Management Information Base
for the Transmission Control Protocol (TCP)

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects used for implementations of the Transmission Control Protocol (TCP) in an IP version independent manner. This memo obsoletes RFCs 2452 and 2012.

Table of Contents

1. The Internet-Standard Management Framework 2
2. Overview. ... 2
 2.1. Relationship to Other MIBs. 2
3. Definitions .. 4
4. Acknowledgements. 20
5. References. ... 20
 5.1. Normative References. 20
 5.2. Informative References. 21
6. Security Considerations 21
7. Contributors. .. 23
Editor’s Address. 23
Full Copyright Statement. 24
1. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

2. Overview

The current TCP-MIB defined in this memo consists of two tables and a group of scalars:

- The tcp group of scalars includes two sets of objects:

 o Parameters of a TCP protocol engine. These include parameters such as the retransmission algorithm in use (e.g., vanj [VANJ]) and the retransmission timeout values.

 o Statistics of a TCP protocol engine. These include counters for the number of active/passive opens, input/output segments, and errors. Discontinuities in the stats are identified via the sysUpTime object, defined in [RFC3418].

- The tcpConnectionTable provides access to status information for all TCP connections handled by a TCP protocol engine. In addition, the table reports identification of the operating system level processes that handle the TCP connections.

- The tcpListenerTable provides access to information about all TCP listening endpoints known by a TCP protocol engine. And as with the connection table, the tcpListenerTable also reports the identification of the operating system level processes that handle this listening TCP endpoint.

2.1. Relationship to Other MIBs

This section discusses the relationship of this TCP-MIB module to other MIB modules.
2.1.1. Relationship to RFC1213-MIB

TCP related MIB objects were originally defined as part of the RFC1213-MIB defined in RFC 1213 [RFC1213]. The TCP related objects of the RFC1213-MIB were later copied into a separate MIB module and published in RFC 2012 [RFC2012] in SMIv2 format.

The previous versions of the TCP-MIB both defined the tcpConnTable, which has been deprecated basically for two reasons:

1. The tcpConnTable only supports IPv4.

 The current approach in the IETF is to write IP version neutral MIBs, based on the InetAddressType and InetAddress constructs defined in [RFC4001], rather than to have different definitions for various version of IP. This reduces the amount of overhead when new objects are introduced, as there is only one place to add them. Hence, the approach taken in [RFC2452], of having separate tables, is not continued.

2. The tcpConnTable mixes listening endpoints with connections.

 It turns out that connections tend to have a different behaviour and management access pattern than listening endpoints. Therefore, splitting the original tcpConnTable into two tables allows for the addition of specific status and statistics objects for listening endpoints and connections.

2.1.2. Relationship to IPV6-TCP-MIB

The IPV6-TCP-MIB defined in RFC 2452 has been moved to Historic status because the approach of having separate IP version specific tables is not followed anymore. Implementation of RFC 2452 is no longer suggested.

2.1.3. Relationship to HOST-RESOURCES-MIB and SYSAPPL-MIB

The tcpConnectionTable and the tcpListenerTable report the identification of the operating system level process that handles a connection or a listening endpoint. The value is reported as an Unsigned32, which is expected to be the same as the hrSWRunIndex of the HOST-RESOURCES-MIB [RFC2790] (if the value is smaller than 2147483647) or the sysApplElmtRunIndex of the SYSAPPL-MIB [RFC2287]. This allows management applications to identify the TCP connections that belong to an operating system level process, which has proven to be valuable in operational environments.
3. Definitions

TCP-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, Integer32, Unsigned32,
 Gauge32, Counter32, Counter64, IpAddress, mib-2
 FROM SNMPv2-SMI
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 InetAddress, InetAddressType,
 InetPortNumber FROM INET-ADDRESS-MIB;

tcpMIB MODULE-IDENTITY
LAST-UPDATED "200502180000Z" -- 18 February 2005
ORGANIZATION
 "IETF IPv6 MIB Revision Team
 http://www.ietf.org/html.charters/ipv6-charter.html"
CONTACT-INFO
 "Rajiv Raghunarayan (editor)
 Cisco Systems Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 Phone: +1 408 853 9612
 Email: <raraghun@cisco.com>
 Send comments to <ipv6@ietf.org>"
DESCRIPTION
 "The MIB module for managing TCP implementations.
 Copyright (C) The Internet Society (2005). This version
 of this MIB module is a part of RFC 4022; see the RFC
 itself for full legal notices."
REVISION "200502180000Z" -- 18 February 2005
DESCRIPTION
 "IP version neutral revision, published as RFC 4022."
REVISION "9411010000Z"
DESCRIPTION
 "Initial SMIv2 version, published as RFC 2012."
REVISION "9103310000Z"
DESCRIPTION
 "The initial revision of this MIB module was part of
 MIB-II."
::= { mib-2 49 }

-- the TCP base variables group
tcp OBJECT IDENTIFIER ::= { mib-2 6 }

-- Scalars

tcpRtoAlgorithm OBJECT-TYPE
SYNTAX INTEGER {
 other(1), -- none of the following
 constant(2), -- a constant rto
 rsre(3), -- MIL-STD-1778, Appendix B
 vanj(4), -- Van Jacobson’s algorithm
 rfc2988(5) -- RFC 2988
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The algorithm used to determine the timeout value used for retransmitting unacknowledged octets."
::= { tcp 1 }

tcpRtoMin OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
UNITS "milliseconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The minimum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend on the algorithm used to determine the retransmission timeout; in particular, the IETF standard algorithm rfc2988(5) provides a minimum value."
::= { tcp 2 }

tcpRtoMax OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
UNITS "milliseconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The maximum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend on the algorithm used to determine the retransmission timeout; in particular, the IETF standard algorithm rfc2988(5) provides an upper bound (as part of an adaptive backoff algorithm)."
::= { tcp 3 }
tcpMaxConn OBJECT-TYPE
 SYNTAX Integer32 {-1 | 0..2147483647}
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The limit on the total number of TCP connections the entity
 can support. In entities where the maximum number of
 connections is dynamic, this object should contain the
 value -1."
 ::= { tcp 4 }

tcpActiveOpens OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times that TCP connections have made a direct
 transition to the SYN-SENT state from the CLOSED state.

 Discontinuities in the value of this counter are
 indicated via discontinuities in the value of sysUpTime."
 ::= { tcp 5 }

tcpPassiveOpens OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times TCP connections have made a direct
 transition to the SYN-RCVD state from the LISTEN state.

 Discontinuities in the value of this counter are
 indicated via discontinuities in the value of sysUpTime."
 ::= { tcp 6 }

tcpAttemptFails OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times that TCP connections have made a direct
 transition to the CLOSED state from either the SYN-SENT
 state or the SYN-RCVD state, plus the number of times that
 TCP connections have made a direct transition to the
 LISTEN state from the SYN-RCVD state.

 Discontinuities in the value of this counter are
 indicated via discontinuities in the value of sysUpTime."
::= { tcp 7 }

tcpEstabResets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times that TCP connections have made a direct
transition to the CLOSED state from either the ESTABLISHED
state or the CLOSE-WAIT state.

Discontinuities in the value of this counter are
indicated via discontinuities in the value of sysUpTime."
::= { tcp 8 }

tcpCurrEstab OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of TCP connections for which the current state
is either ESTABLISHED or CLOSE-WAIT."
::= { tcp 9 }

tcpInSegs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of segments received, including those
received in error. This count includes segments received
on currently established connections.

Discontinuities in the value of this counter are
indicated via discontinuities in the value of sysUpTime."
::= { tcp 10 }

tcpOutSegs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of segments sent, including those on
current connections but excluding those containing only
retransmitted octets.

Discontinuities in the value of this counter are
indicated via discontinuities in the value of sysUpTime."
::= { tcp 11 }

tcpRetransSegs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of segments retransmitted; that is, the number of TCP segments transmitted containing one or more previously transmitted octets.
Discontinuities in the value of this counter are indicated via discontinuities in the value of sysUpTime."
 ::= { tcp 12 }

tcpInErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of segments received in error (e.g., bad TCP checksums).
Discontinuities in the value of this counter are indicated via discontinuities in the value of sysUpTime."
 ::= { tcp 14 }

tcpOutRsts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of TCP segments sent containing the RST flag.
Discontinuities in the value of this counter are indicated via discontinuities in the value of sysUpTime."
 ::= { tcp 15 }

-- { tcp 16 } was used to represent the ipv6TcpConnTable in RFC 2452, which has since been obsoleted. It MUST not be used.

tcpHCInSegs OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of segments received, including those received in error. This count includes segments received
on currently established connections. This object is
the 64-bit equivalent of tcpInSegs.

Discontinuities in the value of this counter are
indicated via discontinuities in the value of sysUpTime."

::= { tcp 17 }
tcpHCOOutSegs OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of segments sent, including those on
current connections but excluding those containing only
retransmitted octets. This object is the 64-bit
equivalent of tcpOutSegs.

Discontinuities in the value of this counter are
indicated via discontinuities in the value of sysUpTime."

::= { tcp 18 }

-- The TCP Connection table
tcpConnectionTable OBJECT-TYPE
SYNTAX SEQUENCE OF TcpConnectionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing information about existing TCP
connections. Note that unlike earlier TCP MIBs, there
is a separate table for connections in the LISTEN state."

::= { tcp 19 }
tcpConnectionEntry OBJECT-TYPE
SYNTAX TcpConnectionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row of the tcpConnectionTable containing
information about a particular current TCP connection.
Each row of this table is transient in that it ceases to
exist when (or soon after) the connection makes the
transition to the CLOSED state."
INDEX { tcpConnectionLocalAddressType,
tcpConnectionLocalAddress,
tcpConnectionLocalPort,
tcpConnectionRemAddressType,
tcpConnectionRemAddress,
tcpConnectionRemPort } ::= { tcpConnectionTable 1 }

TcpConnectionEntry ::= SEQUENCE {
tcpConnectionLocalAddressType InetAddressType,
tcpConnectionLocalAddress InetAddress,
tcpConnectionLocalPort InetPortNumber,
tcpConnectionRemAddressType InetAddressType,
tcpConnectionRemAddress InetAddress,
tcpConnectionRemPort InetPortNumber,
tcpConnectionState INTEGER,
tcpConnectionProcess Unsigned32
}

tcpConnectionLocalAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The address type of tcpConnectionLocalAddress."
::= { tcpConnectionEntry 1 }

tcpConnectionLocalAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The local IP address for this TCP connection. The type
of this address is determined by the value of
tcpConnectionLocalAddressType.

As this object is used in the index for the
tcpConnectionTable, implementors should be
careful not to create entries that would result in OIDs
with more than 128 subidentifiers; otherwise the information
cannot be accessed by using SNMPv1, SNMPv2c, or SNMPv3."
::= { tcpConnectionEntry 2 }

 tcpConnectionLocalPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The local port number for this TCP connection."
::= { tcpConnectionEntry 3 }

tcpConnectionRemAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The address type of tcpConnectionRemAddress."
 ::= { tcpConnectionEntry 4 }

tcpConnectionRemAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The remote IP address for this TCP connection. The type
of this address is determined by the value of
tcpConnectionRemAddressType.

As this object is used in the index for the
tcpConnectionTable, implementors should be
careful not to create entries that would result in OIDs
with more than 128 subidentifiers; otherwise the information
cannot be accessed by using SNMPv1, SNMPv2c, or SNMPv3."
 ::= { tcpConnectionEntry 5 }

tcpConnectionRemPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The remote port number for this TCP connection."
 ::= { tcpConnectionEntry 6 }

tcpConnectionState OBJECT-TYPE
SYNTAX INTEGER {
 closed(1),
 listen(2),
 synSent(3),
 synReceived(4),
 established(5),
 finWait1(6),
 finWait2(7),
 closeWait(8),
 lastAck(9),
 closing(10),
 timeWait(11),
 deleteTCB(12)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The state of this TCP connection.

The value listen(2) is included only for parallelism to the old tcpConnTable and should not be used. A connection in LISTEN state should be present in the tcpListenerTable.

The only value that may be set by a management station is deleteTCB(12). Accordingly, it is appropriate for an agent to return a 'badValue' response if a management station attempts to set this object to any other value.

If a management station sets this object to the value deleteTCB(12), then the TCB (as defined in [RFC793]) of the corresponding connection on the managed node is deleted, resulting in immediate termination of the connection.

As an implementation-specific option, a RST segment may be sent from the managed node to the other TCP endpoint (note, however, that RST segments are not sent reliably)."

::= { tcpConnectionEntry 7 }

tcpConnectionProcess OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The system's process ID for the process associated with this connection, or zero if there is no such process. This value is expected to be the same as HOST-RESOURCES-MIB::hrSWRunIndex or SYSAPPL-MIB::sysApplElmtRunIndex for some row in the appropriate tables."

::= { tcpConnectionEntry 8 }

-- The TCP Listener table

tcpListenerTable OBJECT-TYPE
SYNTAX SEQUENCE OF TcpListenerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A table containing information about TCP listeners. A listening application can be represented in three possible ways:

1. An application that is willing to accept both IPv4 and IPv6 datagrams is represented by
a tcpListenerLocalAddressType of unknown (0) and a tcpListenerLocalAddress of ''h (a zero-length octet-string).

2. An application that is willing to accept only IPv4 or IPv6 datagrams is represented by a tcpListenerLocalAddressType of the appropriate address type and a tcpListenerLocalAddress of '0.0.0.0' or '::' respectively.

3. An application that is listening for data destined only to a specific IP address, but from any remote system, is represented by a tcpListenerLocalAddressType of an appropriate address type, with tcpListenerLocalAddress as the specific local address.

NOTE: The address type in this table represents the address type used for the communication, irrespective of the higher-layer abstraction. For example, an application using IPv6 'sockets' to communicate via IPv4 between ::ffff:10.0.0.1 and ::ffff:10.0.0.2 would use InetAddressType ipv4(1))."

::= { tcp 20 }
tcpListenerEntry OBJECT-TYPE
SYNTAX TcpListenerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual row of the tcpListenerTable containing information about a particular TCP listener."
INDEX { tcpListenerLocalAddressType, tcpListenerLocalAddress, tcpListenerLocalPort }
::= { tcpListenerTable 1 }

 TcpListenerEntry ::= SEQUENCE {
 tcpListenerLocalAddressType InetAddressType,
 tcpListenerLocalAddress InetAddress,
 tcpListenerLocalPort InetPortNumber,
 tcpListenerProcess Unsigned32
 }
tcpListenerLocalAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The address type of tcpListenerLocalAddress. The value should be unknown (0) if connection initiations to all local IP addresses are accepted."

::= { tcpListenerEntry 1 }

tcpListenerLocalAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The local IP address for this TCP connection.

The value of this object can be represented in three possible ways, depending on the characteristics of the listening application:

1. For an application willing to accept both IPv4 and IPv6 datagrams, the value of this object must be ''h (a zero-length octet-string), with the value of the corresponding tcpListenerLocalAddressType object being unknown (0).

2. For an application willing to accept only IPv4 or IPv6 datagrams, the value of this object must be '0.0.0.0' or '::' respectively, with tcpListenerLocalAddressType representing the appropriate address type.

3. For an application which is listening for data destined only to a specific IP address, the value of this object is the specific local address, with tcpListenerLocalAddressType representing the appropriate address type.

As this object is used in the index for the tcpListenerTable, implementors should be careful not to create entries that would result in OIDs with more than 128 subidentifiers; otherwise the information cannot be accessed, using SNMPv1, SNMPv2c, or SNMPv3."

::= { tcpListenerEntry 2 }

tcpListenerLocalPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The local port number for this TCP connection."

::= { tcpListenerEntry 3 }
tcpListenerProcess OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The system's process ID for the process associated with
 this listener, or zero if there is no such process. This
 value is expected to be the same as HOST-RESOURCES-MIB::
 hrSWRunIndex or SYSAPPL-MIB::sysApplElmtRunIndex for some
 row in the appropriate tables."
 ::= { tcpListenerEntry 4 }

-- The deprecated TCP Connection table

tcpConnTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TcpConnEntry
 MAX-ACCESS not-accessible
 STATUS deprecated
 DESCRIPTION
 "A table containing information about existing IPv4-specific
 TCP connections or listeners. This table has been
 deprecated in favor of the version neutral
tcpConnectionTable."
 ::= { tcp 13 }

tcpConnEntry OBJECT-TYPE
 SYNTAX TcpConnEntry
 MAX-ACCESS not-accessible
 STATUS deprecated
 DESCRIPTION
 "A conceptual row of the tcpConnTable containing information
 about a particular current IPv4 TCP connection. Each row
 of this table is transient in that it ceases to exist when
 (or soon after) the connection makes the transition to the
 CLOSED state."
 INDEX { tcpConnLocalAddress,
 tcpConnLocalPort,
 tcpConnRemAddress,
 tcpConnRemPort }
 ::= { tcpConnTable 1 }

TcpConnEntry ::= SEQUENCE {
 tcpConnState INTEGER,
 tcpConnLocalAddress IpAddress,
 tcpConnLocalPort Integer32,
 tcpConnRemAddress IpAddress,
 tcpConnRemPort Integer32}
tcpConnState OBJECT-TYPE
SYNTAX INTEGER {
 closed(1),
 listen(2),
 synSent(3),
 synReceived(4),
 established(5),
 finWait1(6),
 finWait2(7),
 closeWait(8),
 lastAck(9),
 closing(10),
 timeWait(11),
 deleteTCB(12)
}
MAX-ACCESS read-write
STATUS deprecated
DESCRIPTION "The state of this TCP connection. The only value that may be set by a management station is deleteTCB(12). Accordingly, it is appropriate for an agent to return a 'badValue' response if a management station attempts to set this object to any other value. If a management station sets this object to the value deleteTCB(12), then the TCB (as defined in [RFC793]) of the corresponding connection on the managed node is deleted, resulting in immediate termination of the connection. As an implementation-specific option, a RST segment may be sent from the managed node to the other TCP endpoint (note, however, that RST segments are not sent reliably)."
::= { tcpConnEntry 1 }

tcpConnLocalAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "The local IP address for this TCP connection. In the case of a connection in the listen state willing to accept connections for any IP interface associated with the node, the value 0.0.0.0 is used."
::= { tcpConnEntry 2 }
tcpConnLocalPort OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "The local port number for this TCP connection."
::= { tcpConnEntry 3 }

tcpConnRemAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "The remote IP address for this TCP connection."
::= { tcpConnEntry 4 }

tcpConnRemPort OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION "The remote port number for this TCP connection."
::= { tcpConnEntry 5 }

-- conformance information

tcpMIBConformance OBJECT IDENTIFIER ::= { tcpMIB 2 }
tcpMIBCompliances OBJECT IDENTIFIER ::= { tcpMIBConformance 1 }
tcpMIBGroups OBJECT IDENTIFIER ::= { tcpMIBConformance 2 }

-- compliance statements

tcpMIBCompliance2 MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for systems that implement TCP.
A number of INDEX objects cannot be
represented in the form of OBJECT clauses in SMIv2 but
have the following compliance requirements,
expressed in OBJECT clause form in this description
clause:

-- OBJECT tcpConnectionLocalAddressType
-- SYNTAX InetAddressType { ipv4(1), ipv6(2) }
-- DESCRIPTION
-- This MIB requires support for only global IPv4
and IPv6 address types.

-- OBJECT tcpConnectionRemAddressType
-- SYNTAX InetAddressType { ipv4(1), ipv6(2) }
-- DESCRIPTION
-- This MIB requires support for only global IPv4
-- and IPv6 address types.

-- OBJECT tcpListenerLocalAddressType
-- SYNTAX InetAddressType { unknown(0), ipv4(1),
-- ipv6(2) }
-- DESCRIPTION
-- This MIB requires support for only global IPv4
-- and IPv6 address types. The type unknown also
-- needs to be supported to identify a special
-- case in the listener table: a listen using
-- both IPv4 and IPv6 addresses on the device.

""

MODULE -- this module
MANDATORY-GROUPS { tcpBaseGroup, tcpConnectionGroup,
tcpListenerGroup }

GROUP tcpHCGroup
DESCRIPTION
"This group is mandatory for systems that are capable
of receiving or transmitting more than 1 million TCP
segments per second. 1 million segments per second will
cause a Counter32 to wrap in just over an hour."

OBJECT tcpConnectionState
SYNTAX INTEGER { closed(1), listen(2), synSent(3),
synReceived(4), established(5),
finWait1(6), finWait2(7), closeWait(8),
lastAck(9), closing(10), timeWait(11) }

MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, nor is support for the value
deleteTCB (12)."

::= { tcpMIBCompliances 2 }

tcpMIBCompliance MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION
"The compliance statement for IPv4-only systems that
implement TCP. In order to be IP version independent, this
compliance statement is deprecated in favor of
tcpMIBCompliance2. However, agents are still encouraged
to implement these objects in order to interoperate with
the deployed base of managers."
MODULE -- this module
 MANDATORY-GROUPS { tcpGroup }
OBJECT tcpConnState
MIN-ACCESS read-only
DESCRIPTION
 "Write access is not required."
 ::= { tcpMIBCompliances 1 }

-- units of conformance

tcpGroup OBJECT-GROUP
 OBJECTS { tcpRtoAlgorithm, tcpRtoMin, tcpRtoMax,
 tcpMaxConn, tcpActiveOpens, tcpPassiveOpens, tcpAttemptFails,
 tcpEstabResets, tcpCurrEstab, tcpInSegs,
 tcpOutSegs, tcpRetransSegs, tcpConnState,
 tcpConnLocalAddress, tcpConnLocalPort,
 tcpConnRemAddress, tcpConnRemPort,
 tcpInErrs, tcpOutRsts }
STATUS deprecated
DESCRIPTION
 "The tcp group of objects providing for management of TCP entities."
 ::= { tcpMIBGroups 1 }

tcpBaseGroup OBJECT-GROUP
 OBJECTS { tcpRtoAlgorithm, tcpRtoMin, tcpRtoMax,
 tcpMaxConn, tcpActiveOpens, tcpPassiveOpens, tcpAttemptFails,
 tcpEstabResets, tcpCurrEstab, tcpInSegs,
 tcpOutSegs, tcpRetransSegs, tcpInErrs, tcpOutRsts }
STATUS current
DESCRIPTION
 "The group of counters common to TCP entities."
 ::= { tcpMIBGroups 2 }

tcpConnectionGroup OBJECT-GROUP
 OBJECTS { tcpConnectionState, tcpConnectionProcess }
STATUS current
DESCRIPTION
 "The group provides general information about TCP connections."
 ::= { tcpMIBGroups 3 }

tcpListenerGroup OBJECT-GROUP
 OBJECTS { tcpListenerProcess }
4. Acknowledgements

This document contains a modified subset of RFC 1213 and updates RFC 2012 and RFC 2452. Acknowledgements are therefore due to the authors and editors of these documents for their excellent work. Several useful comments regarding usability and design were also received from Kristine Adamson. The authors would like to thank all these people for their contribution to this effort.

5. References

5.1. Normative References

5.2. Informative References

6. Security Considerations

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:

- The tcpConnectionState and tcpConnState objects have a MAX-ACCESS clause of read-write, which allows termination of an arbitrary connection. Unauthorized access could cause a denial of service.

Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to
control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

- The tcpConnectionTable and the tcpConnTable contain objects providing information about the active connections on the device, the status of these connections, and the associated processes. This information may be used by an attacker to launch attacks against known/unknown weakness in certain protocols/applications. In addition, access to the connection table could also have privacy implications, as it provides detailed information on active connections.

- The tcpListenerTable and the tcpConnTable contain objects providing information about listeners on an entity. For example, the tcpListenerLocalPort and tcpConnLocalPort objects can be used to identify what ports are open on the machine and what attacks are likely to succeed, without the attacker having to run a port scanner.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
7. Contributors

This document is an output of the IPv6 MIB revision team, and contributors to earlier versions of this document include:

Bill Fenner, AT&T Labs -- Research
EMail: fenner@research.att.com

Brian Haberman
EMail: brian@innovationslab.net

Shawn A. Routhier, Wind River
EMail: shawn.routhier@windriver.com

Juergen Schoenwalder, TU Braunschweig
EMail: schoenw@ibr.cs.tu-bs.de

Dave Thaler, Microsoft
EMail: dthaler@windows.microsoft.com

This document updates parts of the MIBs from several documents. RFC 2012 has been the base document for these updates, and RFC 2452 was the first document to define the managed objects for implementations of TCP over IPv6.

RFC 2012:

Keith McCloghrie, Cisco Systems (Editor)
EMail: kzm@cisco.com

RFC 2452:

Mike Daniele, Compaq Computer Corporation
EMail: daniele@zk3.dec.com

Editor’s Address

Rajiv Raghunarayan
Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
USA
EMail: raraghun@cisco.com
Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.