Definitions of Managed Objects for Network Address Translators (NAT)

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This memo defines a portion of the Management Information Base (MIB) for devices implementing Network Address Translator (NAT) function. This MIB module may be used for configuration as well as monitoring of a device capable of NAT function.
1. Introduction

This memo defines a portion of the Management Information Base (MIB) for devices implementing NAT function. This MIB module may be used for configuration and monitoring of a device capable of NAT function. NAT types and their characteristics are defined in [RFC2663]. Traditional NAT function, in particular is defined in [RFC3022]. This MIB does not address the firewall functions and must not be used for configuring or monitoring these. Section 2 provides references to the SNMP management framework, which was used as the basis for the MIB module definition. Section 3 describes the terms used throughout the document. Section 4 provides an overview of the key objects, their inter-relationship, and how the MIB module may be used to configure and monitor a NAT device. Lastly, section 5 has the complete NAT MIB definition.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to Section 7 of RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP).

Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Terminology

Definitions for a majority of the terms used throughout the document may be found in RFC 2663 [RFC2663]. Additional terms that further classify NAPT implementations are defined in RFC 3489 [RFC3489].

Listed below are terms used in this document.

Address realm - An address realm is a realm of unique network addresses that are routable within the realm. For example, an enterprise address realm could be constituted of private IP addresses in the ranges specified in RFC 1918 [RFC1918], which are routable within the enterprise, but not across the Internet. A public realm is constituted of globally unique network addresses.

Symmetric NAT - Symmetric NAT, as defined in RFC 3489 [RFC3489], is a variation of Network Address Port Translator (NAPT). Symmetric NAT does not use port bind for translation across all sessions originating from the same private host. Instead, it assigns a new public port to each new session, irrespective of whether the new session used the same private end-point as before.

Bind or Binding - Several variations of the term ‘Bind’ (or ‘Binding’) are used throughout the document. Address Bind (or Address Binding) is a tuple of (Private IP address, Public IP Address) used for translating an IP address end-point in IP packets. Port Bind (or, Port Binding, or Address Port Bind, or Address Port Binding) is a tuple of (transport protocol, Private IP address, Private port, Public IP Address, Public port) used for translating a port end-point tuple of (transport protocol, IP address, port). Bind is used to refer to either Address Bind or Port Bind. Bind Mode identifies whether a bind is Address Bind or Port Bind.

NAT Session - A NAT session is an association between a session as seen in the private realm and a session as seen in the public realm, by virtue of NAT translation. If a session in the private realm were to be represented as (PrivateSrcAddr, PrivateDstAddr, TransportProtocol, PrivateSrcPort, PrivateDstPort) and the same session in the public realm were to be represented as (PublicSrcAddr,
PublicDstAddr, TransportProtocol, PublicSrcPort, PublicDstPort), the NAT session will provide the translation glue between the two session representations. NAT sessions in the document are restricted to sessions based on TCP and UDP only. In the future, NAT sessions may be extended to be based on other transport protocols such as SCTP, UDP-lite and DCCP.

The terms 'local' and 'private' are used interchangeably throughout the document when referring to private networks, IP addresses, and ports. Likewise, the terms 'global' and 'public' are used interchangeably when referring to public networks, IP addresses, and ports.

4. Overview

NAT MIB is configurable on a per-interface basis and depends in several parts on the IF-MIB [RFC2863].

NAT MIB requires that an interface for which NAT is configured be connected to either a private or a public realm. The realm association of the interface plays an important role in the definition of address maps for the interface. An address map entry identifies the orientation of the session (inbound or outbound to the interface) for which the entry may be used for NAT translation. The address map entry also identifies the endpoint of the session that must be subject to translation. An SNMP Textual-Convention 'NatTranslationEntity’ is defined to capture this important characteristic that combines session orientation and applicable session endpoint for translation.

An address map may consist of static or dynamic entries. NAT creates static binds from a static address map entry. Each static bind has a direct one-to-one relationship with a static address map entry. NAT creates dynamic binds from a dynamic address map entry upon seeing the first packet of a new session.

The following subsections define the key objects used in NAT MIB, their inter-relationship, and how to configure a NAT device using the MIB module.

4.1. natInterfaceTable

natInterfaceTable is defined in the MIB module to configure interface specific realm type and the NAT services enabled for the interface. natInterfaceTable is indexed by ifIndex and also includes interface specific NAT statistics.
The first step for an operator in configuring a NAT device is determining the interface over which NAT service is to be configured. When NAT service is operational, translated packets traverse the NAT device by ingressing on a private interface and egressing on a public interface or vice versa. An operator may configure the NAT service on either the public interface or the private interface in the traversal path.

As the next step, the operator must identify the NAT service(s) desired for the interface. The operator may configure one or more NAT services on the same interface. The MIB module identifies four types of NAT services: Basic NAT, NAPT, twice NAT and bidirectional NAT. These are NAT varieties as defined in RFC 2663 [RFC2663]. Note that RFC 3489 [RFC3489] further classifies NAPT implementations based on the behavior exhibited by the NAPT devices from different vendors. However, the MIB module does not explicitly distinguish between the NAPT implementations. NAPT implementations may be distinguished between one another by monitoring the BIND and NAT Session objects generated by the NAT device as described in section 4.6.

4.2. natAddrMapTable

natAddrMapTable is defined in the MIB module to configure address maps on a per-interface basis. natAddrMapTable is indexed by the tuple of (ifIndex, natAddrMapIndex). The same table is also used to collect Statistics for the address map entries. Address maps are key to NAT configuration. An operator may configure one or more address map entries per interface. NAT looks up address map entries in the order in which they are defined to determine the translation function at the start of each new session traversing the interface. An address map may consist of static or dynamic entries. A static address map entry has a direct one-to-one relationship with binds. NAT will dynamically create binds from a dynamic address map entry.

The operator must be careful in selecting address map entries for an interface based on the interface realm-type and the type of NAT service desired. The operator can be amiss in the selection of address map entries when not paying attention to the associated interface characteristics defined in natInterfaceTable (described in section 4.1). For example, say the operator wishes to configure a NAPT map entry on an interface of a NAT device. If the operator chooses to configure the NAPT map entry on a public interface (i.e., interface realm-type is public), the operator should set the TranslationEntity of the NAPT address map entry to be outboundSrcEndPoint. On the other hand, if the operator chooses to configure the NAPT map entry on a private interface (i.e., interface realm-type is private), the operator should set the TranslationEntity of the NAPT address map entry to be InboundSrcEndPoint.
4.3. Default Timeouts, Protocol Table, and Other Scalars

DefTimeouts is defined in the MIB module to configure idle Bind timeout and IP protocol specific idle NAT session timeouts. The timeouts defined are global to the system and are not interface specific.

Protocol specific statistics are maintained in natProtocolTable, which is indexed by the protocol type.

The scalars natAddrBindNumberOfEntries and natAddrPortBindNumberOfEntries hold the number of entries that currently exist in the Address Bind and the Address Port Bind tables, respectively.

The generation of natPacketDiscard notifications can be configured by using the natNotifThrottlingInterval scalar MIB object.

4.4. natAddrBindTable and natAddrPortBindTable

Two Bind tables, natAddrBindTable and natAddrPortBindTable, are defined to hold the bind entries. Entries are derived from the address map table and are not configurable. natAddrBindTable contains Address Binds, and natAddrPortBindTable contains Address Port Binds. natAddrBindTable is indexed by the tuple of (ifIndex, LocalAddrType, LocalAddr). natAddrPortBindTable is indexed by the tuple of (ifIndex, LocalAddrType, LocalAddr, LocalPort, Protocol). These tables also maintain bind specific statistics. A Symmetric NAT will have no entries in the Bind tables.

4.5. natSessionTable

natSessionTable is defined to hold NAT session entries. NAT session entries are derived from NAT Binds (except in the case of Symmetric NAT) and are not configurable.

The NAT session provides the necessary translation glue between two session representations of the same end-to-end session; that is, a session as seen in the private realm and in the public realm. Session orientation (inbound or outbound) is determined from the orientation of the first packet traversing the NAT interface. Address map entries and bind entries on the interface determine whether a session is subject to NAT translation. One or both endpoints of a session may be subject to translation.

With the exception of symmetric NAT, all other NAT functions use end-point specific bind to perform individual end-point translations. Multiple NAT sessions would use the same bind as long as they share
the same endpoint. Symmetric NAT does not retain a consistent port bind across multiple sessions using the same endpoint. For this reason, the bind identifier for a NAT session in symmetric NAT is set to zero. natSessionTable is indexed by the tuple of (ifIndex, natSessionIndex). Statistics for NAT sessions are also maintained in the same table.

4.6. RFC 3489 NAPT Variations, NAT Session and Bind Tables

[RFC3489] defines four variations of NAPT - Full Cone, Restricted Cone, Port Restricted Cone, and Symmetric NAT. These can be differentiated in the NAT MIB based on different values for the objects in the session and the bind tables, as indicated below.

In a Port Restricted Cone NAT, NAT Session objects will contain a non-zero PrivateSrcEPBindId object. Further, all address and port objects within a NAT session will have non-zero values (i.e., no wildcard matches).

An Address Restricted Cone NAT may have been implemented in the same way as a Port Restricted Cone NAT, except that the UDP NAT Sessions may use ANY match on PrivateDstPort and PublicDstPort objects; i.e., PrivateDstPort and PublicDstPort objects within a NAT session may be set to zero.

A Full Cone NAT may have also been implemented in the same way as a Port Restricted Cone NAT, except that the UDP NAT Sessions may use ANY match on PrivateDstAddr, PrivateDstPort, PublicDstAddr, and PublicDstPort objects. Within a NAT Session, all four of these objects may be set to zero. Alternately, all address and port objects within a NAT Session may have non-zero values, yet the TranslationEntity of the PrivateSrcEPBindId for the NAT Sessions may be set bi-directionally, i.e., as a bit mask of (outboundSrcEndPoint and inboundDstEndPoint) or (inboundSrcEndPoint and outboundDstEndPoint), depending on the interface realm type. Lastly, a Symmetric NAT does not maintain Port Bindings. As such, the NAT Session objects will have the PrivateSrcEPBindId set to zero.

4.7. Notifications

natPacketDiscard notifies the end user/manager of packets being discarded due to lack of address mappings.
4.8. Relation Among Tables

The association between the various NAT tables can be represented as follows:

```
<table>
<thead>
<tr>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Address map</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Address Bind</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Port Bind</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NAT Session</td>
</tr>
</tbody>
</table>
```

All NAT functions, with the exception of Symmetric NAT, use Bind(s) to provide the glue necessary for a NAT Session. natSessionPrivateSrcEPBindId and natSessionPrivateDstEPBindId objects represent the endpoint Binds used by NAT Sessions.

4.9. Configuration via the MIB

Sections 4.1 and 4.2 and part of section 4.3 refer to objects that are configurable on a NAT device. NAT derives Address Bind and Address Port Bind entries from the Address Map table. Hence, an Address Bind or an Address Port Bind entry must not exist without an associated entry in the Address Map table.

Further, NAT derives NAT session entries from NAT Binds, except in the case of symmetric NAT, which derives translation parameters for a NAT session directly from an address map entry. Hence, with the exception of Symmetric NAT, a NAT session entry must not exist in the NAT Session table without a corresponding bind.
A Management station may use the following steps to configure entries in the NAT-MIB:

- Create an entry in the natInterfaceTable specifying the value of ifIndex as the interface index of the interface on which NAT is being configured. Specify appropriate values, as applicable, for the other objects (e.g., natInterfaceRealm, natInterfaceServiceType) in the table (refer to Section 4.1).

- Create one or more address map entries sequentially in reduced order of priority in the natAddrMapTable, specifying the value of ifIndex to be the same for all entries. The ifIndex specified would be the same as that specified for natInterfaceTable (refer to Section 4.2).

- Configure the maximum permitted idle time duration for BINDs and TCP, UDP, and ICMP protocol sessions by setting the relevant scalars in natDefTimeouts object (refer to Section 4.3).

4.10. Relationship to Interface MIB

The natInterfaceTable specifies the NAT configuration attributes on each interface. The concept of "interface" is as defined by InterfaceIndex/ifIndex of the IETF Interfaces MIB [RFC2863].

5. Definitions

This MIB module IMPORTs objects from RFCs 2578 [RFC2578], 2579 [RFC2579], 2580 [RFC2580], 2863 [RFC2863], 3411 [RFC3411], and 4001 [RFC4001]. It also refers to information in RFCs 792 [RFC792], 2463 [RFC2463], and 3413 [RFC3413].

NAT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 Integer32,
 Unsigned32,
 Gauge32,
 Counter64,
 TimeTicks,
 mib-2,
 NOTIFICATION-TYPE
 FROM SNMPv2-SMI
 TEXTUAL-CONVENTION,
 StorageType,
 RowStatus
FROM SNMPv2-TC
MODULE-COMPLIANCE,
NOTIFICATION-GROUP,
OBJECT-GROUP
FROM SNMPv2-CONF
ifIndex,
ifCounterDiscontinuityGroup
FROM IF-MIB
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB
InetAddressType,
InetAddress,
InetPortNumber
FROM INET-ADDRESS-MIB;

natMIB MODULE-IDENTITY
LAST-UPDATED "200503210000Z"
ORGANIZATION "IETF Transport Area"
CONTACT-INFO

" Rohit
Mascon Global Limited
#59/2 100 ft Ring Road
Banashankari II Stage
Bangalore 560 070
India
Phone: +91 80 2679 6227
Email: rrohit74@hotmail.com

P. Srisuresh
Caymas Systems, Inc.
1179-A North McDowell Blvd.
Petaluma, CA 94954
Tel: (707) 283-5063
Email: srisuresh@yahoo.com

Rajiv Raghunarayan
Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408 853 9612
Email: raraghun@cisco.com

Nalinaksh Pai
Cisco Systems, Inc.
Prestige Waterford
No. 9, Brunton Road
Bangalore - 560 025

DESCRIPTION
"This MIB module defines the generic managed objects for NAT.

Copyright (C) The Internet Society (2005). This version of this MIB module is part of RFC 4008; see the RFC itself for full legal notices."

REVISION "200503210000Z" -- 21th March 2005

DESCRIPTION
"Initial version, published as RFC 4008."

::= { mib-2 123 }

natMIBObjects OBJECT IDENTIFIER ::= { natMIB 1 }

NatProtocolType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A list of protocols that support the network address translation. Inclusion of the values is not intended to imply that those protocols need to be supported. Any change in this TEXTUAL-CONVENTION should also be reflected in the definition of NatProtocolMap, which is a BITS representation of this."

SYNTAX INTEGER {
 none (1), -- not specified
 other (2), -- none of the following
 icmp (3),
 udp (4),
 tcp (5)
 }

NatProtocolMap ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A bitmap of protocol identifiers that support
the network address translation. Any change in this TEXTUAL-CONVENTION should also be reflected in the definition of NatProtocolType.

```
SYNTAX      BITS {
    other (0),
    icmp (1),
    udp (2),
    tcp (3)
}
```

```
NatAddrMapId ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS current
    DESCRIPTION
    "A unique id that is assigned to each address map by a NAT enabled device."
    SYNTAX      Unsigned32 (1..4294967295)
```

```
NatBindIdOrZero ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS current
    DESCRIPTION
    "A unique id that is assigned to each bind by a NAT enabled device. The bind id will be zero in the case of a Symmetric NAT."
    SYNTAX      Unsigned32 (0..4294967295)
```

```
NatBindId ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS current
    DESCRIPTION
    "A unique id that is assigned to each bind by a NAT enabled device."
    SYNTAX      Unsigned32 (1..4294967295)
```

```
NatSessionId ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS current
    DESCRIPTION
    "A unique id that is assigned to each session by a NAT enabled device."
    SYNTAX      Unsigned32 (1..4294967295)
```

```
NatBindMode ::= TEXTUAL-CONVENTION
    STATUS current
    DESCRIPTION
    "An indication of whether the bind is an address bind or an address port bind."
```
SYNTAX INTEGER {
 addressBind (1),
 addressPortBind (2)
}

NatAssociationType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"An indication of whether the association is static or dynamic."
SYNTAX INTEGER {
 static (1),
 dynamic (2)
}

NatTranslationEntity ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"An indication of a) the direction of a session for which an address map entry, address bind or port bind is applicable, and b) the entity (source or destination) within the session that is subject to translation."
SYNTAX BITS {
 inboundSrcEndPoint (0),
 outboundDstEndPoint (1),
 inboundDstEndPoint (2),
 outboundSrcEndPoint (3)
}

--
-- Default Values for the Bind and NAT Protocol Timers
--

natDefTimeouts OBJECT IDENTIFIER ::= { natMIBObjects 1 }
natNotifCtrl OBJECT IDENTIFIER ::= { natMIBObjects 2 }

--
-- Address Bind and Port Bind related NAT configuration
--

natBindDefIdleTimeout OBJECT-TYPE
 SYNTAX Unsigned32 (0..4294967295)
 UNITS "seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
"The default Bind (Address Bind or Port Bind) idle timeout parameter.

If the agent is capable of storing non-volatile configuration, then the value of this object must be restored after a re-initialization of the management system."
DEFVAL { 0 }
 ::= { natDefTimeouts 1 }

--
-- UDP related NAT configuration
--
natUdpDefIdleTimeout OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 UNITS "seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The default UDP idle timeout parameter.

If the agent is capable of storing non-volatile configuration, then the value of this object must be restored after a re-initialization of the management system."
DEFVAL { 300 }
 ::= { natDefTimeouts 2 }

--
-- ICMP related NAT configuration
--
natIcmpDefIdleTimeout OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 UNITS "seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The default ICMP idle timeout parameter.

If the agent is capable of storing non-volatile configuration, then the value of this object must be restored after a re-initialization of the management system."
DEFVAL { 300 }
 ::= { natDefTimeouts 3 }
-- Other protocol parameters

natOtherDefIdleTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
UNITS "seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The default idle timeout parameter for protocols represented by the value other (2) in NatProtocolType.

If the agent is capable of storing non-volatile configuration, then the value of this object must be restored after a re-initialization of the management system."
DEFVAL { 60 }
::= { natDefTimeouts 4 }

-- TCP related NAT Timers

natTcpDefIdleTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
UNITS "seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The default time interval that a NAT session for an established TCP connection is allowed to remain valid without any activity on the TCP connection.

If the agent is capable of storing non-volatile configuration, then the value of this object must be restored after a re-initialization of the management system."
DEFVAL { 86400 }
::= { natDefTimeouts 5 }

natTcpDefNegTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
UNITS "seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The default time interval that a NAT session for a TCP connection that is not in the established state is allowed to remain valid without any activity on the TCP connection.

If the agent is capable of storing non-volatile configuration, then the value of this object must be restored after a re-initialization of the management system."

DEFVAL { 60 }
 ::= { natDefTimeouts 6 }

natNotifThrottlingInterval OBJECT-TYPE
 SYNTAX Integer32 (0 | 5..3600)
 UNITS "seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object controls the generation of the natPacketDiscard notification.

 If this object has a value of zero, then no natPacketDiscard notifications will be transmitted by the agent.

 If this object has a non-zero value, then the agent must not generate more than one natPacketDiscard 'notification-event' in the indicated period, where a 'notification-event' is the generation of a single notification PDU type to a list of notification destinations. If additional NAT packets are discarded within the throttling period, then notification-events for these changes must be suppressed by the agent until the current throttling period expires.

 If natNotifThrottlingInterval notification generation is enabled, the suggested default throttling period is 60 seconds, but generation of the natPacketDiscard notification should be disabled by default.

 If the agent is capable of storing non-volatile configuration, then the value of this object must be restored after a re-initialization of the management system.

 The actual transmission of notifications is controlled via the MIB modules in RFC 3413."

DEFVAL { 0 }
::= { natNotifCtrl 1 }

-- The NAT Interface Table --

natInterfaceTable OBJECT-TYPE
SYNTAX SEQUENCE OF NatInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table specifies the attributes for interfaces on a
device supporting NAT function."
::= { natMIBObjects 3 }

natInterfaceEntry OBJECT-TYPE
SYNTAX NatInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Each entry in the natInterfaceTable holds a set of
parameters for an interface, instantiated by
ifIndex. Therefore, the interface index must have been
assigned, according to the applicable procedures,
before it can be meaningfully used.
Generally, this means that the interface must exist.

When natStorageType is of type nonVolatile, however,
this may reflect the configuration for an interface whose
ifIndex has been assigned but for which the supporting
implementation is not currently present."
INDEX { ifIndex }
::= { natInterfaceTable 1 }

NatInterfaceEntry ::= SEQUENCE {
 natInterfaceRealm INTEGER,
natInterfaceServiceType BITS,
natInterfaceInTranslates Counter64,
natInterfaceOutTranslates Counter64,
natInterfaceDiscards Counter64,
natInterfaceStorageType StorageType,
natInterfaceRowStatus RowStatus
}

natInterfaceRealm OBJECT-TYPE
SYNTAX INTEGER {
 private (1),
public (2)
nathInterfaceServiceType OBJECT-TYPE
SYNTAX Bits {
 basicNat (0),
 napt (1),
 bidirectionalNat (2),
 twiceNat (3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION "An indication of the direction in which new sessions are permitted and the extent of translation done within the IP and transport headers."
 ::= { natInterfaceEntry 2 }

natInterfaceInTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of packets received on this interface that were translated. Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."
 ::= { natInterfaceEntry 3 }

natInterfaceOutTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of translated packets that were sent out this interface. Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."

}
ifCounterDiscontinuityTime on the relevant interface.

::= { natInterfaceEntry 4 }

natInterfaceDiscards OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of packets that had to be rejected/dropped due to
a lack of resources for this interface.

Discontinuities in the value of this counter can occur at
reinitialization of the management system and at other
times as indicated by the value of
ifCounterDiscontinuityTime on the relevant interface."

 ::= { natInterfaceEntry 5 }

natInterfaceStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type for this conceptual row.
Conceptual rows having the value 'permanent'
need not allow write-access to any columnar objects
in the row."

REFERENCE
"Textual Conventions for SMIv2, Section 2."
DEFVAL { nonVolatile }
 ::= { natInterfaceEntry 6 }

natInterfaceRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this conceptual row.

Until instances of all corresponding columns are
appropriately configured, the value of the
corresponding instance of the natInterfaceRowStatus
column is 'notReady'.

In particular, a newly created row cannot be made
active until the corresponding instance of
natInterfaceServiceType has been set.
None of the objects in this row may be modified while the value of this object is active(1).

REFERENCE
"Textual Conventions for SMIv2, Section 2."
::= { natInterfaceEntry 7 }

--
-- The Address Map Table
--

natAddrMapTable OBJECT-TYPE
SYNTAX SEQUENCE OF NatAddrMapEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table lists address map parameters for NAT."
::= { natMIBObjects 4 }

natAddrMapEntry OBJECT-TYPE
SYNTAX NatAddrMapEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This entry represents an address map to be used for NAT and contributes to the dynamic and/or static address mapping tables of the NAT device."
INDEX { ifIndex, natAddrMapIndex }
::= { natAddrMapTable 1 }

NatAddrMapEntry ::= SEQUENCE {
 natAddrMapIndex NatAddrMapId,
 natAddrMapName SnmpAdminString,
 natAddrMapEntryType NatAssociationType,
 natAddrMapTranslationEntity NatTranslationEntity,
 natAddrMapLocalAddrType InetAddressType,
 natAddrMapLocalAddrFrom InetAddress,
 natAddrMapLocalAddrTo InetAddress,
 natAddrMapLocalPortFrom InetPortNumber,
 natAddrMapLocalPortTo InetPortNumber,
 natAddrMapGlobalAddrType InetAddressType,
 natAddrMapGlobalAddrFrom InetAddress,
 natAddrMapGlobalAddrTo InetAddress,
 natAddrMapGlobalPortFrom InetPortNumber,
 natAddrMapGlobalPortTo InetPortNumber,
 natAddrMapProtocol NatProtocolMap,
 natAddrMapInTranslates Counter64,
 natAddrMapOutTranslates Counter64,
 natAddrMapDiscards Counter64,
{ natAddrMapAddrUsed Gauge32,
natAddrMapStorageType StorageType,
natAddrMapRowStatus RowStatus }
to effect inbound or outbound sessions.

Traditionally, address maps for Basic NAT and NAPT are configured on a public interface for outbound sessions, effecting translation of source end-point. The value of this object must be set to outboundSrcEndPoint for those interfaces.

Alternately, if address maps for Basic NAT and NAPT were to be configured on a private interface, the desired value for this object for the map entries would be inboundSrcEndPoint (i.e., effecting translation of source end-point for inbound sessions).

If TwiceNAT were to be configured on a private interface, the desired value for this object for the map entries would be a bitmask of inboundSrcEndPoint and inboundDstEndPoint.

::= { natAddrMapEntry 4 }

natAddrMapLocalAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies the address type used for natAddrMapLocalAddrFrom and natAddrMapLocalAddrTo."
::= { natAddrMapEntry 5 }

natAddrMapLocalAddrFrom OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies the first IP address of the range of IP addresses mapped by this translation entry. The value of this object must be less than or equal to the value of the natAddrMapLocalAddrTo object.

The type of this address is determined by the value of the natAddrMapLocalAddrType object."
::= { natAddrMapEntry 6 }

natAddrMapLocalAddrTo OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies the last IP address of the range of IP addresses mapped by this translation entry. If only a single address is being mapped, the value of this object is equal to the value of natAddrMapLocalAddrFrom. For a static NAT, the number of addresses in the range defined by natAddrMapLocalAddrFrom and natAddrMapLocalAddrTo must be equal to the number of addresses in the range defined by natAddrMapGlobalAddrFrom and natAddrMapGlobalAddrTo. The value of this object must be greater than or equal to the value of the natAddrMapLocalAddrFrom object.

The type of this address is determined by the value of the natAddrMapLocalAddrType object."

::= { natAddrMapEntry 7 }

natAddrMapLocalPortFrom OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-create
STATUS current
DESCRIPTION "If this conceptual row describes a Basic NAT address mapping, then the value of this object must be zero. If this conceptual row describes NAPT, then the value of this object specifies the first port number in the range of ports being mapped.

The value of this object must be less than or equal to the value of the natAddrMapLocalPortTo object. If the translation specifies a single port, then the value of this object is equal to the value of natAddrMapLocalPortTo."

DEFVAL { 0 }
::= { natAddrMapEntry 8 }

natAddrMapLocalPortTo OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-create
STATUS current
DESCRIPTION "If this conceptual row describes a Basic NAT address mapping, then the value of this object must be zero. If this conceptual row describes NAPT, then the value of this object specifies the last port number in the range of ports being mapped.

The value of this object must be greater than or equal to the value of the natAddrMapLocalPortFrom object. If the translation specifies a single port, then the value of this object is equal to the value of natAddrMapLocalPortFrom."
DEFVAL { 0 }
::= { natAddrMapEntry 9 }

natAddrMapGlobalAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object specifies the address type used for
 natAddrMapGlobalAddrFrom and natAddrMapGlobalAddrTo."
::= { natAddrMapEntry 10 }

natAddrMapGlobalAddrFrom OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object specifies the first IP address of the range of
 IP addresses being mapped to. The value of this object
 must be less than or equal to the value of the
 natAddrMapGlobalAddrTo object.

 The type of this address is determined by the value of
 the natAddrMapGlobalAddrType object."
::= { natAddrMapEntry 11 }

natAddrMapGlobalAddrTo OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object specifies the last IP address of the range of
 IP addresses being mapped to. If only a single address is
 being mapped to, the value of this object is equal to the
 value of natAddrMapGlobalAddrFrom. For a static NAT, the
 number of addresses in the range defined by
 natAddrMapGlobalAddrFrom and natAddrMapGlobalAddrTo must be
 equal to the number of addresses in the range defined by
 natAddrMapLocalAddrFrom and natAddrMapLocalAddrTo.
 The value of this object must be greater than or equal to
 the value of the natAddrMapGlobalAddrFrom object.

 The type of this object is determined by the value of
 the natAddrMapGlobalAddrType object."
::= { natAddrMapEntry 12 }

natAddrMapGlobalPortFrom OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object specifies the port number of the range of
 port numbers being mapped to. If only a single port is
 being mapped to, the value of this object is equal to the
 value of natAddrMapGlobalPortFrom. For a static NAT, the
 number of ports in the range defined by
 natAddrMapGlobalPortFrom and natAddrMapGlobalPortTo must be
 equal to the number of ports in the range defined by
 natAddrMapLocalPortFrom and natAddrMapLocalPortTo.
 The value of this object must be greater than or equal to
 the value of the natAddrMapGlobalPortFrom object.

 The type of this object is determined by the value of
 the natAddrMapGlobalPortType object."
::= { natAddrMapEntry 13 }
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If this conceptual row describes a Basic NAT address
mapping, then the value of this object must be zero. If
this conceptual row describes NAPT, then the value of
this object specifies the first port number in the range
of ports being mapped to.

The value of this object must be less than or equal to the
value of the natAddrMapGlobalPortTo object. If the
translation specifies a single port, then the value of this
object is equal to the value natAddrMapGlobalPortTo."

DEFVAL { 0 }
::= { natAddrMapEntry 13 }

natAddrMapGlobalPortTo OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If this conceptual row describes a Basic NAT address
mapping, then the value of this object must be zero. If
this conceptual row describes NAPT, then the value of this
object specifies the last port number in the range of
ports being mapped to.

The value of this object must be greater than or equal to
the value of the natAddrMapGlobalPortFrom object. If the
translation specifies a single port, then the value of this
object is equal to the value of natAddrMapGlobalPortFrom."

DEFVAL { 0 }
::= { natAddrMapEntry 14 }

natAddrMapProtocol OBJECT-TYPE
SYNTAX NatProtocolMap
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies a bitmap of protocol identifiers."
::= { natAddrMapEntry 15 }

natAddrMapInTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of inbound packets pertaining to this address map entry that were translated.

Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times, as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."

::= { natAddrMapEntry 16 }

natAddrMapOutTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of outbound packets pertaining to this address map entry that were translated.

Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times, as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."

::= { natAddrMapEntry 17 }

natAddrMapDiscards OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets pertaining to this address map entry that were dropped due to lack of addresses in the address pool identified by this address map. The value of this object must always be zero in case of static address map.

Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times, as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."

::= { natAddrMapEntry 18 }

natAddrMapAddrUsed OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of addresses pertaining to this address map that are currently being used from the NAT pool. The value of this object must always be zero in the case
of a static address map.

::= { natAddrMapEntry 19 }

natAddrMapStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type for this conceptual row. Conceptual rows having the value ‘permanent’ need not allow write-access to any columnar objects in the row."
REFERENCE
"Textual Conventions for SMIv2, Section 2."
DEFVAL { nonVolatile }
::= { natAddrMapEntry 20 }

natAddrMapRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this conceptual row.

Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the natAddrMapRowStatus column is ‘notReady’.

None of the objects in this row may be modified while the value of this object is active(1)."
REFERENCE
"Textual Conventions for SMIv2, Section 2."
::= { natAddrMapEntry 21 }

--
-- Address Bind section
--

natAddrBindNumberOfEntries OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object maintains a count of the number of entries that currently exist in the natAddrBindTable."
::= { natMIBObjects 5 }

Rohit, et al. Standards Track [Page 27]
-- The NAT Address BIND Table

natAddrBindTable OBJECT-TYPE
SYNTAX SEQUENCE OF NatAddrBindEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table holds information about the currently active NAT Binds."
::= { natMIBObjects 6 }

natAddrBindEntry OBJECT-TYPE
SYNTAX NatAddrBindEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Each entry in this table holds information about an active address
 BIND. These entries are lost upon agent restart.

 This row has indexing which may create variables with more than 128
 subidentifiers. Implementers of this table must be careful not to create
 entries that would result in OIDs which exceed the 128 subidentifier limit.
 Otherwise, the information cannot be accessed using SNMPv1, SNMPv2c or
 SNMPv3."

INDEX { ifIndex, natAddrBindLocalAddrType, natAddrBindLocalAddr }
 ::= { natAddrBindTable 1 }

NatAddrBindEntry ::= SEQUENCE {
 natAddrBindLocalAddrType InetAddressType,
natAddrBindLocalAddr InetAddress,
natAddrBindGlobalAddrType InetAddressType,
natAddrBindGlobalAddr InetAddress,
natAddrBindId NatBindId,
natAddrBindTranslationEntity NatTranslationEntity,
natAddrBindType NatAssociationType,
natAddrBindMapIndex NatAddrMapId,
natAddrBindSessions Gauge32,
natAddrBindMaxIdleTime TimeTicks,
natAddrBindCurrentIdleTime TimeTicks,
natAddrBindInTranslates Counter64,
natAddrBindOutTranslates Counter64
}
natAddrBindLocalAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This object specifies the address type used for
 natAddrBindLocalAddr."
::= { natAddrBindEntry 1 }

natAddrBindLocalAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This object represents the private-realm specific network
 layer address, which maps to the public-realm address
 represented by natAddrBindGlobalAddr.

 The type of this address is determined by the value of
 the natAddrBindLocalAddrType object."
::= { natAddrBindEntry 2 }

natAddrBindGlobalAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object specifies the address type used for
 natAddrBindGlobalAddr."
::= { natAddrBindEntry 3 }

natAddrBindGlobalAddrd OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object represents the public-realm network layer
 address that maps to the private-realm network layer
 address represented by natAddrBindLocalAddr.

 The type of this address is determined by the value of
 the natAddrBindGlobalAddrType object."
::= { natAddrBindEntry 4 }

natAddrBindId OBJECT-TYPE
SYNTAX NatBindId
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object represents a bind id that is dynamically assigned to each bind by a NAT enabled device. Each bind is represented by a bind id that is unique across both, the natAddrBindTable and the natAddrPortBindTable."
 ::= { natAddrBindEntry 5 }

natAddrBindTranslationEntity OBJECT-TYPE
SYNTAX NatTranslationEntity
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object represents the direction of sessions for which this bind is applicable and the endpoint entity (source or destination) within the sessions that is subject to translation using the BIND.

Orientation of the bind can be a superset of translationEntity of the address map entry which forms the basis for this bind.

For example, if the translationEntity of an address map entry is outboundSrcEndPoint, the translationEntity of a bind derived from this map entry may either be outboundSrcEndPoint or it may be bidirectional (a bitmask of outboundSrcEndPoint and inboundDstEndPoint)."
 ::= { natAddrBindEntry 6 }

natAddrBindType OBJECT-TYPE
SYNTAX NatAssociationType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates whether the bind is static or dynamic."
 ::= { natAddrBindEntry 7 }

natAddrBindMapIndex OBJECT-TYPE
SYNTAX NatAddrMapId
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a pointer to the natAddrMapTable entry (and the parameters of that entry) which was used in creating this BIND. This object, in conjunction with the ifIndex (which identifies a unique addrMapName) points to
a unique entry in the natAddrMapTable.

::= { natAddrBindEntry 8 }

natAddrBindSessions OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of sessions currently using this BIND."
::= { natAddrBindEntry 9 }

natAddrBindMaxIdleTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the maximum time for which this bind can be idle with no sessions attached to it.
The value of this object is of relevance only for dynamic NAT."
::= { natAddrBindEntry 10 }

natAddrBindCurrentIdleTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"At any given instance, this object indicates the time that this bind has been idle without any sessions attached to it.
The value of this object is of relevance only for dynamic NAT."
::= { natAddrBindEntry 11 }

natAddrBindInTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of inbound packets that were successfully translated by using this bind entry.
Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times, as indicated by the value of
ifCounterDiscontinuityTime on the relevant interface.
::= { natAddrBindEntry 12 }

natAddrBindOutTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of outbound packets that were successfully
 translated using this bind entry.

 Discontinuities in the value of this counter can occur at
 reinitialization of the management system and at other
 times as indicated by the value of
 ifCounterDiscontinuityTime on the relevant interface."
::= { natAddrBindEntry 13 }

--
-- Address Port Bind section
--

natAddrPortBindNumberOfEntries OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object maintains a count of the number of entries
 that currently exist in the natAddrPortBindTable."
::= { natMIBObjects 7 }

--
-- The NAT Address Port Bind Table
--

natAddrPortBindTable OBJECT-TYPE
SYNTAX SEQUENCE OF NatAddrPortBindEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table holds information about the currently
 active NAPT BINDs."
::= { natMIBObjects 8 }

natAddrPortBindEntry OBJECT-TYPE
SYNTAX NatAddrPortBindEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Each entry in the this table holds information about a NAPT bind that is currently active. These entries are lost upon agent restart.

This row has indexing which may create variables with more than 128 subidentifiers. Implementers of this table must be careful not to create entries which would result in OIDs that exceed the 128 subidentifier limit. Otherwise, the information cannot be accessed using SNMPv1, SNMPv2c or SNMPv3."

INDEX { ifIndex, natAddrPortBindLocalAddrType, natAddrPortBindLocalAddr, natAddrPortBindLocalPort, natAddrPortBindProtocol }
::= { natAddrPortBindTable 1 }

NatAddrPortBindEntry ::= SEQUENCE { natAddrPortBindLocalAddrType InetAddressType, natAddrPortBindLocalAddr InetAddress, natAddrPortBindLocalPort InetPortNumber, natAddrPortBindProtocol NatProtocolType, natAddrPortBindGlobalAddrType InetAddressType, natAddrPortBindGlobalAddr InetAddress, natAddrPortBindGlobalPort InetPortNumber, natAddrPortBindId NatBindId, natAddrPortBindTranslationEntity NatTranslationEntity, natAddrPortBindType NatAssociationType, natAddrPortBindMapIndex NatAddrMapId, natAddrPortBindSessions Gauge32, natAddrPortBindMaxIdleTime TimeTicks, natAddrPortBindCurrentIdleTime TimeTicks, natAddrPortBindInTranslates Counter64, natAddrPortBindOutTranslates Counter64 }

natAddrPortBindLocalAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This object specifies the address type used for natAddrPortBindLocalAddr."
::= { natAddrPortBindEntry 1 }

natAddrPortBindLocalAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object represents the private-realm specific network layer address which, in conjunction with
natAddrPortBindLocalPort, maps to the public-realm network layer address and transport id represented by
natAddrPortBindGlobalAddr and natAddrPortBindGlobalPort respectively.

The type of this address is determined by the value of
the natAddrPortBindLocalAddrType object."

::= { natAddrPortBindEntry 2 }

natAddrPortBindLocalPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"For a protocol value TCP or UDP, this object represents
the private-realm specific port number. On the other
hand, for ICMP a bind is created only for query/response
type ICMP messages such as ICMP echo, Timestamp, and
Information request messages, and this object represents
the private-realm specific identifier in the ICMP
message, as defined in RFC 792 for ICMPv4 and in RFC
2463 for ICMPv6.

This object, together with natAddrPortBindProtocol,
natAddrPortBindLocalAddrType, and natAddrPortBindLocalAddr,
constitutes a session endpoint in the private realm. A
bind entry binds a private realm specific endpoint to a
public realm specific endpoint, as represented by the
tuple of (natAddrPortBindGlobalPort,
natAddrPortBindProtocol, natAddrPortBindGlobalAddrType,
and natAddrPortBindGlobalAddr)."

::= { natAddrPortBindEntry 3 }

natAddrPortBindProtocol OBJECT-TYPE
SYNTAX NatProtocolType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object specifies a protocol identifier. If the
value of this object is none(1), then this bind entry
applies to all IP traffic. Any other value of this object
specifies the class of IP traffic to which this BIND
applies."

::= { natAddrPortBindEntry 4 }
natAddrPortBindGlobalAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object specifies the address type used for
natAddrPortBindGlobalAddr."
 ::= { natAddrPortBindEntry 5 }

natAddrPortBindGlobalAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object represents the public-realm specific network
layer address that, in conjunction with
natAddrPortBindGlobalPort, maps to the private-realm
network layer address and transport id represented by
natAddrPortBindLocalAddr and natAddrPortBindLocalPort, respectively.

The type of this address is determined by the value of
the natAddrPortBindGlobalAddrType object."
 ::= { natAddrPortBindEntry 6 }

natAddrPortBindGlobalPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"For a protocol value TCP or UDP, this object represents
the public-realm specific port number. On the other
hand, for ICMP a bind is created only for query/response
type ICMP messages such as ICMP echo, Timestamp, and
Information request messages, and this object represents
the public-realm specific identifier in the ICMP message,
as defined in RFC 792 for ICMPv4 and in RFC 2463 for
ICMPv6.

This object, together with natAddrPortBindProtocol,
natAddrPortBindGlobalAddrType, and
natAddrPortBindGlobalAddr, constitutes a session endpoint
in the public realm. A bind entry binds a public realm
specific endpoint to a private realm specific endpoint, as represented by the tuple of
(natAddrPortBindLocalPort, natAddrPortBindProtocol,
natAddrPortBindLocalAddrType, and
natAddrPortBindLocalAddr)."
 ::= { natAddrPortBindEntry 7 }

natAddrPortBindId OBJECT-TYPE
SYNTAX NatBindId
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object represents a bind id that is dynamically
 assigned to each bind by a NAT enabled device. Each
 bind is represented by a unique bind id across both
 the natAddrBindTable and the natAddrPortBindTable."
 ::= { natAddrPortBindEntry 8 }

natAddrPortBindTranslationEntity OBJECT-TYPE
SYNTAX NatTranslationEntity
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object represents the direction of sessions
 for which this bind is applicable and the entity
 (source or destination) within the sessions that is
 subject to translation with the BIND.

 Orientation of the bind can be a superset of the
 translationEntity of the address map entry that
 forms the basis for this bind.

 For example, if the translationEntity of an
 address map entry is outboundSrcEndPoint, the
 translationEntity of a bind derived from this
 map entry may either be outboundSrcEndPoint or
 may be bidirectional (a bitmask of
 outboundSrcEndPoint and inboundDstEndPoint)."
 ::= { natAddrPortBindEntry 9 }

natAddrPortBindType OBJECT-TYPE
SYNTAX NatAssociationType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object indicates whether the bind is static or
 dynamic."
 ::= { natAddrPortBindEntry 10 }

natAddrPortBindMapIndex OBJECT-TYPE
SYNTAX NatAddrMapId
MAX-ACCESS read-only
This object is a pointer to the natAddrMapTable entry (and the parameters of that entry) used in creating this BIND. This object, in conjunction with the ifIndex (which identifies a unique addrMapName), points to a unique entry in the natAddrMapTable.

::= { natAddrPortBindEntry 11 }

natAddrPortBindSessions OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of sessions currently using this BIND."
::= { natAddrPortBindEntry 12 }

natAddrPortBindMaxIdleTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the maximum time for which this bind can be idle without any sessions attached to it. The value of this object is of relevance only for dynamic NAT."
::= { natAddrPortBindEntry 13 }

natAddrPortBindCurrentIdleTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"At any given instance, this object indicates the time that this bind has been idle without any sessions attached to it. The value of this object is of relevance only for dynamic NAT."
::= { natAddrPortBindEntry 14 }

natAddrPortBindInTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of inbound packets that were translated as per this bind entry.

Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times, as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."

::= { natAddrPortBindEntry 15 }

natAddrPortBindOutTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of outbound packets that were translated as per this bind entry.

Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times, as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."

::= { natAddrPortBindEntry 16 }

--
-- The Session Table
--

natSessionTable OBJECT-TYPE
SYNTAX SEQUENCE OF NatSessionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table containing one entry for each NAT session currently active on this NAT device."

::= { natMIObjects 9 }

natSessionEntry OBJECT-TYPE
SYNTAX NatSessionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) containing information about an active NAT session on this NAT device. These entries are lost upon agent restart."

INDEX { ifIndex, natSessionIndex }
::= { natSessionTable 1 }

NatSessionEntry ::= SEQUENCE {
natSessionIndex OBJECT-TYPE
SYNTAX NatSessionId
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The session ID for this NAT session."
 ::= { natSessionEntry 1 }

natSessionPrivateSrcEPBindId OBJECT-TYPE
SYNTAX NatBindIdOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The bind id associated between private and public
 source end points. In the case of Symmetric-NAT,
 this should be set to zero."
 ::= { natSessionEntry 2 }

natSessionPrivateSrcEPBindMode OBJECT-TYPE
SYNTAX NatBindMode
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates whether the bind indicated by the object natSessionPrivateSrcEPBindId is an address bind or an address port bind."

::= { natSessionEntry 3 }

natSessionPrivateDstEPBindId OBJECT-TYPE
SYNTAX NatBindIdOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The bind id associated between private and public destination end points."
::= { natSessionEntry 4 }

natSessionPrivateDstEPBindMode OBJECT-TYPE
SYNTAX NatBindMode
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates whether the bind indicated by the object natSessionPrivateDstEPBindId is an address bind or an address port bind."
::= { natSessionEntry 5 }

natSessionDirection OBJECT-TYPE
SYNTAX INTEGER {
 inbound (1),
 outbound (2)
 }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The direction of this session with respect to the local network. ‘inbound’ indicates that this session was initiated from the public network into the private network. ‘outbound’ indicates that this session was initiated from the private network into the public network."
::= { natSessionEntry 6 }

natSessionUpTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The up time of this session in one-hundredths of a second."

::= { natSessionEntry 6 }
::= { natSessionEntry 7 }
natSessionAddrMapIndex OBJECT-TYPE
SYNTAX NatAddrMapId
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object is a pointer to the natAddrMapTable entry
 (and the parameters of that entry) used in
 creating this session. This object, in conjunction with
 the ifIndex (which identifies a unique addrMapName), points
 to a unique entry in the natAddrMapTable."
::= { natSessionEntry 8 }
natSessionProtocolType OBJECT-TYPE
SYNTAX NatProtocolType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The protocol type of this session."
::= { natSessionEntry 9 }
natSessionPrivateAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object specifies the address type used for
 natSessionPrivateSrcAddr and natSessionPrivateDstAddr."
::= { natSessionEntry 10 }
natSessionPrivateSrcAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The source IP address of the session endpoint that
 lies in the private network.

 The value of this object must be zero only when the
 natSessionPrivateSrcEPBindId object has a zero value.
 When the value of this object is zero, the NAT session
 lookup will match any IP address to this field.

 The type of this address is determined by the value of
 the natSessionPrivateAddrType object."
::= { natSessionEntry 11 }
natSessionPrivateSrcPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"When the value of protocol is TCP or UDP, this object represents the source port in the first packet of session while in private-realm. On the other hand, when the protocol is ICMP, a NAT session is created only for query/response type ICMP messages such as ICMP echo, Timestamp, and Information request messages, and this object represents the private-realm specific identifier in the ICMP message, as defined in RFC 792 for ICMPv4 and in RFC 2463 for ICMPv6.

The value of this object must be zero when the natSessionPrivateSrcEPBindId object has zero value and value of natSessionPrivateSrcEPBindMode is addressPortBind(2). In such a case, the NAT session lookup will match any port number to this field.

The value of this object must be zero when the object is not a representative field (SrcPort, DstPort, or ICMP identifier) of the session tuple in either the public realm or the private realm."

::= { natSessionEntry 12 }

natSessionPrivateDstAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The destination IP address of the session endpoint that lies in the private network.

The value of this object must be zero when the natSessionPrivateDstEPBindId object has a zero value. In such a scenario, the NAT session lookup will match any IP address to this field.

The type of this address is determined by the value of the natSessionPrivateAddrType object."

::= { natSessionEntry 13 }

natSessionPrivateDstPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"When the value of protocol is TCP or UDP, this object represents the destination port in the first packet of session while in private-realm. On the other hand, when the protocol is ICMP, this object is not relevant and should be set to zero.

The value of this object must be zero when the natSessionPrivateDstEPBindId object has a zero value and natSessionPrivateDstEPBindMode is set to addressPortBind(2). In such a case, the NAT session lookup will match any port number to this field.

The value of this object must be zero when the object is not a representative field (SrcPort, DstPort, or ICMP identifier) of the session tuple in either the public realm or the private realm."

::= { natSessionEntry 14 }

natSessionPublicAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object specifies the address type used for natSessionPublicSrcAddr and natSessionPublicDstAddr."
 ::= { natSessionEntry 15 }

natSessionPublicSrcAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The source IP address of the session endpoint that lies in the public network.

The value of this object must be zero when the natSessionPrivateSrcEPBindId object has a zero value. In such a scenario, the NAT session lookup will match any IP address to this field.

The type of this address is determined by the value of the natSessionPublicAddrType object."
 ::= { natSessionEntry 16 }

natSessionPublicSrcPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-only
When the value of protocol is TCP or UDP, this object represents the source port in the first packet of session while in public-realm. On the other hand, when protocol is ICMP, a NAT session is created only for query/response type ICMP messages such as ICMP echo, Timestamp, and Information request messages, and this object represents the public-realm specific identifier in the ICMP message, as defined in RFC 792 for ICMPv4 and in RFC 2463 for ICMPv6.

The value of this object must be zero when the natSessionPrivateSrcEPBindId object has a zero value and natSessionPrivateSrcEPBindMode is set to addressPortBind(2). In such a scenario, the NAT session lookup will match any port number to this field.

The value of this object must be zero when the object is not a representative field (SrcPort, DstPort or ICMP identifier) of the session tuple in either the public realm or the private realm.

::= { natSessionEntry 17 }

natSessionPublicDstAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The destination IP address of the session endpoint that lies in the public network.

The value of this object must be non-zero when the natSessionPrivateDstEPBindId object has a non-zero value. If the value of this object and the corresponding natSessionPrivateDstEPBindId object value is zero, then the NAT session lookup will match any IP address to this field.

The type of this address is determined by the value of the natSessionPublicAddrType object."

::= { natSessionEntry 18 }

natSessionPublicDstPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"When the value of protocol is TCP or UDP, this object represents the destination port in the first packet of session while in public-realm. On the other hand, when the protocol is ICMP, this object is not relevant for translation and should be zero.

The value of this object must be zero when the natSessionPrivateDSTEPBindId object has a zero value and natSessionPrivateDSTEPBindMode is addressPortBind(2). In such a scenario, the NAT session lookup will match any port number to this field.

The value of this object must be zero when the object is not a representative field (SrcPort, DstPort, or ICMP identifier) of the session tuple in either the public realm or the private realm."

::= { natSessionEntry 19 }

natSessionMaxIdleTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The max time for which this session can be idle without detecting a packet."
::= { natSessionEntry 20 }

natSessionCurrentIdleTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The time since a packet belonging to this session was last detected."
::= { natSessionEntry 21 }

natSessionInTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of inbound packets that were translated for this session.

Discontinuities in the value of this counter can occur at reinitialization of the management system and at other
times, as indicated by the value of
ifCounterDiscontinuityTime on the relevant interface.
::= { natSessionEntry 22 }

natSessionOutTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of outbound packets that were translated for
this session.
Discontinuities in the value of this counter can occur at
reinitialization of the management system and at other
times, as indicated by the value of
ifCounterDiscontinuityTime on the relevant interface."
::= { natSessionEntry 23 }

--
-- The Protocol table
--

natProtocolTable OBJECT-TYPE
SYNTAX SEQUENCE OF NatProtocolEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table containing per protocol NAT
statistics."
::= { natMIBObjects 10 }

natProtocolEntry OBJECT-TYPE
SYNTAX NatProtocolEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) containing NAT statistics
pertaining to a particular protocol."
INDEX { natProtocol }
::= { natProtocolTable 1 }

NatProtocolEntry ::= SEQUENCE {
 natProtocol NatProtocolType,
 natProtocolInTranslates Counter64,
 natProtocolOutTranslates Counter64,
 natProtocolDiscards Counter64
}
natProtocol OBJECT-TYPE
SYNTAX NatProtocolType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object represents the protocol pertaining to which
parameters are reported."
 ::= { natProtocolEntry 1 }

natProtocolInTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of inbound packets pertaining to the protocol
identified by natProtocol that underwent NAT.

Discontinuities in the value of this counter can occur at
reinitialization of the management system and at other
times, as indicated by the value of
ifCounterDiscontinuityTime on the relevant interface."
 ::= { natProtocolEntry 2 }

natProtocolOutTranslates OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of outbound packets pertaining to the protocol
identified by natProtocol that underwent NAT.

Discontinuities in the value of this counter can occur at
reinitialization of the management system and at other
times, as indicated by the value of
ifCounterDiscontinuityTime on the relevant interface."
 ::= { natProtocolEntry 3 }

natProtocolDiscards OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets pertaining to the protocol
identified by natProtocol that had to be
rejected/dropped due to lack of resources. These
rejections could be due to session timeout, resource
unavailability, lack of address space, etc."
Discontinuities in the value of this counter can occur at reinitialization of the management system and at other times, as indicated by the value of ifCounterDiscontinuityTime on the relevant interface."

::= { natProtocolEntry 4 }

-- Notifications section

--

natMIBNotifications OBJECT IDENTIFIER ::= { natMIB 0 }

-- Notifications

--

natPacketDiscard NOTIFICATION-TYPE
OBJECTS { ifIndex }
STATUS current
DESCRIPTION "This notification is generated when IP packets are discarded by the NAT function; e.g., due to lack of mapping space when NAT is out of addresses or ports.

Note that the generation of natPacketDiscard notifications is throttled by the agent, as specified by the 'natNotifThrottlingInterval' object."

::= { natMIBNotifications 1 }

-- Conformance information.

--

natMIBConformance OBJECT IDENTIFIER ::= { natMIB 2 }

natMIBGroups OBJECT IDENTIFIER ::= { natMIBConformance 1 }
natMIBCompliances OBJECT IDENTIFIER ::= { natMIBConformance 2 }

-- Units of conformance

--

natConfigGroup OBJECT-GROUP
OBJECTS { natInterfaceRealm,
 natInterfaceServiceType,
 natInterfaceStorageType,
 natInterfaceRowStatus,
 natAddrMapName,}
natAddrMapEntryType,
natAddrMapTranslationEntity,
natAddrMapLocalAddrType,
natAddrMapLocalAddrFrom,
natAddrMapLocalAddrTo,
natAddrMapLocalPortFrom,
natAddrMapLocalPortTo,
natAddrMapGlobalAddrType,
natAddrMapGlobalAddrFrom,
natAddrMapGlobalAddrTo,
natAddrMapGlobalPortFrom,
natAddrMapGlobalPortTo,
natAddrMapProtocol,
natAddrMapStorageType,
natAddrMapRowStatus,
natBindDefIdleTimeout,
natUdpDefIdleTimeout,
natIcmpDefIdleTimeout,
natOtherDefIdleTimeout,
natTcpDefIdleTimeout,
natTcpDefNegTimeout,
natNotifThrottlingInterval }

STATUS current

DESCRIPTION
"A collection of configuration-related information required to support management of devices supporting NAT."
::= { natMIBGroups 1 }

natTranslationGroup OBJECT-GROUP
OBJECTS { natAddrBindNumberOfEntries,
natAddrBindGlobalAddrType,
natAddrBindGlobalAddr,
natAddrBindId,
natAddrBindTranslationEntity,
natAddrBindType,
natAddrBindMapIndex,
natAddrBindSessions,
natAddrBindMaxIdleTime,
natAddrBindCurrentIdleTime,
natAddrBindInTranslates,
natAddrBindOutTranslates,
natAddrPortBindNumberOfEntries,
natAddrPortBindGlobalAddrType,
natAddrPortBindGlobalAddr,
natAddrPortBindGlobalPort,
natAddrPortBindId,
natAddrPortBindTranslationEntity,
natAddrPortBindType,
natAddrPortBindMapIndex,
natAddrPortBindSessions,
natAddrPortBindMaxIdleTime,
natAddrPortBindCurrentIdleTime,
natAddrPortBindInTranslates,
natAddrPortBindOutTranslates,
natSessionPrivateSrcEPBindId,
natSessionPrivateSrcEPBindMode,
natSessionPrivateDstEPBindId,
natSessionPrivateDstEPBindMode,
natSessionDirection,
natSessionUpTime,
natSessionAddrMapIndex,
natSessionProtocolType,
natSessionPrivateAddrType,
natSessionPrivateSrcAddr,
natSessionPrivateSrcPort,
natSessionPrivateDstAddr,
natSessionPrivateDstPort,
natSessionPublicAddrType,
natSessionPublicSrcAddr,
natSessionPublicSrcPort,
natSessionPublicDstAddr,
natSessionPublicDstPort,
natSessionMaxIdleTime,
natSessionCurrentIdleTime,
natSessionInTranslates,
natSessionOutTranslates

STATUS current

DESCRIPTION
"A collection of BIND-related objects required to support
management of devices supporting NAT."

::= { natMIBGroups 2 }

natStatsInterfaceGroup OBJECT-GROUP
 OBJECTS { natInterfaceInTranslates,
 natInterfaceOutTranslates,
 natInterfaceDiscards }
 STATUS current
 DESCRIPTION
"A collection of NAT statistics associated with the
interface on which NAT is configured, to aid
troubleshooting/monitoring of the NAT operation."

::= { natMIBGroups 3 }

natStatsProtocolGroup OBJECT-GROUP
OBJECTS { natProtocolInTranslates,
natProtocolOutTranslates,
natProtocolDiscards }
STATUS current
DESCRIPTION
"A collection of protocol specific NAT statistics,
to aid troubleshooting/monitoring of NAT operation."
::= { natMIBGroups 4 }

natStatsAddrMapGroup OBJECT-GROUP
OBJECTS { natAddrMapInTranslates,
natAddrMapOutTranslates,
natAddrMapDiscards,
natAddrMapAddrUsed }
STATUS current
DESCRIPTION
"A collection of address map specific NAT statistics,
to aid troubleshooting/monitoring of NAT operation."
::= { natMIBGroups 5 }

natMIBNotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS { natPacketDiscard }
STATUS current
DESCRIPTION
"A collection of notifications generated by
devices supporting this MIB."
::= { natMIBGroups 6 }

--
-- Compliance statements
--

natMIBFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"When this MIB is implemented with support for
read-create, then such an implementation can claim
full compliance. Such devices can then be both
monitored and configured with this MIB.

The following index objects cannot be added as OBJECT
clauses but nevertheless have the compliance
requirements:
"

-- OBJECT natAddrBindLocalAddrType
-- SYNTAX InetAddressType { ipv4(1), ipv6(2) }
-- DESCRIPTION
-- "An implementation is required to support
global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natAddrBindLocalAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION "An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natAddrPortBindLocalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION "An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natAddrPortBindLocalAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION "An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

MODULE IF-MIB -- The interfaces MIB, RFC2863
MANDATORY-GROUPS {
 ifCounterDiscontinuityGroup
}

MODULE -- this module
MANDATORY-GROUPS { natConfigGroup, natTranslationGroup, natStatsInterfaceGroup }

GROUP natStatsProtocolGroup
DESCRIPTION "This group is optional."

GROUP natStatsAddrMapGroup
DESCRIPTION "This group is optional."

GROUP natMIBNotificationGroup
DESCRIPTION "This group is optional."

OBJECT natAddrMapLocalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION "An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

for IPv4 and IPv6."

OBJECT natAddrMapLocalAddrFrom
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

OBJECT natAddrMapLocalAddrTo
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

OBJECT natAddrMapGlobalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

OBJECT natAddrMapGlobalAddrFrom
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

OBJECT natAddrMapGlobalAddrTo
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

OBJECT natAddrBindGlobalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

OBJECT natAddrBindGlobalAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support for IPv4 and IPv6.

OBJECT natAddrPortBindGlobalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natAddrPortBindGlobalAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPrivateAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPrivateSrcAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPrivateDstAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPublicAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPublicSrcAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

OBJECT natSessionPublicDstAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4
and/or IPv6 addresses, depending on its support
for IPv4 and IPv6."

::= { natMIBCompliances 1 }

natMIBReadOnlyCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"When this MIB is implemented without support for
read-create (i.e., in read-only mode), then such an
implementation can claim read-only compliance.
Such a device can then be monitored but cannot be
configured with this MIB.

The following index objects cannot be added as OBJECT
clauses but nevertheless have the compliance
requirements:
"

-- OBJECT natAddrBindLocalAddrType
-- SYNTAX InetAddressType { ipv4(1), ipv6(2) }
-- DESCRIPTION
-- "An implementation is required to support
global IPv4 and/or IPv6 addresses, depending
-- on its support for IPv4 and IPv6."

-- OBJECT natAddrBindLocalAddr
-- SYNTAX InetAddress (SIZE(4|16))
-- DESCRIPTION
-- "An implementation is required to support
global IPv4 and/or IPv6 addresses, depending
-- on its support for IPv4 and IPv6."

-- OBJECT natAddrPortBindLocalAddrType
-- SYNTAX InetAddressType { ipv4(1), ipv6(2) }
-- DESCRIPTION
-- "An implementation is required to support
global IPv4 and/or IPv6 addresses, depending
-- on its support for IPv4 and IPv6."
-- OBJECT natAddrPortBindLocalAddr
-- SYNTAX InetAddress (SIZE(4|16))
-- DESCRIPTION
-- "An implementation is required to support
-- global IPv4 and/or IPv6 addresses, depending
-- on its support for IPv4 and IPv6."

MODULE IF-MIB -- The interfaces MIB, RFC2863
MANDATORY-GROUPS {
 ifCounterDiscontinuityGroup
}

MODULE -- this module
MANDATORY-GROUPS { natConfigGroup, natTranslationGroup,
 natStatsInterfaceGroup }

GROUP natStatsProtocolGroup
DESCRIPTION
 "This group is optional."

GROUP natStatsAddrMapGroup
DESCRIPTION
 "This group is optional."

GROUP natMIBNotificationGroup
DESCRIPTION
 "This group is optional."

OBJECT natInterfaceRowStatus
SYNTAX RowStatus { active(1) }
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required, and active is the only
 status that needs to be supported."

OBJECT natAddrMapLocalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required. An implementation is
 required to support global IPv4 and/or IPv6 addresses,
 depending on its support for IPv4 and IPv6."

OBJECT natAddrMapLocalAddrFrom
SYNTAX InetAddress (SIZE(4|16))
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required. An implementation is
 required to support global IPv4 and/or IPv6 addresses,
 depending on its support for IPv4 and IPv6."
OBJECT natAddrMapLocalAddrTo
SYNTAX InetAddress (SIZE(4|16))
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required. An implementation is
 required to support global IPv4 and/or IPv6 addresses,
 depending on its support for IPv4 and IPv6."

OBJECT natAddrMapGlobalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required. An implementation is
 required to support global IPv4 and/or IPv6 addresses,
 depending on its support for IPv4 and IPv6."

OBJECT natAddrMapGlobalAddrFrom
SYNTAX InetAddress (SIZE(4|16))
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required. An implementation is
 required to support global IPv4 and/or IPv6 addresses,
 depending on its support for IPv4 and IPv6."

OBJECT natAddrMapGlobalAddrTo
SYNTAX InetAddress (SIZE(4|16))
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required. An implementation is
 required to support global IPv4 and/or IPv6 addresses,
 depending on its support for IPv4 and IPv6."

OBJECT natAddrMapRowStatus
SYNTAX RowStatus { active(1) }
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required, and active is the only
 status that needs to be supported."

OBJECT natAddrBindGlobalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
 "An implementation is required to support global IPv4
 and/or IPv6 addresses, depending on its support for
 IPv4 and IPv6."

OBJECT natAddrBindGlobalAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natAddrPortBindGlobalAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natAddrPortBindGlobalAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPrivateAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPrivateSrcAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPrivateDstAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPublicAddrType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPublicSrcAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION "An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

OBJECT natSessionPublicDstAddr
SYNTAX InetAddress (SIZE(4|16))
DESCRIPTION "An implementation is required to support global IPv4 and/or IPv6 addresses, depending on its support for IPv4 and IPv6."

::= { natMIBCompliances 2 }

END

6. Acknowledgements

The authors of the document would like to thank Randy Turner, Ashwini S.T., Kevin Luehrs, Sam Sankoorikal, and Juergen Quittek for their valuable feedback.

The authors would like to especially thank Juergen Schoenwaelder for his patient and fine-combed review and detailed comments as a MIB doctor. The NAT MIB is much clearer and flatter as a result of Juergen’s suggestions.

7. Security Considerations

It is clear that this MIB can potentially be useful for configuration. Unauthorized access to the write-able objects could cause a denial of service and/or widespread network disturbance. Hence, the support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

At this writing, no security holes have been identified beyond those that SNMP Security is itself intended to address. These relate primarily to controlled access to sensitive information and the ability to configure a device - or which might result from operator error, which is beyond the scope of any security architecture.

There are a number of managed objects in this MIB that may contain information that may be sensitive from a business perspective, in that they may represent NAT bind and session information. The NAT bind and session objects reveal the identity of private hosts that are engaged in a session with external end nodes. A curious outsider
could monitor these two objects to assess the number of private hosts being supported by the NAT device. Further, a disgruntled former employee of an enterprise could use the NAT bind and session information to break into specific private hosts by intercepting the existing sessions or originating new sessions into the host. There are no objects that are sensitive in their own right, such as passwords or monetary amounts. It may even be important to control GET access to these objects and possibly to encrypt the values of these objects when they are sent over the network via SNMP. Not all versions of SNMP provide features for such a secure environment.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

8. References

8.1. Normative References

8.2. Informative References

Authors’ Addresses

R. Rohit
Mascon Global Limited
#59/2 100 ft Ring Road
Banashankari II Stage
Bangalore 560 070
India

Phone: +91 80 679 6227
EMail: rrohit74@hotmail.com

P. Srisuresh
Caymas Systems, Inc.
1179-A North McDowell Blvd.
Petaluma, CA 94954

Phone: (707) 283-5063
EMail: srisuresh@yahoo.com

Rajiv Raghunarayan
Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134

Phone: +1 408 853 9612
EMail: raraghun@cisco.com

Nalinaksh Pai
Cisco Systems, Inc.
Prestige Waterford
No. 9, Brunton Road
Bangalore - 560 025
India

Phone: +91 80 532 1300 extn. 6354
EMail: npai@cisco.com
Cliff Wang
Information Security
Bank One Corp
1111 Polaris Pkwy
Columbus, OH 43240

Phone: +1 614 213 6117
EMail: cliffwang2000@yahoo.com