Printer MIB v2

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2004).

Abstract

This document provides definitions of models and manageable objects for printing environments. The objects included in this MIB apply to physical, as well as logical entities within a printing device. This document obsoletes RFC 1759.
Table of Contents

1. Introduction. ... 4
 1.1. Network Printing Environment. 4
 1.2. Printer Device Overview 6
 1.3. Categories of Printer Information 6
 1.3.1. Descriptions. 6
 1.3.2. Status. 6
 1.3.3. Alerts. 6
 1.4. The Internet-Standard Management Framework. 7
 1.5. Requirement Levels. 7
2. Printer Model ... 8
 2.1. Overview of the Printer Model 10
 2.2. Printer Sub-Units 10
 2.2.1. General Printer 10
 2.2.1.1. International Considerations. ... 10
 2.2.2. Inputs. 11
 2.2.3. Media 12
 2.2.4. Outputs 12
 2.2.5. Finishers 12
 2.2.6. Markers 13
 2.2.7. Media Paths 13
 2.2.8. System Controller 14
 2.2.9. Interfaces 14
 2.2.10. Print Job Delivery Channels 14
 2.2.11. Interpreters 15
 2.2.12. Console 15
 2.2.13. Alerts 15
 2.2.13.1. Status and Alerts 16
 2.2.13.2. Overall Printer Status 16
 2.2.13.2.1. Host Resources MIB
 Printer Status 18
 2.2.13.2.2. Sub-unit Status 20
 2.2.13.3. Alert Tables 21
 2.2.13.4. Alert Table Management 21
2.3. Read-Write Objects 23
2.4. Enumerations 24
 2.4.1. Registering Additional Enumerated Values 25
3. Groups from other MIB Specifications 25
 3.1. System Group 25
 3.2. System Controller 25
 3.3. Interface Group objects 26
 3.3.1. Interface Types 26
4. Differences from RFC 1759 26
5. The IANA Printer MIB 29
6. The Printer MIB 56
 -- Textual conventions for this MIB module 59
 -- The General Printer Group 67
1. Introduction

1.1. Network Printing Environment

The management of producing a printed document, in any computer environment, is a complex subject. Basically, the task can be divided into two overlapping pieces, the management of printing and the management of the printer. Printing encompasses the entire process of producing a printed document from generation of the file to be printed, selection of a printer, choosing printing properties, routing, queuing, resource management, scheduling, and final printing including notifying the user. Most of the printing process is outside the scope of the model presented here; only the management of the printer is covered.
Figure 1 - One Printer’s View of the Network

```
+---------+ +-------+ +-------+ +-------+   +-----------+ +-----------+
|configur-| |printer| | asset | |printer|   |   user    | |   user    |
|ator     | |manager| |manager| |browser|   |application| |application|
+---------+ +-------+ +-------+ +-------+   +-----------+ +-----------+

^            ^         ^         ^             |             |
|R/W         |R/W      |R        |R      +-----------+ +-----------+
|            |         |         |       |  spooler  | |  spooler  |
|            |         |         |       +-----------+ +-----------+
|            |         |         |             |             |
|            |         |         |       +-----------+ +-----------+
|            |         |         |        ^       ^     ^       ^
|            |         |         |        |R      |R/W  |R      |R/W
v            v         |         |        |       |     |       |
```

```
+-----+        +-------+                        PCL|          PCL|
| MIB |<------>| agent |                 PostScript|   PostScript|
+-----+        +-------+                       NPAP|         NPAP|

|unspecified                etc.|         etc.|
+=============+  +-----------------+   |             |
|             |--|channel/interface|<--+             |
|             |  +-----------------+                 |
|   PRINTER   |                                      |
|             |  +-----------------+                 |
|             |--|channel/interface|<----------------+     |
+=============+  +-----------------+     |
```

Bergman, et al. Standards Track [Page 5]
1.2. Printer Device Overview

A printer is the physical device that takes media from an input source, produces marks on that media according to some page description or page control language and puts the result in some output destination, possibly with finishing applied. Printers are complex devices that consume supplies, produce waste and may have mechanical problems. In the management of the physical device the description, status and alert information concerning the printer and its various subparts has to be made available to the management application so that it can be reported to the end user, key operators for the replenishment of supplies or the repair or maintenance of the device. The information needed in the management of the physical printer and the management of a printing job overlap highly and many of the tasks in each management area require the same or similar information.

1.3. Categories of Printer Information

Information about printers is classified into three basic categories: descriptions, status and alerts.

1.3.1. Descriptions

Descriptions convey information about the configuration and capabilities of the printer and its various sub-units. This information is largely static information and does not generally change during the operation of the system but may change as the printer is repaired, reconfigured or upgraded. The descriptions are one part of the visible state of the printer where state means the condition of being of the printer at any point in time.

1.3.2. Status

Status is the information regarding the current operating state of the printer and its various sub-units. As an example of the use of status, a management application must be able to determine if the various sub-units are ready to print or are in some state that prevents printing or may prevent printing in the future.

1.3.3. Alerts

An Alert is the representation of a reportable event in the printer. An event is a change in the state of the printer. Some of those state changes are of interest to a management application and are therefore reportable. Typically, these are the events that affect the printer’s ability to print. Alerts usually occur asynchronously to the operation of the computer system(s) to which the printer is
attached. For convenience below, "alert" will be used for both the event caused by a change in the printer’s state and for the representation of that event.

Alerts can be classified into two basic categories, critical and non-critical. A critical alert is one that is triggered by entry into a state in which the printer is stopped and printing can not continue until the condition that caused the critical alert is eliminated. "Out of paper", "toner empty" and "output bin full" are examples of critical alerts. Non-critical alerts are triggered by those events that enter a state in which printing is not stopped. Such a non-critical state may, at some future time, lead to a state in which printing may be stopped. Examples of these kinds of non-critical alerts are "input media low", "toner low" and "output bin nearly full". Or, a non-critical alert may simply provide information, such as signaling a configuration changed in the printer.

Description, status and alert information about the printer can be thought of as a database describing the printer. The management application for a printer will want to view the printer database differently depending on how and for what purposes the information in the database is needed.

1.4. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

1.5. Requirement Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Compliant implementations must follow this specification.
2. Printer Model

In order to accomplish the management of the printer, an abstract model of the printer is needed to represent the sub-units from which the printer is composed. A printer can be described as consisting of 13 types of sub-units. It is important to note that the sub-units of a printer do not necessarily relate directly to any physically identifiable mechanism. Sub-units can also be a set of definable logical processes, such as interpreters for page description languages or command processors that set various operating modes of the printer.

Figure 2 shows a block diagram of the printer and its basic 13 sub-units.
Figure 2 - Printer Block Diagram
2.1. Overview of the Printer Model

The model has three basic parts: (1) the flow of a print file into an interpreter and onto the marker, (2) the flow of media through the marker and (3) the auxiliary sub-units that control and facilitate the two prior flows. The flow of the print data comes through a physical connection on which some form of transport protocol stack is running. The data provided by the transport protocol (interface) appears on a channel, which is the input to an interpreter. The interpreter converts the print data into a form suitable for marking on the media.

The media resides in Input sub-units from which the media is selected and then transported via a Media Path first to a Marking sub-unit and then onto an Output sub-unit with (optionally) some finishing operations being performed. The auxiliary sub-units facilitate control of the printer, inquiry/control of the operator panel, reporting of alerts and the adaptation of the printer to various natural languages and characters sets. All the software sub-units run on the System Controller that represents the processor, memory and storage systems of the Printer. Each of the sub-units is discussed in more detail below.

All of the sub-units other than the Alerts report only state information, either a description or a status. The Alerts sub-unit reports event information.

2.2. Printer Sub-Units

A printer is composed of 13 types of sub-units, called groups. The following sections describe the different types of sub-units.

2.2.1. General Printer

The general printer sub-unit is responsible for the overall control and status of the printer. There is exactly one general printer sub-unit in a printer. The General Printer Group in the model represents the general printer sub-unit. In addition to the providing the status of the whole printer and allowing the printer to be reset, this Group provides information on the status of the packaging of the printer, in particular, the covers. The general printer sub-unit is usually implemented on the system controller.

2.2.1.1. International Considerations

The localization portion of the general printer sub-unit is responsible for identifying the natural language, country, and character set in which certain character strings are expressed in
this MIB. Character sets are identified in this MIB using the
IANACharset textual convention imported from the IANA Character Set
MIB [CHARMIB].

There may be one or more localizations supported per printer. The
available localizations are specified in the Localization table.
Localization SHOULD only be performed on string objects which are
named 'xxxDescription' (sub-unit descriptions) or
'prtConsoleDisplayBufferText' (local console text).

The agent SHALL return all other character strings in coded character
sets in which code positions 0-127 (decimal) are US-ASCII [ASCII].
The agent SHOULD return all other character strings in the UTF-8
[RFC3629] transform of ISO 10646 [ISO10646], to conform with the IETF
Policy on Character Sets and Languages [RFC2277]. Control codes
(code positions 0-31 and 127 decimal) SHALL NOT be used unless
specifically required in the DESCRIPTION of an object.

The character set portion of the general printer Localization table
is responsible for identifying the possible character sets for the
operator console, and network management requests for display
objects. There may be one or more character sets per printer.
Default coded character sets for interpreter unit and output octets
are described in the interpreter sub-unit by
prtInterpreterDefaultCharSetIn and prtInterpreterDefaultCharSetOut.
These input/output character sets may be overridden by commands in
the interpreter language itself.

2.2.2. Inputs

Input sub-units are mechanisms that feed media to be marked on into
the printer. A printer contains one or more input sub-units. The
Input Group in the model represents these. The model does not
distinguish fixed input bins from removable trays, except to report
when a removable tray has been removed.

There are as many input sub-units as there are distinctly selectable
input "addresses". For example, if one tray has both a manual and
auto feeding option, then this is two input sub-units if these two
sources can be (must be) separately selected. However, the above
would be considered one input sub-unit if putting a sheet in the
manual feed slot overrides feeding from the contents of the tray. In
the second case there is no way to separately select or address the
manual feed slot.
2.2.3. Media

An input sub-unit can hold one or more instances of the media on which marking is to be done. Typically, there is a large set of possible media that can be associated with an input. The Media Group is an extension of the Input Group, which represents media in an input sub-unit. The Media Group only describes the current contents of each input and not the possible content of the input sub-unit.

2.2.4. Outputs

Output sub-units are mechanisms that receive media that has been marked on. The Output Group in the model represents the one or more output mechanisms contained by a printer. The model does not distinguish fixed output bins from removable output bins, except to report when a removable bin has been removed.

There are as many output sub-units as there are distinctly selectable output "addresses". Output sub-units can be addressed in two different ways: (1) as a set of "mailboxes" which are addressed by a specific mailbox selector such as a bin number or a bin name, or (2) as a set of "slots" into which multiple copies are collated. Sometimes both modes of using the output sub-units can be used on the same printer. All that is important from the viewpoint of the model is that the output units can be separately selected.

2.2.5. Finishers

A finisher is a sub-unit that performs some operations on the media other than marking. The Finisher Group in the model represents the finisher sub-units. Some examples of finishing processes are stapling, punching, binding, inserting, or folding. Finishing processes may have supplies associated with the process. Stapling, binding, and punching are examples of processes that have supplies. A printer may have more than one finishing sub-unit and each finishing sub-unit may be associated with one or more output sub-units. Finishers are described in the companion Finisher MIB [RFC3806].

The model does not specify the exact interaction and sequencing between an output device and its associated finisher. It depends on the type of finishing process and the exact implementation of the printer system. This standard allows for the logical association of a finishing process with an output device but does not put any restrictions on the exact sequence or interaction with the associated output device. The output and finisher sub-units may or may not be separate identifiable physical mechanisms depending on the exact
implementation of a printer. In addition, a single output device may be associated with multiple finishing sub-units and a single finishing sub-unit may be associated with multiple output devices.

2.2.6. Markers

A marker is the mechanism that produces marks on the print media. The Marker Group in the model represents the marker sub-units and their associated supplies. A printer can contain one or more marking mechanisms. Some examples of multiple marker sub-units are a printer with separate markers for normal and magnetic ink or an image setter that can output to both a proofing device and final film. Each marking device can have its own set of characteristics associated with it, such as marking technology and resolution.

In this model the marker sub-unit is viewed as very generalized and encompasses all aspects of a marking process. For example, in a xerographic process, the marking process as well as the fusing process would be included in the generalized concept of the marker. With the generalized concept of a marking process, the concept of multiple marking supplies associated with a single marking sub-unit results. For example, in the xerographic process, there is not only a supply of toner, but there can also be other supplies such as a fuser supply (e.g., fuser oil) that can be consumed and replaced separately. In addition there can be multiple supplies of toner for a single marker device, as in a color process.

2.2.7. Media Paths

The media paths encompass the mechanisms in the printer that move the media through the printer and connect all other media related sub-units: inputs, outputs, markers and finishers. A printer contains one or more media paths. The Media Path Group in the model represents these. The Media Path group has some objects that apply to all paths plus a table of the separate media paths.

In general, the design of the media paths determines the maximum speed of the printer as well as the maximum media size that the printer can handle. Media paths are complex mechanisms and can contain many different identifiable sub-mechanisms such as media movement devices, media buffers, duplex units and interlocks. Not all of the various sub-mechanisms reside on every media path. For example, one media path may provide printing only on one surface of the media (a simplex path) and another media path may have a sub-mechanism that turns the media over and feeds it a second time through the marker sub-unit (a duplex path). The duplex path may
even have a buffer sub-mechanism that allows multiple copies of the obverse side to be held before the reverse side of all the copies is marked.

2.2.8. System Controller

The System Controller is the sub-unit upon which the software components of the Printer run. The Host Resources MIB [RFC2790] represents the System Controller in the model. The Host Resources MIB allows for the specification of the processor(s), memory, disk storage, file system and other underlying sub-mechanisms of the printer. The controller can range from simple single processor systems to multiprocessor systems. In addition, controllers can have a full range of resources such as hard disks. The printer is modeled to have one system controller even though it may have more than one processor and multiple other resources associated with it.

2.2.9. Interfaces

An interface is the communications port and associated protocols that are responsible for the transport of data to the printer. A printer has one or more interface sub-units. The interfaces are represented by the Interfaces Group of MIB-II [RFC1213], [RFC2863]. Some examples of interfaces are serial ports (with little or no protocol) and Ethernet ports on which one might run Internet IP, Novell IPX, etc.

2.2.10. Print Job Delivery Channels

The print job delivery channel sub-units identify the independent sources of print data (here print data is the information that is used to construct printed pages and may have both data and control aspects). A printer may have one or more channels. The channel sub-units are represented by the Print Job Delivery Channel Group in the Model. The electronic path typically identifies each channel and service protocol used to deliver print data to the printer. A channel sub-unit may be independently enabled (allowing print data to flow) or disabled (stopping the flow of print data). It has a current Control Language that can be used to specify which interpreter is to be used for the print data and to query and change environment variables used by the interpreters (and SNMP). There is also a default interpreter that is to be used if an interpreter is not explicitly specified using the Control Language. Print Job Delivery Channel sub-units can, and usually are, based on an underlying interface.
2.2.11. Interpreters

The interpreter sub-units are responsible for the conversion of a description of intended print instances into images that are to be marked on the media. A printer may have one or more interpreters. The Interpreter Group in the Model represents the interpreter sub-units. Each interpreter is generally implemented with software running on the System Controller sub-unit. The Interpreter Table has one entry per interpreter where the interpreters include both Page Description Language (PDL) Interpreters and Control Language Interpreters.

2.2.12. Console

Many printers have a console on the printer, the operator console that is used to display and modify the state of the printer. The console can be as simple as a few indicators and switches or as complicated as full screen displays and keyboards. There can be at most one such console. The Console Group in the model represents this console sub-unit. Although most of the information displayed there is also available in the state of the printer as represented by the various Groups, it is useful to be able to query and modify the operator console remotely. For example, a management application might like to display to its user the current message on the operator console of the remote printer or the management application user might like to modify the current message on the operators console of the remote printer. As another example, one might have a remote application that puts up a pseudo console on a workstation screen. Since the rules by which the printer state is mapped onto the console and vice versa are not standardized, it is not possible to reproduce the console state or the action of console buttons and menus. Therefore, the Console Group provides access to the console. The operator console is usually implemented on the system controller with additional hardware for input and display.

2.2.13. Alerts

The alert sub-unit is responsible for detecting reportable events, making an entry in the alert table and, if and only if the event is a critical event, initiating a trap. The exception to this rule is when the "alertRemovalofBinaryChangeEntry" trap is generated. The alert sub-unit is represented by the Alerts Group and, in particular, the Alert Table. This table contains information on the severity, sub-unit, and detailed location within the sub-unit, alert code and description of each alert that is currently active within the printer. Each reportable event causes an entry to be made in the Alert Table.
2.2.13.1. Status and Alerts

Summary information about the state of the printer is reported at three separate levels: (1) The status of the printer as a whole is reported in the Host Resources MIB, (2) The status of various sub-units is reported in the principle table of the Group that represents the sub-unit, and (3) Alert codes are reported in the Alert Table.

2.2.13.2. Overall Printer Status

Of the many states a printer can be in, certain states are more "interesting" because of the distinct actions they are likely to provoke in the administrator. These states may be applied to the printer as a whole, or to a particular sub-unit of the printer. These named states are:

Non Critical Alert Active - For the printer this means that one or more sub-units have a non-critical alert active. For a sub-unit, this means that the sub-unit has a non-critical alert active.

Critical Alert Active - For the printer this means that one or more sub-units have a critical alert active. For a sub-unit, this means that the sub-unit has a critical alert active.

Unavailable - The printer or sub-unit is unavailable for use (this is the same as "broken" or "down" in other terminology). A trained service person is typically necessary to make it available.

Moving on-line or off-line - The printer is either off-line, in the process of moving off-line or moving back on-line. For example, on printers with motorized hoppers, reloading paper involves a transition to off-line to open the paper bin, filling the hopper and, finally, a transition back to on-line as the paper bin is repositioned for printing.

Standby - The printer or sub-unit is not immediately available but can accept new instructions.

Available - The printer or subunit is functioning normally.

Idle - The printer or subunit is immediately available.

Active - The printer or subunit is performing its primary function.

Busy - The printer or subunit is performing a function (not necessarily its primary function) and is not immediately available for its primary function.
The Host Resources MIB [RFC2790] provides three status objects that can be used to describe the status of a printer: (1) hrDeviceStatus in the entry in the hrDeviceTable; (2) hrPrinterStatus in the hrPrinterTable; and (3) hrPrinterDetectedErrorState in the hrPrinterTable. These objects describe many of the states that a printer can be in. The following table shows how the values of the three printer-related objects in the Host Resources MIB relate to the states named above:

<table>
<thead>
<tr>
<th>Printer Status</th>
<th>hrDeviceStatus</th>
<th>hrPrinterStatus</th>
<th>hrPrinterDetectedErrorState</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>running(2)</td>
<td>idle(3)</td>
<td>none set</td>
</tr>
<tr>
<td>Busy/Active</td>
<td>running(2)</td>
<td>printing(4)</td>
<td></td>
</tr>
<tr>
<td>Non Critical Alert Active</td>
<td>warning(3)</td>
<td>idle(3) or printing(4)</td>
<td>could be: lowPaper, lowToner, or serviceRequested</td>
</tr>
<tr>
<td>Critical Alert Active</td>
<td>down(5)</td>
<td>other(1)</td>
<td>could be: jammed, noPaper, noToner, coverOpen, or serviceRequested</td>
</tr>
<tr>
<td>Unavailable</td>
<td>down(5)</td>
<td>other(1)</td>
<td></td>
</tr>
<tr>
<td>Moving off-line</td>
<td>warning(3)</td>
<td>idle(3) or printing(4)</td>
<td>offline</td>
</tr>
<tr>
<td>Off-line</td>
<td>down(5)</td>
<td>other(1)</td>
<td>offline</td>
</tr>
<tr>
<td>Moving on-line</td>
<td>down(5)</td>
<td>warmup(5)</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>running(2)</td>
<td>other(1)</td>
<td></td>
</tr>
</tbody>
</table>

These named states are only a subset of the possible states - they are not an exhaustive list of the possible states. Nevertheless, several things should be noted. When using these states, it is not possible to detect when both critical and non-critical alerts are pending - if both are pending, the Critical Alert Active state will prevail. In addition, a printer in the Standby state will be represented in the Host Resources MIB with a device status of running(2) and a printer status of other(1), a set of states that don’t uniquely distinguish this important printer state.
Detailed status per sub-unit is reported in the sub-unit status fields.

2.2.13.2.1. Host Resources MIB Printer Status

For completeness, the definitions of the Printer Status objects of the Host Resources MIB [RFC2790] are given below:

hrDeviceStatus OBJECT-TYPE
SYNTAX INTEGER {
 unknown(1),
 running(2),
 warning(3),
 testing(4),
 down(5)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current operational state of the device described by this row of the table. A value unknown(1) indicates that the current state of the device is unknown. running(2) indicates that the device is up and running and that no unusual error conditions are known. The warning(3) state indicates that agent has been informed of an unusual error condition by the operational software (e.g., a disk device driver) but that the device is still 'operational'. An example would be high number of soft errors on a disk. A value of testing(4), indicates that the device is not available for use because it is in the testing state. The state of down(5) is used only when the agent has been informed that the device is not available for any use."
 ::= { hrDeviceEntry 5 }

hrPrinterStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 unknown(2),
 idle(3),
 printing(4),
 warmup(5)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current status of this printer device. When in the idle(3), printing(4), or warmup(5) state, the corresponding hrDeviceStatus should be running(2) or warning(3). When in the unknown(2) state, the corresponding hrDeviceStatus should be unknown(1)."

::= { hrPrinterEntry 1 }

hrPrinterDetectedErrorState OBJECT-TYPE
SYNTAX OCTET STRING (0..128)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This object represents any error conditions detected by the printer. The error conditions are encoded as an OCTET STRING with the following definitions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Bit #</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowPaper</td>
<td>0</td>
</tr>
<tr>
<td>noPaper</td>
<td>1</td>
</tr>
<tr>
<td>lowToner</td>
<td>2</td>
</tr>
<tr>
<td>noToner</td>
<td>3</td>
</tr>
<tr>
<td>doorOpen</td>
<td>4</td>
</tr>
<tr>
<td>jammed</td>
<td>5</td>
</tr>
<tr>
<td>offline</td>
<td>6</td>
</tr>
<tr>
<td>serviceRequested</td>
<td>7</td>
</tr>
<tr>
<td>inputTrayMissing</td>
<td>8</td>
</tr>
<tr>
<td>outputTrayMissing</td>
<td>9</td>
</tr>
<tr>
<td>markerSupplyMissing</td>
<td>10</td>
</tr>
<tr>
<td>outputNearFull</td>
<td>11</td>
</tr>
<tr>
<td>outputFull</td>
<td>12</td>
</tr>
<tr>
<td>inputTrayEmpty</td>
<td>13</td>
</tr>
<tr>
<td>overduePreventMaint</td>
<td>14</td>
</tr>
</tbody>
</table>

Bit # 15 is not assigned.

If multiple conditions are currently detected and the hrDeviceStatus would not otherwise be unknown(1) or testing(4), the hrDeviceStatus shall correspond to the worst state of those indicated, where down(5) is worse than warning(3), which is worse than running(2).

Bits are numbered starting with the most significant bit of the first byte being bit 0, the least significant bit of the first byte being bit 7, the most significant bit of the second byte being bit 8, and so on. A one bit encodes that the condition was detected, while a zero bit encodes that
the condition was not detected.

This object is useful for alerting an operator to specific warning or error conditions that may occur, especially those requiring human intervention.

::= { hrPrinterEntry 2 }

2.2.13.2.2. Sub-unit Status

Sub-unit status is reported in the entries of the principle table in the Group that represents the sub-unit. For sub-units that report a status, there is a status column in the table and the value of this column is always an integer formed in the following way.

The PrtSubUnitStatusTC is an integer that is the sum of 5 distinct values, Availability, Non-Critical, Critical, On-line, and Transitioning. These values are:

<table>
<thead>
<tr>
<th>Availability</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available and Idle</td>
<td>0</td>
</tr>
<tr>
<td>Available and Standby</td>
<td>2</td>
</tr>
<tr>
<td>Available and Active</td>
<td>4</td>
</tr>
<tr>
<td>Available and Busy</td>
<td>6</td>
</tr>
<tr>
<td>Unavailable and OnRequest</td>
<td>1</td>
</tr>
<tr>
<td>Unavailable because Broken</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
</tbody>
</table>

Non-Critical

<table>
<thead>
<tr>
<th>Non-Critical Alerts</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Non-Critical Alerts</td>
<td>0</td>
</tr>
<tr>
<td>Non-Critical Alerts</td>
<td>8</td>
</tr>
</tbody>
</table>

Critical

<table>
<thead>
<tr>
<th>Critical Alerts</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Critical Alerts</td>
<td>0</td>
</tr>
<tr>
<td>Critical Alerts</td>
<td>16</td>
</tr>
</tbody>
</table>

On-Line

<table>
<thead>
<tr>
<th>State is On-Line</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State is Off-Line</td>
<td>32</td>
</tr>
</tbody>
</table>

Transitioning

<table>
<thead>
<tr>
<th>Transitioning to intended state</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At intended state</td>
<td>0</td>
</tr>
</tbody>
</table>
For example, an input (tray) that jammed on the next to the last page may show a status of 27 (unavailable because broken (3) + a critical state (16), jammed, and a noncritical state (8), low paper).

2.2.13.3. Alert Tables

The Alert Group consists of a single table in which all active alerts are represented. This section provides an overview of the table and a description of how it is managed. The basic content of the alert table is the severity (critical or non-critical) of the alert, the Group and entry where a state change caused the alert, additional information about the alert (a more detailed location, an alert code, and a description), and an indication of the level of training needed to service the alert.

The Alert Table contains some information that is redundant, for example that an event has occurred, and some information that is only represented in the Alert Table, for example the additional information. A single table was used because a single entry in a group could cause more than one alert, for example paper jams in more than one place in a media path. Associating the additional information with the entry in the affected group would only allow one report where associating the additional information with the alert makes multiple reports possible. Every time an alert occurs in the printer, the printer makes one or more entries into the Alert Table. The printer determines if an event is to be classified as critical or non-critical. If the severity of the Alert is "critical", the printer sends a trap or event notification to the host indicating that the table has changed. Whether or not a trap is sent, the management application is expected to poll the printer on a regular basis and to read and parse the table to determine what conditions have changed, in order to provide reliable information to the management application user.

2.2.13.4. Alert Table Management

The alert tables are sparsely populated tables. This means the tables will only contain entries of the alerts that are currently active and the number of rows, or entries in the table will be dynamic. More than one event can be added or removed from the event tables at a time depending on the implementation of the printer.

There are basically two kinds of events that produce alerts: binary change events and unary change events. Binary change events come in pairs: the leading edge event and the trailing edge event. The leading edge event enters a state from which there is only one exit; for example, going from running to stopped with a paper jam. The only exit from this state is fixing the paper jam and it is clear
when that is accomplished. The trailing edge event exits the state
that was entered by the leading edge event. In the example above,
fixing the paper jam is the trailing edge event.

It is relatively straightforward to manage binary change events in
the Alert Table. Only the leading edge event makes an entry in the
alert table. This entry persists in the Alert Table until the
trailing edge event occurs at which point this event is signaled by
the removal of the leading edge event entry in the Alert Table. That
is, a trailing edge event does not create an entry; it removes the
corresponding leading edge event. Removing the leading edge entry
may cause the unary change event "alertRemovalofBinaryChangeEntry" to
be added to the table. With binary change events it is possible to
calculate the maximum number that can occur at the same time and
construct an Alert Table that would hold that many events. There
would be no possibility of table overflow and no information about
outstanding events would be lost.

Unfortunately, there are some events that are not binary changes.
This other category of event, the unary change event, is illustrated
by the configuration change event. With this kind of event the state
of the machine has changed, but to a state which is (often) just as
valid as the state that was left and from which no return is
necessary. For example, an operator may change the paper that is in
the primary input source from letter to legal. At some time in the
future the paper may be changed back to letter, but it might be
changed to executive instead. This is where the problem occurs. It
is not obvious how long to keep unary change event entries in the
Alert Table. If they were never removed, the Alert Table would
continue to grow indefinitely.

The agent needs to have an algorithm implemented for the management
of the alert table, especially in the face of combinations of binary
and unary alerts that would overflow the storage capacity of the
table. When the table is full and new alerts need to be added, an
old alert to be deleted should be chosen using the following rules:

1. Find a non-critical unary alert and delete it. If there are
 multiple non-critical unary alerts, it is suggested that the
 oldest one is chosen. If there are no non-critical unary alerts,
 then,

2. Find a non-critical binary alert and delete it. If there are
 multiple non-critical binary alerts, it is suggested that the
 oldest one is chosen. If there are no non-critical binary alerts,
 then,
3. Find a critical (binary) alert and delete it. If there are multiple critical alerts, it is suggested that the oldest one be chosen. Agent implementers are encouraged to provide at least enough storage space for the maximum number of critical alerts that could occur simultaneously. Note that all critical alerts are binary.

In the event that a critical binary alert has been deleted out of the alert table; when space allows and the alert condition still exists, the alert should be re-added to the alert table even if there was no subsequent transition into the associated state. It is recommended that this be done for non-critical binary alerts as well. Note that the new alert entry will not have the same index as the original entry that was moved out of the table.

Note that because the Alert Index is a monotonically increasing integer there will be gaps in the values in the table when an alert is deleted. The management application may want to re-acquire the Printer state and check for state changes that it did not observe in the Alert Table if such gaps are detected.

2.3. Read-Write Objects

Some objects in the printer MIB reflect the existence or amount of a given resource within the printer. Some examples of such resources are the size and number of sheets in a paper tray or the existence of certain output options. Some printers have automatic sensors for these resources. Most printers lack sensors for every property of every resource. The management application is allowed to write into objects that hold descriptive or existence values for printers that cannot sense these values. The ability to change the value of a read-write object may depend on the implementation of the agent. Many objects in the MIB are given read-write access, but a printer implementation might only permit a management application to change the value if the printer can not sense the value itself. Note that even though some objects explicitly state the behavior of conditional ability to change values, any read-write object may act this way.

Generally, an object is given read-write access in the Printer MIB specification if:

1. The object involves installation of a resource that some printers cannot themselves detect. Therefore, external means are needed to inform the printer of the installation. (Here external means include using the operator console, or remote management application) and
2. The printer will behave differently if the installation of the resource is reported than the printer would if the installation were not reported; that is, the object is not to be used as a place to put information not used by the printer, i.e., not a "sticky-note". Another way of saying this is that the printer believes that information given it and acts as if the information were true. For example, on a printer that cannot sense the size, if one paper size is loaded, but another size is set into the paper size object, then the printer will use the size that was set as its current paper size in its imaging and paper handling.

3. The printer may get hints that it may not know about the existence or properties of certain resources. For example, a paper tray may be removed and re-inserted. When this removal and insertion happens, the printer may either assume that a property, such as the size of paper in the tray, has not changed or the printer may change the value of the associated object to "unknown", as might be done for the amount of paper in the tray. As long as the printer acts according to the value in the object either strategy is acceptable.

4. It is an implementation-specific matter as to whether or not MIB object values are persistent across power cycles or cold starts. It is particularly important that the values of the prtMarkerLifeCount object persist throughout the lifetime of the printer. Therefore, if the value of any MIB object persists across power cycles, then the prtMarkerLifeCount object must also persist.

2.4. Enumerations

Enumerations (enums) are sets of symbolic values defined for use with one or more objects. Commonly used enumeration sets are assigned a symbolic data type name (textual convention), rather than being specified in the SYNTAX clause of each individual object definition.

Textual conventions defined in the Printer MIB or the companion IANA Printer MIB are extensible by RFC publication or by Designated Expert Review (see the ‘IANA Considerations’ section of this Printer MIB and the DESCRIPTION clause in MODULE-IDENTITY of IANA Printer MIB). All of these textual conventions are:

a) used more than once in the Printer MIB itself; or

b) imported and used in the companion Finisher MIB; or

c) imported and used in any other, including vendor private, MIB modules.
The Printer MIB has also defined the following special values for use with objects of the syntax "Integer32" to define conditions that are outside of the normal numeric range: other(-1), unknown(-2), and partial(-3). The 'partial' value means that there is some supply remaining (but the amount is indeterminate) or there is some capacity remaining (but the amount is indeterminate). The Integer32 range field indicates in which objects these special values are valid.

2.4.1. Registering Additional Enumerated Values

The Printer MIB and the companion IANA Printer MIB each defines one category of textual convention, according to the process employed to control the addition of new enumerations:

Type 1 - All of the legal values are defined in the Printer MIB. Additional enumerated values require the publication of a new Printer MIB.

Type 2 - All of the legal values are registered in the IANA Printer MIB. Additional enumerated values require a Designated Expert Review defined in "Guidelines for Writing an IANA Considerations Section in RFCs" [RFC2434]. The Designated Expert will be selected by the IETF Area Director(s) of the Applications Area.

3. Groups from other MIB Specifications

This section identifies the groups from other MIBs that shall be supported to supplement and complete a printer MIB implementation. The section also describes some of the less obvious characteristics of the Printer MIB structure that are related to the inclusion of these other MIB groups.

3.1. System Group

All objects in the system group of MIB-II [RFC1213] shall be implemented; however, as described in paragraph 2.4, implementers should carefully consider what constitutes the "system".

3.2. System Controller

The storage and device groups of the Host Resources MIB [RFC2790] shall be implemented to support the printer(s) system controller, and any supporting devices. If deemed appropriate by the implementer, other groups of the Host Resources MIB (System, Running Software, Running Software Performance, and Installed Software) may be implemented. Because of the structure of the Host Resources MIB, the devices constituting the system controller are at the same level as the printer.
3.3. Interface Group objects

All objects in the Interfaces Group of MIB-II [RFC1213] shall be implemented for all print information interfaces to the printer, including non-network interfaces.

3.3.1. Interface Types

The interfaces group of RFC 1213 [RFC1213] contains only a partial list of interface types that can be specified in the "ifType" object. For a complete list of interface types, refer to the IANA registry at "ftp://ftp.isi.edu/mib/iana.mib/ianaiftype.mib"

4. Differences from RFC 1759

This document supersedes and replaces RFC 1759. However, a compliant implementation of RFC 1759 is also compliant with this document. The following changes to RFC 1759 are included: (See the printmib REVISION/DESCRIPTION clause for additional details of changes.)

- Minor editorial corrections and changes. Updated the cover page and added the "SNMP Management Framework" boilerplate to section 1.

- Updated figure 2 to use MIB names instead of RFC numbers.

- Updated Coded Character Set description and IANA registration process.

- Change hrPrinterDetectedErrorState "coverOpen" (bit 4) to "doorOpen" per RFC 2790.

- Added second octet of hrPrinterDetectedErrorState as partially described and assigned in the updated Host Resources MIB (RFC 2790).

- Remove fixed association of hrDeviceStatus (warning/down) from hrPrinterDetectedErrorState per RFC 2790.

- Instead of showing bit 15 as "not assigned" in the quote from RFC 2790 in the hrPrinterDetectedErrorState object, removed that from the tabular form and added it as a sentence, because the RFC doesn’t show bit 15 in the tabular form.

- Clarified the international considerations.
- Added `prtChannelInformation` to the Channel Group textual-conventions on a per channel basis to clarify the channel description and enhance interoperability.

- Deprecated some obsolete channel types.

- Extended the Alert Table and `PrtMarkerSuppliesSupplyUnit` textual conventions to include values from the Finisher MIB.

- Clarified alerts based on unary vs. binary change events.

- Added (optional) unary change event `alertRemovalOfBinaryChangeEntry(1801)`.

- Established a convention for contact information for `prtGeneralCurrentOperator` and `prtGeneralServicePerson`.

- Added `prtAuxiliarySheetStartupPage` `PresentOnOff`.

- Added `prtAuxiliarySheetBannerPage` `PresentOnOff`.

- Added `prtGeneralPrinterName` `OCTET STRING`.

- Added `prtGeneralSerialNumber` `OCTET STRING`.

- Added `prtInputNextIndex` `Integer32`.

- Added the Input Switching Group

- Added `prtAlertCriticalEvents` `Counter32`.

- Added `prtAlertAllEvents` `Counter32`.

- Updated `PrtAlertCode` enums including generic alert codes.

- Created five `OBJECT-GROUPs` (`prtAuxilliarySheetGroup`, `prtInputSwitchingGroup`, ` prtGeneralV2Group`, `prtAlertTableV2Group`, `prtChannelV2Group`). Added the nine new objects to them (`prtAuxiliarySheetStartupPage`, `prtAuxiliarySheetBannerPage`, `prtGeneralPrinterName`, `prtGeneralSerialNumber`, `prtAlertCriticalEvents`, `prtAlertAllEvents`, `prtInputMediaLoadTimeout`, `prtInputNextIndex`, `prtChannelInformation`). Created one new `NOTIFICATION-GROUP` (`prtAlertTrapGroup`) to contain `printerV2Alert`. Included the new `OBJECT-GROUPs` and the `NOTIFICATION-GROUP` in `prtMIBCompliance`, all in `GROUP` (not `MANDATORY-GROUP`) clauses. The nine new objects are optional, i.e., this document is backward compatible with RFC 1759.
- prtAlertTime is strongly recommended.

- Deprecated the use of alert codes doorOpen(501) and doorClosed(502), in favor of coverOpened(3) and coverClosed(4).

- Added the PrtConsoleDisableTC and PrtMarkerAddressabilityUnitTC textual conventions, and changed the PrtConsoleDisable and PrtMarkerAddressabilityUnit objects’ syntax to use those TCs, and changed the PrtGeneralEntry and PrtMarkerColorantEntry SEQUENCEs to reflect the new syntax.

- Added textual conventions "PrtLocalizedDescriptionStringTC" and "PrtConsoleDescriptionStringTC" and updated several objects to use them.

- Changed most enumerations to textual conventions and therefore changed the SYNTAX of many objects from RFC 1759 to specify the appropriate textual conventions. (28 TCs were added.)

- Changed the TC names "MediaUnit" to "PrtMediaUnitTC", "CapacityUnit" to "PrtCapacityUnitTC", and "SubUnitStatus" to "PrtSubUnitStatusTC"

- All objects with a MAX-ACCESS of read-write now have a MIN-ACCESS of read-only.

- Added ‘IANA Considerations’ and ‘Internationalization Considerations’ as top level sections, per IETF guidelines.

- Updated Security and Copyright sections.

- Updated references and split into Normative and Informative groups.

- Added Appendix E - Overall Printer Status Table.

- Updated participant and contact information.

- Removed CodedCharSet Textual Convention, replaced with an import of the IANACharset.

- Removed all comment statements that indicated objects or groups are mandatory or optional. Avoids any potential conflicts with the conformance section.
- Added text to empty description clauses. (prtStorageRefTable, prtDeviceRefTable, prtMarkerTable, prtMediaPathTable, prtChannelTable, prtInterpreterTable, prtConsoleLightTable, and prtAlertTable)

- Added "DEFVAL { unknown }" to prtInterpreterDefaultCharSetIn and prtInterpreterDefaultCharSetOut.

- Changed "...values are expected to remain stable..." to "...values SHOULD remain stable..." in the description clauses for the index object in all tables.

- Added ranges to all objects with a syntax of Integer32.

- Revised the description clause for prtAlertGroupIndex.

- Added additional text to the description clause for prtMediaPathEntry, prtChannelEntry, prtInterpreterEntry, and printerV2Alert.

- Added text to section 2.4 to explain the usage of textual conventions in this MIB and others. Also added a note defining the common usage of the enumerations 'other(-1)' and 'unknown(-2)'

- Changed range of prtStorageRefSeqNumber, prtDeviceRefSeqNumber, and prtConsoleLightIndex from (0..65535) to (1..65535) since index values cannot be zero. (Typo in RFC 1759)

- The PWG Standard for Standardized Media Names is now recommended for the objects prtInputMediaName, prtInputMediaColor, and prtInputMediaType.

- Added chSMTP(45) to prtChannelTypeTC.

5. The IANA Printer MIB

IANA-PRINTER-MIB DEFINITIONS ::= BEGIN

-- http://www.iana.org/assignments/ianaprinter-mib

IMPORTS

 MODULE-IDENTITY, mib-2
 FROM SNMPv2-SMI -- [RFC2578]

 TEXTUAL-CONVENTION
 FROM SNMPv2-TC; -- [RFC2579]

ianaPrinterMIB MODULE-IDENTITY

 LAST-UPDATED "200406020000Z" -- June 2, 2004
This MIB module defines a set of printing-related TEXTUAL-CONVENTIONS for use in Printer MIB (RFC 3805), Finisher MIB (RFC 3806), and other MIBs which need to specify printing mechanism details.

Any additions or changes to the contents of this MIB module require either publication of an RFC, or Designated Expert Review as defined in RFC 2434, Guidelines for Writing an IANA Considerations Section in RFCs. The Designated Expert will be selected by the IESG Area Director(s) of the Applications Area.

Copyright (C) The Internet Society (2004). The initial version of this MIB module was published in RFC 3805. For full legal notices see the RFC itself or see: http://www.ietf.org/copyrights/ianamib.html

REVISION "200406020000Z" -- June 2, 2004
DESCRIPTION "Original version, published in coordination with Printer MIB (RFC 3805)."

 ::= { mib-2 109 }

--
-- Generic TEXTUAL-CONVENTIONS
--

PrtCoverStatusTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtCoverStatus in RFC 1759.
STATUS current
DESCRIPTION "Values for encoding the state of a particular cover or access panel on the printer case or enclosure."
SYNTAX INTEGER {
 other(1),
 coverOpen(3),
 coverClosed(4),
 interlockOpen(5),
 interlockClosed(6)
PrtGeneralResetTC ::= TEXTUAL-CONVENTION
 -- This TC was extracted from prtGeneralReset in RFC 1759.
 STATUS current
 DESCRIPTION
 "Values for reading and writing the prtGeneralReset object.

 If a device does not have NVRAM, the device shall none the
 less respond to a SET with the value resetToNVRAM(5) with a
 sort of warm reset that resets the device to implementation-
 defined state that is preferably under control of the system
 administrator by some means outside the scope of the Printer
 MIB specification."

 SYNTAX INTEGER {
 notResetting(3),
 powerCycleReset(4), -- Cold Start
 resetToNVRAM(5), -- Warm Start
 resetToFactoryDefaults(6) -- Reset contents of
 -- NVRAM to factory
 -- defaults
 }

PrtChannelTypeTC ::= TEXTUAL-CONVENTION
 -- This TC was extracted from prtChannelType in RFC 1759.
 STATUS current
 DESCRIPTION
 "This enumeration indicates the type of channel that is
 receiving jobs."
 SYNTAX INTEGER {
 other(1),
 chSerialPort(3),
 chParallelPort(4),
 chIEEE1284Port(5),
 chSCSIPort(6),
 chAppleTalkPAP(7),
 -- AppleTalk Printer
 -- Access Protocol (PAP)
 --
 -- prtChannelInformation entry:
-- Printer Name
-- Keyword: Name
-- Syntax: Name
-- Status: Optional
-- Multiplicity: Single
-- Description: The name of the printer within the AppleTalk naming scope

-- prtChannelInformation entry:

-- Printer queue name
-- Keyword: Queue
-- Syntax: Name
-- Status: Mandatory
-- Multiplicity: Single
-- Description: queue name as defined in [RFC1179].

-- chNetwareRPrinter(9),
-- Novell, Inc.
-- For each entry of this type, the
-- prtChannelInformation must have a pair of
-- keywords. For Netware 3.x channels this must
-- be a (PServer, Printer) pair. For Netware
-- 4.x channels and for IntranetWare channels
-- this must be a (NDSTree, NDSprinter) pair.

-- prtChannelInformation entries:

-- Print Server Name
-- Keyword: PServer
-- Syntax: Name
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The Pserver’s SAP name

-- Printer Number
-- Keyword: Printer
-- Syntax: Integer
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The printer number

-- NDSTree
-- Keyword: NDSTree
-- Syntax: Name
-- Multiplicity: Single
-- Description: The tree’s SAP name
-- NDS Printer object
-- Keyword: NDSPrinter
-- Syntax: Text (Unicode)
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The fully qualified name of the Printer

-- In the Netware 3.x environment, the client checks the Bindery object representing the named PServer. The client then checks for queues which are associated with the numbered printer. In the 4.x and IntraNetware environment, the client looks up the queues which are associated with the NDS Printer Object in the named Tree. Depending on client access rights to those queues, the client submits jobs to the appropriate queue.

chNetwarePServer(10), Novell,Inc.
-- For each entry of this type, the prtChannelInformation must have a pair of keywords. For Netware 3.x channels this must be a (Server, PServer) pair. For Netware 4.x and IntraNetWare channels, this must be a (NDSTree, NDSPServer) pair.

-- prtChannelInformation entries:

-- Server Name
-- Keyword: Server
-- Syntax: Name
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The SAP name of the server for which the PServer is defined.

-- PServer
-- Keyword: PServer
-- Syntax: Name
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The bindery name of the PServer
In the 3.x environment, the client checks the bindery object representing the named PServer on the named Server. In the 4.x and IntranetWare environment, the client checks the NDS object representing the named PServer in the named Tree. In either case, the client then checks for all queues associated with the PServer object. Depending on client access rights to those queues, the client submits jobs to the appropriate queue.

```plaintext
chPort9100(11),
   -- DEPRECATED
   -- (see chPortTCP - 37; chBidirPortTCP - 38)
chAppSocket(12),
   -- A bi-directional, LPD-like, protocol using 9101 for control and 9100 for data.
   -- Adobe Systems, Inc.
chFTP(13),        -- [RFC959]
chTFTP(14),        -- [RFC1350]
chDLCLLCPort(15),
chIBM3270(16),     -- IBM Coax
chIBM5250(17),     -- IBM Twinax
chFax(18),
chIEEE1394(19),
chTransport1(20),
   -- TCP port 35, for reserved TCP port list see [RFC3232]. This RFC should also be referenced for other channel enumerations utilizing TCP port
```
-- numbers 0 through 1024.
chCPAP(21), -- TCP port 170
 -- Digital Equipment Corp.
chDCERemoteProcCall(22), -- OSF
 -- DEPRECATED
chONCRemoteProcCall(23), -- SUN Microsystems
 -- DEPRECATED
chOLE(24), -- Microsoft
 -- DEPRECATED
chNamedPipe(25),
chPCPrint(26), -- Banyan
chServerMessageBlock(27),
 -- File/Print sharing protocol used by
 -- various network operating systems
 -- from IBM 3Com, Microsoft and others
 --
 -- prtChannelInformation entry:
 --
 -- Service Name
 -- Keyword: Name
 -- Syntax: Name
 -- Status: Optional
 -- Multiplicity: Single
 -- Description: The service name of
 the printer
chDPMF(28), -- IBM Infoprint
chDLLAPI(29), -- Microsoft
 -- DEPRECATED
chVxDAPI(30), -- Microsoft
 -- DEPRECATED
chSystemObjectManager(31), -- IBM
chDECLAT(32),
 -- Digital Equipment Corp.
 --
 -- prtChannelInformation entries:
 --
 -- Port Name
 -- Keyword: Port
 -- Syntax: Name
 -- Status: Conditionally
 -- Mandatory
 -- (see note below)
 -- Multiplicity: Single
 -- Description: LAT port name
 --
 -- Service Name
 -- Keyword: Service
 -- Syntax: Name
-- Status: Conditionally
-- Mandatory
-- Multiplicity: Single
-- Description: LAT service name
--
-- The LAT channel may be
-- identified by either a port or
-- service, so either a
-- Port or Service entry must be
-- specified, but not both.

chNPAP(33),
chUSB(34), -- Not in RFC 1759
 -- Universal Serial Bus
chIRDA(35), -- Not in RFC 1759
 -- Infrared Data Assoc. Prot.
chPrintXChange(36), -- Not in RFC 1759
 -- PrintXChange Protocol
chPortTCP(37), -- Not in RFC 1759
 -- A unidirectional "raw" TCP
 -- channel that uses an administratively
 -- assigned TCP port address.
--
-- prtChannelInformation entry:
--
-- Port Number
-- Keyword: Port
-- Syntax: decimal number
-- Status: Mandatory
-- Multiplicity: Single
-- Description: TCP port number
chBidirPortTCP(38), -- Not in RFC 1759
 -- A bi-directional version of chPortTCP
--
-- prtChannelInformation entries:
-- (See chPortTCP)
chUNPP(39), -- Not in RFC 1759
 -- Universal Network Printing
 -- Protocol(UNPP). A bi-directional,
 -- multiport network printing
 -- application protocol available on
 -- multiple transport protocols.
 -- Underscore, Inc.
 -- Contact: info@underscore.com
chAppleTalkADSP(40), -- Not in RFC 1759
 -- AppleTalk Data Stream Protocol.
 -- ADSP is part of the AppleTalk
 -- suite of protocols.
 -- It is a symmetric, connection-
-- oriented protocol that makes
-- possible the establishment
-- and maintenance of full-duplex
-- streams of data bytes between
-- two sockets in an AppleTalk
-- internet.
-- See [APPLEMAC].
chPortSPX(41), -- Not in RFC 1759
-- Sequenced Packet Exchange (SPX)
-- socket.
-- Novell, Inc. Similar to TCP, a
-- bi-directional data pipe using
-- Novell SPX as a transport.
--
-- prtChannelInformation entries:
--
-- Network Number
-- Keyword: Net
-- Syntax: HexString
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The network number
--
-- Node Number
-- Keyword: Node
-- Syntax: HexString
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The node number
--
-- Socket Number
-- Keyword: Socket
-- Syntax: HexString
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The SPX socket number
--
-- There must be exactly one "Net" and
-- one "Node" and one "Socket" entry. A
-- HexString is a binary value
-- represented as a string of
-- ASCII characters using hexadecimal
-- notation.
chPortHTTP(42), -- Not in RFC 1759
-- Hypertext Transfer Protocol. See [RFC1945]
-- and [RFC2616].
chNDPS(43), -- Not in RFC 1759
-- Novell, Inc.
--
-- prtChannelInformation entry:
--
-- Printer Agent Name
-- Keyword: PA
-- Syntax: Name
-- Status: Mandatory
-- Multiplicity: Single
-- Description: The NDPS Printer
-- Agent Name

chIPP(44), -- Not in RFC 1759
-- Internet Printing Protocol (IPP),
-- (IPP/1.1 - see [RFC2910] and [RFC2911])
-- also applies to all future versions of IPP.
--
-- IPP Printer URI
-- Keyword: URI
-- Syntax: URI (Unicode UTF-8 per
-- [RFC2396])
-- Status: Mandatory
-- Multiplicity: Single
-- Default: not applicable
-- Description: URI of this IPP Printer
-- within Internet naming scope. Unicode
-- UTF-8 [RFC3629] string with
-- hexadecimal escapes for any non-ASCII
-- characters (per [RFC2396]).
-- Conformance: An IPP Printer shall list all
-- IPP URI it supports (one per IPP Channel
-- entry). If a URI contains the 'http:'
-- scheme it must have an explicit port.
-- See: [RFC3629], [RFC2396], [RFC2910],
-- [RFC2911].
--
-- IPP Printer Client Authentication
-- Keyword: Auth
-- Syntax: Keyword
-- Status: Optional
-- Multiplicity: Single
-- Default: 'none'
-- Description: A client authentication
-- mechanism supported for this IPP Printer
-- URI:
-- 'none'
-- no client authentication mechanism
-- requesting-user-name'
-- authenticated user in 'requesting-
-- user-name'
RFC 3805 Printer MIB v2 June 2004

-- 'basic'
-- authenticated user via HTTP Basic
-- mechanism
-- 'digest'
-- authenticated user via HTTP Digest
-- mechanism
-- 'certificate'
-- authenticated user via certificate
-- mechanism
-- Conformance: An IPP Printer should list
-- all IPP client authentication mechanisms
-- it supports (one per IPP Channel entry).
-- See: [RFC2911] and [RFC2910].
--
-- IPP Printer Security
-- Keyword: Security
-- Syntax: Keyword
-- Status: Optional
-- Multiplicity: Single
-- Default: 'none'
-- Description: A security mechanism
-- supported for this IPP Printer URI:
-- 'none'
-- no security mechanism
-- 'ssl3'
-- SSL3 secure communications channel
-- protocol
-- 'tls'
-- TLS secure communications channel
-- protocol
-- Conformance: An IPP Printer should list
-- all IPP security mechanisms it supports
-- (one per IPP Channel entry).
-- See: [RFC2246], [RFC2911].
--
-- IPP Printer Protocol Version
-- Keyword: Version
-- Syntax: Keyword
-- Status: Optional
-- Multiplicity: Multiple
-- Default: '1.1'
-- Description: All of the IPP protocol
-- versions (major.minor) supported for
-- this IPP Printer URI:
-- '1.0'
-- IPP/1.0 conforming Printer
-- '1.1'
-- IPP/1.1 conforming Printer
-- Conformance: An IPP Printer should list
-- all IPP versions it supports (all listed
-- in each IPP Channel entry). An IPP
-- Client should select the highest
-- numbered version the IPP Client supports
-- for use in all IPP Requests (for optimum
-- interworking).
-- See: [RFC2911].

chSMTP(45)
-- Print Job submission via Simple Mail
-- Transfer Protocol (SMTP) - see [RFC2821]
--
-- prtChannelInformation entry:
--
-- Keyword: Mailto
-- Syntax: Name
-- Status: Mandatory
-- Multiplicity: Single
-- Default: not applicable
-- Description: The SMTP URL of the printer.

-- Interpreter Group TEXTUAL-CONVENTIONs

PrtInterpreterLangFamilyTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtInterpreterLangFamily in RFC 1759.
STATUS current
DESCRIPTION "This enumeration indicates the type of interpreter that is
receiving jobs."
SYNTAX INTEGER {
 other(1),
 unknown(2), -- Not in RFC 1759
 langPCL(3), -- HP-GL/2 is included as part of the
 -- PCL language.
 -- PCL and HP-GL/2 are registered
 -- trademarks of Hewlett-Packard
 -- Company.
 langHPGL(4), -- Hewlett-Packard Graphics Language.
 -- HP-GL is a registered trademark of
 -- Hewlett-Packard Company.
 langPJL(5), -- Peripheral Job Language. Appears in
 -- the data stream between data intended
 -- for a page description language.
 -- Hewlett-Packard Co.
langPS(6), -- PostScript (tm) Language
-- Postscript - a trademark of Adobe
-- Systems Incorporated which may be
-- registered in certain jurisdictions

langIPDS(7), -- Intelligent Printer Data Stream
-- Bi-directional print data stream for
-- documents consisting of data objects
-- (text, image, graphics, bar codes),
-- resources (fonts, overlays) and page,
-- form and finishing instructions.
-- Facilitates system level device
-- control, document tracking and error
-- recovery throughout the print
-- process.
-- IBM Corporation.

langPPDS(8), -- IBM Personal Printer Data Stream.
-- Originally called IBM ASCII, the name
-- was changed to PPDS when the Laser
-- Printer was introduced in 1989.
-- Lexmark International, Inc.

langEscapeP(9), -- Epson Corp.
langEpson(10),
langDDIF(11), -- Digital Document Interchange Format
-- Digital Equipment Corp., Maynard MA

langInterpress(12), -- Xerox Corp.

langISO6429(13), -- ISO 6429. Control functions for
-- Coded Character Sets (has ASCII
-- control characters, plus additional
-- controls for
-- character imaging devices.)

langLineData(14), -- line-data: Lines of data as
-- separate ASCII or EBCDIC records
-- and containing no control functions
-- (no CR, LF, HT, FF, etc.)
-- For use with traditional line
-- printers. May use CR and/or LF to
-- delimit lines, instead of records.
-- See ISO 10175 Document Printing
-- Application (DPA) [ISO10175].

langMODCA(15), -- Mixed Object Document Content
-- Architecture
-- Definitions that allow the
-- composition, interchange, and
-- presentation of final form
-- documents as a collection of data
-- objects (text, image, graphics, bar
-- codes), resources (fonts, overlays)
-- and page, form and finishing
-- instructions.
-- IBM Corporation.
langREGIS(16), -- Remote Graphics Instruction Set,
-- Digital Equipment Corp., Maynard MA
langSCS(17), -- SNA Character String
-- Bi-directional print data stream for
-- SNA LU-1 mode of communication.
-- IBM
langSPDL(18), -- ISO 10180 Standard Page Description
-- Language
-- ISO Standard
langTEK4014(19), -- Tektronix Corp.
langPDS(20),
langIGP(21), -- Magnum Code-V, Image and printer
-- control language used to control
-- impact/dot-matrix printers.
-- QMS, Inc., Mobile AL
langDSCDSE(23), -- DSC-DSE: Data Stream Compatible and
-- Emulation Bi-directional print data
-- stream for non-SNA (DSC) and SNA LU-3
-- 3270 controller (DSE) communications
-- IBM
langWPS(24), -- Windows Printing System, Resource
-- based command/data stream used by
-- Microsoft At Work Peripherals.
-- Developed by the Microsoft
-- Corporation.
langLN03(25), -- Early DEC-PPL3, Digital Equipment
-- Corp.
langCCITT(26), -- QUIC (Quality Information Code), Page
-- Description Language for laser
-- printers. Included graphics, printer
-- control capability and emulation of
-- other well-known printer.
-- QMS, Inc.
langQUIC(27), -- Common Printer Access Protocol
-- Digital Equipment Corp.
langCPAP(28), -- Digital ANSI-Compliant Printing
-- Protocol
-- (DEC-PPL)
-- Digital Equipment Corp.
langSimpleText(30), -- simple-text: character coded data,
-- including NUL, CR, LF, HT, and FF
-- control characters. See ISO 10175
-- Document Printing Application (DPA)
-- [ISO10175].
langNPAP(31),
-- Network Printer Alliance Protocol
-- (NPAP). This protocol has been
-- superseded by the IEEE 1284.1 TIPSI
-- Std (ref. LangTIPSI(49)).
langDOC(32),
-- Document Option Commands, Appears in
-- the data stream between data
-- intended for a page description.
-- QMS, Inc.
langimPress(33),
-- imPRESS, Page description language
-- originally developed for the
-- ImageServer product line. A binary
-- language providing representations
-- of text, simple graphics, and some
-- large forms (simple
-- bit-map and CCITT group 3/4
-- encoded). The
-- language was intended to be sent over
-- an 8-bit channel and supported early
-- document preparation languages (e.g.,
-- TeX and TROFF).
-- QMS, Inc.
langPinwriter(34),
-- 24 wire dot matrix printer for
-- USA, Europe, and Asia except
-- Japan.
-- More widely used in Germany, and
-- some Asian countries than in US.
-- NEC
langNPDL(35),
-- Page printer for Japanese market.
-- NEC
langNEC201PL(36),
-- Serial printer language used in
-- the Japanese market.
-- NEC
langAutomatic(37),
-- Automatic PDL sensing. Automatic
-- sensing of the interpreter
-- language family by the printer
-- examining the document content.
-- Which actual interpreter language
-- families are sensed depends on
-- the printer implementation.
langPages(38),
-- Page printer Advanced Graphic
-- Escape Set
-- IBM Japan
langLIPS(39),
-- LBP Image Processing System
langTIFF(40),
-- Tagged Image File Format (Aldus)
langDiagnostic(41), -- A hex dump of the input to the interpreter
langPSPrinter(42), -- The PostScript Language used for control (with any PDLs)
Adobe Systems Incorporated
langCaPSL(43), -- Canon Print Systems Language
tarian Systems Inc.
langEXCL(44), -- Extended Command Language
langLCDS(45), -- Line Conditioned Data Stream
Xerox Corporation
langXES(46), -- Xerox Escape Sequences
Xerox Corporation
langPCLXL(47), -- Not in RFC 1759
Printer Control Language. Extended language features for printing, and printer control.
Hewlett-Packard Co.
langART(48), -- Not in RFC 1759
Advanced Rendering Tools (ART). Page Description Language
originally developed for the Laser Press printers.
Fuji Xerox Co., Ltd.
langTIPSI(49), -- Not in RFC 1759
Transport Independent Printer System Interface (ref. IEEE Std. 1284.1)
langPrescribe(50), -- Not in RFC 1759
Page description and printer control language. It can be described with ordinary ASCII
langLinePrinter(51), -- Not in RFC 1759
A simple-text character stream which supports the control codes LF, VT, FF, and plus Centronics or Dataproducts Vertical Format Unit (VFU) language is commonly used on many older model line and matrix printers.
langIDP(52), -- Not in RFC 1759
Imaging Device Protocol
Apple Computer.
langXJCL(53), -- Not in RFC 1759
-- Xerox Job Control Language (JCL).
-- A Job Control language originally
-- developed for the LaserPress printers
-- and is capable of switching PDLs.
-- Technical reference manual:
-- "ART IV Reference Manual", No F33M.
-- Fuji Xerox Co., Ltd.
langPDF(54), -- Not in RFC 1759
-- Adobe Portable Document Format
-- Adobe Systems, Inc.
langRPDL(55), -- Not in RFC 1759
-- Ricoh Page Description Language for
-- printers.
-- Technical manual "RPDL command
-- reference" No.307029
-- RICOH, Co. LTD
langIntermecIPL(56), -- Not in RFC 1759
-- Intermec Printer Language for label
-- printers.
-- Technical Manual: "IPL Programmers
-- Reference Manual"
-- Intermec Corporation
langUBIFingerprint(57), -- Not in RFC 1759
-- An intelligent basic-like programming
-- language for label printers.
-- Reference Manual: "UBI Fingerprint
-- 7.1", No. 1-960434-00
-- United Barcode Industries
langUBIDirectProtocol(58), -- Not in RFC 1759
-- An intelligent control language for
-- label printers.
-- Programmers guide: " UBI Direct
-- Protocol", No. 1-960419-00
-- United Barcode Industries
langFujitsu(59), -- Not in RFC 1759
-- Fujitsu Printer Language
-- Reference Manual:
-- "FM Printer Sequence" No. 80HP-0770
-- FUJITSU LIMITED
langCGM(60), -- Not in RFC 1759
-- Computer Graphics Metafile
-- MIME type ’image/cgm’
langJPEG(61), -- Not in RFC 1759
-- Joint Photographic Experts Group
-- MIME type ’image/jpeg’
langCALS1(62), -- Not in RFC 1759
-- US DOD CALS1 (see MIL-STD-1840)
PrtInputTypeTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtInputType in RFC 1759.
STATUS current
DESCRIPTION
"The type of technology (discriminated primarily according to
feeder mechanism type) employed by a specific component or
components."
SYNTAX INTEGER {
 other(1),
 unknown(2),
 sheetFeedAutoRemovableTray(3),
 sheetFeedAutoNonRemovableTray(4),
 sheetFeedManual(5),
 continuousRoll(6),
 continuousFanFold(7)
}

PrtOutputTypeTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtOutputType in RFC 1759.
STATUS current
DESCRIPTION
"The Type of technology supported by this output subunit."
SYNTAX INTEGER {
 other(1),
 unknown(2),
 removableBin(3),
 unRemovableBin(4),
 continuousRollDevice(5),
 mailBox(6),
 continuousFanFold(7)
}
-- Marker Group TEXTUAL-CONVENTIONS

PrtMarkerMarkTechTC ::= TEXTUAL-CONVENTION
 -- This TC was extracted from prtMarkerMarkTech in RFC 1759.
 STATUS current
 DESCRIPTION "The type of marking technology used for this marking subunit."
 SYNTAX INTEGER {
 other(1),
 unknown(2),
 electrophotographicLED(3),
 electrophotographicLaser(4),
 electrophotographicOther(5),
 impactMovingHeadDotMatrix9pin(6),
 impactMovingHeadDotMatrix24pin(7),
 impactMovingHeadDotMatrixOther(8),
 impactMovingHeadFullyFormed(9),
 impactBand(10),
 impactOther(11),
 inkjetAqueous(12),
 inkjetSolid(13),
 inkjetOther(14),
 pen(15),
 thermalTransfer(16),
 thermalSensitive(17),
 thermalDiffusion(18),
 thermalOther(19),
 electroerosion(20),
 electrostatic(21),
 photographicMicrofiche(22),
 photographicImagesetter(23),
 photographicOther(24),
 ionDeposition(25),
 eBeam(26),
 typesetter(27)
 }

PrtMarkerSuppliesTypeTC ::= TEXTUAL-CONVENTION
 -- This TC was extracted from prtMarkerSuppliesType in RFC 1759.
 STATUS current
 DESCRIPTION "The type of this supply."
 SYNTAX INTEGER {
 other(1),
 unknown(2),
-- Values for Printer MIB
 toner(3), wasteToner(4), ink(5),
 inkCartridge(6), inkRibbon(7),
 wasteInk(8), opc(9), -- photo conductor
 developer(10),
 fuserOil(11),
 solidWax(12),
 ribbonWax(13),
 wasteWax(14),
 fuser(15), -- Not in RFC 1759
 coronaWire(16), -- Not in RFC 1759
 fuserOilWick(17), -- Not in RFC 1759
 cleanerUnit(18), -- Not in RFC 1759
 fuserCleaningPad(19), -- Not in RFC 1759
 transferUnit(20), -- Not in RFC 1759
 tonerCartridge(21), -- Not in RFC 1759
 fuserOiler(22), -- Not in RFC 1759
-- End of values for Printer MIB
-- Values for Finisher MIB
 water(23), -- Not in RFC 1759
 wasteWater(24), -- Not in RFC 1759
 glueWaterAdditive(25), -- Not in RFC 1759
 wastePaper(26), -- Not in RFC 1759
 bindingSupply(27), -- Not in RFC 1759
 bandingSupply(28), -- Not in RFC 1759
 stitchingWire(29), -- Not in RFC 1759
 shrinkWrap(30), -- Not in RFC 1759
 paperWrap(31), -- Not in RFC 1759
 staples(32), -- Not in RFC 1759
 inserts(33), -- Not in RFC 1759
 covers(34) -- Not in RFC 1759
-- End of values for Finisher MIB
}

-- Media Path TEXTUAL-CONVENTIONS

PrtMediaPathTypeTC ::= TEXTUAL-CONVENTION
 -- This TC was extracted from prtMediaPathType in RFC 1759.
 STATUS current
 DESCRIPTION "The type of the media path for this media path."
 SYNTAX INTEGER {

other(1),
unknown(2),
longEdgeBindingDuplex(3),
shortEdgeBindingDuplex(4),
simplex(5)
}

--
-- Console Group TEXTUAL-CONVENTIONS
--

PrtConsoleColorTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtConsoleColor in RFC 1759.
STATUS current
DESCRIPTION
"The color of this light."
SYNTAX INTEGER {
 other(1),
 unknown(2),
 white(3),
 red(4),
 green(5),
 blue(6),
 cyan(7),
 magenta(8),
 yellow(9),
 orange(10) -- Not in RFC 1759
}

PrtConsoleDisableTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtConsoleDisable in RFC 1759.
STATUS current
DESCRIPTION
"This value indicates whether or not input is accepted from
the operator console. A value of 'enabled' indicates that
input is accepted from the console, and a value of 'disabled'
indicates that input is not accepted from the console."
SYNTAX INTEGER {
 enabled(3),
 disabled(4)
}

--
-- Alert Group TEXTUAL-CONVENTIONS
--

PrtAlertTrainingLevelTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtAlertTrainingLevel in RFC 1759.
STATUS current
DESCRIPTION
"The level of training required to handle this alert, if
human intervention is required. The noInterventionRequired
value should be used if the event does not require any human
intervention. The training level is an enumeration that is
determined and assigned by the printer manufacturer based on
the information or training required to handle this alert.
The printer will break alerts into these different training
levels. It is the responsibility of a management application
in the system to determine how a particular alert is handled
and how and to whom that alert is routed. The following are
the four training levels of alerts:

Field Service - Alerts that typically require advanced
training and technical knowledge of the printer and its
subunits. An example of a technical person would be a
manufacturer’s Field Service representative, or other
person formally trained by the manufacturer or similar
representative.
Trained - Alerts that require an intermediate or moderate
knowledge of the printer and its subunits. A typical
example of such an alert is replacing a toner cartridge.
Untrained - Alerts that can be fixed without prior
training either because the action to correct the alert
is obvious or the printer can help the untrained person
fix the problem. A typical example of such an alert is
reloading paper trays or emptying output bins on a low
end printer.
Management - Alerts that have to do with overall operation
of and configuration of the printer. Examples of such
management events are configuration change of subunits."

SYNTAX INTEGER {
 other(1),
 unknown(2),
 untrained(3),
 trained(4),
 fieldService(5),
 management(6),
 noInterventionRequired(7) -- Not in RFC 1759
}

PrtAlertGroupTC ::= TEXTUAL-CONVENTION
 -- Values in the range 1 to 29 must not be IANA-assigned without
 -- re-publishing Printer MIB.
 -- Values of 30 and greater are for use in MIBs that augment
 -- the Printer MIB, such as the Finisher MIB.
 -- This TC extracted from prtAlertGroup in RFC 1759.
DESCRIPTION

"The type of subunit within the printer model that this alert is related. Input, output, and markers are examples of printer model groups, i.e., examples of types of subunits. Wherever possible, the enumerations match the sub-identifier that identifies the relevant table in the Printer MIB.

NOTE: Alert type codes have been added for the Host Resources MIB storage table and device table. These additional types are for situations in which the printer’s storage and device objects must generate alerts (and possibly traps for critical alerts)."

SYNTAX

INTEGER {
 other(1),
 -- (2) is reserved for conformance information
 -- Values for Host Resources MIB
 hostResourcesMIBStorageTable(3),
 hostResourcesMIBDeviceTable(4),
 -- Values for Printer MIB
 generalPrinter(5),
 cover(6),
 localization(7),
 input(8),
 output(9),
 marker(10),
 markerSupplies(11),
 markerColorant(12),
 mediaPath(13),
 channel(14),
 interpreter(15),
 consoleDisplayBuffer(16),
 consoleLights(17),
 alert(18), -- Not in RFC 1759
 -- Values (5) to (29) reserved for Printer MIB
 -- Values for Finisher MIB
 finDevice(30), -- Not in RFC 1759
 finSupply(31), -- Not in RFC 1759
 finSupplyMediaInput(32), -- Not in RFC 1759
 finAttribute(33) -- Not in RFC 1759
 -- Values (30) to (39) reserved for Finisher MIB
}

PrtAlertCodeTC ::= TEXTUAL-CONVENTION

-- This TC was extracted from prtAlertCode in RFC 1759.
STATUS current
DESCRIPTION
"The code that describes the type of alert for this entry in
the table. Binary change event alerts describe states of the subunit while unary change event alerts describe a single event. The same alert code can be used for a binary change event or a unary change event, depending on implementation. Also, the same alert code can be used to indicate a critical or non-critical (warning) alert, depending on implementation. The value of \texttt{prtAlertSeverityLevel} specifies binary vs. unary and critical vs. non-critical for each event for the implementation.

While there are some specific codes for many subunits, the generic codes should be used for most subunit alerts. The network management station can then query the subunit specified by \texttt{prtAlertGroup} to determine further subunit status and other subunit information.

An agent shall not add two entries to the alert table for the same event, one containing a generic event code and the other containing a specific event code; the agent shall add only one entry in the alert table for each event; either generic (preferred) or specific, not both.

Implementation of the unary change event \texttt{alertRemovalOfBinaryChangeEntry(1801)} is optional. When implemented, this alert code shall indicate to network management stations that the trailing edge of a binary change event has occurred and the corresponding alert entry has been removed from the alert table. As with all events, the \texttt{alertRemovalOfBinaryChangeEntry(1801)} alert shall be placed at the end of the alert table. Such an alert table entry shall specify the following information:

\begin{verbatim}
prtAlertSeverityLevel warningUnaryChangeEvent(4)
prtAlertTrainingLevel noInterventionRequired(7)
prtAlertGroup alert(18)
prtAlertGroupIndex the index of the row in the alert table of the binary change event that this event has removed.
prtAlertLocation unknown (-2)
prtAlertCode alertRemovalOfBinaryChangeEntry(1801)
prtAlertDescription <description or null string>
prtAlertTime the value of sysUpTime at the time of the removal of the binary change event from the alert table.
\end{verbatim}

Optionally, the agent may generate a trap coincident with
removing the binary change event and placing the unary change event alertRemovalOfBinaryChangeEntry(1801) in the alert table. For such a trap, the prtAlertIndex sent with the above trap parameters shall be the index of the alertRemovalOfBinaryChangeEvent row that was added to the prtAlertTable; not the index of the row that was removed from the prtAlertTable."

SYNTAX INTEGER {
 other(1),
 -- an event that is not represented
 -- by one of the alert codes
 -- specified below.
 unknown(2),
 -- The following generic codes are common to
 -- multiple groups. The NMS may examine the
 -- prtAlertGroup object to determine what group
 -- to query for further information.
 coverOpen(3),
 coverClosed(4),
 interlockOpen(5),
 interlockClosed(6),
 configurationChange(7),
 jam(8),
 subunitMissing(9), -- Not in RFC 1759
 -- The subunit tray, bin, etc.
 -- has been removed.
 subunitLifeAlmostOver(10), -- Not in RFC 1759
 subunitLifeOver(11), -- Not in RFC 1759
 subunitAlmostEmpty(12), -- Not in RFC 1759
 subunitEmpty(13), -- Not in RFC 1759
 subunitAlmostFull(14), -- Not in RFC 1759
 subunitFull(15), -- Not in RFC 1759
 subunitNearLimit(16), -- Not in RFC 1759
 subunitAtLimit(17), -- Not in RFC 1759
 subunitOpened(18), -- Not in RFC 1759
 subunitClosed(19), -- Not in RFC 1759
 subunitTurnedOn(20), -- Not in RFC 1759
 subunitTurnedOff(21), -- Not in RFC 1759
 subunitOffline(22), -- Not in RFC 1759
 subunitPowerSaver(23), -- Not in RFC 1759
 subunitWarmingUp(24), -- Not in RFC 1759
 subunitAdded(25), -- Not in RFC 1759
 subunitRemoved(26), -- Not in RFC 1759
 subunitResourceAdded(27), -- Not in RFC 1759
 subunitResourceRemoved(28), -- Not in RFC 1759
 subunitRecoverableFailure(29),
 -- Not in RFC 1759
 subunitUnrecoverableFailure(30),
}
subunitRecoverableStorageError(31), -- Not in RFC 1759
subunitUnrecoverableStorageError(32), -- Not in RFC 1759
subunitMotorFailure(33), -- Not in RFC 1759
subunitMemoryExhausted(34), -- Not in RFC 1759
subunitUnderTemperature(35), -- Not in RFC 1759
subunitOverTemperature(36), -- Not in RFC 1759
subunitTimingFailure(37), -- Not in RFC 1759
subunitThermistorFailure(38), -- Not in RFC 1759

-- General Printer group
doorOpen(501), -- DEPRECATED
 -- Use coverOpened(3)
doorClosed(502), -- DEPRECATED
 -- Use coverClosed(4)

powerUp(503),
powerDown(504),
printerNMSReset(505), -- Not in RFC 1759
 -- The printer has been reset by some
 -- network management station(NMS)
 -- writing into ‘prtGeneralReset’.
printerManualReset(506), -- Not in RFC 1759
 -- The printer has been reset manually.
printerReadyToPrint(507), -- Not in RFC 1759
 -- The printer is ready to print. (i.e.,
 -- not warming up, not in power save
 -- state, not adjusting print quality,
 -- etc.).

-- Input Group
inputMediaTrayMissing(801),
inputMediaSizeChange(802),
inputMediaWeightChange(803),
inputMediaTypeChange(804),
inputMediaColorChange(805),
inputMediaFormPartsChange(806),
inputMediaSupplyLow(807),
inputMediaSupplyEmpty(808),
inputMediaChangeRequest(809), -- Not in RFC 1759
 -- An interpreter has detected that a
 -- different medium is need in this input
 -- tray subunit. The prtAlertDescription may
 -- be used to convey a human readable
 -- description of the medium required to
 -- satisfy the request.
inputManualInputRequest(810), -- Not in RFC 1759
An interpreter has detected that manual input is required in this subunit. The prtAlertDescription may be used to convey a human readable description of the medium required to satisfy the request.

inputTrayPositionFailure(811), -- Not in RFC 1759
 -- The input tray failed to position correctly.
inputTrayElevationFailure(812),
 -- Not in RFC 1759
inputCannotFeedSizeSelected(813),
 -- Not in RFC 1759

Output Group
outputMediaTrayMissing(901),
outputMediaTrayAlmostFull(902),
outputMediaTrayFull(903),
outputMailboxSelectFailure(904),
 -- Not in RFC 1759

Marker group
markerFuserUnderTemperature(1001),
markerFuserOverTemperature(1002),
markerFuserTimingFailure(1003),
 -- Not in RFC 1759
markerFuserThermistorFailure(1004),
 -- Not in RFC 1759
markerAdjustingPrintQuality(1005),
 -- Not in RFC 1759

Marker Supplies group
markerTonerEmpty(1101),
markerInkEmpty(1102),
markerPrintRibbonEmpty(1103),
markerTonerAlmostEmpty(1104),
markerInkAlmostEmpty(1105),
markerPrintRibbonAlmostEmpty(1106),
markerWasteTonerReceptacleAlmostFull(1107),
markerWasteInkReceptacleAlmostFull(1108),
markerWasteTonerReceptacleFull(1109),
markerWasteInkReceptacleFull(1110),
markerOpcLifeAlmostOver(1111),
markerOpcLifeOver(1112),
markerDeveloperAlmostEmpty(1113),
markerDeveloperEmpty(1114),
markerTonerCartridgeMissing(1115),
 -- Not in RFC 1759

Media Path Device Group
mediaPathMediaTrayMissing(1301),
mediaPathMediaTrayAlmostFull(1302),
mediaPathMediaTrayFull(1303),
mediaPathCannotDuplexMediaSelected(1304),
-- Not in RFC 1759

-- Interpreter Group
 interpreterMemoryIncrease(1501),
 interpreterMemoryDecrease(1502),
 interpreterCartridgeAdded(1503),
 interpreterCartridgeDeleted(1504),
 interpreterResourceAdded(1505),
 interpreterResourceDeleted(1506),
 interpreterResourceUnavailable(1507),
 interpreterComplexPageEncountered(1509),

-- Not in RFC 1759
-- The interpreter has encountered a page
-- that is too complex for the resources that
-- are available.

-- Alert Group
 alertRemovalOfBinaryChangeEntry(1801)

-- Not in RFC 1759
-- A binary change event entry has been
-- removed from the alert table. This unary
-- change alert table entry is added to the
-- end of the alert table.

END

6. The Printer MIB

Printer-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, Counter32, Integer32, TimeTicks,
 NOTIFICATION-TYPE, OBJECT-IDENTITY,
 mib-2 FROM SNMPv2-SMI -- [RFC2578]
 TEXTUAL-CONVENTION FROM SNMPv2-TC -- [RFC2579]
 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- [RFC2580]
 hrDeviceIndex, hrStorageIndex FROM HOST-RESOURCES-MIB -- [RFC2790]
 InterfaceIndexOrZero FROM IF-MIB -- [RFC2863]
 PrtCoverStatusTC, PrtGeneralResetTC, PrtChannelTypeTC,
 PrtInterpreterLangFamilyTC, PrtInputTypeTC, PrtOutputTypeTC,
 PrtMarkerMarkTechTC, PrtMarkerSuppliesTypeTC, PrtConsoleColorTC,
 PrtConsoleDisableTC, PrtMediaPathTypeTC, PrtAlertGroupTC,
 PrtAlertTrainingLevelTC, PrtAlertCodeTC
 FROM IANA-PRINTER-MIB
 IANACharset FROM IANA-CHARSET-MIB;

printmib MODULE-IDENTITY
 LAST-UPDATED "200406020000Z"
 ORGANIZATION "PWG IEEE/ISTO Printer Working Group"
CONTACT-INFO

"Harry Lewis
IBM
Phone (303) 924-5337
Email: harryl@us.ibm.com
http://www.pwg.org/index.html

Send comments to the printmib WG using the Printer MIB
Project (PMP) Mailing List: pmp@pwg.org

For further information, access the PWG web page under 'Printer
MIB': http://www.pwg.org/

Implementers of this specification are encouraged to join the
pmp mailing list in order to participate in discussions on any
clarifications needed and registration proposals being reviewed
in order to achieve consensus."

DESCRIPTION

"The MIB module for management of printers.
Copyright (C) The Internet Society (2004). This
version of this MIB module was published
in RFC 3805. For full legal notices see the RFC itself."

REVISION "200406020000Z"

DESCRIPTION

"Printer MIB v2.
Moved all enum groups to be maintained by IANA into new TCs
within the ianaPrinterMIB, which is contained in this
document.

New TCs created from enums defined within RFC 1759 Objects:
PrtPrintOrientationTC, PrtLocalizedDescriptionStringTC,
PrtConsoleDescriptionStringTC, PrtChannelStateTC,
PrtOutputStackingOrderTC, PrtOutputPageDeliveryOrientationTC,
PrtMarkerCounterUnitTC, PrtMarkerSuppliesSupplyUnitTC,
PrtMarkerSuppliesClassTC, PrtMarkerAddressabilityUnitTC,
PrtMarkerColorantRoleTC, PrtMediaPathMaxSpeedPrintUnitTC,
PrtInterpreterTwoWayTC, and PrtAlertSeverityLevelTC.

The following four TCs have been deprecated:
MediaUnit (replaced by PrtMediaUnitTC),
CapacityUnit (replaced by PrtCapacityUnitTC),
SubUnitStatus (replaced by PrtSubUnitStatusTC),
CodedCharSet (replaced by IANACharset in IANA Charset MIB)

Five new OBJECT-GROUPs: prtAuxilliarySheetGroup,
prtInputSwitchingGroup, prtGeneralV2Group,
prtAlertTableV2Group, prtChannelV2Group.

Nine new objects added to those groups:
prtAuxiliarySheetStartupPage, prtAuxiliarySheetBannerPage,
prtGeneralPrinterName, prtGeneralSerialNumber,
prtAlertCriticalEvents, prtAlertAllEvents,
prtInputMediaLoadTimeout, prtInputNextIndex,
prtChannelInformation.

SYNTAX range changed from (0..65535) to (1..65535) for the
index objects prtStorageRefSeqNumber, prtDeviceRefSeqNumber,
and prtConsoleLightIndex.

SYNTAX range changed from (0..65535) to (0..2147483647) for the
objects prtStorageRefIndex and prtDeviceRefIndex to agree
with the Host Resources MIB.

Defined a range for the objects with a SYNTAX of Integer32:
prtOutputDefaultIndex, prtInputMediaDimFeedDirDeclared,
prtInputMediaDimXFeedDirDeclared, prtInputMaxCapacity,
prtInputCurrentLevel, prtInputMediaDimFeedDirChosen,
prtInputMediaDimXFeedDirChosen, prtInputMediaWeight,
prtInputMediaFormParts, prtOutputIndex,
prtOutputMaxCapacity, prtOutputRemainingCapacity,
prtOutputMaxDimFeedDir, prtOutputMaxDimXFeedDir,
prtOutputMinDimFeedDir, prtOutputMinDimXFeedDir,
prtMarkerAddressibilityFeedDir,
prtMarkerAddressibilityXFeedDir, prtMarkerNorthMargin,
prtMarkerSouthMargin, prtMarkerWestMargin,
prtMarkerEastMargin, prtMarkerSuppliesMaxCapacity,
prtMarkerSuppliesLevel, prtMarkerColorantTonality,
prtMediaPathMaxSpeed, prtMediaPathMaxMediaFeedDir,
prtMediaPathMaxXMediaFeedDir, prtMediaPathMinMediaFeedDir,
prtMediaPathMinXMediaFeedDir, prtChannelIndex,
prtChannelCurrentJobCntlLangIndex, prtInterpreterIndex,
prtChannelDefaultPageDescLangIndex, prtConsoleOnTime,
prtInterpreterFeedAddressibility, prtConsoleOffTime,
prtInterpreterXFeedAddressibility, prtAlertIndex,
prtAlertGroupIndex, prtAlertLocation.

Changed SYNTAX from Integer32 to InterfaceIndexOrZero for
prtChannelIfIndex.

Changed MAX-ACCESS of prtAlertIndex from not-accessible to
Read-only and added a compliance statement to allow a
MIN-ACCESS of accessible-for-notify.

One new NOTIFICATION-GROUP: prtAlertTrapGroup which contains
printerV2Alert.

In MODULE-COMPLIANCE prtMIBCompliance, new OBJECT-GROUPs and
the NOTIFICATION_GROUP, all in GROUP (not MANDATORY-GROUP)
clauses. The nine new objects are optional, i.e., this
document is backward compatible with RFC 1759."

REVISION "199411250000Z"
DESCRIPTION "The original version of this MIB, published as RFC1759."
 ::= { mib-2 43 }
PrtMediaUnitTC ::= TEXTUAL-CONVENTION
 -- Replaces MediaUnit in RFC 1759.
 STATUS current
 DESCRIPTION
 "Units of measure for media dimensions."
 SYNTAX INTEGER {
 tenThousandthsOfInches(3), -- .0001
 micrometers(4)
 }

MediaUnit ::= TEXTUAL-CONVENTION
 -- Replaced by PrtMediaUnitTC.
 STATUS deprecated
 DESCRIPTION
 "Units of measure for media dimensions."
 SYNTAX INTEGER {
 tenThousandthsOfInches(3), -- .0001
 micrometers(4)
 }

PrtCapacityUnitTC ::= TEXTUAL-CONVENTION
 -- Replaces CapacityUnit in RFC 1759.
 STATUS current
 DESCRIPTION
 "Units of measure for media capacity."
 SYNTAX INTEGER {
 other(1), -- New, not in RFC 1759
 unknown(2), -- New, not in RFC 1759
 tenThousandthsOfInches(3), -- .0001
 micrometers(4),
 sheets(8),
 feet(16),
 meters(17),
 -- Values for Finisher MIB
 items(18), -- New, not in RFC 1759
 percent(19) -- New, not in RFC 1759
 }

CapacityUnit ::= TEXTUAL-CONVENTION
 -- Replaced by PrtCapacityUnitTC.
 STATUS deprecated
 DESCRIPTION
 "Units of measure for media capacity."
PrtPrintOrientationTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtInterpreterDefaultOrientation in
-- RFC 1759.
STATUS current
DESCRIPTION
"A generic representation for printing orientation on a
'page'."
SYNTAX INTEGER {
 other(1),
 portrait(3),
 landscape(4)
}

PrtSubUnitStatusTC ::= TEXTUAL-CONVENTION
-- Replaces SubUnitStatus in RFC 1759.
STATUS current
DESCRIPTION
"Status of a printer sub-unit.

The SubUnitStatus is an integer that is the sum of 5 distinct values, Availability, Non-Critical, Critical, On-line, and Transitioning. These values are:

<table>
<thead>
<tr>
<th>Availability</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available and Idle</td>
<td>0</td>
</tr>
<tr>
<td>Available and Standby</td>
<td>2</td>
</tr>
<tr>
<td>Available and Active</td>
<td>4</td>
</tr>
<tr>
<td>Available and Busy</td>
<td>6</td>
</tr>
<tr>
<td>Unavailable and OnRequest</td>
<td>1</td>
</tr>
<tr>
<td>Unavailable because Broken</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
</tbody>
</table>

Non-Critical
No Non-Critical Alerts | 0 | 0000'b |
Non-Critical Alerts | 8 | 1000'b |

Critical
No Critical Alerts | 0 | 0000'b |
Critical Alerts 16 1 0000'b

On-Line

State is On-Line 0 0000'b
State is Off-Line 32 10 0000'b

Transitioning

At intended state 0 0000'b
Transitioning to intended state 64 100 0000'b

SYNTAX INTEGER (0..126)

SubUnitStatus ::= TEXTUAL-CONVENTION
-- Replaced by PrtSubUnitStatusTC.
STATUS deprecated
DESCRIPTION "Status of a printer sub-unit.

The SubUnitStatus is an integer that is the sum of 5 distinct values, Availability, Non-Critical, Critical, On-line, and Transitioning. These values are:

<table>
<thead>
<tr>
<th>Availability</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available and Idle</td>
<td>0</td>
</tr>
<tr>
<td>Available and Standby</td>
<td>2</td>
</tr>
<tr>
<td>Available and Active</td>
<td>4</td>
</tr>
<tr>
<td>Available and Busy</td>
<td>6</td>
</tr>
<tr>
<td>Unavailable and OnRequest</td>
<td>1</td>
</tr>
<tr>
<td>Unavailable because Broken</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Critical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Non-Critical Alerts</td>
<td>0</td>
</tr>
<tr>
<td>Non-Critical Alerts</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Critical Alerts</td>
<td>0</td>
</tr>
<tr>
<td>Critical Alerts</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On-Line</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State is On-Line</td>
<td>0</td>
</tr>
<tr>
<td>State is Off-Line</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transitioning</th>
<th></th>
</tr>
</thead>
</table>
At intended state 0 0000'b
Transitioning to intended state 64 100 0000'b"

SYNTAX INTEGER (0..126)

PresentOnOff ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Presence and configuration of a device or feature."
SYNTAX INTEGER {
 other(1),
 on(3),
 off(4),
 notPresent(5)
}

PrtLocalizedDescriptionStringTC ::= TEXTUAL-CONVENTION
-- This TC did not appear in RFC 1759.
STATUS current
DESCRIPTION
"An object MUST use this TEXTUAL-CONVENTION when its
'charset' is controlled by the value of
prtGeneralCurrentLocalization."
SYNTAX OCTET STRING (SIZE(0..255))

PrtConsoleDescriptionStringTC ::= TEXTUAL-CONVENTION
-- This TC did not appear in RFC 1759.
STATUS current
DESCRIPTION
"An object MUST use this TEXTUAL-CONVENTION when its
'charset' is controlled by the value of
prtConsoleLocalization."
SYNTAX OCTET STRING (SIZE(0..255))

CodedCharSet ::= TEXTUAL-CONVENTION

-- Replaced by IANACharset TEXTUAL-CONVENTION in IANA Charset MIB.
STATUS deprecated
DESCRIPTION
"The original description clause from RFC 1759 [RFC1759] was
technically inaccurate and therefore has been deleted."
SYNTAX INTEGER {
 other(1) -- used if the designated coded
 -- character set is not currently in
 -- the enumeration
}

--
-- Channel Group TEXTUAL-CONVENTIONS

PrtChannelStateTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtChannelState in RFC 1759.
STATUS current
DESCRIPTION
"The state of this print job delivery channel. The value
determines whether print data is allowed through this channel."
SYNTAX INTEGER {
 other(1),
 printDataAccepted(3),
 noDataAccepted(4)
}

-- Input/Output Group TEXTUAL-CONVENTIONS

PrtOutputStackingOrderTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtOutputStackingOrder in RFC 1759.
STATUS current
DESCRIPTION
"The current state of the stacking order for the associated
output sub-unit. 'firstToLast' means that as pages are output,
the front of the next page is placed against the back of the
previous page. 'lastToFirst' means that as pages are output,
the back of the next page is placed against the front of the
previous page."
SYNTAX INTEGER {
 unknown(2),
 firstToLast(3),
 lastToFirst(4)
}

PrtOutputPageDeliveryOrientationTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtOutputPageDeliveryOrientation
-- in RFC 1759.
STATUS current
DESCRIPTION
"The reading surface that will be 'up' when pages are delivered
to the associated output sub-unit. Values are Face-Up and Face
Down (Note: interpretation of these values is, in general,
context-dependent based on locale; presentation of these values
to an end-user should be normalized to the expectations of the
user."
SYNTAX INTEGER {
 faceUp(3),
faceDown(4)

--
-- Marker Group TEXTUAL-CONVENTIONS
--

PrtMarkerCounterUnitTC ::= TEXTUAL-CONVENTION
 -- This TC was extracted from prtMarkerCounterUnit in RFC 1759.
 STATUS current
 DESCRIPTION "The unit that will be used by the printer when reporting
counter values for this marking sub-unit. The
time units of measure are provided for a device like a
strip recorder that does not or cannot track the physical
dimensions of the media and does not use characters,
lines or sheets."
 SYNTAX INTEGER {
 tenThousandthsOfInches(3), -- .0001
 micrometers(4),
 characters(5),
 lines(6),
 impressions(7),
 sheets(8),
 dotRow(9),
 hours(11),
 feet(16),
 meters(17)
 }

PrtMarkerSuppliesSupplyUnitTC ::= TEXTUAL-CONVENTION
 -- This TC was extracted from prtMarkerSuppliesSupplyUnit
 -- in RFC 1759.
 STATUS current
 DESCRIPTION "Unit of this marker supply container/receptacle."
 SYNTAX INTEGER {
 other(1), -- New, not in RFC 1759
 unknown(2), -- New, not in RFC 1759
 tenThousandthsOfInches(3), -- .0001
 micrometers(4),
 impressions(7), -- New, not in RFC 1759
 sheets(8), -- New, not in RFC 1759
 hours(11), -- New, not in RFC 1759
 thousandsOfOunces(12),
 tenthsOfGrams(13),
 hundrethsOfFluidOunces(14),
tenthsOfMilliliters(15),
feet(16), -- New, not in RFC 1759
meters(17), -- New, not in RFC 1759
-- Values for Finisher MIB
items(18), -- e.g., #staples. New, not in RFC 1759
percent(19) -- New, not in RFC 1759
}

PrtMarkerSuppliesClassTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtMarkerSuppliesClass in RFC 1759.
STATUS current
DESCRIPTION
 "Indicates whether this supply entity represents a supply
 that is consumed or a receptacle that is filled."
SYNTAX INTEGER {
 other(1),
 supplyThatIsConsumed(3),
 receptacleThatIsFilled(4)
}

PrtMarkerColorantRoleTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtMarkerColorantRole in RFC 1759.
STATUS current
DESCRIPTION
 "The role played by this colorant."
SYNTAX INTEGER { -- Colorant Role
 other(1),
 process(3),
 spot(4)
}

PrtMarkerAddressabilityUnitTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtMarkerAddressabilityUnit
-- in RFC 1759.
STATUS current
DESCRIPTION
 "The unit of measure of distances, as applied to the marker’s
 resolution."
SYNTAX INTEGER {
 tenThousandthsOfInches(3), -- .0001
 micrometers(4)
}

--
-- Media Path TEXTUAL-CONVENTIONS
--

PrtMediaPathMaxSpeedPrintUnitTC ::= TEXTUAL-CONVENTION

Bergman, et al. Standards Track [Page 65]
RFC 3805 Printer MIB v2 June 2004

-- This TC was extracted from prtMediaPathMaxSpeedPrintUnit -- in RFC 1759.
STATUS current
DESCRIPTION
"The unit of measure used in specifying the speed of all media paths in the printer."
SYNTAX INTEGER {
 tenThousandsOfInchesPerHour(3),-- .0001/hour
 micrometersPerHour(4),
 charactersPerHour(5),
 linesPerHour(6),
 impressionsPerHour(7),
 sheetsPerHour(8),
 dotRowPerHour(9),
 feetPerHour(16),
 metersPerHour(17)
 }

-- Interpreter Group TEXTUAL-CONVENTIONS
--

PrtInterpreterTwoWayTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtInterpreterTwoWay in RFC 1759.
STATUS current
DESCRIPTION
"Indicates whether or not this interpreter returns information back to the host."
SYNTAX INTEGER {
 yes(3),
 no(4)
 }

-- Alert Group TEXTUAL-CONVENTIONS
--

PrtAlertSeverityLevelTC ::= TEXTUAL-CONVENTION
-- This TC was extracted from prtAlertSeverityLevel in RFC 1759.
STATUS current
DESCRIPTION
"The level of severity of this alert table entry. The printer determines the severity level assigned to each entry in the table. A critical alert is binary by nature and definition. A warning is defined to be a non-critical alert. The original and most common warning is unary. The binary warning was added later and given a more distinguished name."
SYNTAX INTEGER {

RFC 3805 Printer MIB v2 June 2004

other(1),
critical(3),
warning(4),
warningBinaryChangeEvent(5) -- New, not in RFC 1759
}

-- The General Printer Group
--
-- The general printer sub-unit is responsible for the overall
-- control and status of the printer. There is exactly one
-- general printer sub-unit in a printer.

prtGeneral OBJECT IDENTIFIER ::= { printmib 5 }

prtGeneralTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtGeneralEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of general information per printer. Objects in this
table are defined in various places in the MIB, nearby the groups to
which they apply. They are all defined here to minimize the number of
tables that would otherwise need to exist."
::= { prtGeneral 1 }

PrtGeneralEntry OBJECT-TYPE
SYNTAX PrtGeneralEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry exists in this table for each device entry in the
host resources MIB device table with a device type of
'printer'.

NOTE: The above description has been modified from RFC 1759
for clarification."
INDEX { hrDeviceIndex }
::= { prtGeneralTable 1 }

PrtGeneralEntry ::= SEQUENCE {
 -- Note that not all of the objects in this sequence are in
 -- the general printer group. The group to which an
 -- object belongs is tagged with a label "General", "Input"
 -- "Output", etc. after each entry in the following sequence.
 --
 prtGeneralConfigChanges Counter32, -- General
prtGeneralCurrentLocalization Integer32, -- General
prtGeneralReset PrtGeneralResetTC, -- General
prtGeneralCurrentOperator OCTET STRING, -- Responsible Party
prtGeneralServicePerson OCTET STRING, -- Responsible Party
prtInputDefaultIndex Integer32, -- Input
prtOutputDefaultIndex Integer32, -- Output
prtMarkerDefaultIndex Integer32, -- Marker
prtMediaPathDefaultIndex Integer32, -- Media Path
prtConsoleLocalization Integer32, -- Console
prtConsoleNumberOfDisplayLines Integer32, -- Console
prtConsoleNumberOfDisplayChars Integer32, -- Console
prtConsoleDisable PrtConsoleDisableTC, -- Console,
prtAuxiliarySheetStartupPage PresentOnOff, -- AuxiliarySheet
prtAuxiliarySheetBannerPage PresentOnOff, -- AuxiliarySheet
prtGeneralPrinterName OCTET STRING, -- General V2
prtGeneralSerialNumber OCTET STRING, -- General V2
prtAlertCriticalEvents Counter32, -- Alert V2
prtAlertAllEvents Counter32 -- Alert V2
}

prtGeneralConfigChanges OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Counts configuration changes within the printer. A configuration change is defined to be an action that results in a change to any MIB object other than those that reflect status or level, or those that act as counters or gauges. In addition, any action that results in a row being added or deleted from any table in the Printer MIB is considered a configuration change. Such changes will often affect the capability of the printer to service certain types of print jobs. Management applications may cache infrequently changed configuration information about sub units within the printer. This object should be incremented whenever the agent wishes to notify management applications that any cached configuration information for this device is to be considered ‘stale’. At this point, the management application should flush any configuration information cached about this device and fetch
new configuration information.

The following are examples of actions that would cause the prtGeneralConfigChanges object to be incremented:

- Adding an output bin
- Changing the media in a sensing input tray
- Changing the value of prtInputMediaType

Note that the prtGeneralConfigChanges counter would not be incremented when an input tray is temporarily removed to load additional paper or when the level of an input device changes.

NOTE: The above description has been modified from RFC 1759 for clarification.

::= { prtGeneralEntry 1 }

prtGeneralCurrentLocalization OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The value of the prtLocalizationIndex corresponding to the current language, country, and character set to be used for localized string values that are identified as being dependent on the value of this object. Note that this object does not apply to localized strings in the prtConsole group or to any object that is not explicitly identified as being localized according to prtGeneralCurrentLocalization. When an object’s ‘charset’ is controlled by the value of prtGeneralCurrentLocalization, it MUST specify PrtLocalizedDescriptionStringTC as its syntax.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtGeneralEntry 2 }

prtGeneralReset OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
SYNTAX PrtGeneralResetTC
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "Setting this value to ‘powerCycleReset’, ‘resetToNVRAM’, or ‘resetToFactoryDefaults’ will result in the resetting of the printer. When read, this object will always have the value

Bergman, et al. Standards Track
'notResetting(3)', and a SET of the value 'notResetting' shall have no effect on the printer. Some of the defined values are optional. However, every implementation must support at least the values 'notResetting' and 'resetToNVRAM'.

::= { prtGeneralEntry 3 }

-- The Responsible Party group

prtGeneralCurrentOperator OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..127))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The name of the person who is responsible for operating this printer. It is suggested that this string include information that would enable other humans to reach the operator, such as a phone number. As a convention to facilitate automatic notification of the operator by the agent or network management station, the phone number, fax number or email address should be indicated by the URL schemes ‘tel:’, ‘fax:’ and ‘mailto:’, respectively. If either the phone, fax, or email information is not available, then a line should not be included for this information.

NOTE: For interoperability purposes, it is advisable to use email addresses formatted according to [RFC2822] requirements.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtGeneralEntry 4 }

prtGeneralServicePerson OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..127))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The name of the person responsible for servicing this printer. It is suggested that this string include information that would enable other humans to reach the service person, such as a phone number. As a convention to facilitate automatic notification of the operator by the agent or network management station, the phone number, fax number or email address should be indicated by the URL schemes ‘tel:’, ‘fax:’ and ‘mailto:’, respectively. If either the phone, fax, or email information is not available, then a line should not
be included for this information.

NOTE: For interoperability purposes, it is advisable to use email addresses formatted per [RFC2822] requirements.

NOTE: The above description has been modified from RFC 1759 for clarification.

::= { prtGeneralEntry 5 }

-- Default indexes section
--
-- The following four objects are used to specify the indexes of certain subunits used as defaults during the printing process.

prtInputDefaultIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The value of prtInputIndex corresponding to the default input sub-unit: that is, this object selects the default source of input media."
::= { prtGeneralEntry 6 }

prtOutputDefaultIndex OBJECT-TYPE
-- A range has been added to the SYNTAX clause that was not in -- RFC 1759. Although this violates SNMP compatibility rules, -- it provides a more reasonable guide for SNMP managers.
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The value of prtOutputIndex corresponding to the default output sub-unit; that is, this object selects the default output destination."
::= { prtGeneralEntry 7 }

prtMarkerDefaultIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The value of prtMarkerIndex corresponding to the default marker sub-unit; that is, this object selects the default marker."
::= { prtGeneralEntry 8 }

prtMediaPathDefaultIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The value of prtMediaPathIndex corresponding to
the default media path; that is, the selection of the
default media path."
 ::= { prtGeneralEntry 9 }

-- Console general section
--
-- The following four objects describe overall parameters of the
-- printer console subsystem.

prtConsoleLocalization OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The value of the prtLocalizationIndex corresponding to
the language, country, and character set to be used for the
console. This localization applies both to the actual display
on the console as well as the encoding of these console objects
in management operations. When an object’s 'charset' is
controlled by the value of prtConsoleLocalization, it MUST
specify PrtConsoleDescriptionStringTC as its syntax.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
 ::= { prtGeneralEntry 10 }

prtConsoleNumberOfDisplayLines OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of lines on the printer’s physical
display. This value is 0 if there are no lines on the
physical display or if there is no physical display"
 ::= { prtGeneralEntry 11 }

prtConsoleNumberOfDisplayChars OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of characters per line displayed on the physical
 display..."
display. This value is 0 if there are no lines on the physical
display or if there is no physical display
::= { prtGeneralEntry 12 }

prtConsoleDisable OBJECT-TYPE
 -- In RFC 1759, the enumeration values were implicitly defined
 -- by this object.
 SYNTAX PrtConsoleDisableTC
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This value indicates how input is (or is not) accepted from
the operator console.

 NOTE: The above description has been modified from RFC 1759
for clarification."
::= { prtGeneralEntry 13 }

-- The Auxiliary Sheet Group
--
-- The auxiliary sheet group allows the administrator to control
-- the production of auxiliary sheets by the printer. This group
-- contains only the "prtAuxiliarySheetStartupPage" and
-- "prtAuxiliarySheetBannerPage" objects.

prtAuxiliarySheetStartupPage OBJECT-TYPE
 SYNTAX PresentOnOff
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Used to enable or disable printing a startup page. If enabled,
a startup page will be printed shortly after power-up, when the
device is ready. Typical startup pages include test patterns
and/or printer configuration information."
::= { prtGeneralEntry 14 }

prtAuxiliarySheetBannerPage OBJECT-TYPE
 SYNTAX PresentOnOff
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Used to enable or disable printing banner pages at the
beginning of jobs. This is a master switch which applies to all
jobs, regardless of interpreter."
::= { prtGeneralEntry 15 }
--- Administrative section (The General V2 Group) ---

--- The following two objects are used to specify administrative information assigned to the printer.

prtGeneralPrinterName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..127))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"An administrator-specified name for this printer. Depending upon implementation of this printer, the value of this object may or may not be same as the value for the MIB-II 'SysName' object."
 ::= { prtGeneralEntry 16 }

prtGeneralSerialNumber OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A recorded serial number for this device that indexes some type device catalog or inventory. This value is usually set by the device manufacturer but the MIB supports the option of writing for this object for site-specific administration of device inventory or tracking."
 ::= { prtGeneralEntry 17 }

--- General alert table section (Alert Table V2 Group) ---

--- The following two objects are used to specify counters associated with the Alert Table.

prtAlertCriticalEvents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A running counter of the number of critical alert events that have been recorded in the alert table. The value of this object is reset in the event of a power cycle operation (i.e., the value is not persistent."
 ::= { prtGeneralEntry 18 }

prtAlertAllEvents OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A running counter of the total number of alert event entries (critical and non-critical) that have been recorded in the alert table"
 ::= { prtGeneralEntry 19 }

-- The Cover Table
--
-- The cover portion of the General print sub-unit describes the covers and interlocks of the printer. The Cover Table has an entry for each cover and interlock.

prtCover OBJECT IDENTIFIER ::= { printmib 6 }

prtCoverTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtCoverEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of the covers and interlocks of the printer."
 ::= { prtCover 1 }

prtCoverEntry OBJECT-TYPE
SYNTAX PrtCoverEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a cover or interlock. Entries may exist in the table for each device index with a device type of 'printer'.

NOTE: The above description has been modified from RFC 1759 for clarification."
INDEX { hrDeviceIndex, prtCoverIndex }
 ::= { prtCoverTable 1 }

PrtCoverEntry ::= SEQUENCE {
 prtCoverIndex Integer32,
 prtCoverDescription PrtLocalizedDescriptionStringTC,
 prtCoverStatus PrtCoverStatusTC
}

prtCoverIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value used by the printer to identify this Cover sub
unit. Although these values may change due to a major reconfiguration of the device (e.g., the addition of new cover sub-units to the printer), values SHOULD remain stable across successive printer power cycles.

NOTE: The above description has been modified from RFC 1759 for clarification.

::= { prtCoverEntry 1 }

prtCoverDescription OBJECT-TYPE
 -- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed to a TC to better support localization of the object.
 SYNTAX PrtLocalizedDescriptionStringTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The manufacturer provided cover sub-mechanism name in the localization specified by prtGeneralCurrentLocalization."
::= { prtCoverEntry 2 }

prtCoverStatus OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object and are now defined in the IANA-PRINTER-MIB. The new TC has defined "coverOpen" and "coverClosed" to replace "doorOpen" and "doorClosed" in RFC 1759. A name change is not formally allowed per SMI rules, but was agreed to by the WG group since a door has a more restrictive meaning than a cover and Cover group is intended to support doors as a subset of covers.
 SYNTAX PrtCoverStatusTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The status of this cover sub-unit."
::= { prtCoverEntry 3 }

-- The Localization Table

-- The localization portion of the General printer sub-unit is responsible for identifying the natural language, country, and character set in which character strings are expressed. There may be one or more localizations supported per printer. The available localizations are represented by the Localization table.

prtLocalization OBJECT IDENTIFIER ::= { printmib 7 }

prtLocalizationTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtLocalizationEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The available localizations in this printer."
::= { prtLocalization 1 }

PrtLocalizationEntry OBJECT-TYPE
SYNTAX PrtLocalizationEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A description of a localization. Entries may exist in the table for each device index with a device type of 'printer'."

NOTE: The above description has been modified from RFC 1759 for clarification.
INDEX { hrDeviceIndex, prtLocalizationIndex }
::= { prtLocalizationTable 1 }

PrtLocalizationEntry ::= SEQUENCE {
 prtLocalizationIndex Integer32,
 prtLocalizationLanguage OCTET STRING,
 prtLocalizationCountry OCTET STRING,
 prtLocalizationCharacterSet IANACharset
}

prtLocalizationIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A unique value used by the printer to identify this localization entry. Although these values may change due to a major reconfiguration of the device (e.g., the addition of new localization data to the printer), values SHOULD remain stable across successive printer power cycles."

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtLocalizationEntry 1 }

prtLocalizationLanguage OBJECT-TYPE
-- Note: The size is fixed, was incorrectly 0..2 in RFC 1759.
SYNTAX OCTET STRING (SIZE(2))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A two character language code from ISO 639. Examples en, es, fr, de. NOTE: These examples were shown as upper case in RFC 1759 and are now shown as lower case to agree with ISO 639."

::= { prtLocalizationEntry 2 }

prtLocalizationCountry OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(2))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A two character country code from ISO 3166, a blank string (two space characters) shall indicate that the country is not defined. Examples: US, GB, FR, DE, ..."

::= { prtLocalizationEntry 3 }

prtLocalizationCharacterSet OBJECT-TYPE
SYNTAX IANACharset
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The coded character set used for this localization."

::= { prtLocalizationEntry 4 }

-- The System Resources Tables
-- The Printer MIB makes use of the Host Resources MIB to
-- define system resources by referencing the storage
-- and device groups of the print group.

prtStorageRefTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtStorageRefEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table defines which printer, amongst multiple printers serviced by one agent, owns which storage units.

NOTE: The above description has been modified from RFC 1759 for clarification."

::= { prtGeneral 2 }

prtStorageRefEntry OBJECT-TYPE
SYNTAX PrtStorageRefEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table will have an entry for each entry in the Host Resources MIB storage table that represents storage associated with a printer managed by this agent.

NOTE: The above description has been modified from RFC 1759 for clarification."

INDEX { hrStorageIndex, prtStorageRefSeqNumber }
::= { prtStorageRefTable 1 }

PrtStorageRefEntry ::= SEQUENCE {
 prtStorageRefSeqNumber Integer32,
 prtStorageRefIndex Integer32
}

prtStorageRefSeqNumber OBJECT-TYPE
 -- NOTE: The range has been changed from RFC 1759, which allowed a
 -- minumum value of zero. This was incorrect, since zero is not a
 -- valid index.
 SYNTAX Integer32 (1..65535)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This value will be unique amongst all entries with a common
 value of hrStorageIndex. This object allows a storage entry to
 point to the multiple printer devices with which it is
 associated."
::= { prtStorageRefEntry 1 }

prtStorageRefIndex OBJECT-TYPE
 -- NOTE: The range has been changed from RFC 1759 to be compatible
 -- with the defined range of hrDeviceIndex.
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of the hrDeviceIndex of the printer device that this
 storageEntry is associated with."
::= { prtStorageRefEntry 2 }

prtDeviceRefTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PrtDeviceRefEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table defines which printer, amongst multiple printers
 serviced by one agent, is associated with which devices.

NOTE: The above description has been modified from RFC 1759
for clarification."
 ::= { prtGeneral 3 }

prtDeviceRefEntry OBJECT-TYPE
SYNTAX PrtDeviceRefEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table will have an entry for each entry in the Host
Resources MIB device table that represents a device associated
with a printer managed by this agent.

NOTE: The above description has been modified from RFC 1759
for clarification."
INDEX { hrDeviceIndex, prtDeviceRefSeqNumber }
 ::= { prtDeviceRefTable 1 }

PrtDeviceRefEntry ::= SEQUENCE {
 prtDeviceRefSeqNumber Integer32,
 prtDeviceRefIndex Integer32
}

prtDeviceRefSeqNumber OBJECT-TYPE
 -- NOTE: The range has been changed from RFC 1759, which allowed a
 -- minimum value of zero. This was incorrect, since zero is not a
 -- valid index.
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This value will be unique amongst all entries with a common
value of hrDeviceIndex. This object allows a device entry to
point to the multiple printer devices with which it is
associated."
 ::= { prtDeviceRefEntry 1 }

prtDeviceRefIndex OBJECT-TYPE
 -- NOTE: The range has been changed from RFC 1759 to be compatible
 -- with the defined range of hrDeviceIndex.
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of the hrDeviceIndex of the printer device that this
deviceEntry is associated with."
 ::= { prtDeviceRefEntry 2 }
-- The Input Group

-- Input sub-units are managed as a tabular, indexed collection
-- of possible devices capable of providing media for input to
-- the printing process. Input sub-units typically have a
-- location, a type, an identifier, a set of constraints on
-- possible media sizes and potentially other media
-- characteristics, and may be capable of indicating current
-- status or capacity.

prtInput OBJECT IDENTIFIER ::= { printmib 8 }

prtInputTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtInputEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table of the devices capable of providing media for input to
 the printing process."
 ::= { prtInput 2 }

prtInputEntry OBJECT-TYPE
SYNTAX PrtInputEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Attributes of a device capable of providing media for input to
 the printing process. Entries may exist in the table for each
device index with a device type of 'printer'.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
INDEX { hrDeviceIndex, prtInputIndex }
 ::= { prtInputTable 1 }

PrtInputEntry ::= SEQUENCE {
 prtInputIndex Integer32,
 prtInputType PrtInputTypeTC,
 prtInputDimUnit PrtMediaUnitTC,
 prtInputMediaDimFeedDirDeclared Integer32,
 prtInputMediaDimXFeedDirDeclared Integer32,
 prtInputMediaDimFeedDirChosen Integer32,
 prtInputMediaDimXFeedDirChosen Integer32,
 prtInputCapacityUnit PrtCapacityUnitTC,
 prtInputMaxCapacity Integer32,
 prtInputCurrentLevel Integer32,
 prtInputStatus PrtSubUnitStatusTC,
 prtInputMediaName OCTET STRING,

Bergman, et al. Standards Track [Page 81]
prtInputName OCTET STRING,
prtInputVendorName OCTET STRING,
prtInputModel OCTET STRING,
prtInputVersion OCTET STRING,
prtInputSerialNumber OCTET STRING,
prtInputDescription PrtLocalizedDescriptionStringTC,
prtInputSecurity PresentOnOff,
prtInputMediaWeight Integer32,
prtInputMediaType OCTET STRING,
prtInputMediaColor OCTET STRING,
prtInputMediaFormParts Integer32,
prtInputMediaLoadTimeout Integer32,
prtInputNextIndex Integer32
}

prtInputIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value used by the printer to identify this input sub-unit. Although these values may change due to a major reconfiguration of the device (e.g., the addition of new input sub-units to the printer), values SHOULD remain stable across successive printer power cycles.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtInputEntry 1 }

prtInputType OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
SYNTAX PrtInputTypeTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of technology (discriminated primarily according to feeder mechanism type) employed by the input sub-unit. Note, the Input Class provides for a descriptor field to further qualify the other choice."
::= { prtInputEntry 2 }

prtInputDimUnit OBJECT-TYPE
SYNTAX PrtMediaUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The unit of measurement for use calculating and relaying dimensional values for this input sub-unit."

::= { prtInputEntry 3 }

prtInputMediaDimFeedDirDeclared OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-2..2147483647)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object provides the value of the declared dimension, in the feed direction, of the media that is (or, if empty, was or will be) in this input sub-unit. The feed direction is the direction in which the media is fed on this sub-unit. This dimension is measured in input sub-unit dimensional units (controlled by prtInputDimUnit, which uses PrtMediaUnitTC). If this input sub-unit can reliably sense this value, the value is sensed by the printer and may not be changed by management requests. Otherwise, the value may be changed. The value (-1) means other and specifically means that this sub-unit places no restriction on this parameter. The value (-2) indicates unknown."

::= { prtInputEntry 4 }

prtInputMediaDimXFeedDirDeclared OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-2..2147483647)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object provides the value of the declared dimension, in the cross feed direction, of the media that is (or, if empty, was or will be) in this input sub-unit. The cross feed direction is ninety degrees relative to the feed direction associated with this sub-unit. This dimension is measured in input sub-unit dimensional units (controlled by prtInputDimUnit, which uses PrtMediaUnitTC). If this input sub-unit can reliably sense this value, the value is sensed by the printer and may not be changed by management requests. Otherwise, the value may be changed. The value (-1) means other and specifically means that this sub-unit places no restriction on this parameter. The value (-2) indicates unknown."

::= { prtInputEntry 5 }

prtInputMediaDimFeedDirChosen OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-2..2147483647)
 MAX-ACCESS read-only
STATUS current
DESCRIPTION "The printer will act as if media of the chosen dimension (in
the feed direction) is present in this input source. Note that
this value will be used even if the input tray is empty. Feed
dimension measurements are taken relative to the feed direction
associated with that sub-unit and are in input sub-unit
dimensional units (controlled by prtInputDimUnit, which uses
PrtMediaUnitTC). If the printer supports the declared
dimension, the granted dimension is the same as the declared
dimension. If not, the granted dimension is set to the closest
dimension that the printer supports when the declared dimension
is set. The value (-1) means other and specifically indicates
that this sub-unit places no restriction on this parameter. The
value (-2) indicates unknown."
::= { prtInputEntry 6 }

prtInputMediaDimXFeedDirChosen OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The printer will act as if media of the chosen dimension (in
the cross feed direction) is present in this input source. Note
that this value will be used even if the input tray is empty.
The cross feed direction is ninety degrees relative to the feed
direction associated with this sub-unit. This dimension is
measured in input sub-unit dimensional units (controlled by
prtInputDimUnit, which uses PrtMediaUnitTC). If the printer
supports the declare dimension, the granted dimension is the
same as the declared dimension. If not, the granted dimension
is set to the closest dimension that the printer supports when
the declared dimension is set. The value (-1) means other and
specifically indicates that this sub-unit places no restriction
on this parameter. The value (-2) indicates unknown."
::= { prtInputEntry 7 }

prtInputCapacityUnit OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly
 -- defined by this object.
SYNTAX PrtCapacityUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The unit of measurement for use in calculating and relaying
capacity values for this input sub-unit."
::= { prtInputEntry 8 }
prtInputMaxCapacity OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-2..2147483647)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum capacity of the input sub-unit in input sub-unit
capacity units (PrtCapacityUnitTC). There is no convention
associated with the media itself so this value reflects claimed
capacity. If this input sub-unit can reliably sense this value,
the value is sensed by the printer and may not be changed by
management requests; otherwise, the value may be written (by a
Remote Control Panel or a Management Application). The value
(-1) means other and specifically indicates that the sub-unit
places no restrictions on this parameter. The value (-2) means
unknown."
 ::= { prtInputEntry 9 }

prtInputCurrentLevel OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-3..2147483647) -- in capacity units
 -- (PrtCapacityUnitTC).
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The current capacity of the input sub-unit in input sub-unit
capacity units (PrtCapacityUnitTC). If this input sub-unit can
reliably sense this value, the value is sensed by the printer
and may not be changed by management requests; otherwise, the
value may be written (by a Remote Control Panel or a Management
Application). The value (-1) means other and specifically
indicates that the sub-unit places no restrictions on this
parameter. The value (-2) means that the printer knows that at least one unit remains."
 ::= { prtInputEntry 10 }

prtInputStatus OBJECT-TYPE
 SYNTAX PrtSubUnitStatusTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The current status of this input sub-unit."
 ::= { prtInputEntry 11 }

prtInputMediaName OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..63))
 MAX-ACCESS read-write
 STATUS current
DESCRIPTION

"A description of the media contained in this input sub-unit; This description is to be used by a client to format and Localize a string for display to a human operator. This description is not processed by the printer. It is used to provide information not expressible in terms of the other media attributes (e.g., prtInputMediaDimFeedDirChosen, prtInputMediaDimXFeedDirChosen, prtInputMediaWeight, prtInputMediaType)."

-- The following reference was not included in RFC 1759.

REFERENCE

"The PWG Standardized Media Names specification [PWGMEDIA] contains the recommended values for this object. See also RFC 3805 Appendix C,'Media Names', which lists the values Of standardized media names defined in ISO/IEC 10175."

::= { prtInputEntry 12 }

-- INPUT MEASUREMENT
--
-- _______ | |
-- ^ | | |
-- | | | ^ v
-- | |_ _ _ _ _ _ _ _| _______________ |direction
-- | | | | |
-- | | left | CurrentLevel
-- | | in | |
-- | | tray | v
-- v | tray | v
-- _______ +_______________+ _______

-- The Extended Input Group

prtInputName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The name assigned to this input sub-unit."
::= { prtInputEntry 13 }

prtInputVendorName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vendor name of this input sub-unit."
::= { prtInputEntry 14 }
prtInputModel OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..63))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The model name of this input sub-unit."
 ::= { prtInputEntry 15 }

prtInputVersion OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..63))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The version of this input sub-unit."
 ::= { prtInputEntry 16 }

prtInputSerialNumber OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..32))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The serial number assigned to this input sub-unit."
 ::= { prtInputEntry 17 }

prtInputDescription OBJECT-TYPE
 -- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed
 -- to a TC to better support localization of the object.
 SYNTAX PrtLocalizedDescriptionStringTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A free-form text description of this input sub-unit in the
 localization specified by prtGeneralCurrentLocalization."
 ::= { prtInputEntry 18 }

prtInputSecurity OBJECT-TYPE
 SYNTAX PresentOnOff
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Indicates if this input sub-unit has some security associated
 with it."
 ::= { prtInputEntry 19 }

-- The Input Media Group
--
-- The Input Media Group supports identification of media
-- installed or available for use on a printing device.
Medium resources are identified by name, and include a collection of characteristic attributes that may further be used for selection and management of them. The Input Media group consists of a set of optional "columns" in the Input Table. In this manner, a minimally conforming implementation may choose to not support reporting of media resources if it cannot do so.

prtInputMediaWeight OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The weight of the medium associated with this input sub-unit in grams / per meter squared. The value (-2) means unknown."
::= { prtInputEntry 20 }

prtInputMediaType OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The name of the type of medium associated with this input sub unit. This name need not be processed by the printer; it might simply be displayed to an operator.

NOTE: The above description has been modified from RFC 1759."
-- The following reference was not included in RFC 1759.
REFERENCE
 "The PWG Standardized Media Names specification [PWGMEDIA], section 3 Media Type Names, contains the recommended values for this object. Implementers may add additional string values. The naming conventions in ISO 9070 are recommended in order to avoid potential name clashes."
::= { prtInputEntry 21 }

prtInputMediaColor OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The name of the color of the medium associated with this input sub-unit using standardized string values.

NOTE: The above description has been modified from RFC 1759."
-- The following reference was not included in RFC 1759.
REFERENCE
"The PWG Standardized Media Names specification [PWGMEDIA], section 4 Media Color Names, contains the recommended values for this object. Implementers may add additional string values. The naming conventions in ISO 9070 are recommended in order to avoid potential name clashes."

::= { prtInputEntry 22 }

prtInputMediaFormParts OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The number of parts associated with the medium associated with this input sub-unit if the medium is a multi-part form. The value (-1) means other and specifically indicates that the device places no restrictions on this parameter. The value (-2) means unknown."

::= { prtInputEntry 23 }

-- The Input Switching Group
--
-- The input switching group allows the administrator to set the
-- input subunit time-out for the printer and to control the
-- automatic input subunit switching by the printer when an input
-- subunit becomes empty.

prtInputMediaLoadTimeout OBJECT-TYPE
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"When the printer is not able to print due to a subunit being empty or the requested media must be manually loaded, the printer will wait for the duration (in seconds) specified by this object. Upon expiration of the time-out, the printer will take the action specified by prtInputNextIndex. The event which causes the printer to enter the waiting state is product specific. If the printer is not waiting for manually fed media, it may switch from an empty subunit to a different subunit without waiting for the time-out to expire. A value of (-1) implies ‘other’ or ‘infinite’ which translates to ‘wait forever’. The action which causes printing to continue is product specific. A value of (-2) means ‘unknown’.

::= { prtInputEntry 24 }
prtInputNextIndex OBJECT-TYPE
SYNTAX Integer32 (-3..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of prtInputIndex corresponding to the input subunit
which will be used when this input subunit is emptied and the
time-out specified by prtInputMediaLoadTimeout expires. A value
of zero(0) indicates that auto input switching will not occur
when this input subunit is emptied. If the time-out specified
by prtInputLoadMediaTimeout expires and this value is zero(0),
the job will be aborted. A value of (-1) means other. The
value (-2) means ‘unknown’ and specifically indicates that an
implementation specific method will determine the next input
subunit to use at the time this subunit is emptied and the time
out expires. The value(-3) means input switching is not
supported for this subunit."
::= { prtInputEntry 25 }

-- The Output Group
--
-- Output sub-units are managed as a tabular, indexed collection
-- of possible devices capable of receiving media delivered from
-- the printing process. Output sub-units typically have a
-- location, a type, an identifier, a set of constraints on
-- possible media sizes and potentially other characteristics,
-- and may be capable of indicating current status or capacity.

prtOutput OBJECT IDENTIFIER ::= { printmib 9 }

prtOutputTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtOutputEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of the devices capable of receiving media delivered
from the printing process."
::= { prtOutput 2 }

prtOutputEntry OBJECT-TYPE
SYNTAX PrtOutputEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Attributes of a device capable of receiving media delivered
from the printing process. Entries may exist in the table for
each device index with a device type of ‘printer’.
NOTE: The above description has been modified from RFC 1759 for clarification.

INDEX { hrDeviceIndex, prtOutputIndex }
 ::= { prtOutputTable 1 }

PrtOutputEntry ::= SEQUENCE {
 prtOutputIndex Integer32,
 prtOutputType PrtOutputTypeTC,
 prtOutputCapacityUnit PrtCapacityUnitTC,
 prtOutputMaxCapacity Integer32,
 prtOutputRemainingCapacity Integer32,
 prtOutputStatus PrtSubUnitStatusTC,
 prtOutputName OCTET STRING,
 prtOutputVendorName OCTET STRING,
 prtOutputModel OCTET STRING,
 prtOutputVersion OCTET STRING,
 prtOutputSerialNumber OCTET STRING,
 prtOutputDescription PrtLocalizedDescriptionStringTC,
 prtOutputSecurity PresentOnOff,
 prtOutputDimUnit PrtMediaUnitTC,
 prtOutputMaxDimFeedDir Integer32,
 prtOutputMaxDimXFeedDir Integer32,
 prtOutputMinDimFeedDir Integer32,
 prtOutputMinDimXFeedDir Integer32,
 prtOutputStackingOrder PrtOutputStackingOrderTC,
 prtOutputPageDeliveryOrientation PrtOutputPageDeliveryOrientationTC,
 prtOutputBursting PresentOnOff,
 prtOutputDecollating PresentOnOff,
 prtOutputPageCollated PresentOnOff,
 prtOutputOffsetStacking PresentOnOff
}

prtOutputIndex OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value used by this printer to identify this output sub-unit. Although these values may change due to a major reconfiguration of the sub-unit (e.g., the addition of new output devices to the printer), values SHOULD remain stable across successive printer power cycles.

NOTE: The above description has been modified from RFC 1759 for clarification."
 ::= { prtOutputEntry 1 }
prtOutputType OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly defined
-- by this object.
SYNTAX PrtOutputTypeTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of technology supported by this output sub-unit."
 ::= { prtOutputEntry 2 }

prtOutputCapacityUnit OBJECT-TYPE
SYNTAX PrtCapacityUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The unit of measurement for use in calculating and relaying
capacity values for this output sub-unit."
 ::= { prtOutputEntry 3 }

prtOutputMaxCapacity OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The maximum capacity of this output sub-unit in output sub-
unit capacity units (PrtCapacityUnitTC). There is no convention
associated with the media itself so this value essentially
reflects claimed capacity. If this output sub-unit can reliably
sense this value, the value is sensed by the printer and may
not be changed by management requests; otherwise, the value may
be written (by a Remote Control Panel or a Management
Application). The value (-1) means other and specifically
indicates that the sub-unit places no restrictions on this
parameter. The value (-2) means unknown."
 ::= { prtOutputEntry 4 }

prtOutputRemainingCapacity OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-3..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The remaining capacity of the possible output sub-unit
capacity in output sub-unit capacity units
(PrtCapacityUnitTC) of this output sub-unit. If this output sub-
unit can reliably sense this value, the value is sensed by the
printer and may not be modified by management requests;
otherwise, the value may be written (by a Remote Control Panel or a Management Application). The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown. The value (-3) means that the printer knows that there remains capacity for at least one unit."

::= { prtOutputEntry 5 }

prtOutputStatus OBJECT-TYPE
SYNTAX PrtSubUnitStatusTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current status of this output sub-unit."
::= { prtOutputEntry 6 }

-- OUTPUT MEASUREMENT
--
-- _______ | | ________
-- ^ | | ^
-- | | | |
-- | | | v ^
-- | | Sheets | |
-- | | in |
-- v | Output |
-- _______ +________________+

-- The Extended Output Group

prtOutputName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The name assigned to this output sub-unit."
::= { prtOutputEntry 7 }

prtOutputVendorName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vendor name of this output sub-unit."
::= { prtOutputEntry 8 }
prtOutputModel OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The model name assigned to this output sub-unit.
NOTE: The above description has been modified from RFC 1759
for clarification."
 ::= { prtOutputEntry 9 }

prtOutputVersion OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The version of this output sub-unit."
 ::= { prtOutputEntry 10 }

prtOutputSerialNumber OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The serial number assigned to this output sub-unit."
 ::= { prtOutputEntry 11 }

prtOutputDescription OBJECT-TYPE
-- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed
-- to a TC to better support localization of the object.
SYNTAX PrtLocalizedDescriptionStringTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A free-form text description of this output sub-unit in the
 localization specified by prtGeneralCurrentLocalization."
 ::= { prtOutputEntry 12 }

prtOutputSecurity OBJECT-TYPE
SYNTAX PresentOnOff
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "Indicates if this output sub-unit has some security associated
 with it and if that security is enabled or not."
 ::= { prtOutputEntry 13 }
-- The Output Dimensions Group

prtOutputDimUnit OBJECT-TYPE
SYNTAX PrtMediaUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The unit of measurement for use in calculating and relaying dimensional values for this output sub-unit."
::= { prtOutputEntry 14 }

prtOutputMaxDimFeedDir OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The maximum dimensions supported by this output sub-unit for measurements taken parallel relative to the feed direction associated with that sub-unit in output sub-unit dimensional units (controlled by prtOutputDimUnit, which uses PrtMediaUnitTC). If this output sub-unit can reliably sense this value, the value is sensed by the printer and may not be changed with management protocol operations. The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown.

NOTE: The above description has been modified from RFC 1759 for clarification and to explain the purpose of (-1) and (-2)."
::= { prtOutputEntry 15 }

prtOutputMaxDimXFeedDir OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The maximum dimensions supported by this output sub-unit for measurements taken ninety degrees relative to the feed direction associated with that sub-unit in output sub-unit dimensional units (controlled by prtOutputDimUnit, which uses PrtMediaUnitTC). If this output sub-unit can reliably sense this value, the value is sensed by the printer and may not be changed with management protocol operations. The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown.
NOTE: The above description has been modified from RFC 1759 for clarification and to explain the purpose of (-1) and (-2)."
::= { prtOutputEntry 16 }

prtOutputMinDimFeedDir OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The minimum dimensions supported by this output sub-unit for measurements taken parallel relative to the feed direction associated with that sub-unit in output sub-unit dimensional units (controlled by prtOutputDimUnit, which uses PrtMediaUnitTC). If this output sub-unit can reliably sense this value, the value is sensed by the printer and may not be changed with management protocol operations. The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown.

NOTE: The above description has been modified from RFC 1759 for clarification and to explain the purpose of (-1) and (-2)."
::= { prtOutputEntry 17 }

prtOutputMinDimXFeedDir OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The minimum dimensions supported by this output sub-unit for measurements taken ninety degrees relative to the feed direction associated with that sub-unit in output sub-unit dimensional units (controlled by prtOutputDimUnit, which uses PrtMediaUnitTC). If this output sub-unit can reliably sense this value, the value is sensed by the printer and may not be changed with management protocol operations. The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown.

NOTE: The above description has been modified from RFC 1759 for clarification and to explain the purpose of (-1) and (-2)."
-- The Output Features Group

prtOutputStackingOrder OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly
 -- defined by this object.
 SYNTAX PrtOutputStackingOrderTC
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The current state of the stacking order for the
 associated output sub-unit. ‘FirstToLast’ means
 that as pages are output the front of the next page is
 placed against the back of the previous page.
 ‘LasttoFirst’ means that as pages are output the back
 of the next page is placed against the front of the
 previous page."
 ::= { prtOutputEntry 19 }

prtOutputPageDeliveryOrientation OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly
 -- defined by this object.
 SYNTAX PrtOutputPageDeliveryOrientationTC
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The reading surface that will be ‘up’ when pages are
 delivered to the associated output sub-unit. Values are
 faceUp and faceDown. (Note: interpretation of these
 values is in general context-dependent based on locale;
 presentation of these values to an end-user should be
 normalized to the expectations of the user)."
 ::= { prtOutputEntry 20 }

prtOutputBursting OBJECT-TYPE
 SYNTAX PresentOnOff
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object indicates that the outputting sub-unit supports
 bursting, and if so, whether the feature is enabled. Bursting
 is the process by which continuous media is separated into
 individual sheets, typically by bursting along pre-formed
 perforations."
 ::= { prtOutputEntry 21 }

prtOutputDecollating OBJECT-TYPE
 SYNTAX PresentOnOff
 MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object indicates that the output supports decollating, and if so, whether the feature is enabled. Decollating is the process by which the individual parts within a multi-part form are separated and sorted into separate stacks for each part."

::= { prtOutputEntry 22 }

prtOutputPageCollated OBJECT-TYPE
SYNTAX PresentOnOff
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object indicates that the output sub-unit supports page collation, and if so, whether the feature is enabled. See RFC 3805 Appendix A, Glossary Of Terms, for definition of how this document defines collation.

NOTE: The above description has been modified from RFC 1759 for clarification."

::= { prtOutputEntry 23 }

prtOutputOffsetStacking OBJECT-TYPE
SYNTAX PresentOnOff
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object indicates that the output supports offset stacking, and if so, whether the feature is enabled. See RFC 3805 Appendix A, Glossary Of Terms, for how Offset Stacking is defined by this document.

NOTE: The above description has been modified from RFC 1759 for clarification."

::= { prtOutputEntry 24 }

-- The Marker Group
--
-- A marker is the mechanism that produces marks on the print media. The marker sub-units and their associated supplies are represented by the Marker Group in the model. A printer can contain one or more marking mechanisms. Some examples of multiple marker sub-units are: a printer with separate markers for normal and magnetic ink or an imagesetter that can output to both a proofing device and final film. Each marking device can have its own set of characteristics associated with it, such as marking technology and resolution.
prtMarker OBJECT IDENTIFIER ::= { printmib 10 }

-- The printable area margins as listed below define an area of
-- the print media which is guaranteed to be printable for all
-- combinations of input, media paths, and interpreters for this
-- marker.

prtMarkerTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtMarkerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The marker table provides a description of each marker
 sub-unit contained within the printer.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
 ::= { prtMarkerTable 1 }

PrtMarkerEntry OBJECT-TYPE
SYNTAX PrtMarkerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Entries in this table define the characteristics and status
 of each marker sub-unit in the printer.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
INDEX { hrDeviceIndex, prtMarkerIndex }
 ::= { prtMarkerTable 1 }

PrtMarkerEntry ::= SEQUENCE { prtMarkerIndex Integer32, prtMarkerMarkTech PrtMarkerMarkTechTC, prtMarkerCounterUnit PrtMarkerCounterUnitTC, prtMarkerLifeCount Counter32, prtMarkerPowerOnCount Counter32, prtMarkerProcessColorants Integer32, prtMarkerSpotColorants Integer32, prtMarkerAddressabilityUnit PrtMarkerAddressabilityUnitTC, prtMarkerAddressabilityFeedDir Integer32, prtMarkerAddressabilityXFeedDir Integer32, prtMarkerNorthMargin Integer32, prtMarkerSouthMargin Integer32, prtMarkerWestMargin Integer32, prtMarkerEastMargin Integer32, prtMarkerStatus PrtSubUnitStatusTC}
prtMarkerIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value used by the printer to identify this marking
SubUnit. Although these values may change due to a major
reconfiguration of the device (e.g., the addition of new marking
sub-units to the printer), values SHOULD remain stable across
successive printer power cycles.

NOTE: The above description has been modified from RFC 1759
for clarification."
::= { prtMarkerEntry 1 }

prtMarkerMarkTech OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly
-- defined by this object.
SYNTAX PrtMarkerMarkTechTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of marking technology used for this marking
sub-unit."
::= { prtMarkerEntry 2 }

prtMarkerCounterUnit OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly
-- defined by this object.
SYNTAX PrtMarkerCounterUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The unit that will be used by the printer when reporting
counter values for this marking sub-unit. The time units of
measure are provided for a device like a strip recorder that
does not or cannot track the physical dimensions of the media
and does not use characters, lines or sheets."
::= { prtMarkerEntry 3 }

prtMarkerLifeCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the number of units of measure counted during the
life of printer using units of measure as specified by
prtMarkerCounterUnit.

Note: This object should be implemented as a persistent object
with a reliable value throughout the lifetime of the printer.

::= { prtMarkerEntry 4 }

prtMarkerPowerOnCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the number of units of measure counted since the
equipment was most recently powered on using units of measure
as specified by prtMarkerCounterUnit."

::= { prtMarkerEntry 5 }

prtMarkerProcessColorants OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of process colors supported by this marker. A
process color of 1 implies monochrome. The value of this
object and prtMarkerSpotColorants cannot both be 0. The value
of prtMarkerProcessColorants must be 0 or greater.

NOTE: The above description has been modified from RFC 1759
for clarification."

::= { prtMarkerEntry 6 }

prtMarkerSpotColorants OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of spot colors supported by this marker. The value
of this object and prtMarkerProcessColorants cannot both be 0.
Must be 0 or greater.

NOTE: The above description has been modified from RFC 1759
for clarification."

::= { prtMarkerEntry 7 }

prtMarkerAddressabilityUnit OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly
-- defined by this object.
SYNTAX PrtMarkerAddressabilityUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The unit of measure of distances, as applied to the marker’s resolution.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= {prtMarkerEntry 8 }

prtMarkerAddressabilityFeedDir OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The maximum number of addressable marking positions in the feed direction per 10000 units of measure specified byprtMarkerAddressabilityUnit. A value of (-1) implies ‘other’ or ‘infinite’ while a value of (-2) implies ‘unknown’.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= {prtMarkerEntry 9 }

prtMarkerAddressabilityXFeedDir OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The maximum number of addressable marking positions in the cross feed direction in 10000 units of measure specified byprtMarkerAddressabilityUnit. A value of (-1) implies ‘other’ or ‘infinite’ while a value of (-2) implies ‘unknown’.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= {prtMarkerEntry 10 }

prtMarkerNorthMargin OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The margin, in units identified by prtMarkerAddressabilityUnit, from the leading edge of the medium as the medium flows through
the marking engine with the side to be imaged facing the
observer. The leading edge is the North edge and the other
edges are defined by the normal compass layout of directions
with the compass facing the observer. Printing within the area
bounded by all four margins is guaranteed for all interpreters.
The value (-2) means unknown.
::= { prtMarkerEntry 11 }

prtMarkerSouthMargin OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The margin from the South edge (see prtMarkerNorthMargin) of
the medium in units identified by prtMarkerAddressabilityUnit.
Printing within the area bounded by all four margins is
guaranteed for all interpreters. The value (-2) means unknown."
::= { prtMarkerEntry 12 }

prtMarkerWestMargin OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The margin from the West edge (see prtMarkerNorthMargin) of
the medium in units identified by prtMarkerAddressabilityUnit.
Printing within the area bounded by all four margins is
guaranteed for all interpreters. The value (-2) means unknown."
::= { prtMarkerEntry 13 }

prtMarkerEastMargin OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The margin from the East edge (see prtMarkerNorthMargin) of
the medium in units identified by prtMarkerAddressabilityUnit.
Printing within the area bounded by all four margins is
guaranteed for all interpreters. The value (-2) means unknown."
::= { prtMarkerEntry 14 }

prtMarkerStatus OBJECT-TYPE
SYNTAX PrtSubUnitStatusTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current status of this marker sub-unit."
 ::= { prtMarkerEntry 15 }

-- The Marker Supplies Group
prtMarkerSupplies OBJECT IDENTIFIER ::= { printmib 11 }

prtMarkerSuppliesTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtMarkerSuppliesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of the marker supplies available on this printer."
 ::= { prtMarkerSupplies 1 }

prtMarkerSuppliesEntry OBJECT-TYPE
SYNTAX PrtMarkerSuppliesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Attributes of a marker supply. Entries may exist in the table
for each device index with a device type of ‘printer’."

NOTE: The above description has been modified from RFC 1759
for clarification.
INDEX { hrDeviceIndex, prtMarkerSuppliesIndex }
 ::= { prtMarkerSuppliesTable 1 }

PrtMarkerSuppliesEntry ::= SEQUENCE {
 prtMarkerSuppliesIndex Integer32,
 prtMarkerSuppliesMarkerIndex Integer32,
 prtMarkerSuppliesColorantIndex Integer32,
 prtMarkerSuppliesClass PrtMarkerSuppliesClassTC,
 prtMarkerSuppliesType PrtMarkerSuppliesTypeTC,
 prtMarkerSuppliesDescription PrtLocalizedDescriptionStringTC,
 prtMarkerSuppliesSupplyUnit PrtMarkerSuppliesSupplyUnitTC,
 prtMarkerSuppliesMaxCapacity Integer32,
 prtMarkerSuppliesLevel Integer32
}

prtMarkerSuppliesIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value used by the printer to identify this marker
supply. Although these values may change due to a major
reconfiguration of the device (e.g., the addition of new marker
supplies to the printer), values SHOULD remain stable across successive printer power cycles.

NOTE: The above description has been modified from RFC 1759 for clarification.

::= { prtMarkerSuppliesEntry 1 }

prtMarkerSuppliesMarkerIndex OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of prtMarkerIndex corresponding to the marking sub unit with which this marker supply sub-unit is associated."
::= { prtMarkerSuppliesEntry 2 }

prtMarkerSuppliesColorantIndex OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of prtMarkerColorantIndex corresponding to the colorant with which this marker supply sub-unit is associated. This value shall be 0 if there is no colorant table or if this supply does not depend on a single specified colorant. NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtMarkerSuppliesEntry 3 }

prtMarkerSuppliesClass OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
SYNTAX PrtMarkerSuppliesClassTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates whether this supply entity represents a supply that is consumed or a receptacle that is filled.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtMarkerSuppliesEntry 4 }

prtMarkerSuppliesType OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
SYNTAX PrtMarkerSuppliesTypeTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of this supply."
 ::= {prtMarkerSuppliesEntry 5 }

prtMarkerSuppliesDescription OBJECT-TYPE
 -- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed
 -- to a TC to better support localization of the object.
SYNTAX PrtLocalizedDescriptionStringTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The description of this supply container/receptacle in the
localization specified by prtGeneralCurrentLocalization."
 ::= {prtMarkerSuppliesEntry 6 }

prtMarkerSuppliesSupplyUnit OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly
 -- defined by this object.
SYNTAX PrtMarkerSuppliesSupplyUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Unit of measure of this marker supply container/receptacle.

NOTE: The above description has been modified from RFC 1759
for clarification."
 ::= {prtMarkerSuppliesEntry 7 }

prtMarkerSuppliesMaxCapacity OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The maximum capacity of this supply container/receptacle
expressed in prtMarkerSuppliesSupplyUnit. If this supply
container/receptacle can reliably sense this value, the value
is reported by the printer and is read-only; otherwise, the
value may be written (by a Remote Control Panel or a Management
Application). The value (-1) means other and specifically
indicates that the sub-unit places no restrictions on this
parameter. The value (-2) means unknown."
 ::= {prtMarkerSuppliesEntry 8 }

prtMarkerSuppliesLevel OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-3..2147483647)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The current level if this supply is a container; the remaining space if this supply is a receptacle. If this supply container/receptacle can reliably sense this value, the value is reported by the printer and is read-only; otherwise, the value may be written (by a Remote Control Panel or a Management Application). The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown. A value of (-3) means that the printer knows that there is some supply/remaining space, respectively."
::= {prtMarkerSuppliesEntry 9}

-- The Marker Colorant Group

prtMarkerColorant OBJECT IDENTIFIER ::= {printmib 12}

prtMarkerColorantTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtMarkerColorantEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of all of the colorants available on the printer."
::= {prtMarkerColorant 1}

prtMarkerColorantEntry OBJECT-TYPE
SYNTAX PrtMarkerColorantEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Attributes of a colorant available on the printer. Entries may exist in the table for each device index with a device type of ‘printer’."

NOTE: The above description has been modified from RFC 1759 for clarification.
INDEX {hrDeviceIndex, prtMarkerColorantIndex}
::= {prtMarkerColorantTable 1}

PrtMarkerColorantEntry ::= SEQUENCE {
 prtMarkerColorantIndex Integer32,
 prtMarkerColorantMarkerIndex Integer32,
 prtMarkerColorantRole PrtMarkerColorantRoleTC,
 prtMarkerColorantValue OCTET STRING,
 prtMarkerColorantTonality Integer32
}
prtMarkerColorantIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A unique value used by the printer to identify this colorant. Although
 these values may change due to a major reconfiguration of the device
 (e.g., the addition of new colorants to the printer), values SHOULD
 remain stable across successive printer power cycles.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
::= { prtMarkerColorantEntry 1 }

prtMarkerColorantMarkerIndex OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of prtMarkerIndex corresponding to the marker sub
 unit with which this colorant entry is associated."
::= { prtMarkerColorantEntry 2 }

prtMarkerColorantRole OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly
-- defined by this object.
SYNTAX PrtMarkerColorantRoleTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The role played by this colorant."
::= { prtMarkerColorantEntry 3 }

prtMarkerColorantValue OBJECT-TYPE
-- NOTE: The string length range has been increased from RFC 1759.
SYNTAX OCTET STRING (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The name of the color of this colorant using standardized string
 names from ISO 10175 (DPA) and ISO 10180 (SPDL) such as:
 other
 unknown
 white
 red
 green
 blue
Implementers may add additional string values. The naming conventions in ISO 9070 are recommended in order to avoid potential name clashes.

::= { prtMarkerColorantEntry 4 }

prtMarkerColorantTonality OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (2..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The distinct levels of tonality realizable by a marking sub unit when using this colorant. This value does not include the number of levels of tonal difference that an interpreter can obtain by techniques such as half toning. This value must be at least 2."
::= { prtMarkerColorantEntry 5 }

-- The Media Path Group

-- The media paths encompass the mechanisms in the printer that move the media through the printer and connect all other media related sub-units: inputs, outputs, markers and finishers. A printer contains one or more media paths. These are represented by the Media Path Group in the model.

prtMediaPath OBJECT IDENTIFIER ::= { printmib 13 }

prtMediaPathTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PrtMediaPathEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The media path table includes both physical and logical paths within the printer.

 NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtMediaPath 4 }

prtMediaPathEntry OBJECT-TYPE
 SYNTAX PrtMediaPathEntry
 MAX-ACCESS not-accessible
 STATUS current
PrtMediaPathTable

This table contains information about the physical characteristics and status of media paths in a printer. Each entry defines the maximum throughput and media size limitations for the corresponding subunit.

NOTE: The above description has been modified from RFC 1759 for clarification.

PrtMediaPathEntry

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Access</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prtMediaPathIndex</td>
<td>Integer32</td>
<td>not-accessible</td>
<td>current</td>
<td>A unique value used by the printer to identify this media path. Although these values may change due to a major reconfiguration of the device (e.g., the addition of new media paths to the printer), values SHOULD remain stable across successive printer power cycles.</td>
</tr>
<tr>
<td>prtMediaPathMaxSpeedPrintUnit</td>
<td>PrtMediaPathMaxSpeedPrintUnitTC</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathMaxSpeed</td>
<td>Integer32</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathMaxMediaFeedDir</td>
<td>Integer32</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathMaxMediaFeedDir</td>
<td>Integer32</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathMinMediaFeedDir</td>
<td>Integer32</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathMinMediaXFeedDir</td>
<td>Integer32</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathType</td>
<td>PrtMediaPathTypeTC</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathDescription</td>
<td>PrtLocalizedDescriptionStringTC</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
<tr>
<td>prtMediaPathStatus</td>
<td>PrtSubUnitStatusTC</td>
<td>read-only</td>
<td>current</td>
<td>-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.</td>
</tr>
</tbody>
</table>
"The unit of measure used in specifying the speed of all media paths in the printer."
::= { prtMediaPathEntry 2 }

prtMediaPathMediaSizeUnit OBJECT-TYPE
SYNTAX PrtMediaUnitTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The units of measure of media size for use in calculating and relaying dimensional values for all media paths in the printer."
::= { prtMediaPathEntry 3 }

prtMediaPathMaxSpeed OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum printing speed of this media path expressed in
prtMediaPathMaxSpeedUnit's. A value of (-1) implies 'other'."
::= { prtMediaPathEntry 4 }

prtMediaPathMaxMediaFeedDir OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum physical media size in the feed direction of this media path expressed in units of measure specified by
PrtMediaPathMediaSizeUnit. A value of (-1) implies 'unlimited', a value of (-2) implies 'unknown'.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtMediaPathEntry 5 }

prtMediaPathMaxMediaXFeedDir OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum physical media size across the feed direction of this media path expressed in units of measure specified by
prtMediaPathMediaSizeUnit. A value of (-2) implies 'unknown'.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtMediaPathEntry 6 }
NOTE: The above description has been modified from RFC 1759 for clarification.
::= {prtMediaPathEntry 6}

prtMediaPathMinMediaFeedDir OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-2..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The minimum physical media size in the feed direction of this
 media path expressed in units of measure specified by
 prtMediaPathMediaSizeUnit. A value of (-2) implies 'unknown'.

 NOTE: The above description has been modified from RFC 1759 for clarification.
 ::= {prtMediaPathEntry 7}

prtMediaPathMinMediaXFeedDir OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-2..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The minimum physical media size across the feed direction of
 this media path expressed in units of measure specified by
 prtMediaPathMediaSizeUnit. A value of (-2) implies 'unknown'.

 NOTE: The above description has been modified from RFC 1759 for clarification.
 ::= {prtMediaPathEntry 8}

prtMediaPathType OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
 SYNTAX PrtMediaPathTypeTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The type of the media path for this media path."
 ::= {prtMediaPathEntry 9}

prtMediaPathDescription OBJECT-TYPE
 -- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed -- to a TC to better support localization of the object.
 SYNTAX PrtLocalizedDescriptionStringTC
 MAX-ACCESS read-only
 STATUS current
DESCRIPTION
"The manufacturer-provided description of this media path in
the localization specified by prtGeneralCurrentLocalization."
::= { prtMediaPathEntry 10 }

prtMediaPathStatus OBJECT-TYPE
SYNTAX PrtSubUnitStatusTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current status of this media path."
::= { prtMediaPathEntry 11 }

-- The Print Job Delivery Channel Group
--
-- Print Job Delivery Channels are independent sources of print
-- data. Here, print data is the term used for the information
-- that is used to construct printed pages and may have both data
-- and control aspects. The output of a channel is in a form
-- suitable for input to one of the interpreters as a
-- stream. A channel may be independently enabled (allowing
-- print data to flow) or disabled (stopping the flow of
-- print data). A printer may have one or more channels.
--
-- The Print Job Delivery Channel table describes the
-- capabilities of the printer and not what is currently being
-- performed by the printer
--
-- Basically, the print job delivery channel abstraction
-- describes the final processing step of getting the print data
-- to an interpreter. It might include some level of
-- decompression or decoding of print stream data.
-- channel. All of these aspects are hidden in the channel
-- abstraction.
--
-- There are many kinds of print job delivery channels; some of
-- which are based on networks and others which are not. For
-- example, a channel can be a serial (or parallel) connection;
-- it can be a service, such as the UNIX Line Printer Daemon
-- (LPD), offering services over a network connection; or
-- it could be a disk drive into which a floppy disk with
-- the print data is inserted. Each print job delivery channel is
-- identified by the electronic path and/or service protocol
-- used to deliver print data to a print data interpreter.
--
-- Channel example
--
-- serial port channel bi-directional data channel
-- parallel port channel often uni-directional channel
-- IEEE 1284 port channel bi-directional channel
-- SCSI port channel bi-directional
-- Apple PAP channel may be based on LocalTalk,
-- Ethernet or Tokentalk
-- LPD Server channel TCP/IP based, port 515
-- Netware Remote Printer SPX/IPX based channel
-- Netware Print Server SPX/IPX based channel
--
-- It is easy to note that this is a mixed bag. There are
-- some physical connections over which no (or very meager)
-- protocols are run (e.g., the serial or old parallel ports)
-- and there are services which often have elaborate
-- protocols that run over a number of protocol stacks. In
-- the end, what is important is the delivery of print data
-- through the channel.
--
-- The print job delivery channel sub-units are represented by
-- the Print Job Delivery Channel Group in the Model. It has a
-- current print job control language, which can be used to
-- specify which interpreter is to be used for the print data and
-- to query and change environment variables used by the
-- interpreters (and Management Applications). There is also a
-- default interpreter that is to be used if an interpreter is
-- not explicitly specified using the Control Language.
--
-- The first seven items in the Print Job Delivery Channel Table
-- define the "channel" itself. A channel typically depends on
-- other protocols and interfaces to provide the data that flows
-- through the channel.
--
-- Control of a print job delivery channel is largely limited to
-- enabling or disabling the entire channel itself. It is likely
-- that more control of the process of accessing print data
-- will be needed over time. Thus, the ChannelType will
-- allow type-specific data to be associated with each
-- channel (using ChannelType specific groups in a fashion
-- analogous to the media specific MIBs that are associated
-- with the IANAIfType in the Interfaces Table). As a first
-- step in this direction, each channel will identify the
-- underlying Interface on which it is based. This is the
-- eighth object in each row of the table.
-- The Print Job Delivery Channel Table

prtChannel OBJECT IDENTIFIER ::= { printmib 14 }

prtChannelTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtChannelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The channel table represents the set of input data sources
which can provide print data to one or more of the
interpreters available on a printer.

NOTE: The above description has been modified from RFC 1759
for clarification."
::= { prtChannelTable 1 }

prtChannelEntry OBJECT-TYPE
SYNTAX PrtChannelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Entries may exist in the table for each device index with a
device type of ‘printer’. Each channel table entry is
categorized by a unique protocol stack and/or addressing.
The channel may also have printer dependent features that are
associated with a printing language.

NOTE: The above description has been modified from RFC 1759
for clarification."
INDEX { hrDeviceIndex, prtChannelIndex }
::= { prtChannelTable 1 }

PrtChannelEntry ::= SEQUENCE {
 prtChannelIndex Integer32,
 prtChannelType PrtChannelTypeTC,
 prtChannelProtocolVersion OCTET STRING,
 prtChannelCurrentJobCntlLangIndex Integer32,
 prtChannelDefaultPageDescLangIndex Integer32,
 prtChannelState PrtChannelStateTC,
 prtChannelIfIndex InterfaceIndexOrZero,
 prtChannelStatus PrtSubUnitStatusTC,
 prtChannelInformation OCTET STRING
}

prtChannelIndex OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value used by the printer to identify this data channel. Although these values may change due to a major reconfiguration of the device (e.g., the addition of new data channels to the printer), values SHOULD remain stable across successive printer power cycles.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtChannelEntry 1 }

prtChannelType OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
SYNTAX PrtChannelTypeTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of this print data channel. This object provides the linkage to ChannelType-specific groups that may (conceptually) extend the prtChannelTable with additional details about that channel."
::= { prtChannelEntry 2 }

prtChannelProtocolVersion OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The version of the protocol used on this channel. The format used for version numbering depends on prtChannelType."
::= { prtChannelEntry 3 }

prtChannelCurrentJobCntlLangIndex OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of prtInterpreterIndex corresponding to the Control Language Interpreter for this channel. This interpreter defines the syntax used for control functions, such as querying or changing environment variables and identifying job boundaries (e.g., PCL, PostScript, NPAP). A value of zero indicates that there is no current Job Control Language Interpreter for this channel.

Bergman, et al. Standards Track [Page 116]
NOTE: The above description has been modified from RFC 1759 for clarification.

::= { prtChannelEntry 4 }

prtChannelDefaultPageDescLangIndex OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of prtInterpreterIndex corresponding to the Page Description Language Interpreter for this channel. This interpreter defines the default Page Description Language interpreter to be used for the print data unless the Control Language is used to select a specific interpreter (e.g., PCL, PostScript Language, auto-sense). A value of zero indicates that there is no default page description language interpreter for this channel.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtChannelEntry 5 }

prtChannelState OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
SYNTAX PrtChannelStateTC
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The state of this print data channel. The value determines whether control information and print data is allowed through this channel or not."
::= { prtChannelEntry 6 }

prtChannelIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero -- Was Integer32 in RFC 1759.
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of ifIndex in the ifTable; see the Interfaces Group MIB [RFC2863] which corresponds to this channel. When more than one row of the ifTable is relevant, this is the index of the row representing the topmost layer in the interface hierarchy. A value of zero indicates that no interface is associated with this channel.

NOTE: The above description has been modified from RFC 1759
::= { prtChannelEntry 7 }

prtChannelStatus OBJECT-TYPE
SYNTAX PrtSubUnitStatusTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The current status of the channel."
::= { prtChannelEntry 8 }

prtChannelInformation OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "Auxiliary information to allow a printing application to use the channel for data submission to the printer. An application capable of using a specific PrtChannelType should be able to use the combined information from the prtChannelInformation and other channel and interface group objects to 'bootstrap' its use of the channel. prtChannelInformation is not intended to provide a general channel description, nor to provide information that is available once the channel is in use.

The encoding and interpretation of the prtChannelInformation object is specific to channel type. The description of each PrtChannelType enum value for which prtChannelInformation is defined specifies the appropriate encoding and interpretation, including interaction with other objects. For channel types that do not specify a prtChannelInformation value, its value shall be null (0 length).

When a new PrtChannelType enumeration value is registered, its accompanying description must specify the encoding and interpretation of the prtChannelInformation value for the channel type. prtChannelInformation semantics for an existing PrtChannelType may be added or amended in the same manner as described in section 2.4.1 for type 2 enumeration values.

The prtChannelInformation specifies values for a collection of channel attributes, represented as text according to the following rules:

1. The prtChannelInformation is not affected by localization.

2. The prtChannelInformation is a list of entries representing the attribute values. Each entry consists of the following
items, in order:

a. A keyword, composed of alphabetic characters (A-Z, a-z) represented by their NVT ASCII [RFC854] codes, that identifies a channel attribute,

b. The NVT ASCII code for an Equals Sign (=) (code 61) to delimit the keyword,

c. A data value encoded using rules specific to the PrtChannelType to with the prtChannelInformation applies which must in no case allow an octet with value 10 (the NVT ASCII Line Feed code),

d. the NVT ASCII code for a Line Feed character (code 10) to delimit the data value.

No other octets shall be present.

Keywords are case-sensitive. Conventionally, keywords are capitalized (including each word of a multi-word keyword) and since they occupy space in the prtChannelInformation, they are kept short.

3. If a channel attribute has multiple values, it is represented by multiple entries with the same keyword, each specifying one value. Otherwise, there shall be at most one entry for each attribute.

4. By default, entries may appear in any order. If there are ordering constraints for particular entries, these must be specified in their definitions.

5. The prtChannelInformation value by default consists of text represented by NVT ASCII graphics character codes. However, other representations may be specified:

a. In cases where the prtChannelInformation value contains information not normally coded in textual form, whatever symbolic representation is conventionally used for the information should be used for encoding the prtChannelInformation value. (For instance, a binary port value might be represented as a decimal number using NVT ASCII codes.) Such encoding must be specified in the definition of the value.

b. The value may contain textual information in a character set other than NVT ASCII graphics characters. (For instance, an
identifier might consist of ISO 10646 text encoded using the UTF-8 encoding scheme.) Such a character set and its encoding must be specified in the definition of the value.

6. For each PrtChannelType for which prtChannelInformation entries are defined, the descriptive text associated with the PrtChannelType enumeration value shall specify the following information for each entry:

Title: Brief description phrase, e.g.: 'Port name', 'Service Name', etc.

Keyword: The keyword value, e.g.: 'Port' or 'Service'

Syntax: The encoding of the entry value if it cannot be directly represented by NVT ASCII.

Status: 'Mandatory', 'Optional', or 'Conditionally Mandatory'

Multiplicity: 'Single' or 'Multiple' to indicate whether the entry may be present multiple times.

Description: Description of the use of the entry, other information required to complete the definition (e.g.: ordering constraints, interactions between entries).

Applications that interpret prtChannelInformation should ignore unrecognized entries, so they are not affected if new entry types are added."

::= { prtChannelEntry 9 }

-- The Interpreter Group
--
-- The interpreter sub-units are responsible for the conversion
-- of a description of intended print instances into images that
-- are to be marked on the media. A printer may have one or more
-- interpreters. The interpreter sub-units are represented by the
-- Interpreter Group in the Model. Each interpreter is generally
-- implemented with software running on the System Controller
-- sub-unit. The Interpreter Table has one entry per interpreter
-- where the interpreters include both Page Description Language
-- (PDL) Interpreters and Control Language Interpreters.

prtInterpreter OBJECT IDENTIFIER ::= { printmib 15 }
-- Interpreter Table

prtInterpreterTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtInterpreterEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The interpreter table is a table representing the
 interpreters in the printer. An entry shall be placed in the
 interpreter table for each interpreter on the printer.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
 ::= { prtInterpreter 1 }

prtInterpreterEntry OBJECT-TYPE
SYNTAX PrtInterpreterEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Entries may exist in the table for each device index with a
device type of ‘printer’. Each table entry provides a complete
description of the interpreter, including version information,
rendering resolutions, default character sets, output
orientation, and communication capabilities.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
INDEX { hrDeviceIndex, prtInterpreterIndex }
 ::= { prtInterpreterTable 1 }

PrtInterpreterEntry ::= SEQUENCE {
 prtInterpreterIndex Integer32,
 prtInterpreterLangFamily PrtInterpreterLangFamilyTC,
 prtInterpreterLangLevel OCTET STRING,
 prtInterpreterLangVersion OCTET STRING,
 prtInterpreterDescription PrtLocalizedDescriptionStringTC,
 prtInterpreterVersion OCTET STRING,
 prtInterpreterDefaultOrientation PrtPrintOrientationTC,
 prtInterpreterFeedAddressability Integer32,
 prtInterpreterXFeedAddressability Integer32,
 prtInterpreterDefaultCharSetIn IANACharset,
 prtInterpreterDefaultCharSetOut IANACharset,
 prtInterpreterTwoWay PrtInterpreterTwoWayTC
}

prtInterpreterIndex OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A unique value for each PDL or control language for which
there exists an interpreter or emulator in the printer. The
value is used to identify this interpreter. Although these
values may change due to a major reconfiguration of the device
(e.g., the addition of new interpreters to the printer), values
SHOULD remain stable across successive printer power cycles.

NOTE: The above description has been modified from RFC 1759
for clarification."
::= { prtInterpreterEntry 1 }

prtInterpreterLangFamily OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly
 -- defined by this object.
SYNTAX PrtInterpreterLangFamilyTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The family name of a Page Description Language (PDL) or
control language which this interpreter in the printer can
interpret or emulate.

NOTE: The above description has been modified from RFC 1759
for clarification."
::= { prtInterpreterEntry 2 }

prtInterpreterLangLevel OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..31))
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The level of the language which this interpreter is
interpreting or emulating. This might contain a value like
’5e’ for an interpreter which is emulating level 5e of the PCL
language. It might contain ’2’ for an interpreter which is
emulating level 2 of the PostScript language. Similarly it
might contain ’2’ for an interpreter which is emulating level 2
of the HPGL language."
::= { prtInterpreterEntry 3 }

prtInterpreterLangVersion OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..31))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The date code or version of the language which this
interpreter is interpreting or emulating."
::= { prtInterpreterEntry 4 }

prtInterpreterDescription OBJECT-TYPE
-- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed
-- to a TC to better support localization of the object.
SYNTAX PrtLocalizedDescriptionStringTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A string to identify this interpreter in the localization
specified by prtGeneralCurrentLocalization as opposed to the
language which is being interpreted. It is anticipated that
this string will allow manufacturers to unambiguously identify
their interpreters."
::= { prtInterpreterEntry 5 }

prtInterpreterVersion OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..31))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The date code, version number, or other product specific
information tied to this interpreter. This value is associated
with the interpreter, rather than with the version of the
language which is being interpreted or emulated."
::= { prtInterpreterEntry 6 }

prtInterpreterDefaultOrientation OBJECT-TYPE
-- NOTE: In RFC 1759, the enumeration values were implicitly
-- defined by this object.
SYNTAX PrtPrintOrientationTC
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The current orientation default for this interpreter. This
value may be overridden for a particular job (e.g., by a
command in the input data stream)."
::= { prtInterpreterEntry 7 }

prtInterpreterFeedAddressability OBJECT-TYPE
-- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum interpreter addressability in the feed direction in 10000 prtMarkerAddressabilityUnits (as specified by prtMarkerDefaultIndex) for this interpreter. The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtInterpreterEntry 8 }

prtInterpreterXFeedAddressability OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
SYNTAX Integer32 (-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The maximum interpreter addressability in the cross feed direction in 10000 prtMarkerAddressabilityUnits (as specified by prtMarkerDefaultIndex) for this interpreter. The value (-1) means other and specifically indicates that the sub-unit places no restrictions on this parameter. The value (-2) means unknown.

NOTE: The above description has been modified from RFC 1759 for clarification."
::= { prtInterpreterEntry 9 }

prtInterpreterDefaultCharSetIn OBJECT-TYPE
SYNTAX IANACharset
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The default coded character set for input octets encountered outside a context in which the Page Description Language established the interpretation of the octets. (Input octets are presented to the interpreter through a path defined in the channel group.)"
::= { prtInterpreterEntry 10 }

prtInterpreterDefaultCharSetOut OBJECT-TYPE
SYNTAX IANACharset
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The default character set for data coming from this interpreter through the printer’s output channel (i.e. the 'backchannel')."
::= { prtInterpreterEntry 11 }

prtInterpreterTwoWay OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly
 -- defined by this object.
 SYNTAX PrtInterpreterTwoWayTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Indicates whether or not this interpreter returns information
 back to the host."
 ::= { prtInterpreterEntry 12 }

-- The Console Group
--
-- Many printers have a console on the printer, the operator
-- console, that is used to display and modify the state of the
-- printer. The console can be as simple as a few indicators and
-- switches or as complicated as full screen displays and
-- keyboards. There can be at most one such console.

-- The Display Buffer Table

prtConsoleDisplayBuffer OBJECT IDENTIFIER ::= { printmib 16 }

prtConsoleDisplayBufferTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PrtConsoleDisplayBufferEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Physical display buffer for printer console display or
 operator panel

 NOTE: The above description has been modified from RFC 1759
 for clarification."
 ::= { prtConsoleDisplayBuffer 5 }

prtConsoleDisplayBufferEntry OBJECT-TYPE
 SYNTAX PrtConsoleDisplayBufferEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table contains one entry for each physical line on
 the display. Lines cannot be added or deleted. Entries may
 exist in the table for each device index with a device type of
 'printer'.

 NOTE: The above description has been modified from RFC 1759
for clarification."
INDEX { hrDeviceIndex, prtConsoleDisplayBufferIndex }
::= { prtConsoleDisplayBufferTable 1 }

PrtConsoleDisplayBufferEntry ::= SEQUENCE {
 prtConsoleDisplayBufferIndex Integer32,
 prtConsoleDisplayBufferText PrtConsoleDescriptionStringTC
}

prtConsoleDisplayBufferIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A unique value for each console line in the printer. The value
 is used to identify this console line. Although these values
 may change due to a major reconfiguration of the device (e.g.,
 the addition of new console lines to the printer). Values
 SHOULD remain stable across successive printer power cycles.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
::= { prtConsoleDisplayBufferEntry 1 }

prtConsoleDisplayBufferText OBJECT-TYPE
-- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed
-- to a TC to better support localization of the object.
SYNTAX PrtConsoleDescriptionStringTC
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The content of a line in the logical display buffer of
 the operator’s console of the printer. When a write
 operation occurs, normally a critical message, to one of
 the LineText strings, the agent should make that line
 displayable if a physical display is present. Writing a zero
 length string clears the line. It is an implementation-
 specific matter as to whether the agent allows a line to be
 overwritten before it has been cleared. Printer generated
 strings shall be in the localization specified by
 prtConsoleLocalization. Management Application generated strings
 should be localized by the Management Application."
::= { prtConsoleDisplayBufferEntry 2 }

-- The Console Light Table

prtConsoleLights OBJECT IDENTIFIER ::= { printmib 17 }
prtConsoleLightTable OBJECT-TYPE
SYNTAX SEQUENCE OF PrtConsoleLightEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The console light table provides a description and state
 information for each light present on the printer console.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
::= { prtConsoleLights 6 }

prtConsoleLightEntry OBJECT-TYPE
SYNTAX PrtConsoleLightEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Entries may exist in the table for each device index with a
 device type of 'printer'.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
INDEX { hrDeviceIndex, prtConsoleLightIndex }
::= { prtConsoleLightTable 1 }

PrtConsoleLightEntry ::= SEQUENCE {
 prtConsoleLightIndex Integer32,
 prtConsoleOnTime Integer32,
 prtConsoleOffTime Integer32,
 prtConsoleColor PrtConsoleColorTC,
 prtConsoleDescription PrtConsoleDescriptionStringTC
}

prtConsoleLightIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535) -- Lower limit invalid in RFC 1759
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A unique value used by the printer to identify this light.
 Although these values may change due to a major
 reconfiguration of the device (e.g., the addition of new lights
 to the printer). Values SHOULD remain stable across successive
 printer power cycles.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
::= { prtConsoleLightEntry 1 }
prtConsoleOnTime OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object, in conjunction with prtConsoleOffTime, defines the current status of the light. If both prtConsoleOnTime and prtConsoleOffTime are non-zero, the lamp is blinking and the values presented define the on time and off time, respectively, in milliseconds. If prtConsoleOnTime is zero and prtConsoleOffTime is non-zero, the lamp is off. If prtConsoleOffTime is zero and prtConsoleOnTime is non-zero, the lamp is on. If both values are zero the lamp is off.

 NOTE: The above description has been modified from RFC 1759 for clarification."
 ::= { prtConsoleLightEntry 2 }

prtConsoleOffTime OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object, in conjunction with prtConsoleOnTime, defines the current status of the light. If both prtConsoleOnTime and prtConsoleOffTime are non-zero, the lamp is blinking and the values presented define the on time and off time, respectively, in milliseconds. If prtConsoleOnTime is zero and prtConsoleOffTime is non-zero, the lamp is off. If prtConsoleOffTime is zero and prtConsoleOnTime is non-zero, the lamp is on. If both values are zero the lamp is off.

 NOTE: The above description has been modified from RFC 1759 for clarification."
 ::= { prtConsoleLightEntry 3 }

prtConsoleColor OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
 SYNTAX PrtConsoleColorTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The color of this light."
 ::= { prtConsoleLightEntry 4 }
prtConsoleDescription OBJECT-TYPE
 -- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed
 -- to a TC to better support localization of the object.
 SYNTAX PrtConsoleDescriptionStringTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor description or label of this light in the
 localization specified by prtConsoleLocalization."
 ::= { prtConsoleLightEntry 5 }

-- The Alerts Group
--
-- The table contains information on the severity, component,
-- detail location within the component, alert code and
-- description of each critical alert that is currently active
-- within the printer. See 2.2.13 for a more complete
-- description of the alerts table and its management.
--
-- Each parameter in the Trap PDU is a full OID which itself is
-- indexed by the host resources MIB "hrDeviceIndex" object. In
-- order for a management station to obtain the correct
-- "hrDeviceIndex" associated with a particular Trap PDU, the
-- "hrDeviceIndex" value can be extracted from the returned OID
-- value in the Trap PDU when the PDU is received by the
-- Management station.

prtAlert OBJECT IDENTIFIER ::= { printmib 18 }

prtAlertTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PrtAlertEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The prtAlertTable lists all the critical and non-critical
 alerts currently active in the printer. A critical alert is
 one that stops the printer from printing immediately and
 printing can not continue until the critical alert condition
 is eliminated. Non-critical alerts are those items that do
 not stop printing but may at some future time.

 NOTE: The above description has been modified from RFC 1759
 for clarification."
 ::= { prtAlert 1 }

prtAlertEntry OBJECT-TYPE
 SYNTAX PrtAlertEntry
 MAX-ACCESS not-accessible
Entries may exist in the table for each device index with a device type of 'printer'.

NOTE: The above description has been modified from RFC 1759 for clarification.

INDEX { hrDeviceIndex, prtAlertIndex }

::= { prtAlertTable 1 }

PrtAlertEntry ::= SEQUENCE {
 prtAlertIndex Integer32,
 prtAlertSeverityLevel PrtAlertSeverityLevelTC,
 prtAlertTrainingLevel PrtAlertTrainingLevelTC,
 prtAlertGroup PrtAlertGroupTC,
 prtAlertGroupIndex Integer32,
 prtAlertLocation Integer32,
 prtAlertCode PrtAlertCodeTC,
 prtAlertDescription PrtLocalizedDescriptionStringTC,
 prtAlertTime TimeTicks
}

prtAlertIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The index value used to determine which alerts have been added or removed from the alert table. This is an incrementing integer initialized to 1 when the printer is reset. (i.e., The first event placed in the alert table after a reset of the printer shall have an index value of 1.) When the printer adds an alert to the table, that alert is assigned the next higher integer value from the last item entered into the table. If the index value reaches its maximum value, the next index value used must be 1.

NOTE: The management application will read the alert table when a trap or event notification occurs or at a periodic rate and then parse the table to determine if any new entries were added by comparing the last known index value with the current highest index value. The management application will then update its copy of the alert table. When the printer discovers that an alert is no longer active, the printer shall remove the
row for that alert from the table and shall reduce the number of rows in the table. The printer may add or delete any number of rows from the table at any time. The management station can detect when binary change alerts have been deleted by requesting an attribute of each alert, and noting alerts as deleted when that retrieval is not possible. The objects ‘prtAlertCriticalEvents’ and ‘prtAlertAllEvents’ in the ‘prtGeneralTable’ reduce the need for management applications to scan the ‘prtAlertTable’.

NOTE: The above description has been modified from RFC 1759 for clarification.

::= { prtAlertEntry 1 }

prtAlertSeverityLevel OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
 SYNTAX PrtAlertSeverityLevelTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The level of severity of this alert table entry. The printer determines the severity level assigned to each entry into the table."
 ::= { prtAlertEntry 2 }

prtAlertTrainingLevel OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
 SYNTAX PrtAlertTrainingLevelTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "See TEXTUAL-CONVENTION PrtAlertTrainingLevelTC."

 NOTE: The above description has been modified from RFC 1759 for clarification.
 ::= { prtAlertEntry 3 }

prtAlertGroup OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
 SYNTAX PrtAlertGroupTC
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The type of sub-unit within the printer model that this alert is related. Input, output, and markers are examples of printer
model groups, i.e., examples of types of sub-units. Wherever possible, these enumerations match the sub-identifier that identifies the relevant table in the printmib.

 ::= { prtAlertEntry 4 }

prtAlertGroupIndex OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-1..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The low-order index of the row within the table identified by prtAlertGroup that represents the sub-unit of the printer that caused this alert, or -1 if not applicable. The combination of the prtAlertGroup and the prtAlertGroupIndex defines exactly which printer sub-unit caused the alert; for example, Input #3, Output#2, and Marker #1. Every object in this MIB is indexed with hrDeviceIndex and optionally, another index variable. If this other index variable is present in the table that generated the alert, it will be used as the value for this object. Otherwise, this value shall be -1.

NOTE: The above description has been modified from RFC 1759 for clarification."

 ::= { prtAlertEntry 5 }

prtAlertLocation OBJECT-TYPE
 -- NOTE: In RFC 1759, the range was not defined.
 SYNTAX Integer32 (-2..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The sub-unit location that is defined by the printer manufacturer to further refine the location of this alert within the designated sub-unit. The location is used in conjunction with the Group and GroupIndex values; for example, there is an alert in Input #2 at location number 7. The value (-2) indicates unknown.

NOTE: The above description has been modified from RFC 1759 for clarification."

 ::= { prtAlertEntry 6 }

prtAlertCode OBJECT-TYPE
 -- NOTE: In RFC 1759, the enumeration values were implicitly defined by this object.
 SYNTAX PrtAlertCodeTC
 MAX-ACCESS read-only
STATUS current
DESCRIPTION
"See associated TEXTUAL-CONVENTION PrtAlertCodeTC.

NOTE: The above description has been modified from RFC 1759
for clarification."
::= { prtAlertEntry 7 }

prtAlertDescription OBJECT-TYPE
-- In RFC 1759, the SYNTAX was OCTET STRING. This has been changed
-- to a TC to better support localization of the object.
SYNTAX PrtLocalizedDescriptionStringTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A description of this alert entry in the localization
specified by prtGeneralCurrentLocalization. The description is
provided by the printer to further elaborate on the enumerated
alert or provide information in the case where the code is
classified as 'other' or 'unknown'. The printer is required to
return a description string but the string may be a null
string."
::= { prtAlertEntry 8 }

prtAlertTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time that this alert was
generated."
::= { prtAlertEntry 9 }

printerV1Alert OBJECT-IDENTITY
STATUS current
DESCRIPTION
"The value of the enterprise-specific OID in an SNMPv1 trap
sent signaling a critical event in the prtAlertTable."
::= { prtAlert 2 }

printerV2AlertPrefix OBJECT IDENTIFIER ::= { printerV1Alert 0 }

printerV2Alert NOTIFICATION-TYPE
OBJECTS { prtAlertIndex, prtAlertSeverityLevel, prtAlertGroup,
 prtAlertGroupIndex, prtAlertLocation, prtAlertCode }
STATUS current
DESCRIPTION
"This trap is sent whenever a critical event is added to the
prtAlertTable.

NOTE: The prtAlertIndex object was redundantly included in the bindings of the 'printerV2Alert' notification in RFC 1759, even though the value exists in the instance qualifier of all the other bindings. This object has been retained to provide compatibility with existing RFC 1759 implementations.

::= { printerV2AlertPrefix 1 }

-- Note that the SNMPv2 to SNMPv1 translation rules dictate that
-- the preceding structure will result in SNMPv1 traps of the
-- following form:
--
-- printerAlert TRAP-TYPE
-- ENTERPRISE printerV1Alert
-- VARIABLES { prtAlertIndex, prtAlertSeverityLevel,
-- prtAlertGroup, prtAlertGroupIndex,
-- prtAlertLocation, prtAlertCode }
-- DESCRIPTION
-- "This trap is sent whenever a critical event is added
-- to the prtAlertTable."
-- ::= 1

-- Conformance Information

prtMIBConformance OBJECT IDENTIFIER ::= { printmib 2 }

-- compliance statements

prtMIBCompliance MODULE-COMPLIANCE

 STATUS current
 DESCRIPTION
 "The compliance statement for agents that implement the
 printer MIB as defined by RFC 1759."
 MODULE -- this module
 MANDATORY-GROUPS { prtGeneralGroup, prtInputGroup,
 prtOutputGroup, prtMarkerGroup, prtMediaPathGroup,
 prtChannelGroup, prtInterpreterGroup,
 prtConsoleGroup, prtAlertTableGroup }

OBJECT prtGeneralReset
SYNTAX INTEGER {
 notResetting(3),
 resetToNVRAM(5)
 }

DESCRIPTION
 "It is conformant to implement just these two states in this
object. Any additional states are optional.

OBJECT prtConsoleOnTime
MIN-ACCESS read-only
DESCRIPTION
"It is conformant to implement this object as read-only"

OBJECT prtConsoleOffTime
MIN-ACCESS read-only
DESCRIPTION
"It is conformant to implement this object as read-only"

::= { prtMIBConformance 1 }

prtMIB2Compliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for agents that implement the
printer MIB V2."

-- The changes from RFC 1759 fall into 2 categories:
-- 1. New objects plus existing objects with a MIN-ACCESS of
-- read-only are included. Existing objects have been added
-- to this category due to feedback from implementers and
-- interoperability testing. This allows products to be
-- designed with a higher degree of SNMP security.
-- 2. New object groups have been added to include all new
-- objects in this MIB. All new object groups are optional.
-- Any MIB that is compliant with RFC 1759 will also be
-- compliant with this version of the MIB.

MODULE -- this module
MANDATORY-GROUPS { prtGeneralGroup, prtInputGroup,
 prtOutputGroup,
 prtMarkerGroup, prtMediaPathGroup,
 prtChannelGroup, prtInterpreterGroup,
 prtConsoleGroup, prtAlertTableGroup }

OBJECT prtGeneralReset
SYNTAX INTEGER {
 notResetting(3),
 resetToNVRAM(5)
 }

DESCRIPTION
"It is conformant to implement just these two states in this
object. Any additional states are optional."

OBJECT prtGeneralCurrentLocalization
MIN-ACCESS read-only
DESCRIPTION
"It is conformant to implement this object as read-only"
OBJECT prtGeneralCurrentOperator
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtGeneralServicePerson
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtGeneralPrinterName
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtGeneralSerialNumber
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtInputDefaultIndex
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtInputMediaDimFeedDirDeclared
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtInputMaxCapacity
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtInputCurrentLevel
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtInputMediaName
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtInputName
MIN-ACCESS read-only
DESCRIPTION
"It is conformant to implement this object as read-only"

OBJECT prtInputSecurity
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtInputMediaWeight
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtInputMediaType
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtInputMediaColor
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtInputMediaFormParts
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputDefaultIndex
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputMaxCapacity
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputRemainingCapacity
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputName
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputSecurity
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputMaxDimFeedDir
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputMaxDimXFeedDir
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputMinDimFeedDir
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputMinDimXFeedDir
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputStackingOrder
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputPageDeliveryOrientation
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputBursting
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputDecollating
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtOutputPageCollated
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"
OBJECT prtOutputOffsetStacking
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtMarkerDefaultIndex
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtMarkerSuppliesMaxCapacity
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtMarkerSuppliesLevel
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtMediaPathDefaultIndex
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtChannelCurrentJobCntlLangIndex
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtChannelDefaultPageDescLangIndex
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtChannelState
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtChannelIfIndex
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtInterpreterDefaultOrientation
MIN-ACCESS read-only
DESCRIPTION
"It is conformant to implement this object as read-only"

OBJECT prtInterpreterDefaultCharSetIn
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtInterpreterDefaultCharSetOut
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtConsoleLocalization
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtConsoleDisable
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtConsoleDisplayBufferText
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtConsoleOnTime
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtConsoleOffTime
MIN-ACCESS read-only
DESCRIPTION "It is conformant to implement this object as read-only"

OBJECT prtAlertIndex
MIN-ACCESS accessible-for-notify
DESCRIPTION "It is conformant to implement this object as accessible-for-notify"

GROUP prtResponsiblePartyGroup
DESCRIPTION "This group is unconditionally optional."

GROUP prtExtendedInputGroup
DESCRIPTION
"This group is unconditionally optional."

GROUP prtInputMediaGroup
DESCRIPTION
"This group is unconditionally optional."

GROUP prtExtendedOutputGroup
DESCRIPTION
"This group is unconditionally optional."

GROUP prtOutputDimensionsGroup
DESCRIPTION
"This group is unconditionally optional."

GROUP prtOutputFeaturesGroup
DESCRIPTION
"This group is unconditionally optional."

GROUP prtMarkerSuppliesGroup
DESCRIPTION
"This group is unconditionally optional."

GROUP prtMarkerColorantGroup
DESCRIPTION
"This group is unconditionally optional."

GROUP prtAlertTimeGroup
DESCRIPTION
"This group is unconditionally optional."

-- the prtResponsiblePartyGroup, prtExtendedInputGroup,
-- prtInputMediaGroup, prtExtendedOutputGroup,
-- prtOutputDimensionsGroup, prtOutputFeaturesGroup,
-- prtMarkerSuppliesGroup, prtMarkerColorantGroup, and the
-- prtAlertTimeGroup are completely optional. However, it is
-- strongly RECOMMENDED that the prtAlertTimeGroup be implemented.

-- New to version 2 of this printer MIB:
OBJECT prtAuxiliarySheetStartupPage
MIN-ACCESS read-only
DESCRIPTION
"It is conformant to implement this object as read-only"

OBJECT prtAuxiliarySheetBannerPage
MIN-ACCESS read-only
DESCRIPTION
"It is conformant to implement this object as read-only"
OBJECT prtInputMediaLoadTimeout
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

OBJECT prtInputNextIndex
MIN-ACCESS read-only
DESCRIPTION
 "It is conformant to implement this object as read-only"

GROUP prtAuxiliarySheetGroup
DESCRIPTION
 "This group is unconditionally optional."

GROUP prtInputSwitchingGroup
DESCRIPTION
 "This group is unconditionally optional."

GROUP prtGeneralV2Group
DESCRIPTION
 "This group is unconditionally optional."

GROUP prtAlertTableV2Group
DESCRIPTION
 "This group is unconditionally optional."

GROUP prtChannelV2Group
DESCRIPTION
 "This group is unconditionally optional."

GROUP prtAlertTrapGroup
DESCRIPTION
 "This group is unconditionally optional."

::= { prtMIBConformance 3 }

prtMIBGroups OBJECT IDENTIFIER ::= { prtMIBConformance 2 }
-- These groups are from RFC 1759 and are applicable to Printer MIB V2

prtGeneralGroup OBJECT-GROUP
OBJECTS { prtGeneralConfigChanges, prtGeneralCurrentLocalization, prtGeneralReset, prtCoverDescription, prtCoverStatus, prtLocalizationLanguage, prtLocalizationCountry, prtLocalizationCharacterSet, prtStorageRefIndex, prtDeviceRefIndex }

STATUS current
DESCRIPTION
"The general printer group."
::= { prtMIBGroups 1 }

prtResponsiblePartyGroup OBJECT-GROUP
OBJECTS { prtGeneralCurrentOperator, prtGeneralServicePerson }
STATUS current
DESCRIPTION
"The responsible party group contains contact information for humans responsible for the printer."
::= { prtMIBGroups 2 }

prtInputGroup OBJECT-GROUP
OBJECTS { prtInputDefaultIndex, prtInputType, prtInputDimUnit,
 prtInputMediaDimFeedDirDeclared,
 prtInputMediaDimXFeedDirDeclared,
 prtInputMediaDimFeedDirChosen,
 prtInputMediaDimXFeedDirChosen, prtInputCapacityUnit,
 prtInputMaxCapacity, prtInputCurrentLevel, prtInputStatus,
 prtInputMediaName }
STATUS current
DESCRIPTION
"The input group."
::= { prtMIBGroups 3 }

prtExtendedInputGroup OBJECT-GROUP
OBJECTS { prtInputName, prtInputVendorName, prtInputModel,
 prtInputVersion, prtInputSerialNumber,
 prtInputDescription, prtInputSecurity }
STATUS current
DESCRIPTION
"The extended input group."
::= { prtMIBGroups 4 }

prtInputMediaGroup OBJECT-GROUP
OBJECTS { prtInputMediaWeight, prtInputMediaType,
 prtInputMediaColor, prtInputMediaFormParts }
STATUS current
DESCRIPTION
"The input media group."
::= { prtMIBGroups 5 }

prtOutputGroup OBJECT-GROUP
OBJECTS { prtOutputDefaultIndex, prtOutputType,
 prtOutputCapacityUnit, prtOutputMaxCapacity,
 prtOutputRemainingCapacity, prtOutputStatus }
STATUS current
DESCRIPTION
"The output group."

::= { prtMIBGroups 6 }

prtExtendedOutputGroup OBJECT-GROUP
 OBJECTS { prtOutputName, prtOutputVendorName, prtOutputModel,
 prtOutputVersion, prtOutputSerialNumber,
 prtOutputDescription, prtOutputSecurity }
 STATUS current
 DESCRIPTION
 "The extended output group."
 ::= { prtMIBGroups 7 }

prtOutputDimensionsGroup OBJECT-GROUP
 OBJECTS { prtOutputDimUnit, prtOutputMaxDimFeedDir,
 prtOutputMaxDimXFeedDir, prtOutputMinDimFeedDir,
 prtOutputMinDimXFeedDir }
 STATUS current
 DESCRIPTION
 "The output dimensions group"
 ::= { prtMIBGroups 8 }

prtOutputFeaturesGroup OBJECT-GROUP
 OBJECTS { prtOutputStackingOrder, prtOutputPageDeliveryOrientation,
 prtOutputBursting, prtOutputDecollating, prtOutputPageCollated,
 prtOutputOffsetStacking }
 STATUS current
 DESCRIPTION
 "The output features group."
 ::= { prtMIBGroups 9 }

prtMarkerGroup OBJECT-GROUP
 OBJECTS { prtMarkerDefaultIndex, prtMarkerMarkTech,
 prtMarkerCounterUnit, prtMarkerLifeCount,
 prtMarkerPowerOnCount, prtMarkerProcessColorants,
 prtMarkerSpotColorants, prtMarkerAddressabilityUnit,
 prtMarkerAddressabilityFeedDir,
 prtMarkerAddressabilityXFeedDir, prtMarkerNorthMargin,
 prtMarkerSouthMargin, prtMarkerWestMargin,
 prtMarkerEastMargin, prtMarkerStatus }
 STATUS current
 DESCRIPTION
 "The marker group."
 ::= { prtMIBGroups 10 }

prtMarkerSuppliesGroup OBJECT-GROUP
 OBJECTS { prtMarkerSuppliesMarkerIndex,
 prtMarkerSuppliesColorantIndex, prtMarkerSuppliesClass,
 prtMarkerSuppliesType, prtMarkerSuppliesDescription,
prtMarkerSuppliesSupplyUnit, prtMarkerSuppliesMaxCapacity, prtMarkerSuppliesLevel }
STATUSTrace "The marker supplies group."
::= { prtMIBGroups 11 }

prtMarkerColorantGroup OBJECT-GROUP
OBJECTS { prtMarkerColorantMarkerIndex, prtMarkerColorantRole, prtMarkerColorantValue, prtMarkerColorantTonality }
STATUSTrace "The marker colorant group."
::= { prtMIBGroups 12 }

prtMediaPathGroup OBJECT-GROUP
OBJECTS { prtMediaPathDefaultIndex, prtMediaPathMaxSpeedPrintUnit, prtMediaPathMaxSpeed, prtMediaPathMaxMediaFeedDir, prtMediaPathMaxMediaXFeedDir, prtMediaPathMinMediaFeedDir, prtMediaPathMinMediaXFeedDir, prtMediaPathType, prtMediaPathDescription, prtMediaPathStatus }
STATUSTrace "The media path group."
::= { prtMIBGroups 13 }

prtChannelGroup OBJECT-GROUP
OBJECTS { prtChannelType, prtChannelProtocolVersion, prtChannelCurrentJobCntlLangIndex, prtChannelDefaultPageDescLangIndex, prtChannelState, prtChannelIfIndex, prtChannelStatus }
STATUSTrace "The channel group."
::= { prtMIBGroups 14 }

prtInterpreterGroup OBJECT-GROUP
OBJECTS { prtInterpreterLangFamily, prtInterpreterLangLevel, prtInterpreterLangVersion, prtInterpreterDescription, prtInterpreterVersion, prtInterpreterDefaultOrientation, prtInterpreterFeedAddressability, prtInterpreterXFeedAddressability, prtInterpreterDefaultCharSetIn, prtInterpreterDefaultCharSetOut, prtInterpreterTwoWay }
STATUSTrace current
DESCRIPTION
"The interpreter group."
 ::= { prtMIBGroups 15 }

prtConsoleGroup OBJECT-GROUP
 OBJECTS { prtConsoleLocalization, prtConsoleNumberOfDisplayLines,
 prtConsoleNumberOfDisplayChars, prtConsoleDisable,
 prtConsoleDisplayBufferText, prtConsoleOnTime,
 prtConsoleOffTime, prtConsoleColor,
 prtConsoleDescription }
 STATUS current
 DESCRIPTION
 "The console group."
 ::= { prtMIBGroups 16 }

prtAlertTableGroup OBJECT-GROUP
 OBJECTS { prtAlertSeverityLevel, prtAlertTrainingLevel,
 prtAlertGroup, prtAlertGroupIndex, prtAlertLocation,
 prtAlertCode, prtAlertDescription }
 STATUS current
 DESCRIPTION
 "The alert table group."
 ::= { prtMIBGroups 17 }

prtAlertTimeGroup OBJECT-GROUP
 OBJECTS { prtAlertTime }
 STATUS current
 DESCRIPTION
 "The alert time group. Implementation of prtAlertTime is
 strongly RECOMMENDED."
 ::= { prtMIBGroups 18 }

prtMIB2Groups OBJECT IDENTIFIER ::= { prtMIBConformance 4 }
 -- These groups are unique to Printer MIB V2

prtAuxiliarySheetGroup OBJECT-GROUP
 OBJECTS { prtAuxiliarySheetStartupPage, prtAuxiliarySheetBannerPage }
 STATUS current
 DESCRIPTION
 "The auxiliary sheet group."
 ::= { prtMIBGroups 19 }

prtInputSwitchingGroup OBJECT-GROUP
 OBJECTS { prtInputMediaLoadTimeout, prtInputNextIndex }
 STATUS current
 DESCRIPTION
 "The input switching group."
::= { prtMIBGroups 20 }

prtGeneralV2Group OBJECT-GROUP
 OBJECTS { prtGeneralPrinterName, prtGeneralSerialNumber }
 STATUS current
 DESCRIPTION
 "The general printer group with new v2 objects."
::= { prtMIBGroups 21 }

prtAlertTableV2Group OBJECT-GROUP
 OBJECTS { prtAlertIndex, prtAlertCriticalEvents, prtAlertAllEvents }
 STATUS current
 DESCRIPTION
 "The alert table group with new v2 objects and prtAlertIndex
 changed to MAX-ACCESS of 'read-only' for inclusion in the trap
 bindings (as originally defined in RFC 1759)."
::= { prtMIBGroups 22 }

prtChannelV2Group OBJECT-GROUP
 OBJECTS { prtChannelInformation }
 STATUS current
 DESCRIPTION
 "The channel group with a new v2 object."
::= { prtMIBGroups 23 }

prtAlertTrapGroup NOTIFICATION-GROUP
 NOTIFICATIONS { printerV2Alert }
 STATUS current
 DESCRIPTION
 "The alert trap group."
::= { prtMIBGroups 24 }

END

7. IANA Considerations

The initial version the IANA Printer MIB defined in section 5 of this
document is to be archived by IANA and subsequently maintained
according to the Process specified in section 2.4.1 of this document.
The most current and authoritative version of the IANA Printer MIB is
available at:

 http://www.iana.org/assignments/ianaprinter-mib

8. Internationalization Considerations

See section 2.2.1.1, 'International Considerations'.

Bergman, et al. Standards Track [Page 147]
9. Security Considerations

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:

prtGeneralTable:
- `prtGeneralCurrentLocalization` - Possible data loss
- `prtGeneralReset` - Possible data loss
- `prtGeneralCurrentOperator` - Possible severe inconvenience
- `prtGeneralServicePerson` - Possible severe inconvenience
- `prtInputDefaultIndex` - Possible data loss
- `prtOutputDefaultIndex` - Possible minor inconvenience
- `prtMarkerDefaultIndex` - Possible minor inconvenience
- `prtMediaPathDefaultIndex` - Possible minor inconvenience
- `prtConsoleLocalization` - Possible severe inconvenience
- `prtConsoleDisable` - Possible severe inconvenience
- `prtAuxiliarySheetStartupPage` - Possible minor inconvenience
- `prtAuxiliarySheetBannerPage` - Possible minor inconvenience
- `prtGeneralPrinterName` - Possible severe inconvenience
- `prtGeneralSerialNumber` - Possible severe inconvenience

prtInputTable:
- `prtInputMediaDimFeedDirDeclared` - Possible data loss
- `prtInputMediaDimXFeedDirDeclared` - Possible data loss
- `prtInputMaxCapacity` - Possible minor inconvenience
- `prtInputCurrentLevel` - Possible minor inconvenience
- `prtInputMediaName` - Possible minor inconvenience
- `prtInputName` - Possible minor inconvenience
- `prtInputSecurity` - Possible minor inconvenience
- `prtInputMediaWeight` - Possible minor inconvenience
- `prtInputMediaType` - Possible minor inconvenience
- `prtInputMediaColor` - Possible minor inconvenience
- `prtInputMediaFormParts` - Possible minor inconvenience
- `prtInputMediaLoadTimeout` - Possible minor inconvenience
- `prtInputNextIndex` - Possible minor inconvenience

prtOutputTable:
- `prtOutputMaxCapacity` - Possible minor inconvenience
- `prtOutputRemainingCapacity` - Possible minor inconvenience
- `prtOutputName` - Possible minor inconvenience
- `prtOutputSecurity` - Possible minor inconvenience
- `prtOutputMaxDimFeedDir` - Possible minor inconvenience
- `prtOutputMaxDimXFeedDir` - Possible minor inconvenience
- `prtOutputMinDimFeedDir` - Possible minor inconvenience
- `prtOutputMinDimXFeedDir` - Possible minor inconvenience
SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

Where the operational capability of the printing device are especially vulnerable or difficult to administer, certain objects within this MIB have been tagged as READ-ONLY, preventing modification. Further, for all READ-WRITE objects within the MIB, the working group has included specific conformance guidelines.
stating that vendors are free to implement these objects as READ-ONLY. This conformance allowance should cover cases where specific vendor vulnerabilities may differ from product to product. (See conformance section with regards to MIN-ACCESS clauses).

10. References

10.1. Normative References

[CHARSET] IANA Character Set Registry:
http://www.iana.org/assignments/character-sets

[CHARMIB] IANA Character Set MIB:
http://www.iana.org/assignments/ianacharset-mib

10.2. Informative References

Appendix A - Glossary of Terms

Addressability - On the marker, the number of distinct marking units (pels) per unit of addressability unit that can be set; for example, 300 dots per inch is expressed as 300 per 1000 Thousandths Of Inches and 4 dots per millimeter is 4 per 1000 Micrometers. Addressability is not resolution because marks that are one addressability position apart may not be independently resolvable by the eye due to factors such as gain in the area of marks so they overlap or nearly touch.

Alert - A reportable event for which there is an entry in the alert table.

Bin - An output sub-unit which may or may not be removable.

Binary Change Event - An event which comes in pairs; the leading edge event and the trailing edge event. The leading edge event enters a state from which there is only one exit. A binary change event may be critical or non-critical. See unary change event.

Bursting - The process by which continuous media is separated into individual sheets, typically by bursting along pre-formed perforations.

Channel - A term used to describe a single source of data which is presented to a printer. The model that we use in describing a printer allows for an arbitrary number of channels. Multiple channels can exist on the same physical port. This is commonly done over Ethernet ports where EtherTalk, TCP/IP, and SPX/IPX protocols can be supplying different data streams simultaneously to a single printer on the same physical port.

Collation - In multiple copy output, placing the pages from separate copies into separate ordered sets, ready for binding.

Control Language - A data syntax or language for controlling the printer through the print data channel.

Critical Alert - An alert triggered by an event which leads to a state in which printing is no longer possible; the printer is stopped.

Decollating - The process by which the individual parts within a multi-part form are separated and sorted into separate stacks for each part.

Description - Information about the configuration and capabilities of the printer and its various sub-units.
DPA - ISO 10175 Document Printing Application standard. A standard for a client server protocol for a print system, including (1) submitting print jobs to and (2) managing print jobs in a spooler.

Event - A state change in the printer.

Group - A collection of objects that represent a type of sub-unit of the printer.

Host Resources MIB - See [RFC2790].

IANA - Internet Assigned Numbers Authority. See [RFC3232].

Idempotent - Idempotence is the property of an operation that results in the same state no matter how many times it is executed (at least once). This is a property that is shared by true databases in which operations on data items only change the state of the data item and do not have other side effects. Because the SNMP data model is that of operations on a database, SNMP MIB objects should be assumed to be idempotent. If a MIB object is defined in a non-idempotent way, the data model can break in subtle ways when faced with packet loss, multiple managers, and other common conditions.

In order to fulfill the common need for actions to result from SNMP Set operations, SNMP MIB objects can be modeled such that the change in state from one state to another has the side effect of causing an action. It is important to note that with this model, an SNMP operation that sets a value equal to its current value will cause no action. This retains the idempotence of a single command, while allowing actions to be initiated by SNMP SET requests.

Input - A tray or bin from which instances of the media are obtained and fed into the Media Path.

Interpreter - The embodiment of an algorithm that processes a data stream consisting of a Page Description Language (PDL) and/or a Control Language.

Localization - The specification of human language, country, and character set needed to present information to people in their native languages.

Management Application (a.k.a. Manager) - A program which queries and controls one or more managed nodes.

Management Station - A physical computer on which one or more management applications can run.
Media Path - The mechanisms that transport instances of the media from an input, through the marker, possibly through media buffers and duplex pathways, out to the output with optional finishing applied. The inputs and outputs are not part of the Media Path.

Non-critical Alert - An alert triggered by a reportable event which does not lead to a state in which printing is no longer possible; such an alert may lead to a state from which printing may no longer be possible in the future, such as the low toner state or the alert may be pure informational, such as a configuration change at the printer.

Output - A bin or stacker which accepts instances of media that have been processed by a printer.

Page Description Language (PDL) - A data syntax or language for the electronic representation of a document as a sequence of page images.

Printer - A physical device that takes media from an input source, produces marks on that media according to some page description or page control language and puts the result in some output destination, possibly with finishing applied.

Printing - The entire process of producing a printed document from generation of the file to be printed, choosing printing properties, selection of a printer, routing, queuing, resource management, scheduling, and finally printing including notifying the user.

Reportable event - An event that is deemed of interest to a management station watching the printer.

Status - Information regarding the current operating state of the printer and its various sub-units. This is an abstraction of the exact physical condition of the printer.

Sub-mechanism - A distinguishable part of a sub-unit.

Sub-unit - A part of the printer which may be a physical part, such as one of the input sources or a logical part such as an interpreter.

Tray - An input sub-unit which is typically removable.

Unary Change Event - An event that indicates a change of state of the printer, but to a state which is (often) just as valid as the state that was left, and from which no return is necessary. See binary change event.
Visible state - The portion of the state of the printer that can be examined by a management application.

Warning - A non-critical alert. See non-critical alert.

Appendix B - Media Size Names

The PWG Standardized Media Names specification [PWGMEDIA], section 5 Self Describing Names, contains the currently recommended media size names. This appendix lists the standardized media size names from ISO/IEC 10175 Document Printing Application (DPA), [ISO10175] as presented in RFC 1759. Management applications are encouraged to use the names from the PWG standard. However, many legacy systems exist that use the DPA names and they are presented here for the convenience of developers.

A printer implementing the Printer MIB has no knowledge of these names, however; all media sizes in the MIB are given in terms of media dimensions as the values of prtInputMediaDimFeedDirChosen and prtInputMediaDimXFeedDirChosen.

<table>
<thead>
<tr>
<th>String name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>na-letter or letter</td>
<td>North American letter size: 8.5 by 11 inches</td>
</tr>
<tr>
<td>na-legal or legal</td>
<td>North American legal size: 8.5 by 14 inches</td>
</tr>
<tr>
<td>na-10x13-envelope</td>
<td>North American 10x13 envelope size: 10 by 13 inches</td>
</tr>
<tr>
<td>na-9x12-envelope</td>
<td>North American 9x12 envelope size: 9 by 12 inches</td>
</tr>
<tr>
<td>na-number-10-envelope</td>
<td>North American number 10 business envelope size: 4.125 by 9.5 inches</td>
</tr>
<tr>
<td>na-7x9-envelope</td>
<td>North American 7x9 size: 7 by 9 inches</td>
</tr>
<tr>
<td>na-9x11-envelope</td>
<td>North American 9x11 size: 9 by 11 inches</td>
</tr>
<tr>
<td>na-10x14-envelope</td>
<td>North American 10x14 envelope size: 10 by 14 inches</td>
</tr>
<tr>
<td>na-number-9-envelope</td>
<td>North American number 9 business envelope size: 3.875 by 8.875 inches</td>
</tr>
<tr>
<td>na-6x9-envelope</td>
<td>North American 6x9 envelope size: 6 by 9 inches</td>
</tr>
<tr>
<td>na-10x15-envelope</td>
<td>North American 10x15 envelope size: 10 by 15 inches</td>
</tr>
<tr>
<td>a</td>
<td>engineering A size 8.5 inches by 11 inches</td>
</tr>
<tr>
<td>b</td>
<td>engineering B size 11 inches by 17 inches</td>
</tr>
<tr>
<td>c</td>
<td>engineering C size 17 inches by 22 inches</td>
</tr>
<tr>
<td>d</td>
<td>engineering D size 22 inches by 34 inches</td>
</tr>
<tr>
<td>Size</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>iso-a0</td>
<td>ISO A0</td>
</tr>
<tr>
<td>iso-a1</td>
<td>ISO A1</td>
</tr>
<tr>
<td>iso-a2</td>
<td>ISO A2</td>
</tr>
<tr>
<td>iso-a3</td>
<td>ISO A3</td>
</tr>
<tr>
<td>iso-a4</td>
<td>ISO A4</td>
</tr>
<tr>
<td>iso-a5</td>
<td>ISO A5</td>
</tr>
<tr>
<td>iso-a6</td>
<td>ISO A6</td>
</tr>
<tr>
<td>iso-a7</td>
<td>ISO A7</td>
</tr>
<tr>
<td>iso-a8</td>
<td>ISO A8</td>
</tr>
<tr>
<td>iso-a9</td>
<td>ISO A9</td>
</tr>
<tr>
<td>iso-a10</td>
<td>ISO A10</td>
</tr>
<tr>
<td>iso-b0</td>
<td>ISO B0</td>
</tr>
<tr>
<td>iso-b1</td>
<td>ISO B1</td>
</tr>
<tr>
<td>iso-b2</td>
<td>ISO B2</td>
</tr>
<tr>
<td>iso-b3</td>
<td>ISO B3</td>
</tr>
<tr>
<td>iso-b4</td>
<td>ISO B4</td>
</tr>
<tr>
<td>iso-b5</td>
<td>ISO B5</td>
</tr>
<tr>
<td>iso-b6</td>
<td>ISO B6</td>
</tr>
<tr>
<td>iso-b7</td>
<td>ISO B7</td>
</tr>
<tr>
<td>iso-b8</td>
<td>ISO B8</td>
</tr>
<tr>
<td>iso-b9</td>
<td>ISO B9</td>
</tr>
<tr>
<td>iso-b10</td>
<td>ISO B10</td>
</tr>
<tr>
<td>iso-c0</td>
<td>ISO C0</td>
</tr>
<tr>
<td>iso-c1</td>
<td>ISO C1</td>
</tr>
<tr>
<td>iso-c2</td>
<td>ISO C2</td>
</tr>
<tr>
<td>iso-c3</td>
<td>ISO C3</td>
</tr>
<tr>
<td>iso-c4</td>
<td>ISO C4</td>
</tr>
<tr>
<td>iso-c5</td>
<td>ISO C5</td>
</tr>
<tr>
<td>iso-c6</td>
<td>ISO C6</td>
</tr>
<tr>
<td>iso-c7</td>
<td>ISO C7</td>
</tr>
<tr>
<td>iso-c8</td>
<td>ISO C8</td>
</tr>
<tr>
<td>isodesignated</td>
<td>ISO Designated Long</td>
</tr>
<tr>
<td>jis-b0</td>
<td>JIS B0</td>
</tr>
<tr>
<td>jis-b1</td>
<td>JIS B1</td>
</tr>
<tr>
<td>jis-b2</td>
<td>JIS B2</td>
</tr>
<tr>
<td>jis-b3</td>
<td>JIS B3</td>
</tr>
<tr>
<td>jis-b4</td>
<td>JIS B4</td>
</tr>
<tr>
<td>jis-b5</td>
<td>JIS B5</td>
</tr>
<tr>
<td>jis-b6</td>
<td>JIS B6</td>
</tr>
<tr>
<td>jis-b7</td>
<td>JIS B7</td>
</tr>
<tr>
<td>jis-b8</td>
<td>JIS B8</td>
</tr>
<tr>
<td>jis-b9</td>
<td>JIS B9</td>
</tr>
<tr>
<td>jis-b10</td>
<td>JIS B10</td>
</tr>
</tbody>
</table>
Appendix C - Media Names

For the convenience of management application developers, this appendix lists the standardized media names from ISO/IEC 10175 Document Printing Application (DPA), [ISO10175]. Management applications that present a dialogue for choosing media may wish to use these names as an alternative to separately specifying, size, color, and/or type. New names may also be created using this format and the names defined in the PWG Standardized Media Names specification [PWGMEDIA].

Using standard media names will mean that a single management application dealing with printers from different vendors and under different system managers will tend to use the same names for the same media. If selection of media by name is used, the attributes (size, type or color) implied by the name must be explicitly mapped to the appropriate object (prtInputMediaDimFeedDirDeclared, prtInputMediaDimXFeedDirDeclared, prtInputMediaType and prtInputMediaColor) in the MIB. The object prtInputMediaName is intended for display to an operator and is purely descriptive. The value in prtInputMediaName is not interpreted by the printer so using a standard name for this value will not change any of the other media attributes nor will it cause an alert if the media in the input sub-unit does not match the name.

<table>
<thead>
<tr>
<th>Simple Name</th>
<th>Descriptor Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>iso-a4-white</td>
<td>Specifies the ISO A4 white medium with</td>
</tr>
<tr>
<td></td>
<td>size: 210 mm by 297 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-a4-coloured</td>
<td>Specifies the ISO A4 colored medium with</td>
</tr>
<tr>
<td></td>
<td>size: 210 mm by 297 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-a4-transparent</td>
<td>Specifies the ISO A4 transparent medium with</td>
</tr>
<tr>
<td></td>
<td>size: 210 mm by 297 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-a3-white</td>
<td>Specifies the ISO A3 white medium with</td>
</tr>
<tr>
<td></td>
<td>size: 297 mm by 420 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-a3-coloured</td>
<td>Specifies the ISO A3 colored medium with</td>
</tr>
<tr>
<td></td>
<td>size: 297 mm by 420 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-a5-white</td>
<td>Specifies the ISO A5 white medium with</td>
</tr>
<tr>
<td></td>
<td>size: 148 mm by 210 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-a5-coloured</td>
<td>Specifies the ISO A5 colored medium with</td>
</tr>
<tr>
<td></td>
<td>size: 148 mm by 210 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-b4-white</td>
<td>Specifies the ISO B4 white medium with</td>
</tr>
<tr>
<td></td>
<td>size: 250 mm by 353 mm as defined in ISO 216</td>
</tr>
<tr>
<td>iso-b4-coloured</td>
<td>Specifies the ISO B4 colored medium with</td>
</tr>
<tr>
<td></td>
<td>size: 250 mm by 353 mm as defined in ISO 216</td>
</tr>
</tbody>
</table>
iso-b5-white Specifies the ISO B5 white medium with size: 176 mm by 250 mm as defined in ISO 216
iso-b5-coloured Specifies the ISO B5 colored medium with size: 176 mm by 250 mm as defined in ISO 216
jis-b4-white Specifies the JIS B4 white medium with size: 257 mm by 364 mm as defined in JIS P0138
jis-b4-coloured Specifies the JIS B4 colored medium with size: 257 mm by 364 mm as defined in JIS P0138
jis-b5-white Specifies the JIS B5 white medium with size: 182 mm by 257 mm as defined in JIS P0138
jis-b5-coloured Specifies the JIS B5 colored medium with size: 182 mm by 257 mm as defined in JIS P0138

The following standard values are defined for North American media:

na-letter-white Specifies the North American letter white medium with size: 8.5 inches by 11 inches
na-letter-coloured Specifies the North American letter colored medium with size: 8.5 inches by 11 inches
na-letter-transparent Specifies the North American letter transparent medium with size: 8.5 inches by 11 inches
na-legal-white Specifies the North American legal white medium with size: 8.5 inches by 14 inches
na-legal-coloured Specifies the North American legal colored medium with size: 8.5 inches by 14 inches

The following standard values are defined for envelopes:

iso-b5-envelope Specifies the ISO B5 envelope medium with size: 176 mm by 250 mm as defined in ISO 216 and ISO 269
iso-b4-envelope Specifies the ISO B4 envelope medium with size: 250 mm by 353 mm as defined in ISO 216
iso-c4-envelope Specifies the ISO C4 envelope medium with size: 229 mm by 324 mm as defined in ISO 216 and ISO 269
iso-c5-envelope Specifies the ISO C5 envelope medium with size: 162 mm by 229 mm as defined in ISO 269
iso-designated-long-envelope Specifies the ISO Designated Long envelope medium with size: 110 mm by 220 mm as defined in ISO 269
na-10x13-envelope Specifies the North American 10x13 envelope medium with size: 10 inches by 13 inches
na-9x12-envelope Specifies the North American 9x12 envelope medium with size: 9 inches by 12 inches
na-number-10-envelope Specifies the North American number 10 business envelope medium with size: 4.125 inches by 9.5 inches
na-7x9-envelope Specifies the North American 7x9 inch envelope
na-9x11-envelope Specifies the North American 9x11 inch envelope
na-10x14-envelope Specifies the North American 10x14 inch envelope
na-number-9-envelope Specifies the North American number 9 business envelope 3.875 by 8.875 inches
na-6x9-envelope Specifies the North American 6x9 inch envelope
na-10x15-envelope Specifies the North American 10x15 inch envelope

The following standard values are defined for the less commonly used media (white-only):

iso-a0-white Specifies the ISO A0 white medium with size: 841 mm by 1189 mm as defined in ISO 216
iso-a1-white Specifies the ISO A1 white medium with size: 594 mm by 841 mm as defined in ISO 216
iso-a2-white Specifies the ISO A2 white medium with size: 420 mm by 594 mm as defined in ISO 216
iso-a6-white Specifies the ISO A6 white medium with size: 105 mm by 148 mm as defined in ISO 216
iso-a7-white Specifies the ISO A7 white medium with size: 74 mm by 105 mm as defined in ISO 216
iso-a8-white Specifies the ISO A8 white medium with size: 52 mm by 74 mm as defined in ISO 216
iso-a9-white Specifies the ISO A9 white medium with size: 39 mm by 52 mm as defined in ISO 216
iso-a10-white Specifies the ISO A10 white medium with size: 26 mm by 37 mm as defined in ISO 216
iso-b0-white Specifies the ISO B0 white medium
 with size: 1000 mm by 1414 mm
 as defined in ISO 216
iso-b1-white Specifies the ISO B1 white medium
 with size: 707 mm by 1000 mm
 as defined in ISO 216
iso-b2-white Specifies the ISO B2 white medium
 with size: 500 mm by 707 mm
 as defined in ISO 216
iso-b3-white Specifies the ISO B3 white medium
 with size: 353 mm by 500 mm
 as defined in ISO 216
iso-b6-white Specifies the ISO B6 white medium
 with size: 125 mm by 176 mm
 as defined in ISO 216
iso-b7-white Specifies the ISO B7 white medium
 with size: 88 mm by 125 mm
 as defined in ISO 216
iso-b8-white Specifies the ISO B8 white medium
 with size: 62 mm by 88 mm
 as defined in ISO 216
iso-b9-white Specifies the ISO B9 white medium
 with size: 44 mm by 62 mm
 as defined in ISO 216
iso-b10-white Specifies the ISO B10 white medium
 with size: 31 mm by 44 mm
 as defined in ISO 216
jis-b0-white Specifies the JIS B0 white medium with size:
 1030 mm by 1456 mm
jis-b1-white Specifies the JIS B1 white medium with size:
 728 mm by 1030 mm
jis-b2-white Specifies the JIS B2 white medium with size:
 515 mm by 728 mm
jis-b3-white Specifies the JIS B3 white medium with size:
 364 mm by 515 mm
jis-b6-white Specifies the JIS B6 white medium with size:
 257 mm by 364 mm
jis-b7-white Specifies the JIS B7 white medium with size:
 182 mm by 257 mm
jis-b8-white Specifies the JIS B8 white medium with size:
 128 mm by 182 mm
jis-b9-white Specifies the JIS B9 white medium with size:
 91 mm by 128 mm
jis-b10-white Specifies the JIS B10 white medium with size:
 64 mm by 91 mm
RFC 3805

The following standard values are defined for engineering media:

- **a** Specifies the engineering A size medium with size: 8.5 inches by 11 inches
- **b** Specifies the engineering B size medium with size: 11 inches by 17 inches
- **c** Specifies the engineering C size medium with size: 17 inches by 22 inches
- **d** Specifies the engineering D size medium with size: 22 inches by 34 inches
- **e** Specifies the engineering E size medium with size: 34 inches by 44 inches

Appendix D - Roles of Users

Background

The need for "Role Models" stemmed in large part from the need to understand the importance of any given proposed object for the MIB. Many times the real world need for a proposed object would be debated within the group; the debate would typically result in the need to describe the potential usage of the object in terms of a "live" person performing some type of printing-related task.

Determining the value of a proposed object through identification of the associated human users was found to be so common that a more formalized model was required for consistent analysis. The model describing categories of human-oriented tasks is called "Role Models" in this document.

In developing the Role Models it was necessary to identify the common, primary tasks that humans typically face when interacting with a printer and its related printing system(s). It was expected that certain kinds of tasks would serve to identify the various Role Models.

In presenting the set of Role Models, the set of "Common Print System Tasks" are first presented, followed by the set of Role Model definitions. Finally, a simple matrix is presented in which Role Models and Tasks are cross-compared.

Common Print System Tasks

Upon researching the many tasks encountered by humans in dealing with printers and printing systems, the following were found to be pervasive within any operating environment:

Printer job state - Determine the status of a job without a printer.
Printer capabilities - Determine the current capabilities of a printer, for example, the available media sizes, two-sided printing, a particular type of interpreter, etc.

Printer job submission - Submit a print job to a printer.

Printer job removal - Remove a job from a printer.

Notification of events - Receive notification of the existence of a defined printer event. An event can be of many types, including warnings, errors, job stage completion (e.g., "job done"), etc.

Printer configuration - Query the current configuration of a printer.

Printer consumables - Determine the current state of any and all consumables within a printer.

Print job identification - Determine the identification of a job within a printer.

Internal printer status - Determine the current status of the printer.

Printer identification - Determine the identity of a printer.

Printer location - Determine the physical location of a printer.

Local system configuration - Determine various aspects of the current configuration of the local system involved with the operation of a printer.

These "tasks" cover a large spectrum of requirements surrounding the operation of a printer in a network environment. This list serves as the basis for defining the various Role Models described below.

Proposed Role Models

Following is the list of "Role Models" used to evaluate the requirements for any given Printer MIB object. Note that the keyword enclosed in parentheses represents an abbreviation for the particular Role Model in the matrix described later in this document.

User (USER) - A person or application that submits print jobs to the printer; typically viewed as the "end user" within the overall printing environment.
Operator (OP) - A person responsible for maintaining a printer on a day-to-day basis, including such tasks as filling empty media trays, emptying full output trays, replacing toner cartridges, clearing simple paper jams, etc.

Technician (TECH) - A person responsible for repairing a malfunctioning printer, performing routine preventive maintenance, and other tasks that typically require advanced training on the printer internals. An example of a "technician" would be a manufacturer’s Field Service representative, or other person formally trained by the manufacturer or similar representative.

System Manager (MGR) - A person responsible for configuration and troubleshooting of components involved in the overall printing environment, including printers, print queues and network connectivity issues. This person is typically responsible for ensuring the overall operational integrity of the print system components, and is typically viewed as the central point of coordination among all other Role Models.

Help Desk (HELP) - A person responsible for supporting Users in their printing needs, including training Users and troubleshooting Users’ printing problems.

Asset Manager (AM) - A person responsible for managing an organization’s printing system assets (primarily printers). Such a person needs to be able to identify and track the location of printing assets on an ongoing basis.

Capacity Planner (CP) - A person responsible for tracking the usage of printing resources on an ongoing basis for the purpose of planning printer acquisitions and/or placement of printers based on usage trends.

Installer (INST) - A person or application responsible for installing or configuring printing system components on a local system.

Accountant (ACCT) - A person responsible for tracking the usage of printing resources on an ongoing basis for the purpose of charging Users for resources used.

Matrix of Common Print System Tasks and Role Models

To better understand the relationship between the set of defined "Common Print System Tasks" and the various "Role Models," the following matrix is provided.
It is important to recognize that many of the tasks will appear to be applicable to many of the Role Models. However, when considering the actual context of a task, it is very important to realize that often the actual context of a task is such that the Role Model can change.

For example, it is obvious that a "System Manager" must be able to submit print jobs to a printer; however, when submitting a print job, a person identified as a "System Manager" is actually operating in the context of a "User" in this case; hence, the requirement to submit a print job is not listed as a requirement for a System Manager.

Conversely, while a "User" must be able to remove a job previously submitted to a printer, an "Operator" is often expected to be able to remove any print job from any printer; hence, print job removal is a (subtly different) requirement for both the "User" and "Operator" Role Models.

Role Models

<table>
<thead>
<tr>
<th>Requirement Area</th>
<th>USER</th>
<th>OP</th>
<th>TECH</th>
<th>MGR</th>
<th>HELP</th>
<th>AM</th>
<th>CP</th>
<th>INST</th>
<th>ACCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print job status</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Printer capabilities</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Print job submission</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Print job removal</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Notification of events</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Printer configuration</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Printer consumables</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Print job identification</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Internal printer status</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Printer identification</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Printer location</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Local system configuration</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
</tbody>
</table>

Appendix E - Overall Printer Status Table

The Status Table establishes a convention for the top 25 printer errors. The table defines a suggested relationship between various printer states and the variables Printer hrDeviceStatus, hrPrinterStatus, hrPrinterDetectedErrorState, prtAlertGroup, prtAlertCode and various sub-unit status variables (prtInputStatus, prtOutputStatus, prtMarkerStatus, prtMediaPathStatus and prtChannelStatus). This table is the recommended implementation of these variables. It is provided to guide implementors of this MIB and users of the MIB by providing a sample set of states and the variable values that are expected to be produced as result of that state. This information supplements that provided in Section
2.2.13.2 "Overall Printer Status". This is not an exhaustive list rather it is a guideline.

The definition of PrtSubUnitStatusTC specifies that SubUnitStatus is an integer that is the sum of 5 distinct values/states: Availability, Critical, Non-Critical, On-line and Transitioning. Thus when a non-critical alert or alerts are present the values for Availability, On-Line and Transitioning will be summed with the Non-Critical Alerts (8) value.

The table was generated in landscape format and is located at ftp://ftp.pwg.org/pub/pwg/pmp/contributions/Top25Errors.pdf.

Appendix F - Participants

The Printer MIB Working Group would like to extend a special thank you to the following individuals that put forth a significant effort to review this document and provide numerous suggestions for improvement.

David Harrington - Enterasys Networks
Juergen Schoenwaelder - TU Braunschweig
Bert Wijnen - Lucent Technologies and IETF Op & Mngmt, Area Director

This version of the Printer MIB would not be possible without the previous work that resulted in RFC 1759. The authors of the Printer MIB version 2 would like to acknowledge the following individuals for their efforts in developing the base for this document. A special recognition is also extended to Steve Waldbusser, who provided significant technical guidance in the development of the architecture of the Printer MIB.

Joel Gyllenskog - Microworks
Tom Hastings - Xerox
Jay Martin - Underscore, Inc.
Ron Smith - Texas Instruments
Steve Waldbusser - Lucent Technologies
Don Wright - Lexmark
Steve Zilles - Adobe

The following people attended at least one meeting of the Printer MIB Working Group for version 2; many attended most meetings.

Ron Bergman - Hitachi Printing Solutions
Luis Cubero - Hewlett-Packard
Jay Cummings - Novell
Andy Davidson - Tektronix
Lee Farrell - Canon
Tom Hastings - Xerox
Scott Isacson - Novell
Binnur Al-Kazily - Hewlett-Packard
Rick Landau - Digital Equipment Corporation
David Kellerman - Northlake Software
Harry Lewis - IBM
Pete Loya - Hewlett-Packard
Jay Martin - Underscore, Inc.
Bob Pentecost - Hewlett-Packard
Dave Roach - Unisys
Stuart Rowley - Kyocera
Bob Setterbo - Adobe
Mike Timperman - Lexmark
Randy Turner - 2Wire, Inc.
Bill Wagner - NETsilicon, Inc.
Chris Wellens - Interworking Labs
Craig Whittle - Sharp Labs
Don Wright - Lexmark
Lloyd Young - Lexmark
Atsushi Yuki - Kyocera
Steve Zilles - Adobe
Significant Contributors

Ray Casterline
Lighthouse Solutions, LLC
Phone: (716) 218-9910
EMail: RayCasterline@lhsolutions.com

Gary Gocek
Phone: (585) 223-3826
EMail: gary@gocek.org

Thomas N. Hastings
Xerox Corporation
Phone: (310) 333-6413
EMail: hastings@cp10.es.xerox.com

Scott Isaacson
Novell
Phone: (801) 861-7366
EMail: sisaacson@novell.com

Binnur Al-Kazily
Hewlett-Packard, Inc.
Phone: (208) 396-6372
EMail: binnur_al-kazily@hp.com

David Kellerman
Northlake Software
Phone: (503) 228-3383
EMail: kellerman@nls.com

Matt King
Lexmark International
Phone: (859) 232-6907
EMail: emking@lexmark.com

Jay Martin
Underscore, Inc.
Phone: (603) 889-7000
EMail: jkm@underscore.com
Mike McKay
Novell, Inc.

Bob Pentecost
Hewlett-Packard

Phone: (208) 396-3312
EMail: bpenteco@boi.hp.com

Stuart Rowley
Kyocera

Phone: (510) 299-7206
EMail: stuart.rowley@kyocera.com

Gail Songer
Peerless Systems Networking

Phone: (650) 569-4414
EMail: gsonger@peerless.com

Randy Turner
2Wire, Inc.

Phone (408) 895-1216
EMail: rturner@2wire.com

William Wagner
NETsilicon, Inc.

Phone: (781) 398-4588
EMail: WWagner@NetSilicon.com

Chris Wellens
Interworking Labs

Phone: (408) 685-3190
EMail: chrisw@iwl.com

F.D. Wright
Lexmark International

Phone: (859) 232-4808
EMail: don@lexmark.com
Lloyd Young
Lexmark International
Phone: (859) 232-5150
EMail: lpyoung@lexmark.com

Stephen N. Zilles
Adobe Systems, Inc.
Phone: (415) 962-4766
EMail: szilles@adobe.com

Authors’ Addresses

Ron Bergman (Chairman)
Hitachi Printing Solutions America
2635 Park Center Drive
Simi Valley, CA 93065-6209
Phone: (805) 578-4421
EMail: Ron.Bergman@hitachi-ps.us

Harry Lewis
IBM
6300 Diagonal Hwy.
Boulder, CO 80301
Phone (303) 924-5337
EMail: harry1@us.ibm.com

Ira McDonald
High North Inc
P.O. Box 221
Grand Marais, MI 49839
Phone: (906) 494-2434 or (906) 494-2697
EMail: imcdonald@sharplabs.com
Full Copyright Statement

Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.