
Network Working Group E. Rescorla
Request for Comments: 4347 RTFM, Inc.
Category: Standards Track N. Modadugu
 Stanford University
 April 2006

 Datagram Transport Layer Security

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document specifies Version 1.0 of the Datagram Transport Layer
 Security (DTLS) protocol. The DTLS protocol provides communications
 privacy for datagram protocols. The protocol allows client/server
 applications to communicate in a way that is designed to prevent
 eavesdropping, tampering, or message forgery. The DTLS protocol is
 based on the Transport Layer Security (TLS) protocol and provides
 equivalent security guarantees. Datagram semantics of the underlying
 transport are preserved by the DTLS protocol.

Table of Contents

 1. Introduction .. 2
 1.1 . Requirements Terminology 3
 2. Usage Model ... 3
 3. Overview of DTLS .. 4
 3.1 . Loss-Insensitive Messaging 4
 3.2 . Providing Reliability for Handshake 4
 3.2.1 . Packet Loss ... 5
 3.2.2 . Reordering .. 5
 3.2.3 . Message Size .. 5
 3.3 . Replay Detection ... 6
 4. Differences from TLS .. 6
 4.1 . Record Layer ... 6
 4.1.1 . Transport Layer Mapping 7

Rescorla & Modadugu Standards Track [Page 1]

RFC 4347 Datagram Transport Layer Security April 2006

 4.1.1.1 . PMTU Discovery 8
 4.1.2 . Record Payload Protection 9
 4.1.2.1 . MAC .. 9
 4.1.2.2 . Null or Standard Stream Cipher 9
 4.1.2.3 . Block Cipher 10
 4.1.2.4 . New Cipher Suites 10
 4.1.2.5 . Anti-replay 10
 4.2 . The DTLS Handshake Protocol 11
 4.2.1 . Denial of Service Countermeasures 11
 4.2.2 . Handshake Message Format 13
 4.2.3 . Message Fragmentation and Reassembly 15
 4.2.4 . Timeout and Retransmission 15
 4.2.4.1 . Timer Values 18
 4.2.5 . ChangeCipherSpec 19
 4.2.6 . Finished Messages 19
 4.2.7 . Alert Messages 19
 4.3 . Summary of new syntax 19
 4.3.1 . Record Layer 20
 4.3.2 . Handshake Protocol 20
 5. Security Considerations .. 21
 6. Acknowledgements ... 22
 7. IANA Considerations .. 22
 8. References ... 22
 8.1 . Normative References 22
 8.2 . Informative References 23

1. Introduction

 TLS [TLS] is the most widely deployed protocol for securing network
 traffic. It is widely used for protecting Web traffic and for e-mail
 protocols such as IMAP [IMAP] and POP [POP]. The primary advantage
 of TLS is that it provides a transparent connection-oriented channel.
 Thus, it is easy to secure an application protocol by inserting TLS
 between the application layer and the transport layer. However, TLS
 must run over a reliable transport channel -- typically TCP [TCP].
 It therefore cannot be used to secure unreliable datagram traffic.

 However, over the past few years an increasing number of application
 layer protocols have been designed that use UDP transport. In
 particular protocols such as the Session Initiation Protocol (SIP)
 [SIP] and electronic gaming protocols are increasingly popular.
 (Note that SIP can run over both TCP and UDP, but that there are
 situations in which UDP is preferable). Currently, designers of
 these applications are faced with a number of unsatisfactory choices.
 First, they can use IPsec [RFC2401]. However, for a number of
 reasons detailed in [WHYIPSEC], this is only suitable for some
 applications. Second, they can design a custom application layer
 security protocol. SIP, for instance, uses a subset of S/MIME to

Rescorla & Modadugu Standards Track [Page 2]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc2401

RFC 4347 Datagram Transport Layer Security April 2006

 secure its traffic. Unfortunately, although application layer
 security protocols generally provide superior security properties
 (e.g., end-to-end security in the case of S/MIME), they typically
 requires a large amount of effort to design -- in contrast to the
 relatively small amount of effort required to run the protocol over
 TLS.

 In many cases, the most desirable way to secure client/server
 applications would be to use TLS; however, the requirement for
 datagram semantics automatically prohibits use of TLS. Thus, a
 datagram-compatible variant of TLS would be very desirable. This
 memo describes such a protocol: Datagram Transport Layer Security
 (DTLS). DTLS is deliberately designed to be as similar to TLS as
 possible, both to minimize new security invention and to maximize the
 amount of code and infrastructure reuse.

1.1 . Requirements Terminology

 In this document, the keywords "MUST", "MUST NOT", "REQUIRED",
 "SHOULD", "SHOULD NOT", and "MAY" are to be interpreted as described
 in RFC 2119 [REQ].

2. Usage Model

 The DTLS protocol is designed to secure data between communicating
 applications. It is designed to run in application space, without
 requiring any kernel modifications.

 Datagram transport does not require or provide reliable or in-order
 delivery of data. The DTLS protocol preserves this property for
 payload data. Applications such as media streaming, Internet
 telephony, and online gaming use datagram transport for communication
 due to the delay-sensitive nature of transported data. The behavior
 of such applications is unchanged when the DTLS protocol is used to
 secure communication, since the DTLS protocol does not compensate for
 lost or re-ordered data traffic.

Rescorla & Modadugu Standards Track [Page 3]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc2119

RFC 4347 Datagram Transport Layer Security April 2006

3. Overview of DTLS

 The basic design philosophy of DTLS is to construct "TLS over
 datagram". The reason that TLS cannot be used directly in datagram
 environments is simply that packets may be lost or reordered. TLS
 has no internal facilities to handle this kind of unreliability, and
 therefore TLS implementations break when rehosted on datagram
 transport. The purpose of DTLS is to make only the minimal changes
 to TLS required to fix this problem. To the greatest extent
 possible, DTLS is identical to TLS. Whenever we need to invent new
 mechanisms, we attempt to do so in such a way that preserves the
 style of TLS.

 Unreliability creates problems for TLS at two levels:

 1. TLS’s traffic encryption layer does not allow independent
 decryption of individual records. If record N is not received,
 then record N+1 cannot be decrypted.

 2. The TLS handshake layer assumes that handshake messages are
 delivered reliably and breaks if those messages are lost.

 The rest of this section describes the approach that DTLS uses to
 solve these problems.

3.1 . Loss-Insensitive Messaging

 In TLS’s traffic encryption layer (called the TLS Record Layer),
 records are not independent. There are two kinds of inter-record
 dependency:

 1. Cryptographic context (CBC state, stream cipher key stream) is
 chained between records.

 2. Anti-replay and message reordering protection are provided by a
 MAC that includes a sequence number, but the sequence numbers are
 implicit in the records.

 The fix for both of these problems is straightforward and well known
 from IPsec ESP [ESP]: add explicit state to the records. TLS 1.1
 [TLS11] is already adding explicit CBC state to TLS records. DTLS
 borrows that mechanism and adds explicit sequence numbers.

3.2 . Providing Reliability for Handshake

 The TLS handshake is a lockstep cryptographic handshake. Messages
 must be transmitted and received in a defined order, and any other
 order is an error. Clearly, this is incompatible with reordering and

Rescorla & Modadugu Standards Track [Page 4]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 message loss. In addition, TLS handshake messages are potentially
 larger than any given datagram, thus creating the problem of
 fragmentation. DTLS must provide fixes for both of these problems.

3.2.1 . Packet Loss

 DTLS uses a simple retransmission timer to handle packet loss. The
 following figure demonstrates the basic concept, using the first
 phase of the DTLS handshake:

 Client Server
 ------ ------
 ClientHello ------>

 X<-- HelloVerifyRequest
 (lost)

 [Timer Expires]

 ClientHello ------>
 (retransmit)

 Once the client has transmitted the ClientHello message, it expects
 to see a HelloVerifyRequest from the server. However, if the
 server’s message is lost the client knows that either the ClientHello
 or the HelloVerifyRequest has been lost and retransmits. When the
 server receives the retransmission, it knows to retransmit. The
 server also maintains a retransmission timer and retransmits when
 that timer expires.

 Note: timeout and retransmission do not apply to the
 HelloVerifyRequest, because this requires creating state on the
 server.

3.2.2 . Reordering

 In DTLS, each handshake message is assigned a specific sequence
 number within that handshake. When a peer receives a handshake
 message, it can quickly determine whether that message is the next
 message it expects. If it is, then it processes it. If not, it
 queues it up for future handling once all previous messages have been
 received.

3.2.3 . Message Size

 TLS and DTLS handshake messages can be quite large (in theory up to
 2^24-1 bytes, in practice many kilobytes). By contrast, UDP
 datagrams are often limited to <1500 bytes if fragmentation is not

Rescorla & Modadugu Standards Track [Page 5]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 desired. In order to compensate for this limitation, each DTLS
 handshake message may be fragmented over several DTLS records. Each
 DTLS handshake message contains both a fragment offset and a fragment
 length. Thus, a recipient in possession of all bytes of a handshake
 message can reassemble the original unfragmented message.

3.3 . Replay Detection

 DTLS optionally supports record replay detection. The technique used
 is the same as in IPsec AH/ESP, by maintaining a bitmap window of
 received records. Records that are too old to fit in the window and
 records that have previously been received are silently discarded.
 The replay detection feature is optional, since packet duplication is
 not always malicious, but can also occur due to routing errors.
 Applications may conceivably detect duplicate packets and accordingly
 modify their data transmission strategy.

4. Differences from TLS

 As mentioned in Section 3 , DTLS is intentionally very similar to TLS.
 Therefore, instead of presenting DTLS as a new protocol, we present
 it as a series of deltas from TLS 1.1 [TLS11]. Where we do not
 explicitly call out differences, DTLS is the same as in [TLS11].

4.1 . Record Layer

 The DTLS record layer is extremely similar to that of TLS 1.1. The
 only change is the inclusion of an explicit sequence number in the
 record. This sequence number allows the recipient to correctly
 verify the TLS MAC. The DTLS record format is shown below:

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 type
 Equivalent to the type field in a TLS 1.1 record.

 version
 The version of the protocol being employed. This document
 describes DTLS Version 1.0, which uses the version { 254, 255
 }. The version value of 254.255 is the 1’s complement of DTLS
 Version 1.0. This maximal spacing between TLS and DTLS version

Rescorla & Modadugu Standards Track [Page 6]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 numbers ensures that records from the two protocols can be
 easily distinguished. It should be noted that future on-the-wire
 version numbers of DTLS are decreasing in value (while the true
 version number is increasing in value.)

 epoch
 A counter value that is incremented on every cipher state
 change.

 sequence_number
 The sequence number for this record.

 length
 Identical to the length field in a TLS 1.1 record. As in TLS
 1.1, the length should not exceed 2^14.

 fragment
 Identical to the fragment field of a TLS 1.1 record.

 DTLS uses an explicit sequence number, rather than an implicit one,
 carried in the sequence_number field of the record. As with TLS, the
 sequence number is set to zero after each ChangeCipherSpec message is
 sent.

 If several handshakes are performed in close succession, there might
 be multiple records on the wire with the same sequence number but
 from different cipher states. The epoch field allows recipients to
 distinguish such packets. The epoch number is initially zero and is
 incremented each time the ChangeCipherSpec messages is sent. In
 order to ensure that any given sequence/epoch pair is unique,
 implementations MUST NOT allow the same epoch value to be reused
 within two times the TCP maximum segment lifetime. In practice, TLS
 implementations rarely rehandshake and we therefore do not expect
 this to be a problem.

4.1.1 . Transport Layer Mapping

 Each DTLS record MUST fit within a single datagram. In order to
 avoid IP fragmentation [MOGUL], DTLS implementations SHOULD determine
 the MTU and send records smaller than the MTU. DTLS implementations
 SHOULD provide a way for applications to determine the value of the
 PMTU (or, alternately, the maximum application datagram size, which
 is the PMTU minus the DTLS per-record overhead). If the application
 attempts to send a record larger than the MTU, the DTLS
 implementation SHOULD generate an error, thus avoiding sending a
 packet which will be fragmented.

Rescorla & Modadugu Standards Track [Page 7]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 Note that unlike IPsec, DTLS records do not contain any association
 identifiers. Applications must arrange to multiplex between
 associations. With UDP, this is presumably done with host/port
 number.

 Multiple DTLS records may be placed in a single datagram. They are
 simply encoded consecutively. The DTLS record framing is sufficient
 to determine the boundaries. Note, however, that the first byte of
 the datagram payload must be the beginning of a record. Records may
 not span datagrams.

 Some transports, such as DCCP [DCCP] provide their own sequence
 numbers. When carried over those transports, both the DTLS and the
 transport sequence numbers will be present. Although this introduces
 a small amount of inefficiency, the transport layer and DTLS sequence
 numbers serve different purposes, and therefore for conceptual
 simplicity it is superior to use both sequence numbers. In the
 future, extensions to DTLS may be specified that allow the use of
 only one set of sequence numbers for deployment in constrained
 environments.

 Some transports, such as DCCP, provide congestion control for traffic
 carried over them. If the congestion window is sufficiently narrow,
 DTLS handshake retransmissions may be held rather than transmitted
 immediately, potentially leading to timeouts and spurious
 retransmission. When DTLS is used over such transports, care should
 be taken not to overrun the likely congestion window. In the future,
 a DTLS-DCCP mapping may be specified to provide optimal behavior for
 this interaction.

4.1.1.1 . PMTU Discovery

 In general, DTLS’s philosophy is to avoid dealing with PMTU issues.
 The general strategy is to start with a conservative MTU and then
 update it if events during the handshake or actual application data
 transport phase require it.

 The PMTU SHOULD be initialized from the interface MTU that will be
 used to send packets. If the DTLS implementation receives an RFC
 1191 [RFC1191] ICMP Destination Unreachable message with the
 "fragmentation needed and DF set" Code (otherwise known as Datagram
 Too Big), it should decrease its PMTU estimate to that given in the
 ICMP message. A DTLS implementation SHOULD allow the application to
 occasionally reset its PMTU estimate. The DTLS implementation SHOULD
 also allow applications to control the status of the DF bit. These
 controls allow the application to perform PMTU discovery. RFC 1981
 [RFC1981] procedures SHOULD be followed for IPv6.

Rescorla & Modadugu Standards Track [Page 8]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc1191
https://tools.ietf.org/pdf/rfc1191
https://tools.ietf.org/pdf/rfc1191
https://tools.ietf.org/pdf/rfc1981
https://tools.ietf.org/pdf/rfc1981

RFC 4347 Datagram Transport Layer Security April 2006

 One special case is the DTLS handshake system. Handshake messages
 should be set with DF set. Because some firewalls and routers screen
 out ICMP messages, it is difficult for the handshake layer to
 distinguish packet loss from an overlarge PMTU estimate. In order to
 allow connections under these circumstances, DTLS implementations
 SHOULD back off handshake packet size during the retransmit backoff
 described in Section 4.2.4 . For instance, if a large packet is being
 sent, after 3 retransmits the handshake layer might choose to
 fragment the handshake message on retransmission. In general, choice
 of a conservative initial MTU will avoid this problem.

4.1.2 . Record Payload Protection

 Like TLS, DTLS transmits data as a series of protected records. The
 rest of this section describes the details of that format.

4.1.2.1 . MAC

 The DTLS MAC is the same as that of TLS 1.1. However, rather than
 using TLS’s implicit sequence number, the sequence number used to
 compute the MAC is the 64-bit value formed by concatenating the epoch
 and the sequence number in the order they appear on the wire. Note
 that the DTLS epoch + sequence number is the same length as the TLS
 sequence number.

 TLS MAC calculation is parameterized on the protocol version number,
 which, in the case of DTLS, is the on-the-wire version, i.e., {254,
 255 } for DTLS 1.0.

 Note that one important difference between DTLS and TLS MAC handling
 is that in TLS MAC errors must result in connection termination. In
 DTLS, the receiving implementation MAY simply discard the offending
 record and continue with the connection. This change is possible
 because DTLS records are not dependent on each other in the way that
 TLS records are.

 In general, DTLS implementations SHOULD silently discard data with
 bad MACs. If a DTLS implementation chooses to generate an alert when
 it receives a message with an invalid MAC, it MUST generate
 bad_record_mac alert with level fatal and terminate its connection
 state.

4.1.2.2 . Null or Standard Stream Cipher

 The DTLS NULL cipher is performed exactly as the TLS 1.1 NULL cipher.

 The only stream cipher described in TLS 1.1 is RC4, which cannot be
 randomly accessed. RC4 MUST NOT be used with DTLS.

Rescorla & Modadugu Standards Track [Page 9]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

4.1.2.3 . Block Cipher

 DTLS block cipher encryption and decryption are performed exactly as
 with TLS 1.1.

4.1.2.4 . New Cipher Suites

 Upon registration, new TLS cipher suites MUST indicate whether they
 are suitable for DTLS usage and what, if any, adaptations must be
 made.

4.1.2.5 . Anti-replay

 DTLS records contain a sequence number to provide replay protection.
 Sequence number verification SHOULD be performed using the following
 sliding window procedure, borrowed from Section 3.4.3 of [RFC 2402] .

 The receiver packet counter for this session MUST be initialized to
 zero when the session is established. For each received record, the
 receiver MUST verify that the record contains a Sequence Number that
 does not duplicate the Sequence Number of any other record received
 during the life of this session. This SHOULD be the first check
 applied to a packet after it has been matched to a session, to speed
 rejection of duplicate records.

 Duplicates are rejected through the use of a sliding receive window.
 (How the window is implemented is a local matter, but the following
 text describes the functionality that the implementation must
 exhibit.) A minimum window size of 32 MUST be supported, but a
 window size of 64 is preferred and SHOULD be employed as the default.
 Another window size (larger than the minimum) MAY be chosen by the
 receiver. (The receiver does not notify the sender of the window
 size.)

 The "right" edge of the window represents the highest validated
 Sequence Number value received on this session. Records that contain
 Sequence Numbers lower than the "left" edge of the window are
 rejected. Packets falling within the window are checked against a
 list of received packets within the window. An efficient means for
 performing this check, based on the use of a bit mask, is described
 in Appendix C of [RFC 2401] .

 If the received record falls within the window and is new, or if the
 packet is to the right of the window, then the receiver proceeds to
 MAC verification. If the MAC validation fails, the receiver MUST
 discard the received record as invalid. The receive window is
 updated only if the MAC verification succeeds.

Rescorla & Modadugu Standards Track [Page 10]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc2402#section-3.4.3
https://tools.ietf.org/pdf/rfc2401#appendix-C

RFC 4347 Datagram Transport Layer Security April 2006

4.2 . The DTLS Handshake Protocol

 DTLS uses all of the same handshake messages and flows as TLS, with
 three principal changes:

 1. A stateless cookie exchange has been added to prevent denial of
 service attacks.

 2. Modifications to the handshake header to handle message loss,
 reordering, and fragmentation.

 3. Retransmission timers to handle message loss.

 With these exceptions, the DTLS message formats, flows, and logic are
 the same as those of TLS 1.1.

4.2.1 . Denial of Service Countermeasures

 Datagram security protocols are extremely susceptible to a variety of
 denial of service (DoS) attacks. Two attacks are of particular
 concern:

 1. An attacker can consume excessive resources on the server by
 transmitting a series of handshake initiation requests, causing
 the server to allocate state and potentially to perform expensive
 cryptographic operations.

 2. An attacker can use the server as an amplifier by sending
 connection initiation messages with a forged source of the victim.
 The server then sends its next message (in DTLS, a Certificate
 message, which can be quite large) to the victim machine, thus
 flooding it.

 In order to counter both of these attacks, DTLS borrows the stateless
 cookie technique used by Photuris [PHOTURIS] and IKE [IKE]. When the
 client sends its ClientHello message to the server, the server MAY
 respond with a HelloVerifyRequest message. This message contains a
 stateless cookie generated using the technique of [PHOTURIS]. The
 client MUST retransmit the ClientHello with the cookie added. The
 server then verifies the cookie and proceeds with the handshake only
 if it is valid. This mechanism forces the attacker/client to be able
 to receive the cookie, which makes DoS attacks with spoofed IP
 addresses difficult. This mechanism does not provide any defense
 against DoS attacks mounted from valid IP addresses.

Rescorla & Modadugu Standards Track [Page 11]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 The exchange is shown below:

 Client Server
 ------ ------
 ClientHello ------>

 <----- HelloVerifyRequest
 (contains cookie)

 ClientHello ------>
 (with cookie)

 [Rest of handshake]

 DTLS therefore modifies the ClientHello message to add the cookie
 value.

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 opaque cookie<0..32>; // New field
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 } ClientHello;

 When sending the first ClientHello, the client does not have a cookie
 yet; in this case, the Cookie field is left empty (zero length).

 The definition of HelloVerifyRequest is as follows:

 struct {
 ProtocolVersion server_version;
 opaque cookie<0..32>;
 } HelloVerifyRequest;

 The HelloVerifyRequest message type is hello_verify_request(3).

 The server_version field is defined as in TLS.

 When responding to a HelloVerifyRequest the client MUST use the same
 parameter values (version, random, session_id, cipher_suites,
 compression_method) as it did in the original ClientHello. The
 server SHOULD use those values to generate its cookie and verify that
 they are correct upon cookie receipt. The server MUST use the same
 version number in the HelloVerifyRequest that it would use when
 sending a ServerHello. Upon receipt of the ServerHello, the client
 MUST verify that the server version values match.

Rescorla & Modadugu Standards Track [Page 12]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 The DTLS server SHOULD generate cookies in such a way that they can
 be verified without retaining any per-client state on the server.
 One technique is to have a randomly generated secret and generate
 cookies as: Cookie = HMAC(Secret, Client-IP, Client-Parameters)

 When the second ClientHello is received, the server can verify that
 the Cookie is valid and that the client can receive packets at the
 given IP address.

 One potential attack on this scheme is for the attacker to collect a
 number of cookies from different addresses and then reuse them to
 attack the server. The server can defend against this attack by
 changing the Secret value frequently, thus invalidating those
 cookies. If the server wishes that legitimate clients be able to
 handshake through the transition (e.g., they received a cookie with
 Secret 1 and then sent the second ClientHello after the server has
 changed to Secret 2), the server can have a limited window during
 which it accepts both secrets. [IKEv2] suggests adding a version
 number to cookies to detect this case. An alternative approach is
 simply to try verifying with both secrets.

 DTLS servers SHOULD perform a cookie exchange whenever a new
 handshake is being performed. If the server is being operated in an
 environment where amplification is not a problem, the server MAY be
 configured not to perform a cookie exchange. The default SHOULD be
 that the exchange is performed, however. In addition, the server MAY
 choose not to do a cookie exchange when a session is resumed.
 Clients MUST be prepared to do a cookie exchange with every
 handshake.

 If HelloVerifyRequest is used, the initial ClientHello and
 HelloVerifyRequest are not included in the calculation of the
 verify_data for the Finished message.

4.2.2 . Handshake Message Format

 In order to support message loss, reordering, and fragmentation, DTLS
 modifies the TLS 1.1 handshake header:

 struct {
 HandshakeType msg_type;
 uint24 length;
 uint16 message_seq; // New field
 uint24 fragment_offset; // New field
 uint24 fragment_length; // New field
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;

Rescorla & Modadugu Standards Track [Page 13]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 case hello_verify_request: HelloVerifyRequest; // New type
 case server_hello: ServerHello;
 case certificate:Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done:ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished:Finished;
 } body;
 } Handshake;

 The first message each side transmits in each handshake always has
 message_seq = 0. Whenever each new message is generated, the
 message_seq value is incremented by one. When a message is
 retransmitted, the same message_seq value is used. For example:

 Client Server
 ------ ------
 ClientHello (seq=0) ------>

 X<-- HelloVerifyRequest (seq=0)
 (lost)

 [Timer Expires]

 ClientHello (seq=0) ------>
 (retransmit)

 <------ HelloVerifyRequest (seq=0)

 ClientHello (seq=1) ------>
 (with cookie)

 <------ ServerHello (seq=1)
 <------ Certificate (seq=2)
 <------ ServerHelloDone (seq=3)

 [Rest of handshake]

 Note, however, that from the perspective of the DTLS record layer,
 the retransmission is a new record. This record will have a new
 DTLSPlaintext.sequence_number value.

 DTLS implementations maintain (at least notionally) a
 next_receive_seq counter. This counter is initially set to zero.
 When a message is received, if its sequence number matches
 next_receive_seq, next_receive_seq is incremented and the message is

Rescorla & Modadugu Standards Track [Page 14]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 processed. If the sequence number is less than next_receive_seq, the
 message MUST be discarded. If the sequence number is greater than
 next_receive_seq, the implementation SHOULD queue the message but MAY
 discard it. (This is a simple space/bandwidth tradeoff).

4.2.3 . Message Fragmentation and Reassembly

 As noted in Section 4.1.1 , each DTLS message MUST fit within a single
 transport layer datagram. However, handshake messages are
 potentially bigger than the maximum record size. Therefore, DTLS
 provides a mechanism for fragmenting a handshake message over a
 number of records.

 When transmitting the handshake message, the sender divides the
 message into a series of N contiguous data ranges. These ranges MUST
 NOT be larger than the maximum handshake fragment size and MUST
 jointly contain the entire handshake message. The ranges SHOULD NOT
 overlap. The sender then creates N handshake messages, all with the
 same message_seq value as the original handshake message. Each new
 message is labelled with the fragment_offset (the number of bytes
 contained in previous fragments) and the fragment_length (the length
 of this fragment). The length field in all messages is the same as
 the length field of the original message. An unfragmented message is
 a degenerate case with fragment_offset=0 and fragment_length=length.

 When a DTLS implementation receives a handshake message fragment, it
 MUST buffer it until it has the entire handshake message. DTLS
 implementations MUST be able to handle overlapping fragment ranges.
 This allows senders to retransmit handshake messages with smaller
 fragment sizes during path MTU discovery.

 Note that as with TLS, multiple handshake messages may be placed in
 the same DTLS record, provided that there is room and that they are
 part of the same flight. Thus, there are two acceptable ways to pack
 two DTLS messages into the same datagram: in the same record or in
 separate records.

4.2.4 . Timeout and Retransmission

 DTLS messages are grouped into a series of message flights, according
 to the diagrams below. Although each flight of messages may consist
 of a number of messages, they should be viewed as monolithic for the
 purpose of timeout and retransmission.

Rescorla & Modadugu Standards Track [Page 15]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 Client Server
 ------ ------

 ClientHello --------> Flight 1

 <------- HelloVerifyRequest Flight 2

 ClientHello --------> Flight 3

 ServerHello \
 Certificate* \
 ServerKeyExchange* Flight 4
 CertificateRequest* /
 <-------- ServerHelloDone /

 Certificate* \
 ClientKeyExchange \
 CertificateVerify* Flight 5
 [ChangeCipherSpec] /
 Finished --------> /

 [ChangeCipherSpec] \ Flight 6
 <-------- Finished /

 Figure 1. Message flights for full handshake

 Client Server
 ------ ------

 ClientHello --------> Flight 1

 ServerHello \
 [ChangeCipherSpec] Flight 2
 <-------- Finished /

 [ChangeCipherSpec] \Flight 3
 Finished --------> /

 Figure 2. Message flights for session-resuming handshake
 (no cookie exchange)

 DTLS uses a simple timeout and retransmission scheme with the
 following state machine. Because DTLS clients send the first message
 (ClientHello), they start in the PREPARING state. DTLS servers start
 in the WAITING state, but with empty buffers and no retransmit timer.

Rescorla & Modadugu Standards Track [Page 16]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 +-----------+
 | PREPARING |
 +---> | | <--------------------+
 | | | |
 | +-----------+ |
 | | |
 | | |
 | | Buffer next flight |
 | | |
 | \|/ |
 | +-----------+ |
 | | | |
 | | SENDING |<------------------+ |
 | | | | | Send
 | +-----------+ | | HelloRequest
 Receive | | | |
 next | | Send flight | | or
 flight | +--------+ | |
 | | | Set retransmit timer | | Receive
 | | \|/ | | HelloRequest
 | | +-----------+ | | Send
 | | | | | | ClientHello
 +--)--| WAITING |-------------------+ |
 | | | | Timer expires | |
 | | +-----------+ | |
 | | | | |
 | | | | |
 | | +------------------------+ |
 | | Read retransmit |
 Receive | | |
 last | | |
 flight | | |
 | | |
 \|/\|/ |
 |
 +-----------+ |
 | | |
 | FINISHED | -------------------------------+
 | |
 +-----------+

 Figure 3. DTLS timeout and retransmission state machine

 The state machine has three basic states.

Rescorla & Modadugu Standards Track [Page 17]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 In the PREPARING state the implementation does whatever computations
 are necessary to prepare the next flight of messages. It then
 buffers them up for transmission (emptying the buffer first) and
 enters the SENDING state.

 In the SENDING state, the implementation transmits the buffered
 flight of messages. Once the messages have been sent, the
 implementation then enters the FINISHED state if this is the last
 flight in the handshake. Or, if the implementation expects to
 receive more messages, it sets a retransmit timer and then enters the
 WAITING state.

 There are three ways to exit the WAITING state:

 1. The retransmit timer expires: the implementation transitions to
 the SENDING state, where it retransmits the flight, resets the
 retransmit timer, and returns to the WAITING state.

 2. The implementation reads a retransmitted flight from the peer:
 the implementation transitions to the SENDING state, where it
 retransmits the flight, resets the retransmit timer, and returns
 to the WAITING state. The rationale here is that the receipt of a
 duplicate message is the likely result of timer expiry on the peer
 and therefore suggests that part of one’s previous flight was
 lost.

 3. The implementation receives the next flight of messages: if
 this is the final flight of messages, the implementation
 transitions to FINISHED. If the implementation needs to send a
 new flight, it transitions to the PREPARING state. Partial reads
 (whether partial messages or only some of the messages in the
 flight) do not cause state transitions or timer resets.

 Because DTLS clients send the first message (ClientHello), they start
 in the PREPARING state. DTLS servers start in the WAITING state, but
 with empty buffers and no retransmit timer.

 When the server desires a rehandshake, it transitions from the
 FINISHED state to the PREPARING state to transmit the HelloRequest.
 When the client receives a HelloRequest it transitions from FINISHED
 to PREPARING to transmit the ClientHello.

4.2.4.1 . Timer Values

 Though timer values are the choice of the implementation, mishandling
 of the timer can lead to serious congestion problems; for example, if
 many instances of a DTLS time out early and retransmit too quickly on
 a congested link. Implementations SHOULD use an initial timer value

Rescorla & Modadugu Standards Track [Page 18]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 of 1 second (the minimum defined in RFC 2988 [RFC2988]) and double
 the value at each retransmission, up to no less than the RFC 2988
 maximum of 60 seconds. Note that we recommend a 1-second timer
 rather than the 3-second RFC 2988 default in order to improve latency
 for time-sensitive applications. Because DTLS only uses
 retransmission for handshake and not dataflow, the effect on
 congestion should be minimal.

 Implementations SHOULD retain the current timer value until a
 transmission without loss occurs, at which time the value may be
 reset to the initial value. After a long period of idleness, no less
 than 10 times the current timer value, implementations may reset the
 timer to the initial value. One situation where this might occur is
 when a rehandshake is used after substantial data transfer.

4.2.5 . ChangeCipherSpec

 As with TLS, the ChangeCipherSpec message is not technically a
 handshake message but MUST be treated as part of the same flight as
 the associated Finished message for the purposes of timeout and
 retransmission.

4.2.6 . Finished Messages

 Finished messages have the same format as in TLS. However, in order
 to remove sensitivity to fragmentation, the Finished MAC MUST be
 computed as if each handshake message had been sent as a single
 fragment. Note that in cases where the cookie exchange is used, the
 initial ClientHello and HelloVerifyRequest MUST NOT be included in
 the Finished MAC.

4.2.7 . Alert Messages

 Note that Alert messages are not retransmitted at all, even when they
 occur in the context of a handshake. However, a DTLS implementation
 SHOULD generate a new alert message if the offending record is
 received again (e.g., as a retransmitted handshake message).
 Implementations SHOULD detect when a peer is persistently sending bad
 messages and terminate the local connection state after such
 misbehavior is detected.

4.3 . Summary of new syntax

 This section includes specifications for the data structures that
 have changed between TLS 1.1 and DTLS.

Rescorla & Modadugu Standards Track [Page 19]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc2988
https://tools.ietf.org/pdf/rfc2988
https://tools.ietf.org/pdf/rfc2988
https://tools.ietf.org/pdf/rfc2988

RFC 4347 Datagram Transport Layer Security April 2006

4.3.1 . Record Layer

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSCompressed.length];
 } DTLSCompressed;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 select (CipherSpec.cipher_type) {
 case block: GenericBlockCipher;
 } fragment;
 } DTLSCiphertext;

4.3.2 . Handshake Protocol

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 hello_verify_request(3), // New field
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type;
 uint24 length;
 uint16 message_seq; // New field
 uint24 fragment_offset; // New field
 uint24 fragment_length; // New field

Rescorla & Modadugu Standards Track [Page 20]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_verify_request: HelloVerifyRequest; // New field
 case certificate:Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done:ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished:Finished;
 } body;
 } Handshake;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 opaque cookie<0..32>; // New field
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 } ClientHello;

 struct {
 ProtocolVersion server_version;
 opaque cookie<0..32>;
 } HelloVerifyRequest;

5. Security Considerations

 This document describes a variant of TLS 1.1 and therefore most of
 the security considerations are the same as those of TLS 1.1 [TLS11],
 described in Appendices D, E, and F.

 The primary additional security consideration raised by DTLS is that
 of denial of service. DTLS includes a cookie exchange designed to
 protect against denial of service. However, implementations which do
 not use this cookie exchange are still vulnerable to DoS. In
 particular, DTLS servers which do not use the cookie exchange may be
 used as attack amplifiers even if they themselves are not
 experiencing DoS. Therefore, DTLS servers SHOULD use the cookie
 exchange unless there is good reason to believe that amplification is
 not a threat in their environment. Clients MUST be prepared to do a
 cookie exchange with every handshake.

Rescorla & Modadugu Standards Track [Page 21]

https://tools.ietf.org/pdf/rfc4347

RFC 4347 Datagram Transport Layer Security April 2006

6. Acknowledgements

 The authors would like to thank Dan Boneh, Eu-Jin Goh, Russ Housley,
 Constantine Sapuntzakis, and Hovav Shacham for discussions and
 comments on the design of DTLS. Thanks to the anonymous NDSS
 reviewers of our original NDSS paper on DTLS [DTLS] for their
 comments. Also, thanks to Steve Kent for feedback that helped
 clarify many points. The section on PMTU was cribbed from the DCCP
 specification [DCCP]. Pasi Eronen provided a detailed review of this
 specification. Helpful comments on the document were also received
 from Mark Allman, Jari Arkko, Joel Halpern, Ted Hardie, and Allison
 Mankin.

7. IANA Considerations

 This document uses the same identifier space as TLS [TLS11], so no
 new IANA registries are required. When new identifiers are assigned
 for TLS, authors MUST specify whether they are suitable for DTLS.

 This document defines a new handshake message, hello_verify_request,
 whose value has been allocated from the TLS HandshakeType registry
 defined in [TLS11]. The value "3" has been assigned by the IANA.

8. References

8.1 . Normative References

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191 ,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981 , August 1996.

 [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401 , November 1998.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988 , November 2000.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793 , September 1981.

 [TLS11] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346 , April 2006.

Rescorla & Modadugu Standards Track [Page 22]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc1191
https://tools.ietf.org/pdf/rfc1981
https://tools.ietf.org/pdf/rfc2401
https://tools.ietf.org/pdf/rfc2988
https://tools.ietf.org/pdf/rfc793
https://tools.ietf.org/pdf/rfc793
https://tools.ietf.org/pdf/rfc4346

RFC 4347 Datagram Transport Layer Security April 2006

8.2 . Informative References

 [AESCACHE] Bernstein, D.J., "Cache-timing attacks on AES"
 http://cr.yp.to/antiforgery/cachetiming-20050414.pdf .

 [AH] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
 2402 , November 1998.

 [DCCP] Kohler, E., Handley, M., Floyd, S., Padhye, J., "Datagram
 Congestion Control Protocol", Work in Progress, 10 March
 2005.

 [DNS] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035 , November 1987.

 [DTLS] Modadugu, N., Rescorla, E., "The Design and Implementation
 of Datagram TLS", Proceedings of ISOC NDSS 2004, February
 2004.

 [ESP] Kent, S. and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406 , November 1998.

 [IKE] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409 , November 1998.

 Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306 ,
 December 2005.

 [IMAP] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501 , March 2003.

 [PHOTURIS] Karn, P. and W. Simpson, "ICMP Security Failures
 Messages", RFC 2521 , March 1999.

 [POP] Myers, J. and M. Rose, "Post Office Protocol - Version 3",
 STD 53, RFC 1939 , May 1996.

 [REQ] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [SCTP] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960 , October 2000.

Rescorla & Modadugu Standards Track [Page 23]

https://tools.ietf.org/pdf/rfc4347
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://tools.ietf.org/pdf/rfc2402
https://tools.ietf.org/pdf/rfc2402
https://tools.ietf.org/pdf/rfc1035
https://tools.ietf.org/pdf/rfc2406
https://tools.ietf.org/pdf/rfc2409
https://tools.ietf.org/pdf/rfc4306
https://tools.ietf.org/pdf/rfc3501
https://tools.ietf.org/pdf/rfc2521
https://tools.ietf.org/pdf/rfc1939
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2960

RFC 4347 Datagram Transport Layer Security April 2006

 [SIP] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261 ,
 June 2002.

 [TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246 , January 1999.

 [WHYIPSEC] Bellovin, S., "Guidelines for Mandating the Use of IPsec" ,
 Work in Progress, October 2003.

Authors’ Addresses

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303

 EMail: ekr@rtfm.com

 Nagendra Modadugu
 Computer Science Department
 Stanford University
 353 Serra Mall
 Stanford, CA 94305

 EMail: nagendra@cs.stanford.edu

Rescorla & Modadugu Standards Track [Page 24]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc3261
https://tools.ietf.org/pdf/rfc2246
https://www.google.com/search?sitesearch=tools.ietf.org%2Fhtml%2F&q=inurl:draft-+%22Guidelines+for+Mandating+the+Use+of+IPsec%22

RFC 4347 Datagram Transport Layer Security April 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 , and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79 .

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr .

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Rescorla & Modadugu Standards Track [Page 25]

https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://www.ietf.org/ipr

