
Network Working Group E. Rescorla
Request for Comments: 4101 RTFM, Inc.
Category: Informational IAB
 June 2005

 Writing Protocol Models

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 The IETF process depends on peer review. However, IETF documents are
 generally written to be useful for implementors, not reviewers. In
 particular, while great care is generally taken to provide a complete
 description of the state machines and bits on the wire, this level of
 detail tends to get in the way of initial understanding. This
 document describes an approach for providing protocol "models" that
 allow reviewers to quickly grasp the essence of a system.

1. Introduction

 The IETF process depends on peer review. However, in many cases, the
 documents submitted for publication are extremely difficult to
 review. Because reviewers have only limited amounts of time, this
 leads to extremely long review times, inadequate reviews, or both.
 In our view, a large part of the problem is that most documents fail
 to present an architectural model for how the protocol operates,
 opting instead to simply describe the protocol and let the reviewer
 figure it out.

 This is acceptable when documenting a protocol for implementors,
 because they need to understand the protocol in any case; but it
 dramatically increases the strain on reviewers. Reviewers need to
 get the big picture of the system and then focus on particular
 points. They simply do not have time to give the entire document the
 attention an implementor would.

Rescorla Informational [Page 1]

RFC 4101 Writing Protocol Models June 2005

 One way to reduce this load is to present the reviewer with a
 MODEL -- a short description of the system in overview form. This
 provides the reviewer with the context to identify the important or
 difficult pieces of the system and focus on them for review. As a
 side benefit, if the model is done first, it can be serve as an aid
 to the detailed protocol design and a focus for early review, prior
 to protocol completion. The intention is that the model would either
 be the first section of the protocol document or be a separate
 document provided with the protocol.

2. The Purpose of a Protocol Model

 A protocol model needs to answer three basic questions:

 1. What problem is the protocol trying to achieve?
 2. What messages are being transmitted and what do they mean?
 3. What are the important, but unobvious, features of the protocol?

 The basic idea is to provide enough information that the reader could
 design a protocol which was roughly isomorphic to the protocol being
 described. Of course, this doesn’t mean that the protocol would be
 identical, but merely that it would share most important features.
 For instance, the decision to use a KDC-based authentication model is
 an essential feature of Kerberos [KERBEROS]. By contrast, the use of
 ASN.1 is a simple implementation decision. S-expressions -- or XML,
 had it existed at the time -- would have served equally well.

 The purpose of a protocol model is explicitly not to provide a
 complete or alternate description of the protocol being discussed.
 Instead, it is to provide a big picture overview of the protocol so
 that readers can quickly understand the essential elements of how it
 works.

3. Basic Principles

 In this section we discuss basic principles that should guide your
 presentation.

3.1 . Less is more

 Humans are only capable of keeping a very small number of pieces of
 information in their head at once. Because we’re interested in
 ensuring that people get the big picture, we have to dispense with a
 lot of detail. That’s good, not bad. The simpler you can make
 things the better.

Rescorla Informational [Page 2]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

3.2 . Abstraction is good

 A key technique for representing complex systems is to try to
 abstract away pieces. For instance, maps are better than photographs
 for finding out where you want to go because they provide an
 abstract, stylized, view of the information you’re interested in.
 Don’t be afraid to compress multiple protocol elements into a single
 abstract piece for pedagogical purposes.

3.3 . A few well-chosen details sometimes help

 The converse of the previous principle is that sometimes details help
 to bring a description into focus. Many people work better when
 given examples. Thus, it’s often a good approach to talk about the
 material in the abstract and then provide a concrete description of
 one specific piece to bring it into focus. Authors should focus on
 the normal path. Error cases and corner cases should only be
 discussed where they help illustrate an important point.

4. Writing Protocol Models

 Our experience indicates that it is easiest to grasp protocol models
 when they are presented in visual form. We recommend a presentation
 format centered around a few key diagrams, with explanatory text for
 each. These diagrams should be simple and typically consist of
 "boxes and arrows" -- boxes representing the major components, arrows
 representing their relationships, and labels indicating important
 features.

 We recommend a presentation structured in three parts to match the
 three questions mentioned in the previous sections. Each part should
 contain 1-3 diagrams intended to illustrate the relevant points.

4.1 . Describe the problem you’re trying to solve

 The most critical task that a protocol model must perform is to
 explain what the protocol is trying to achieve. This provides
 crucial context for understanding how the protocol works, and whether
 it meets its goals. Given the desired goals, an experienced reviewer
 will usually have an idea of how they would approach the problem and,
 thus, be able to compare that approach with the approach taken by the
 protocol under review.

 The "Problem" section of the model should start with a short
 statement of the environments in which the protocol is expected to be
 used. This section should describe the relevant entities and the
 likely scenarios under which they would participate in the protocol.
 The Problem section should feature a diagram of the major

Rescorla Informational [Page 3]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 communicating parties and their inter-relationships. It is
 particularly important to lay out the trust relationships between the
 various parties, as these are often unobvious.

4.1.1 . Example: STUN (RFC 3489)

 STUN [STUN] is a UNilateral Self-Address Fixing (UNSAF) [UNSAF]
 protocol that allows a machine located behind a NAT to determine what
 its external apparent IP address is. Although STUN provides a
 complete and thorough description of the operation of the protocol,
 it does not provide a brief, up-front overview suitable for a quick
 understanding of its operation. The rest of this section shows what
 a suitable overview might look like.

 Network Address Translation (NAT) makes it difficult to run a number
 of classes of service from behind the NAT gateway. This is
 particularly a problem when protocols need to advertise address/port
 pairs as part of the application layer protocol. Although the NAT
 can be configured to accept data destined for that port, address
 translation means the address that the application knows about is not
 the same as the one on which it is reachable.

 Consider the scenario represented in the figure below. A SIP client
 is initiating a session with a SIP server in which it wants the SIP
 server to send it some media. In its Session Description Protocol
 (SDP) [SDP] request it provides the IP address and port on which it
 is listening. However, unbeknownst to the client, a NAT is in the
 way. The NAT translates the IP address in the header, but unless it
 is SIP aware, it doesn’t change the address in the request. The
 result is that the media goes into a black hole.

Rescorla Informational [Page 4]

https://tools.ietf.org/pdf/rfc4101
https://tools.ietf.org/pdf/rfc3489

RFC 4101 Writing Protocol Models June 2005

 +-----------+
 | SIP |
 | Server |
 | |
 +-----------+
 ^
 | [FROM: 198.203.2.1:8954]
 | [MSG: SEND MEDIA TO 10.0.10.5:6791]
 |
 |
 +-----------+
 | |
 | NAT |
 --------------+ Gateway +----------------
 | |
 +-----------+
 ^
 | [FROM: 10.0.10.5:6791]
 | [MSG: SEND MEDIA TO 10.0.10.5:6791]
 |
 10.0.10.5
 +-----------+
 | SIP |
 | Client |
 | |
 +-----------+

 The purpose of STUN is to allow clients to detect this situation and
 determine the address mapping. They can then place the appropriate
 address in their application-level messages. This is done by using
 an external STUN server. That server is able to determine the
 translated address and tell the STUN client, as shown below.

Rescorla Informational [Page 5]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 +-----------+
 | STUN |
 | Server |
 | |
 +-----------+
 ^ |
 [IP HDR FROM: 198.203.2.1:8954] | | [IP HDR TO: 198.203.2.1:8954]
 [MSG: WHAT IS MY ADDRESS?] | | [MSG: YOU ARE 198.203.2.1:8954]
 | v
 +-----------+
 | |
 | NAT |
 --------------+ Gateway +----------------
 | |
 +-----------+
 ^ |
 [IP HDR FROM: 10.0.10.5:6791] | | [IP HDR TO: 10.0.10.5:6791]
 [MSG: WHAT IS MY ADDRESS?] | | [MSG: YOU ARE 198.203.2.1:8954]
 | v
 10.0.10.5
 +-----------+
 | SIP |
 | Client |
 | |
 +-----------+

4.2 . Describe the protocol in broad overview

 Once the problem has been described, the next task is to give a broad
 overview of the protocol. This means showing, either in "ladder
 diagram" or "boxes and arrows" form, the protocol messages that flow
 between the various networking agents. This diagram should be
 accompanied with explanatory text that describes the purpose of each
 message and the MAJOR data elements.

 This section SHOULD NOT contain detailed descriptions of the
 protocol messages or of each data element. In particular, bit
 diagrams, ASN.1 modules, and XML schema SHOULD NOT be shown. The
 purpose of this section is not to provide a complete
 description of the protocol, but to provide enough of a
 map that a person reading the full protocol document can see
 where each specific piece fits.

 In certain cases, it may be helpful to provide a state machine
 description of the behavior of network elements. However, such
 state machines should be kept as minimal as possible. Remember that
 the purpose is to promote high-level comprehension, not complete
 understanding.

Rescorla Informational [Page 6]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

4.2.1 . Example: DCCP

 Datagram Congestion Control Protocol [DCCP] is a protocol for
 providing datagram transport with network-friendly congestion
 avoidance behavior. The DCCP base protocol document is over 100
 pages long and the congestion control mechanisms themselves are
 separate. Therefore, it is very helpful to have a an architectural
 overview of DCCP that abstracts away the details. The remainder of
 this section is an attempt to do so.

 NOTE: The author of this document was on the DCCP review team and
 his experience with that document was one of the motivating factors
 for this document. Since the review, the DCCP authors have added
 some overview material, some of which derives from earlier versions
 of this document.

 Although DCCP is datagram-oriented like UDP, it is stateful
 like TCP. Connections go through the following phases:

 1. Initiation
 2. Feature negotiation
 3. Data transfer
 4. Termination

4.2.1.1 . Initiation

 As with TCP, the initiation phase of DCCP involves a three-way
 handshake, shown below.

 Client Server
 ------ ------
 DCCP-Request ->
 [Ports, Service,
 Features]
 <- DCCP-Response
 [Features,
 Cookie]
 DCCP-Ack ->
 [Features,
 Cookie]

 DCCP 3-way handshake

 In the DCCP-Request message, the client tells the server the name of
 the service it wants to talk to and the ports it wants to communicate
 on. Note that ports are not tightly bound to services, as they are
 in TCP or UDP common practice. It also starts feature negotiation.
 For pedagogical reasons, we will present feature negotiation

Rescorla Informational [Page 7]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 separately in the next section. However, realize that the early
 phases of feature negotiation happen concurrently with initiation.

 In the DCCP-Response message, the server tells the client that it is
 willing to accept the connection and continues feature negotiation.
 In order to prevent SYN flood-style DOS attacks, DCCP incorporates an
 IKE-style cookie exchange. The server can provide the client with a
 cookie that contains all of the negotiation state. This cookie must
 be echoed by the client in the DCCP-Ack, thus removing the need for
 the server to keep state.

 In the DCCP-Ack message, the client acknowledges the DCCP-Response
 and returns the cookie to permit the server to complete its side of
 the connection. As indicated above, this message may also include
 feature negotiation messages.

4.2.1.2 . Feature Negotiation

 In DCCP, feature negotiation is performed by attaching options to
 other DCCP packets. Thus, feature negotiation can be piggybacked on
 any other DCCP message. This allows feature negotiation during
 connection initiation as well as during data flow.

 Somewhat unusually, DCCP features are one-sided. Thus, it’s possible
 to have a different congestion control regime for data sent from
 client to server than from server to client.

 Feature negotiation is done with the Change and Confirm options.
 There are four feature negotiation options in all: Change L, Confirm
 L, Change R, and Confirm R. The "L" options are sent by the feature
 location, where the feature is maintained, and the "R" options are
 sent by the feature remote.

 A Change R message says to the peer "change this option setting on
 your side". The peer can respond with a Confirm L, meaning "I’ve
 changed it". Some features allow Change R options to contain
 multiple values, sorted in preference order. For example:

 Client Server
 ------ ------
 Change R(CCID, 2) -->
 <-- Confirm L(CCID, 2)
 * agreement that CCID/Server = 2 *

 Change R(CCID, 3 4) -->
 <-- Confirm L(CCID, 4, 4 2)
 * agreement that CCID/Server = 4 *

Rescorla Informational [Page 8]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 In the second exchange, the client requests that the server use
 either CCID 3 or CCID 4, with 3 preferred. The server chooses 4 and
 supplies its preference list, "4 2".

 The Change L and Confirm R options are used for feature negotiations
 that are initiated by the feature location. In the following
 example, the server requests that CCID/Server be set to 3 or 2 (with
 3 being preferred), and the client agrees.

 Client Server
 ------ ------
 <-- Change L(CCID, 3 2)
 Confirm R(CCID, 3, 3 2) -->
 * agreement that CCID/Server = 3 *

4.2.1.3 . Data Transfer

 Rather than have a single congestion control regime, as in TCP, DCCP
 offers a variety of negotiable congestion control regimes. The DCCP
 documents describe two congestion control regimes: additive increase,
 multiplicative decrease (CCID-2 [CCID2]), and TCP-friendly rate
 control (CCID-3 [CCID3]). CCID-2 is intended for applications that
 want maximum throughput. CCID-3 is intended for real-time
 applications that want smooth response to congestion.

4.2.1.3.1 . CCID-2

 CCID-2’s congestion control is extremely similar to that of TCP. The
 sender maintains a congestion window and sends packets until that
 window is full. Packets are Acked by the receiver. Dropped packets
 and ECN [ECN] are used to indicate congestion. The response to
 congestion is to halve the congestion window. One subtle difference
 between DCCP and TCP is that the Acks in DCCP must contain the
 sequence numbers of all received packets (within a given window), not
 just the highest sequence number, as in TCP.

4.2.1.3.2 . CCID-3

 CCID-3 is an equation-based form of rate control, intended to provide
 smoother response to congestion than CCID-2. The sender maintains a
 "transmit rate". The receiver sends Ack packets that contain
 information about the receiver’s estimate of packet loss. The sender
 uses this information to update its transmit rate. Although CCID-3
 behaves somewhat differently than TCP in its short-term congestion
 response, it is designed to operate fairly with TCP over the long
 term.

Rescorla Informational [Page 9]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

4.2.1.4 . Termination

 Connection termination in DCCP is initiated by sending a Close
 message. Either side can send a Close message. The peer then
 responds with a Reset message, at which point the connection is
 closed. The side that sent the Close message must quietly preserve
 the socket in TIMEWAIT state for 2MSL.

 Client Server
 ------ ------
 Close ->
 <- Reset
 [Remains in TIMEWAIT]

 Note that the server may wish to close the connection but not remain
 in TIMEWAIT (e.g., due to a desire to minimize server-side state).
 In order to accomplish this, the server can elicit a Close from the
 client by sending a CloseReq message and, thus, keep the TIMEWAIT
 state on the client.

4.3 . Describe any important protocol features

 The final section (if there is one) should contain an explanation of
 any important protocol features that are not obvious from the
 previous sections. In the best case, all the important features of
 the protocol would be obvious from the message flow. However, this
 isn’t always the case. This section is an opportunity for the author
 to explain those features. Authors should think carefully before
 writing this section. If there are no important points to be made,
 they should not populate this section.

 Examples of the kind of feature that belongs in this section include:
 high-level security considerations, congestion control information,
 and overviews of the algorithms that the network elements are
 intended to follow. For instance, if you have a routing protocol,
 you might use this section to sketch out the algorithm that the
 router uses to determine the appropriate routes from protocol
 messages.

4.3.1 . Example: WebDAV COPY and MOVE

 The WebDAV standard [WEBDAV] is fairly terse, preferring to define
 the required behaviors and let the reader work out the implications.
 In some situations, explanatory material that details those
 implications can help the reader understand the overall model. The
 rest of this section describes one such case.

Rescorla Informational [Page 10]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 WebDAV [WEBDAV] includes both a COPY method and a MOVE method. While
 a MOVE can be thought of as a COPY followed by DELETE, COPY+DELETE
 and MOVE aren’t entirely equivalent.

 The use of COPY+DELETE as a substitute for MOVE is problematic
 because of the creation of the intermediate file. Consider the case
 where the user is approaching a quota boundary. A COPY+DELETE should
 be forbidden because it would temporarily exceed the quota. However,
 a simple rename should work in this situation.

 The second issue is permissions. The WebDAV permissions model allows
 the server to grant users permission to rename files, but not to
 create new ones. This is unusual in ordinary filesystems, but
 nothing prevents it in WebDAV. This is clearly not possible if a
 client uses COPY+DELETE to do a MOVE.

 Finally, a COPY+DELETE does not produce the same logical result as
 would be expected with a MOVE. Because COPY creates a new resource,
 it is permitted (but not required) to use the time of new file
 creation as the creation date property. By contrast, the expectation
 for MOVE is that the renamed file will have the same properties as
 the original.

5. Formatting Issues

 The requirement that Internet-Drafts and RFCs be renderable in ASCII
 is a significant obstacle when writing the sort of graphics-heavy
 document being described here. Authors may find it more convenient
 to do a separate protocol model document in Postscript or PDF and
 simply make it available at review time -- though an archival version
 would certainly be handy.

6. A Complete Example: Internet Key Exchange (IKE)

 Internet Key Exchange (IKE) [IKE] is one of the most complicated
 security protocols ever designed by the IETF. Although the basic IKE
 core is a fairly straightforward Diffie-Hellman-based handshake, this
 can often be difficult for new readers to understand abstractly,
 apart from the protocol details. The remainder of this section
 provides overview of IKE suitable for those new readers.

Rescorla Informational [Page 11]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

6.1 . Operating Environment

 Internet key Exchange (IKE) [IKE] is a key establishment and
 parameter negotiation protocol for Internet protocols. Its primary
 application is for establishing security associations (SAs) [IPSEC]
 for IPsec AH [AH] and ESP [ESP].

 +--------------------+ +--------------------+
+------------+		+------------+				
	Key		IKE		Key	
	Management	<-+-----------------------+->	Management			
	Process				Process	
+------------+		+------------+				
^		^				
v		v				
+------------+		+------------+				
	IPsec		AH/ESP		IPsec	
	Stack	<-+-----------------------+->	Stack			
+------------+		+------------+				
Initiator		Responder				
 +--------------------+ +--------------------+

 The general deployment model for IKE is shown above. The IPsec
 engines and IKE engines typically are separate modules. When no
 security association exists for a packet that needs to be processed
 (either sent or received), the IPsec engine contacts the IKE engine
 and asks it to establish an appropriate SA. The IKE engine contacts
 the appropriate peer and uses IKE to establish the SA. Once the IKE
 handshake is finished it registers the SA with the IPsec engine.

 In addition, IKE traffic between the peers can be used to refresh
 keying material or adjust operating parameters, such as algorithms.

6.1.1 . Initiator and Responder

 Although IPsec is basically symmetrical, IKE is not. The party who
 sends the first message is called the INITIATOR. The other party is
 called the RESPONDER. In the case of TCP connections, the INITIATOR
 will typically be the peer doing the active open (i.e., the client).

Rescorla Informational [Page 12]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

6.1.2 . Perfect Forward Secrecy

 One of the major concerns in IKE design was that traffic be protected
 even if the keying material of the nodes was later compromised,
 provided that the session in question had terminated and so the
 session-specific keying material was gone. This property is often
 called Perfect Forward Secrecy (PFS) or back traffic protection.

6.1.3 . Denial of Service Resistance

 Because IKE allows arbitrary peers to initiate computationally-
 expensive cryptographic operations, it potentially allows resource
 consumption denial of service (DoS) attacks to be mounted against the
 IKE engine. IKE includes countermeasures designed to minimize this
 risk.

6.1.4 . Keying Assumptions

 Because Security Associations are essentially symmetric, both sides
 must, in general, be authenticated. Because IKE needs to be able to
 establish SAs between a broad range of peers with various kinds of
 prior relationships, IKE supports a very flexible keying model.
 Peers can authenticate via shared keys, digital signatures (typically
 from keys vouched for by certificates), or encryption keys.

6.1.5 . Identity Protection

 Although IKE requires the peers to authenticate to each other, it was
 considered desirable by the working group to provide some identity
 protection for the communicating peers. In particular, the peers
 should be able to hide their identity from passive observers and one
 peer should be able to require the author to authenticate before they
 self-identity. In this case, the designers chose to make the party
 who speaks first (the INITIATOR) identify first.

Rescorla Informational [Page 13]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

6.2 . Protocol Overview

 At a very high level, there are two kinds of IKE handshake:

 (1) Those that establish an IKE security association.
 (2) Those that establish an AH or ESP security association.

 When two peers that have never communicated before need to establish
 an AH/ESH SA, they must first establish an IKE SA. This allows them
 to exchange an arbitrary amount of protected IKE traffic. They can
 then use that SA to do a second handshake to establish SAs for AH and
 ESP. This process is shown in schematic form below. The notation
 E(SA,XXXX) is used to indicate that traffic is encrypted under a
 given SA.

 Initiator Responder
 --------- ---------

 Handshake MSG -> \ Stage 1:
 <- Handshake MSG \ Establish IKE
 / SA (IKEsa)
 [...] /

 \ Stage 2:
 E(IKEsa, Handshake MSG) -> \ Establish AH/ESP
 <- E(IKEsa, Handshake MSG) / SA

 The two kinds of IKE handshake

 IKE terminology is somewhat confusing, referring under different
 circumstances to "phases" and "modes". For maximal clarity we will
 refer to the Establishment of the IKE SA as "Stage 1" and the
 Establishment of AH/ESP SAs as "Stage 2". Note that it’s quite
 possible for there to be more than one Stage 2 handshake, once Stage
 1 has been finished. This might be useful for establishing multiple
 AH/ESP SAs with different cryptographic properties.

 The Stage 1 and Stage 2 handshakes are actually rather different,
 because the Stage 2 handshake can, of course, assume that its traffic
 is being protected with an IKE SA. Accordingly, we will first
 discuss Stage 1 and then Stage 2.

Rescorla Informational [Page 14]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

6.2.1 . Stage 1

 There are a large number of variants of the IKE Stage 1 handshake,
 necessitated by use of different authentication mechanisms. However,
 broadly speaking Stage 1 handshakes fall into one of two basic
 categories: MAIN MODE, which provides identity protection and DoS
 resistance, and AGGRESSIVE MODE, which does not. We will cover MAIN
 MODE first.

6.2.1.1 . Main Mode

 Main Mode is a six message (3 round trip) handshake, which offers
 identity protection and DoS resistance. An overview of the handshake
 is below.

 Initiator Responder
 --------- ---------
 CookieI, Algorithms -> \ Parameter
 <- CookieR, Algorithms / Establishment

 CookieR,
 Nonce, Key Exchange ->
 <- Nonce, Key Exchange\ Establish
 / Shared key

 E(IKEsa, Auth Data) ->
 <- E(IKEsa, Auth data)\ Authenticate
 / Peers

 IKE Main Mode handshake (Stage 1)

 In the first round trip, the Initiator offers a set of algorithms and
 parameters. The Responder picks out the single set that it likes and
 responds with that set. It also provides CookieR, which will be used
 to prevent DoS attacks. At this point, there is no secure
 association but the peers have tentatively agreed upon parameters.
 These parameters include a Diffie-Hellman (DH) group, which will be
 used in the second round trip.

 In the second round trip, the Initiator sends the key exchange
 information. This generally consists of the Initiator’s Diffie-
 Hellman public share (Yi). He also supplies CookieR, which was
 provided by the responder. The Responder replies with his own DH
 share (Yr). At this point, both Initiator and Responder can compute
 the shared DH key (ZZ). However, there has been no authentication
 and, therefore, they don’t know with any certainty that the
 connection hasn’t been attacked. Note that as long as the peers
 generate fresh DH shares for each handshake, PFS will be provided.

Rescorla Informational [Page 15]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 Before we move on, let’s take a look at the cookie exchange. The
 basic anti-DoS measure used by IKE is to force the peer to
 demonstrate that it can receive traffic from you. This foils blind
 attacks like SYN floods [SYNFLOOD] and also makes it somewhat easier
 to track down attackers. The cookie exchange serves this role in
 IKE. The Responder can verify that the Initiator supplied a valid
 CookieR before doing the expensive DH key agreement. This does not
 totally eliminate DoS attacks, because an attacker who was willing to
 reveal his location could still consume server resources; but it does
 protect against a certain class of blind attack.

 In the final round trip, the peers establish their identities.
 Because they share an (unauthenticated) key, they can send their
 identities encrypted, thus providing identity protection from
 eavesdroppers. The exact method of proving identity depends on what
 form of credential is being used (signing key, encryption key, shared
 secret, etc.), but in general you can think of it as a signature over
 some subset of the handshake messages. So, each side would supply
 its certificate and then sign using the key associated with that
 certificate. If shared keys are used, the authentication data would
 be a key ID and a MAC. Authentication using public key encryption
 follows similar principles, but is more complicated. Refer to the
 IKE document for more details.

 At the end of the Main Mode handshake, the peers share:

 (1) A set of algorithms for encryption of further IKE traffic.
 (2) Traffic encryption and authentication keys.
 (3) Mutual knowledge of the peer’s identity.

6.2.1.2 . Aggressive Mode

 Although IKE Main Mode provides the required services, there was
 concern that the large number of round trips required added,
 excessive latency. Accordingly, an Aggressive Mode was defined.
 Aggressive mode packs more data into fewer messages, and thus reduces
 latency. However, it does not provide identity protection or
 protection against DoS.

 Initiator Responder
 --------- ---------
 Algorithms, Nonce,
 Key Exchange, ->
 <- Algorithms, Nonce,
 Key Exchange, Auth Data
 Auth Data ->

 IKE Aggressive Mode Handshake (Stage 1)

Rescorla Informational [Page 16]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 After the first round trip, the peers have all the required
 properties, but the Initiator has not authenticated to the Responder.
 The third message closes the loop by authenticating the Initiator.
 Note that since the authentication data is sent in the clear, no
 identity protection is provided; and because the Responder does the
 DH key agreement without a round trip to the Initiator, there is no
 DoS protection

6.2.2 . Stage 2

 Stage 1 on its own isn’t very useful. The purpose of IKE, after all,
 is to establish associations to be used to protect other traffic, not
 merely to establish IKE SAs. Stage 2 (what IKE calls "Quick Mode")
 is used for this purpose. The basic Stage 2 handshake is shown
 below.

 Initiator Responder
 --------- ---------
 AH/ESP parameters,
 Algorithms, Nonce,
 Handshake Hash ->
 <- AH/ESP parameters,
 Algorithms, Nonce,
 Handshake Hash
 Handshake Hash ->

 The Basic IKE Quick Mode (Stage 2)

 As with quick mode, the first two messages establish the algorithms
 and parameters while the final message is a check over the previous
 messages. In this case, the parameters also include the transforms
 to be applied to the traffic (AH or ESP) and the kinds of traffic
 that are to be protected. Note that there is no key exchange
 information shown in these messages.

 In this version of Quick Mode, the peers use the preexisting Stage 1
 keying material to derive fresh keying material for traffic
 protection (with the nonces to ensure freshness). Quick mode also
 allows for a new Diffie-Hellman handshake for per-traffic key PFS.
 In that case, the first two messages shown above would also include
 Key Exchange payloads, as shown below.

Rescorla Informational [Page 17]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

 Initiator Responder
 --------- ---------
 AH/ESP parameters,
 Algorithms, Nonce,
 Key Exchange, ->
 Handshake Hash
 <- AH/ESP parameters,
 Algorithms, Nonce,
 Key Exchange,
 Handshake Hash
 Handshake Hash ->

 A Variant of Quick Mode with PFS (Stage 2)

6.3 . Other Considerations

 There are a number of features of IKE that deserve special
 consideration. They are discussed here.

6.3.1 . Cookie Generation

 As mentioned previously, IKE uses cookies as a partial defense
 against DoS attacks. When the responder receives Main Mode message 3
 containing the Key Exchange data and the cookie, it verifies that the
 cookie is correct. However, this verification must not involve
 having a list of valid cookies. Otherwise, an attacker could
 potentially consume arbitrary amounts of memory by repeatedly
 requesting cookies from a responder. The recommended way to generate
 a cookie, as suggested by Phil Karn, is to have a single master key
 and compute a hash of the secret and the initiator’s address
 information. This cookie can be verified by recomputing the cookie
 value based on information in the third message, and seeing if it
 matches.

6.3.2 . Endpoint Identities

 So far we have been rather vague about what kinds of endpoint
 identities are used. In principle, there are three ways a peer might
 be identified: by a shared key, a pre-configured public key, or a
 certificate.

6.3.2.1 . Shared Key

 In a shared key scheme, the peers share a symmetric key. This key is
 associated with a key identifier, which is known to both parties. It
 is assumed that the party verifying that identity also has a table
 that indicates for which traffic (i.e., what addresses) that identity
 is allowed to negotiate SAs.

Rescorla Informational [Page 18]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

6.3.2.2 . Pre-Configured Public Key

 A pre-configured public key scheme is the same as a shared key scheme
 except that the verifying party has the authenticating party’s public
 key instead of a shared key.

6.3.2.3 . Certificate

 In a certificate scheme, the authenticating party presents a
 certificate containing their public key. It is straightforward to
 establish that this certificate matches the authentication data
 provided by the peer. What is less straightforward is to determine
 whether a given peer is entitled to negotiate for a given class of
 traffic. In theory, one might be able to determine this from the
 name in the certificate (e.g., the subject name contains an IP
 address that matches the ostensible IP address). In practice, this
 is not clearly specified in IKE and, therefore, is not really
 interoperable. Currently, it is likely that a configuration table
 maps certificates to policies, as in the other two authentication
 schemes.

7. Security Considerations

 This document does not define any protocols and therefore has no
 security issues.

Rescorla Informational [Page 19]

https://tools.ietf.org/pdf/rfc4101

RFC 4101 Writing Protocol Models June 2005

A. Appendix: IAB Members at the Time of This Writing

 Bernard Aboba
 Harald Alvestrand
 Rob Austein
 Leslie Daigle
 Patrik Falstrom
 Sally Floyd
 Jun-ichiro Itojun Hagino
 Mark Handley
 Bob Hinden
 Geoff Huston
 Eric Rescorla
 Pete Resnick
 Jonathan Rosenberg

Normative References

 There are no normative references for this document.

Informative References

 [AH] Kent, S., and R. Atkinson, "IP Authentication Header", RFC
 2402 , November 1998.

 [CCID2] Floyd, S. and E. Kohler, "Profile for DCCP Congestion
 Control ID 2: TCP-like Congestion Control", Work in
 Progress, October 2003.

 [CCID3] Floyd, S., Kohler, E., and J. Padhye, "Profile for DCCP
 Congestion Control ID 3: TFRC Congestion Control", Work in
 Progress, February 2004.

 [DCCP] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", Work in Progress,
 November 2004.

 [ECN] Ramakrishnan, K. Floyd, S., and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168 ,
 September 2001.

 [ESP] Kent, S. and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406 , November 1998.

 [IKE] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409 , November 1998.

Rescorla Informational [Page 20]

https://tools.ietf.org/pdf/rfc4101
https://tools.ietf.org/pdf/rfc2402
https://tools.ietf.org/pdf/rfc2402
https://tools.ietf.org/pdf/rfc3168
https://tools.ietf.org/pdf/rfc2406
https://tools.ietf.org/pdf/rfc2409

RFC 4101 Writing Protocol Models June 2005

 [IPSEC] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401 , November 1998.

 [KERBEROS] Kohl, J. and C. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510 , September 1993.

 [SDP] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol" RFC 2327 , April 1998.

 [STUN] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)",
 RFC 3489 , March 2003.

 [SYNFLOOD] CERT Advisory CA-1996-21 TCP SYN Flooding and IP Spoofing
 Attacks < http://www.cert.org/advisories/CA-1996-21.html >,
 September 19, 1996.

 [UNSAF] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424 , November 2002.

 [WEBDAV] Goland, Y., Whitehead, E., Faizi, A., Carter, S., and D.
 Jensen, "HTTP Extensions for Distributed Authoring --
 WEBDAV", RFC 2518 , February 1999.

Authors’ Addresses

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303

 Phone: (650)-320-8549
 EMail: ekr@rtfm.com

 Internet Architecture Board
 IAB

 EMail: iab@iab.org

Rescorla Informational [Page 21]

https://tools.ietf.org/pdf/rfc4101
https://tools.ietf.org/pdf/rfc2401
https://tools.ietf.org/pdf/rfc1510
https://tools.ietf.org/pdf/rfc2327
https://tools.ietf.org/pdf/rfc3489
http://www.cert.org/advisories/CA-1996-21.html
https://tools.ietf.org/pdf/rfc3424
https://tools.ietf.org/pdf/rfc2518

RFC 4101 Writing Protocol Models June 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 , and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79 .

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr .

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rescorla Informational [Page 22]

https://tools.ietf.org/pdf/rfc4101
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://www.ietf.org/ipr

