Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document provides test vectors for the HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 message authentication schemes. It also provides ASN.1 object identifiers and Uniform Resource Identifiers (URIs) to identify use of these schemes in protocols. The test vectors provided in this document may be used for conformance testing.
1. Introduction

This document provides test vectors for the HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 message authentication schemes. It also provides ASN.1 object identifiers and URIs to identify use of these schemes in protocols using ASN.1 constructs (such as those built on Secure/Multipurpose Internet Mail Extensions (S/MIME) [4]) or protocols based on XML constructs (such as those leveraging XML Digital Signatures [5]).

HMAC-SHA-224 is the realization of the HMAC message authentication code [1] using the SHA-224 hash function, HMAC-SHA-256 is the realization of the HMAC message authentication code using the SHA-256 hash function, HMAC-SHA-384 is the realization of the HMAC message authentication code using the SHA-384 hash function, and HMAC-SHA-512 is the realization of the HMAC message authentication code using the SHA-512 hash function. SHA-224, SHA-256, SHA-384, and SHA-512 are all described in [2].

2. Conventions Used in This Document

The key word "SHOULD" in this document is to be interpreted as described in RFC 2119 [3].
3. Scheme Identifiers

3.1. ASN.1 Object Identifiers

The following ASN.1 object identifiers have been allocated for these schemes:

rsadsi OBJECT IDENTIFIER ::=
 {iso(1) member-body(2) us(840) rsadsi(113549)}

digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2}

id-hmacWithSHA224 OBJECT IDENTIFIER ::= {digestAlgorithm 8}
id-hmacWithSHA256 OBJECT IDENTIFIER ::= {digestAlgorithm 9}
id-hmacWithSHA384 OBJECT IDENTIFIER ::= {digestAlgorithm 10}
id-hmacWithSHA512 OBJECT IDENTIFIER ::= {digestAlgorithm 11}

When the "algorithm" component in a value of ASN.1 type AlgorithmIdentifier (see, e.g., [4], Section 10) identifies one of these schemes, the "parameter" component SHOULD be present but have type NULL.

3.2. Algorithm URIs

The following URIs have been allocated for these schemes:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#hmac-sha-224
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#hmac-sha-256
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#hmac-sha-384
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#hmac-sha-512

As usual, when used in the context of [5], the <ds:HMACOutputLength> element may specify the truncated length of the scheme output.

4. Test Vectors

4.1. Introduction

The test vectors in this document have been cross-verified by three independent implementations. An implementation that concurs with the results provided in this document should be interoperable with other similar implementations.

Keys, data, and digests are provided in hex.
4.2. Test Case 1

Key = 0b0
4.4. Test Case 3

Test with a combined length of key and data that is larger than 64 bytes (= block-size of SHA-224 and SHA-256).

Key aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 aaaaaaaaa (20 bytes)
Data = dddddddddddddddddddddddddddddddd
 dddddddddddddddddddddddddddddddd
 dddddddddddddddddddddddddddddddd
 dddddddddddddddddddddddddddddddd
 dddddddddddddddddddddddddddddddd
 ddddd (50 bytes)
HMAC-SHA-224 = 7fb3cb3588c6c1f6fffa9694d7d6ad264
 9365b0c1f65d69d1ec8333ea
HMAC-SHA-256 = 773ea91e36800e46854db8edb09181a7
 2959098b3ef8c122d9635514ced565fe
HMAC-SHA-384 = 88062608d3e6ad8a0aa2ace014c88a86f
 0aa635d947ac9febe83ef4e55966144b
 2a5ab39dc13814b94e3ab6e101a34f27
HMAC-SHA-512 = fa73b0089d56a284efb0f0756c890be9
 b1b5dddb8ee81a3655f83e33b2279d39
 bf3e848279a722c806b485a47e67c807
 b946a337bee8942674278859e13292fb

4.5. Test Case 4

Test with a combined length of key and data that is larger than 64 bytes (= block-size of SHA-224 and SHA-256).

Key = 0102030405060708090a0b0c0d0e0f10
 111213141516171819 (25 bytes)
Data = cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
 cdcd (50 bytes)
HMAC-SHA-224 = 6c11506874013cac6a2abc1bb382627c
 ec6a90d86efc012de7afe5a
HMAC-SHA-256 = 82558a389a443c0ea4cc819899f2083a
 85f0f9a3e578f8077a2e3ff46729665b
HMAC-SHA-384 = 3e8a69b7783c25851933ab6290af6ca7
 7a9981480850009cc5577c6e1f573b4e
 6801dd23c4a7d679cfc8a386c674c6fb
HMAC-SHA-512 = b0ba465637458c6990e5a8c5f61d4af7
 e576d97ff94b872de76f8050361ee3db
 a91ca5c11aa25eb4d679275cc5788063
 a5f19741120c4f2de2adebeb10a298dd
4.6. Test Case 5

Test with a truncation of output to 128 bits.

Key = 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
 0c0c0c0c (20 bytes)

Data = 546573742057697468205472756e6361
 74696f6e ("Test With Trunca"
 "tion")

HMAC-SHA-224 = 0e2aea68a90c8d37c988bcd9fca6fa8
HMAC-SHA-256 = a3b6167473100ee06e0c796c2955552b
HMAC-SHA-384 = 3abf34c3503ba2a3a46efc619baef897
HMAC-SHA-512 = 415fad6271580a531d4179bc891d87a6

4.7. Test Case 6

Test with a key larger than 128 bytes (= block-size of SHA-384 and SHA-512).

Key = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Data = 546573742055736967205468616e20426c6f636b2d53697a
 65204b6579202d2046697274 ("Test Using Large"
 "r Than Block-Siz"
 "e Key - Hash Key"
 " First")

HMAC-SHA-224 = 95e9a0db962095adaebe9b2d6f0dbce2
 d499f112f2db7273fa6870e
HMAC-SHA-256 = 60e431591ee0b67f0d8a26aacbf5b77f
 80e6c6213728c5140546040f00e37f54
HMAC-SHA-384 = 4e0e08485813e9088d2c63a041bc5b4
 4f9ef1012a2b588f3cd11f05033ac4c6
 0c2ef6ab4030fe8296248df163f44952
HMAC-SHA-512 = 80b24263c7c1a3eb71493c1dd7be8b4
 9b46d1f41b4aeec1121b013783f8f352
 6b56d037e05f2598bd0fd2215d6a1e52
 95e64f73f63f0aeec8b915a985d786598
4.8. Test Case 7

Test with a key and data that is larger than 128 bytes (= block-size of SHA-384 and SHA-512).

Key = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(131 bytes)

Data = 5468697320697320612074657374207573696e672061206c6172676572207468616e20626c6f636b2d73697a65206b657920616e642061206c6172676572207468616e20626c6f636b2d73697a65206d697320746f20626520686173686564206265666f7265206265696e6720757365642062792074686520484d414320616c676f726974686d2e

HMAC-SHA-224 = 3a854166ac5d9f023f54d517d0b39dbd946770db9c2b95c9f6f565d1
HMAC-SHA-256 = 9b09ffa71b942fcb27635fbd5b0e944bfdec63644f0713938a7f51535c3a35e2
HMAC-SHA-384 = 6617178e941f020d351e2f254e8fd32c602420feb0b8fb9adccebb82461e99c5a678cc31e799176d3860e6110c46523e
HMAC-SHA-512 = e37b6a775dc87dbaa4dfaf99f6e5e3ffdeb71f8867288865df5a32d20c944

5. Security Considerations

This document is intended to provide the identifications and test vectors for the four identified message authentication code schemes to the Internet community. No assertion of the security of these message authentication code schemes for any particular use is intended. The reader is referred to [1] for a discussion of the general security of the HMAC construction.
6. Acknowledgements

The test cases in this document are derived from the test cases in [6], although the keys and data are slightly different.

Thanks to Jim Schaad and Brad Hards for assistance in verifying the results.

7. References

7.1. Normative References

7.2. Informative References

Author’s Address

Magnus Nystrom
RSA Security

EMail: magnus@rsasecurity.com
Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.