Conversion of NGP-0 Coordinates to Device
--

Specific Coordinates

Conversion of NGP-0 coordinates to floating point PDP-10 coordinates was discussed in RFC #387. In general, however, it is undesirable to convert NGP coordinates to floating point coordinates because real devices require integer addressing. To this end, a means is described to convert NGP coordinates to integer coordinates in the range zero to M, where M is the maximum address of the device screen on a machine using 2’s complement arithmetic. It would not, however, be difficult to modify this algorithm to operate on machines using one’s complement or sign-magnitude arithmetic.

First consider the NGP coordinate format:

```
+--n
|  |
+--n
```

Where the sign occupies the most significant bit of the coordinate followed by bits of numerical information (initial implementation of NGP requires N=15). Negative numbers are represented by 2’s complement. Conversion to device coordinates is accomplished by:

\[
D = S \times f + S
\]

Where \(D \) => integer device coordinate
\(S \) => scaling factor (typically \(M/2 \))
\(f \) => NGP fractional coordinate

Let us rewrite this as:

\[
D = S \times (2 \times f) / 2 + S
\]
Now factor S into two terms:

\[
S = Q \times 2
\]

Where Q is an odd integer and I is an integer.

When:

\[
D = Q \times 2 \times (2^f)/2 + S
\]

\[
D = Q \times 2 \times (2^f) + S
\]

The factor \(2^f\) is represented in 2's complement form simply by extending the sign bit of f into the upper portion of the computer word. If \(Q = 1\) (as it would be with many devices), it can be ignored. If \(Q > 1\), we may console ourselves that an integer multiply is faster on most machines than a floating point multiply. In fact, on a PDP-10, this multiply can usually be performed with no access to memory since Q is usually small.

We are now left with the \(2^{I-n}\) factor. This can be accomplished with an arithmetic shift left by \((I-n)\) or an arithmetic shift right by \((n-I)\) as is appropriate. The offset factor, S, may now be added using an integer add.

The procedure for converting NGP coordinates to integer device coordinates is then:

1. move coordinate to a register and extend sign
2. integer multiply by Q (if necessary)
3. arithmetic shift left by \((I-n)\)
4. integer add S

This procedure would generally be much faster than:

1. move coordinate to register and extend sign
2. float fractional coordinate
3. floating point multiply
4. floating point add
5. conversion to fixed point

[This RFC was put into machine readable form for entry]
[into the online RFC archives by BBN Corp. under the]
[direction of Alex McKenzie. 1/97]