SYNTAX   Integer32
UNITS    "Octets"
MAX-ACCESS read-only
STATUS   current
DESCRIPTION
   "The value of this object is equal to the Segment Size for this UNI/NNI logical port."
 ::= { frAccountLportEntry 1 }

frAccountLportInSegments OBJECT-TYPE
SYNTAX   Counter32
UNITS    "Segments"
MAX-ACCESS read-only
STATUS   current
DESCRIPTION
   "The value of this object is equal to the number of segments received by this UNI/NNI logical port."
 ::= { frAccountLportEntry 2 }

frAccountLportOutSegments OBJECT-TYPE
SYNTAX   Counter32
UNITS    "Segments"
MAX-ACCESS read-only
STATUS   current
DESCRIPTION
   "The value of this object is equal to the number
of segments sent by this UNI/NNI logical port.
::= { frAccountLportEntry 3 }

-- Frame Relay Network Service Notifications

frPVCConnectStatusChange  NOTIFICATION-TYPE
OBJECTS { frPVCConnectIndex,
  frPVCConnectLowIfIndex,
  frPVCConnectLowDLCIIndex,
  frPVCConnectHighIfIndex,
  frPVCConnectHighDLCIIndex,
  frPVCConnectL2hOperStatus,
  frPVCConnectH2lOperStatus,
  frPVCEndptRcvdSigStatus }
STATUS  deprecated
DESCRIPTION
"Refer to the description of the
frPVCConnectStatusNotif notification that has
replaced this notification. The notification is
deprecated due to the incorrect inclusion of index
values and to take advantage of the trap prefix
for automatic conversion from SMIv2 to SMIv1 by
making the one but last sub-ID a zero (i.e. the
so-called trap prefix)."
::= { frnetservTraps 1 }

frPVCConnectStatusNotif  NOTIFICATION-TYPE
OBJECTS { frPVCConnectL2hOperStatus,
  frPVCConnectH2lOperStatus,
  frPVCEndptRcvdSigStatus }
STATUS  current
DESCRIPTION
"This notification indicates that the indicated
PVC has changed state.

This notification is not sent if an FR-UNI changes
state; a linkDown or linkUp notification should be
sent instead. The first instance of
frPVCEndptRcvdSigStatus is for the endpoint with
LowIfIndex, LowDLCIIndex. The second instance of
frPVCEndptRcvdSigStatus is for the endpoint with
HighIfIndex, HighDLCIIndex"
::= { frnetservTrapsPrefix 2 }

-- Conformance Information
frnetservConformance OBJECT IDENTIFIER
   ::= { frnetservMIB 3 }

frnetservGroups OBJECT IDENTIFIER
   ::= { frnetservConformance 1 }
frnetservCompliances OBJECT IDENTIFIER
   ::= { frnetservConformance 2 }

--
--  Service (Read-only) Modules
--
frnetservCompliance2 MODULE-COMPLIANCE
   STATUS      current
   DESCRIPTION
      "The compliance statement for SNMP entities which
      have Frame Relay Network Service Interfaces.

      The distinction between 'service' and 'switch' is
      that a 'switch' is configured via this MIB. Hence, the various read/write objects have write
      capability. A 'service' represents a passive
      monitor-only customer network management
      interface. The various read/write objects are
      restricted to read-only capability."

MODULE -- this module
MANDATORY-GROUPS { frnetservLportGroup2,
   frnetservMgtVCSigGroup,
   frnetservPVCEndptGroup,
   frnetservPVCEndptGroup2,
   frnetservPVCCConnectGroup,
   frnetservPVCCConnectNamesGroup,
   frnetservPVCCNotifGroup2 }

GROUP frnetservAccountPVCGroup
DESCRIPTION
   "This group is optional for frame relay
   interfaces. It is mandatory if and only if
   accounting is performed on a PVC basis this frame
   relay interface."

GROUP frnetservAccountLportGroup
DESCRIPTION
   "This group is optional for frame relay
   interfaces. It is mandatory if and only if
   accounting is performed on a logical port basis
   this frame relay interface."

OBJECT frPVCEndptInMaxFrameSize
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptInBc
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptInBe
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptInCIR
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptOutMaxFrameSize
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptOutBc
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptOutBe
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptOutCIR
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required."

OBJECT       frPVCEndptRowStatus
  -- subset of RowStatus
SYNTAX       INTEGER { active(1) }
MIN-ACCESS  read-only
DESCRIPTION
"Write access is not required, and only one of the
six enumerated values for the RowStatus textual
convention need be supported, specifically:
active(1)."
OBJECT     frPVCConnectAdminStatus
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT     frPVCConnectRowStatus
-- subset of RowStatus
-- Syntax INTEGER { active(1) }
MIN-ACCESS read-only
DESCRIPTION "Write access is not required, and only one of the six enumerated values for the RowStatus textual convention need be supported, specifically: active(1)."

OBJECT     frLportFragControl
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT     frLportFragSize
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT     frPVCCCConnectUserName
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT     frPVCCConnectProviderName
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

::= { frnetservCompliances 2 }

-- Switch (Configuration) Compliance
--
frnetSwitchCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for SNMP entities which have Frame Relay Network Switch objects. The distinction between 'service' and 'switch' is that a 'switch' is configured via this MIB."
Hence, the various read/write objects have write capability. A 'service' represents a passive monitor-only customer network management interface. The various read/write objects are restricted to read-only capability.

**MODULE** -- this module

**MANDATORY-GROUPS**

```
frnetservLportGroup2,
frnetservLportAdminGroup,
frnetservMgtVCSigGroup,
frnetservMgtVCSigAdminGroup,
frnetservPVCEndptGroup,
frnetservPVCEndptGroup2,
frnetservPVCCConnectGroup,
frnetservPVCCConnectNamesGroup,
frnetservPVCMnotifGroup2
```

**GROUP** frnetservAccountPVCGroup

**DESCRIPTION**

"This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a PVC basis this frame relay interface."

**GROUP** frnetservAccountLportGroup

**DESCRIPTION**

"This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a logical port basis this frame relay interface."

```::= { frnetservCompliances 3 }```

frnetservCompliance MODULE-COMPLIANCE

STATUS deprecated

DESCRIPTION

"The compliance statement for SNMP entities which have Frame Relay Network Service Interfaces.

This compliance statement has been deprecated in favor of frnetservCompliance2. The new compliance module expands the mandatory groups to include notification and other new objects."

MODULE -- this module

MANDATORY-GROUPS

```
frnetservLportGroup,
```
frnetservMgtVCSigGroup,
frnetservPVCEndptGroup,
frnetservPVCConnectGroup }

GROUP frnetservAccountPVCGroup
DESCRIPTION "This group is optional for Frame Relay interfaces. It is mandatory if and only if accounting is performed on a PVC basis this Frame Relay interface."

GROUP frnetservAccountLportGroup
DESCRIPTION "This group is optional for Frame Relay interfaces. It is mandatory if and only if accounting is performed on a logical port basis this Frame Relay interface."

OBJECT frPVCEndptInMaxFrameSize
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT frPVCEndptInBc
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT frPVCEndptInBe
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT frPVCEndptInCIR
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT frPVCEndptOutMaxFrameSize
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT frPVCEndptOutBc
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT frPVCEndptOutBe
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT frPVCEndptOutCIR
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT frPVCEndptRowStatus
-- subset of RowStatus
SYNTAX INTEGER { active(1) }
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the
six enumerated values for the RowStatus textual
convention need be supported, specifically:
active(1)."

OBJECT frPVCConnectAdminStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT frPVCConnectRowStatus
-- subset of RowStatus
SYNTAX INTEGER { active(1) }
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the
six enumerated values for the RowStatus textual
convention need be supported, specifically:
active(1)."

::= { frnetservCompliances 1 }

--
-- Frame Relay Service MIB Object Groups
--
frnetservLportGroup OBJECT-GROUP
OBJECTS { frLportNumPlan, frLportContact, frLportLocation,
frLportType,
frLportAddrDLCILen, frLportVCSigProtocol,
frLportVCSigPointer }
STATUS deprecated
DESCRIPTION
"A collection of objects providing information
applicable to a Frame Relay Logical Port. This
group has been deprecated to eliminate reference
Use the new group frnetservLportGroup2 as a replacement for this group.

::= { frnetservGroups 1 }

frnetservMgtVCSigGroup OBJECT-GROUP
OBJECTS { frMgtVCSigProc, frMgtVCSigUserN391, frMgtVCSigUserN392, frMgtVCSigUserN393, frMgtVCSigUserT391, frMgtVCSigNetN392, frMgtVCSigNetN393, frMgtVCSigNetT392, frMgtVCSigNetnN4, frMgtVCSigNetnT3, frMgtVCSigUserLinkRelErrors, frMgtVCSigUserProtErrors, frMgtVCSigUserChanInactive, frMgtVCSigNetLinkRelErrors, frMgtVCSigNetProtErrors, frMgtVCSigNetChanInactive }

STATUS current
DESCRIPTION "A collection of objects providing information applicable to the Local In-Channel Signaling Procedures used for a UNI/NNI logical port."

::= { frnetservGroups 2 }

frnetservPVCEndptGroup OBJECT-GROUP
OBJECTS { frPVCConnectIndexValue, frPVCEndptInMaxFrameSize, frPVCEndptInBc, frPVCEndptInBe, frPVCEndptInCIR, frPVCEndptOutMaxFrameSize, frPVCEndptOutBc, frPVCEndptOutBe, frPVCEndptOutCIR, frPVCEndptConnectIdentifier, frPVCEndptRowStatus, frPVCEndptRcvdSigStatus, frPVCEndptInFrames, frPVCEndptOutFrames, frPVCEndptInDEFrames, frPVCEndptInExcessFrames, frPVCEndptOutExcessFrames, ...
frPVCEndptInDiscards,
frPVCEndptInOctets,
frPVCEndptOutOctets }

STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to a Frame Relay PVC end-point."
::= { frnetservGroups 3 }

frnetservPVCCConnectGroup OBJECT-GROUP
OBJECTS { frPVCCConnectAdminStatus,
frPVCCConnectL2hOperStatus,
frPVCCConnectH2lOperStatus,
frPVCCConnectL2hLastChange,
frPVCCConnectH2lLastChange,
frPVCCConnectRowStatus }

STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to a Frame Relay PVC connection."
::= { frnetservGroups 4 }

frnetservAccountPVCGroup OBJECT-GROUP
OBJECTS { frAccountPVCSegmentSize,
frAccountPVCInSegments,
frAccountPVCOutSegments }

STATUS current
DESCRIPTION
"A collection of objects providing accounting
information applicable to a Frame Relay PVC end-
point."
::= { frnetservGroups 5 }

frnetservAccountLportGroup OBJECT-GROUP
OBJECTS { frAccountLportSegmentSize,
frAccountLportInSegments,
frAccountLportOutSegments }

STATUS current
DESCRIPTION
"A collection of objects providing accounting
information applicable to a Frame Relay logical
port."
::= { frnetservGroups 6 }

frnetservLportGroup2 OBJECT-GROUP
OBJECTS { frLportNumPlan,
frLportContact,
frLportLocation,
frLportType,
frLportAddrDLCILen,
frLportVCSigProtocol,
frLportFragControl,
frLportFragSize

STATUS current
DESCRIPTION
"A collection of objects providing information applicable to a Frame Relay Logical Port.

This new version of the Logical Port Group eliminates the frLportVCSigPointer and adds support for fragmentation."

::= { frnetservGroups 7 }

frnetservPVCEndptGroup2 OBJECT-GROUP
OBJECTS { frPVCEndptInDiscardsDESet,
frPVCEndptInFramesFECNSet,
frPVCEndptOutFramesFECNSet,
frPVCEndptInFramesBECNSet,
frPVCEndptOutFramesBECNSet,
frPVCEndptInCongDiscards,
frPVCEndptInDECongDiscards,
frPVCEndptOutCongDiscards,
frPVCEndptOutDECongDiscards,
frPVCEndptOutDEFrames,
frPVCEndptAtmIwfConnIndex

STATUS current
DESCRIPTION
"Additions to the PVC end-point group. These additions provide new frame counters to track frame loss. In addition, the new FR/ATM IWF MIB cross-connect index is included."

::= { frnetservGroups 8 }

frnetservPVCCconnectNamesGroup OBJECT-GROUP
OBJECTS { frPVCCconnectUserName,
frPVCCconnectProviderName }

STATUS current
DESCRIPTION
"Additions to the PVC Connect Group."

::= { frnetservGroups 9 }

frnetservLportAdminGroup OBJECT-GROUP
OBJECTS { frLportDLCIIndexValue,
frLportTypeAdmin,
frLportVCSigProtocolAdmin }

STATUS current
DESCRIPTION
"Administrative (R/W) objects for creating a
switch logical port."
::= { frnetservGroups 10 }

frnetservMgtVCSigAdminGroup OBJECT-GROUP
OBJECTS { frMgtVCSigProcedAdmin,
frMgtVCSigUserN391Admin,
frMgtVCSigUserN392Admin,
frMgtVCSigUserN393Admin,
frMgtVCSigUserT391Admin,
frMgtVCSigNetN392Admin,
frMgtVCSigNetN393Admin,
frMgtVCSigNetT392Admin,
frMgtVCSigNetnT3Admin }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to the Local In-Channel Signaling
Procedures used for a UNI/NNI logical port."
::= { frnetservGroups 11 }

frnetservPVCNotifGroup NOTIFICATION-GROUP
NOTIFICATIONS { frPVCConnectStatusChange }
STATUS deprecated
DESCRIPTION
"Deprecated notification group. The
frPVCConnectStatusChange notification was flawed
because it included redundant indexes and was not
properly encoded for SMIv1 conversion."
::= { frnetservGroups 12 }

frnetservPVCNotifGroup2 NOTIFICATION-GROUP
NOTIFICATIONS { frPVCConnectStatusNotif }
STATUS current
DESCRIPTION
"A collection of notifications that apply to frame
relay PVC Connections"
::= { frnetservGroups 13 }

END
4. Acknowledgments

This document was produced by the Frame Relay Service MIB Working Group.

The working group thanks Bert Wijnen, David Perkins, and Bob Stewart for their assistance in reviewing the MIB.

5. References

[20] Fowler, D, "Definitions of Managed Objects for the DS0 and DS0 Bundle Interface Types", RFC 2494, January 1999.

6. Security Considerations

There are a number of management objects defined in this MIB that have a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

No managed objects in this MIB contain sensitive information.
SNMPv1 by itself is not a secure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2574 [12] and the View-based Access Control Model RFC 2575 [15] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

7. Authors’ Addresses

Kenneth Rehbehn
Megisto Systems, Inc.
20251 Century Boulevard
Germantown, MD, USA 20874

Phone: (301) 515-3672
EMail: krehbehn@megisto.com

David Fowler
Syndesis Limited
28 Fulton Way
Richmond Hill, Ontario, Canada L4B 1J5

Phone: (905) 886-7818
EMail: fowler@syndesis.com
APPENDIX A Update Information

The changes from RFC 1604 are the following:

(1) Added the object frLportDLCIIndexValue to automatically generate index values for new DLC rows.

(2) Add the following objects to support manager writing to objects:

Logical Port Objects
 frLportTypeAdmin
 frLportVCSigProtocolAdmin

VC Objects
 frMgtVCSigProcedAdmin
 frMgtVCSigUserN391Admin
 frMgtVCSigUserN392Admin
 frMgtVCSigUserN393Admin
 frMgtVCSigUserT391Admin
 frMgtVCSigNetN392Admin
 frMgtVCSigNetN393Admin
 frMgtVCSigNetT392Admin
 frMgtVCSigNetnT3Admin

(3) Add objects to control fragmentation:

 frLportFragControl frLportFragSize

(4) Added objects to track frames offered to network (in) and delivered (out) for increased visibility into policing-driven discards, congestion-driven discards, DE-bit setting, and congestion bit setting:

 frPVCEndptInDiscardsDESet
 frPVCEndptInFramesFECNSet
 frPVCEndptOutFramesFECNSet
 frPVCEndptInFramesBECNSet
 frPVCEndptOutFramesBECNSet
 frPVCEndptInCongDiscards
 frPVCEndptInDECongDiscards
 frPVCEndptOutCongDiscards
 frPVCEndptOutDECongDiscards
 frPVCEndptOutDEFrames

(5) Added the PVC object frPVCEndptAtmIwfConnIndex to identify the type of connection, frame relay or ATM IWF; and to identify the cross-connect row of the FR/ATM IWF MIB.
(6) Added objects to provide printable names of the connection user and service provider:

frPVCConnectUserName
frPVCConnectProviderName

(7) Added a new notification to correct flaws in the RFC1604 trap. The flaws include improper OID suffix (SMIv1 compatibility issue) and the inclusion of redundant index fields

(8) Updated compliance modules and object groups to reflect the new objects and notification:

frnetservCompliance2 - New service-centric (read-only) compliance module
frnetSwitchCompliance - New switch-centric (read-write) compliance module
frnetservCompliance - Original RFC 1604 Module, now deprecated
frnetservLportGroup - Original RFC 1604 logical port group, now deprecated
frnetservLportGroup2 - Replacement logical port group
frnetservPVCEndptGroup2 - Extension objects with this revision of the MIB
frnetservPVCCConnectNamesGroup - New group w/ display names for connections
frnetservLportAdminGroup - New group w/ read-write objects for the logical port
frnetservMgtVCSigAdminGroup - New group w/ read-write objects for the signaling protocol
frnetservPVCNotifGroup - Group deprecated to eliminate obsolete frPVCConnectStatusChange notification
frnetservPVCNotifGroup2 - New group added with w/ frPVCConnectStatusNotif

(9) Added UNITS and REFERENCE clauses for objects that needed the clarification.
(10) Changed references to "proxy-agent" to "FRS agent" to avoid confusion with other proxy-agent terminology.

(11) Changed objects using the DisplayString TC to use the SnmpAdminString TC.

(12) frMgtVCSigProc - Expanded to include the u2nuser(3) enumeration for the UNI protocol operation where the logical port operates in the user role.

(13) DESCRIPTION text added to specify agent response when object is not instantiated for the following objects:

- frMgtVCSigUserN391
- frMgtVCSigUserN393
- frMgtVCSigUserT391
- frMgtVCSigUserN392
- frMgtVCSigNetN391
- frMgtVCSigNetN393
- frMgtVCSigNetT391
- frMgtVCSigNetN392
- frMgtVCSigNetnN4
- frMgtVCSigNetnT3
- frMgtVCSigUserLinkRelErrors
- frMgtVCSigUserProtErrors
- frMgtVCSigUserChanInactive

(14) DESCRIPTION text addressing case of logical port not performing network-side procedures was removed from following objects:

- frMgtVCSigNetLinkRelErrors
- frMgtVCSigNetChanInactive
- frMgtVCSigNetProtErrors

(15) frPVCEndptConnectIdentifier - Operation described for the case of FR/ATM IWF cross-connect operation.

(16) frPVCEndptRcvdSigStatus - Added description of enumerated values.

(17) frPVCEndptInDiscards - Clarified DESCRIPTION to state that congestion discards are not counted by object.

(18) frPVCConnect{Low|High}IfIndex - Changed to use InterfaceIndex TC and changed reference to MIB-II to the new IF-MIB. Removed statement asserting that a zero value means the port is not a FR logical port.
(19) frPVCConnectIndex - Added a range to the SYNTAX clause

(20) frPVCConnect{L2h|H2l}OperStatus - Added DESCRIPTION text for each enumerated value.

(21) frAccountPVC DLCI Index - Added a range to the SYNTAX clause

(22) frPVCConnectStatusChange Notification - STATUS change to deprecated. Obsoleted to eliminate inappropriate inclusion of index objects

(23) frPVCConnectStatusNotif Notification - Replaces frPVCConnectStatusChange. In addition, the notification now requires 2 instances of the frPVCEndptRcvdSigStatus object, one for each endpoint of the connection.

(24) Guidance added to recommend ifLinkUpDownTrapEnable be set on.

(25) Behavior of the PVC status and endpoint signaling status is clarified for the case of underlying layer failure.

(26) Overview text re-written for clarity.

(27) Clarified role of system group.

(28) Established maximum frame size of 4096 and default value of 1600.

(29) Clarified that DLC index range is restricted to valid range for the specific length of address field used on the logical port.

(30) Figure 1 and accompanying text was removed to eliminate a confusing "MIB stack" concept. See the section titled "Relation to Other MIBs" for replacement text.
Intellectual Property Rights

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.
Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.