
Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Abstract

This document describes the Open Network Computing (ONC) Remote Procedure Call (RPC) version 2 protocol as it is currently deployed and accepted. This document obsoletes RFC 1831.
Table of Contents

1. Introduction .. 3
 1.1. Requirements Language 3

2. Changes since RFC 1831 .. 3

3. Terminology .. 3

4. The RPC Model ... 4

5. Transports and Semantics 5

6. Binding and Rendezvous Independence 7

7. Authentication .. 7

8. RPC Protocol Requirements 7
 8.1. RPC Programs and Procedures 8
 8.2. Authentication, Integrity, and Privacy 9
 8.3. Program Number Assignment 10
 8.4. Other Uses of the RPC Protocol 10
 8.4.1. Batching ... 10
 8.4.2. Broadcast Remote Procedure Calls 11

9. The RPC Message Protocol 11

10. Authentication Protocols 15

11. Record Marking Standard 16

12. The RPC Language ... 16
 12.1. An Example Service Described in the RPC Language 17
 12.2. The RPC Language Specification 18
 12.3. Syntax Notes .. 18

13. IANA Considerations .. 19
 13.1. Numbering Requests to IANA 19
 13.2. Protecting Past Assignments 19
 13.3. RPC Number Assignment 19
 13.3.1. To be assigned by IANA 20
 13.3.2. Defined by Local Administrator 20
 13.3.3. Transient Block 20
 13.3.4. Reserved Block 21
 13.3.5. RPC Number Sub-Blocks 21
 13.4. RPC Authentication Flavor Number Assignment 22
 13.4.1. Assignment Policy 22
 13.4.2. Auth Flavors vs. Pseudo-Flavors 23
 13.5. Authentication Status Number Assignment 23
 13.5.1. Assignment Policy 23

14. Security Considerations 24

Appendix A: System Authentication 25

Appendix B: Requesting RPC-Related Numbers from IANA 26

Appendix C: Current Number Assignments 27

Normative References ... 62

Informative References .. 62
1. Introduction

This document specifies version 2 of the message protocol used in ONC Remote Procedure Call (RPC). The message protocol is specified with the eXternal Data Representation (XDR) language [RFC4506]. This document assumes that the reader is familiar with XDR. It does not attempt to justify remote procedure call systems or describe their use. The paper by Birrell and Nelson [XRPC] is recommended as an excellent background for the remote procedure call concept.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Changes since RFC 1831

This document obsoletes [RFC1831] as the authoritative document describing RPC, without introducing any over-the-wire protocol changes. The main changes from RFC 1831 are:

- Addition of an Appendix that describes how an implementor can request new RPC program numbers, authentication flavor numbers, and authentication status numbers from IANA, rather than from Sun Microsystems.
- Addition of an "IANA Considerations" section that describes past number assignment policy and how IANA is intended to assign them in the future.
- Clarification of the RPC Language Specification to match current usage.
- Enhancement of the "Security Considerations" section to reflect experience with strong security flavors.
- Specification of new authentication errors that are in common use in modern RPC implementations.
- Updates for the latest IETF intellectual property statements.

3. Terminology

This document discusses clients, calls, servers, replies, services, programs, procedures, and versions. Each remote procedure call has two sides: an active client side that makes the call to a server side, which sends back a reply. A network service is a collection of
one or more remote programs. A remote program implements one or more remote procedures; the procedures, their parameters, and results are documented in the specific program’s protocol specification. A server may support more than one version of a remote program in order to be compatible with changing protocols.

For example, a network file service may be composed of two programs. One program may deal with high-level applications such as file system access control and locking. The other may deal with low-level file input and output and have procedures like "read" and "write". A client of the network file service would call the procedures associated with the two programs of the service on behalf of the client.

The terms "client" and "server" only apply to a particular transaction; a particular hardware entity (host) or software entity (process or program) could operate in both roles at different times. For example, a program that supplies remote execution service could also be a client of a network file service.

4. The RPC Model

The ONC RPC protocol is based on the remote procedure call model, which is similar to the local procedure call model. In the local case, the caller places arguments to a procedure in some well-specified location (such as a register window). It then transfers control to the procedure, and eventually regains control. At that point, the results of the procedure are extracted from the well-specified location, and the caller continues execution.

The remote procedure call model is similar. One thread of control logically winds through two processes: the caller’s process and a server’s process. The caller first sends a call message to the server process and waits (blocks) for a reply message. The call message includes the procedure’s parameters, and the reply message includes the procedure’s results. Once the reply message is received, the results of the procedure are extracted, and the caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message. When one arrives, the server process extracts the procedure’s parameters, computes the results, sends a reply message, and then waits the next call message.

In this model, only one of the two processes is active at any given time. However, this model is only given as an example. The ONC RPC protocol makes no restrictions on the concurrency model implemented, and others are possible. For example, an implementation may choose
to have RPC calls be asynchronous so that the client may do useful work while waiting for the reply from the server. Another possibility is to have the server create a separate task to process an incoming call so that the original server can be free to receive other requests.

There are a few important ways in which remote procedure calls differ from local procedure calls.

- **Error handling:** failures of the remote server or network must be handled when using remote procedure calls.

- **Global variables and side effects:** since the server does not have access to the client’s address space, hidden arguments cannot be passed as global variables or returned as side effects.

- **Performance:** remote procedures usually operate at one or more orders of magnitude slower than local procedure calls.

- **Authentication:** since remote procedure calls can be transported over unsecured networks, authentication may be necessary. Authentication prevents one entity from masquerading as some other entity.

The conclusion is that even though there are tools to automatically generate client and server libraries for a given service, protocols must still be designed carefully.

5. Transports and Semantics

The RPC protocol can be implemented on several different transport protocols. The scope of the definition of the RPC protocol excludes how a message is passed from one process to another, and includes only the specification and interpretation of messages. However, the application may wish to obtain information about (and perhaps control over) the transport layer through an interface not specified in this document. For example, the transport protocol may impose a restriction on the maximum size of RPC messages, or it may be stream-oriented like TCP [RFC0793] with no size limit. The client and server must agree on their transport protocol choices.

It is important to point out that RPC does not try to implement any kind of reliability and that the application may need to be aware of the type of transport protocol underneath RPC. If it knows it is running on top of a reliable transport such as TCP, then most of the work is already done for it. On the other hand, if it is running on
top of an unreliable transport such as UDP [RFC0768], it must implement its own time-out, retransmission, and duplicate detection policies as the RPC protocol does not provide these services.

Because of transport independence, the RPC protocol does not attach specific semantics to the remote procedures or their execution requirements. Semantics can be inferred from (but should be explicitly specified by) the underlying transport protocol. For example, consider RPC running on top of an unreliable transport such as UDP. If an application retransmits RPC call messages after time-outs, and does not receive a reply, it cannot infer anything about the number of times the procedure was executed. If it does receive a reply, then it can infer that the procedure was executed at least once.

A server may wish to remember previously granted requests from a client and not regrant them, in order to insure some degree of execute-at-most-once semantics. A server can do this by taking advantage of the transaction ID that is packaged with every RPC message. The main use of this transaction ID is by the client RPC entity in matching replies to calls. However, a client application may choose to reuse its previous transaction ID when retransmitting a call. The server may choose to remember this ID after executing a call and not execute calls with the same ID, in order to achieve some degree of execute-at-most-once semantics. The server is not allowed to examine this ID in any other way except as a test for equality.

On the other hand, if using a "reliable" transport such as TCP, the application can infer from a reply message that the procedure was executed exactly once, but if it receives no reply message, it cannot assume that the remote procedure was not executed. Note that even if a connection-oriented protocol like TCP is used, an application still needs time-outs and reconnections to handle server crashes.

There are other possibilities for transports besides datagram- or connection-oriented protocols. For example, a request-reply protocol such as [VMTP] is perhaps a natural transport for RPC. ONC RPC currently uses both TCP and UDP transport protocols. Section 11 ("Record Marking Standard") describes the mechanism employed by ONC RPC to utilize a connection-oriented, stream-oriented transport such as TCP. The mechanism by which future transports having different structural characteristics should be used to transfer ONC RPC messages should be specified by means of a Standards Track RFC, once such additional transports are defined.
6. Binding and Rendezvous Independence

The act of binding a particular client to a particular service and transport parameters is NOT part of this RPC protocol specification. This important and necessary function is left up to some higher-level software.

Implementors could think of the RPC protocol as the jump-subroutine instruction (JSR) of a network; the loader (binder) makes JSR useful, and the loader itself uses JSR to accomplish its task. Likewise, the binding software makes RPC useful, possibly using RPC to accomplish this task.

7. Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a service, and vice-versa, in each call and reply message. Security and access control mechanisms can be built on top of this message authentication. Several different authentication protocols can be supported. A field in the RPC header indicates which protocol is being used. More information on specific authentication protocols is in Section 8.2, "Authentication, Integrity and Privacy".

8. RPC Protocol Requirements

The RPC protocol must provide for the following:

- Unique specification of a procedure to be called
- Provisions for matching response messages to request messages
- Provisions for authenticating the caller to service and vice-versa

Besides these requirements, features that detect the following are worth supporting because of protocol roll-over errors, implementation bugs, user error, and network administration:

- RPC protocol mismatches
- Remote program protocol version mismatches
- Protocol errors (such as misspecification of a procedure’s parameters)
- Reasons why remote authentication failed
- Any other reasons why the desired procedure was not called
8.1. RPC Programs and Procedures

The RPC call message has three unsigned-integer fields -- remote program number, remote program version number, and remote procedure number -- that uniquely identify the procedure to be called. Program numbers are administered by a central authority (IANA). Once implementors have a program number, they can implement their remote program; the first implementation would most likely have the version number 1 but MUST NOT be the number zero. Because most new protocols evolve, a "version" field of the call message identifies which version of the protocol the caller is using. Version numbers enable support of both old and new protocols through the same server process.

The procedure number identifies the procedure to be called. These numbers are documented in the specific program’s protocol specification. For example, a file service’s protocol specification may state that its procedure number 5 is "read" and procedure number 12 is "write".

Just as remote program protocols may change over several versions, the actual RPC message protocol could also change. Therefore, the call message also has in it the RPC version number, which is always equal to 2 for the version of RPC described here.

The reply message to a request message has enough information to distinguish the following error conditions:

- The remote implementation of RPC does not support protocol version 2. The lowest and highest supported RPC version numbers are returned.

- The remote program is not available on the remote system.

- The remote program does not support the requested version number. The lowest and highest supported remote program version numbers are returned.

- The requested procedure number does not exist. (This is usually a client-side protocol or programming error.)

- The parameters to the remote procedure appear to be garbage from the server’s point of view. (Again, this is usually caused by a disagreement about the protocol between client and service.)
8.2. Authentication, Integrity, and Privacy

Provisions for authentication of caller to service and vice-versa are provided as a part of the RPC protocol. The call message has two authentication fields: the credential and the verifier. The reply message has one authentication field: the response verifier. The RPC protocol specification defines all three fields to be the following opaque type (in the eXternal Data Representation (XDR) language [RFC4506]):

```c
enum auth_flavor {
    AUTH_NONE       = 0,
    AUTH_SYS        = 1,
    AUTH_SHORT      = 2,
    AUTH_DH         = 3,
    RPCSEC_GSS      = 6,
    /* and more to be defined */
};

struct opaque_auth {
    auth_flavor flavor;
    opaque body<400>;
};
```

In other words, any "opaque_auth" structure is an "auth_flavor" enumeration followed by up to 400 bytes that are opaque to (uninterpreted by) the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields are specified by individual, independent authentication protocol specifications.

If authentication parameters were rejected, the reply message contains information stating why they were rejected.

As demonstrated by RPCSEC_GSS, it is possible for an "auth_flavor" to also support integrity and privacy.
8.3. Program Number Assignment

Program numbers are given out in groups according to the following chart:

<table>
<thead>
<tr>
<th>Program Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x00000001 - 0x1fffffff</td>
<td>To be assigned by IANA</td>
</tr>
<tr>
<td>0x20000000 - 0x3fffffff</td>
<td>Defined by local administrator</td>
</tr>
<tr>
<td></td>
<td>(some blocks assigned here)</td>
</tr>
<tr>
<td>0x40000000 - 0x5fffffff</td>
<td>Transient</td>
</tr>
<tr>
<td>0x60000000 - 0x7efffffff</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x7f000000 - 0x7fffffff</td>
<td>Assignment outstanding</td>
</tr>
<tr>
<td>0x80000000 - 0x8fffffff</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

The first group is a range of numbers administered by IANA and should be identical for all sites. The second range is for applications peculiar to a particular site. This range is intended primarily for debugging new programs. When a site develops an application that might be of general interest, that application should be given an assigned number in the first range. Application developers may apply for blocks of RPC program numbers in the first range by methods described in Appendix B. The third group is for applications that generate program numbers dynamically. The final groups are reserved for future use, and should not be used.

8.4. Other Uses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. Normally, each call message is matched with a reply message. However, the protocol itself is a message-passing protocol with which other (non-procedure-call) protocols can be implemented.

8.4.1. Batching

Batching is useful when a client wishes to send an arbitrarily large sequence of call messages to a server. Batching typically uses reliable byte stream protocols (like TCP) for its transport. In the case of batching, the client never waits for a reply from the server, and the server does not send replies to batch calls. A sequence of batch calls is usually terminated by a legitimate remote procedure call operation in order to flush the pipeline and get positive acknowledgement.
8.4.2. Broadcast Remote Procedure Calls

In broadcast protocols, the client sends a broadcast call to the network and waits for numerous replies. This requires the use of packet-based protocols (like UDP) as its transport protocol. Servers that support broadcast protocols usually respond only when the call is successfully processed and are silent in the face of errors, but this varies with the application.

The principles of broadcast RPC also apply to multicasting -- an RPC request can be sent to a multicast address.

9. The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description language [RFC4506].

```c
enum msg_type {
    CALL = 0,
    REPLY = 1
};
```

A reply to a call message can take on two forms: the message was either accepted or rejected.

```c
enum reply_stat {
    MSG_ACCEPTED = 0,
    MSG_DENIED   = 1
};
```

Given that a call message was accepted, the following is the status of an attempt to call a remote procedure.

```c
enum accept_stat {
    SUCCESS       = 0, /* RPC executed successfully */
    PROG_UNAVAIL  = 1, /* remote hasn't exported program */
    PROG_MISMATCH = 2, /* remote can't support version # */
    PROC_UNAVAIL  = 3, /* program can't support procedure */
    GARBAGE_ARGS  = 4, /* procedure can't decode params */
    SYSTEM_ERR    = 5 /* e.g. memory allocation failure */
};
```

Reasons why a call message was rejected:

```c
enum reject_stat {
    RPC_MISMATCH = 0, /* RPC version number != 2 */
    AUTH_ERROR   = 1 /* remote can't authenticate caller */
};
```
Why authentication failed:

enum auth_stat {
 AUTH_OK = 0, /* success */
 AUTH_BADCRED = 1, /* bad credential (seal broken) */
 AUTH_REJECTEDCRED = 2, /* client must begin new session */
 AUTH_BADVERF = 3, /* bad verifier (seal broken) */
 AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */
 AUTH_TOOWEAK = 5, /* rejected for security reasons */
 AUTH_INVALIDRESP = 6, /* bogus response verifier */
 AUTH_FAILED = 7, /* reason unknown */
 AUTH_KERB_GENERIC = 8, /* kerberos generic error */
 AUTH_TIMEEXPIRE = 9, /* time of credential expired */
 AUTH_TKT_FILE = 10, /* problem with ticket file */
 AUTH_DECODER = 11, /* can’t decode authenticator */
 AUTH_NET_ADDR = 12, /* wrong net address in ticket */
 RPCSEC_GSS_CREDPROBLEM = 13, /* no credentials for user */
 RPCSEC_GSS_CTXPROBLEM = 14 /* problem with context */
};

As new authentication mechanisms are added, there may be a need for more status codes to support them. IANA will hand out new auth_stat numbers on a simple First Come First Served basis as defined in the "IANA Considerations" and Appendix B.

The RPC message:

All messages start with a transaction identifier, xid, followed by a two-armed discriminated union. The union’s discriminant is a msg_type that switches to one of the two types of the message. The xid of a REPLY message always matches that of the initiating CALL message. NB: The "xid" field is only used for clients matching reply messages with call messages or for servers detecting retransmissions; the service side cannot treat this id as any type of sequence number.
struct rpc_msg {
 unsigned int xid;
 union switch (msg_type mtype) {
 case CALL:
 call_body cbody;
 case REPLY:
 reply_body rbody;
 } body;
};

Body of an RPC call:

In version 2 of the RPC protocol specification, rpcvers MUST be equal to 2. The fields "prog", "vers", and "proc" specify the remote program, its version number, and the procedure within the remote program to be called. After these fields are two authentication parameters: cred (authentication credential) and verf (authentication verifier). The two authentication parameters are followed by the parameters to the remote procedure, which are specified by the specific program protocol.

The purpose of the authentication verifier is to validate the authentication credential. Note that these two items are historically separate, but are always used together as one logical entity.

struct call_body {
 unsigned int rpcvers; /* must be equal to two (2) */
 unsigned int prog;
 unsigned int vers;
 unsigned int proc;
 opaque_auth cred;
 opaque_auth verf;
 /* procedure-specific parameters start here */
};

Body of a reply to an RPC call:

union reply_body switch (reply_stat stat) {
 case MSG_ACCEPTED:
 accepted_reply areply;
 case MSG_DENIED:
 rejected_reply rreply;
} reply;
Reply to an RPC call that was accepted by the server:

There could be an error even though the call was accepted. The first field is an authentication verifier that the server generates in order to validate itself to the client. It is followed by a union whose discriminant is an enum accept_stat. The SUCCESS arm of the union is protocol-specific. The PROG_UNAVAIL, PROC_UNAVAIL, GARBAGE_ARGS, and SYSTEM_ERR arms of the union are void. The PROG_MISMATCH arm specifies the lowest and highest version numbers of the remote program supported by the server.

```c
struct accepted_reply {
    opaque_auth verf;
    union switch (accept_stat stat) {
        case SUCCESS:
            opaque results[0];
            /*
             * procedure-specific results start here
            */
        case PROG_MISMATCH:
            struct {
                unsigned int low;
                unsigned int high;
            } mismatch_info;
        default:
            /*
             * Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL,
             * GARBAGE_ARGS, and SYSTEM_ERR.
            */
            void;
    } reply_data;
};
```

Reply to an RPC call that was rejected by the server:

The call can be rejected for two reasons: either the server is not running a compatible version of the RPC protocol (RPC_MISMATCH) or the server rejects the identity of the caller (AUTH_ERROR). In case of an RPC version mismatch, the server returns the lowest and highest supported RPC version numbers. In case of invalid authentication, failure status is returned.
union rejected_reply switch (reject_stat stat) {
 case RPC_MISMATCH:
 struct {
 unsigned int low;
 unsigned int high;
 } mismatch_info;
 case AUTH_ERROR:
 auth_stat stat;
};

10. Authentication Protocols

As previously stated, authentication parameters are opaque, but open-ended to the rest of the RPC protocol. This section defines two standard flavors of authentication. Implementors are free to invent new authentication types, with the same rules of flavor number assignment as there are for program number assignment. The flavor of a credential or verifier refers to the value of the "flavor" field in the opaque_auth structure. Flavor numbers, like RPC program numbers, are also administered centrally, and developers may assign new flavor numbers by methods described in Appendix B. Credentials and verifiers are represented as variable-length opaque data (the "body" field in the opaque_auth structure).

In this document, two flavors of authentication are described. Of these, Null authentication (described in the next subsection) is mandatory -- it MUST be available in all implementations. System authentication (AUTH_SYS) is described in Appendix A. Implementors MAY include AUTH_SYS in their implementations to support existing applications. See "Security Considerations" for information about other, more secure, authentication flavors.

10.1. Null Authentication

Often, calls must be made where the client does not care about its identity or the server does not care who the client is. In this case, the flavor of the RPC message’s credential, verifier, and reply verifier is "AUTH_NONE". Opaque data associated with "AUTH_NONE" is undefined. It is recommended that the length of the opaque data be zero.
11. Record Marking Standard

When RPC messages are passed on top of a byte stream transport protocol (like TCP), it is necessary to delimit one message from another in order to detect and possibly recover from protocol errors. This is called record marking (RM). One RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a four-byte header followed by 0 to \((2^{31}) - 1\) bytes of fragment data. The bytes encode an unsigned binary number; as with XDR integers, the byte order is from highest to lowest. The number encodes two values -- a boolean that indicates whether the fragment is the last fragment of the record (bit value 1 implies the fragment is the last fragment) and a 31-bit unsigned binary value that is the length in bytes of the fragment’s data. The boolean value is the highest-order bit of the header; the length is the 31 low-order bits.

(Note that this record specification is NOT in XDR standard form!)

12. The RPC Language

Just as there was a need to describe the XDR data-types in a formal language, there is also need to describe the procedures that operate on these XDR data-types in a formal language as well. The RPC language is an extension to the XDR language, with the addition of "program", "procedure", and "version" declarations. The keywords "program" and "version" are reserved in the RPC language, and implementations of XDR compilers MAY reserve these keywords even when provided with pure XDR, non-RPC, descriptions. The following example is used to describe the essence of the language.
12.1. An Example Service Described in the RPC Language

Here is an example of the specification of a simple ping program.

```
program PING_PROG {
    /*
     * Latest and greatest version
     */
    version PING_VERS_PINGBACK {
        void
        PINGPROC_NULL(void) = 0;
        /*
        * Ping the client, return the round-trip time
        * (in microseconds). Returns -1 if the operation
        * timed out.
        */
        int
        PINGPROC_PINGBACK(void) = 1;
    } = 2;

    /*
    * Original version
    */
    version PING_VERS_ORIG {
        void
        PINGPROC_NULL(void) = 0;
    } = 1;

    const PING_VERS = 2;    /* latest version */
```

The first version described is PING_VERS_PINGBACK with two procedures: PINGPROC_NULL and PINGPROC_PINGBACK. PINGPROC_NULL takes no arguments and returns no results, but it is useful for computing round-trip times from the client to the server and back again. By convention, procedure 0 of any RPC protocol should have the same semantics and never require any kind of authentication. The second procedure is used for the client to have the server do a reverse ping operation back to the client, and it returns the amount of time (in microseconds) that the operation used. The next version, PING_VERS_ORIG, is the original version of the protocol, and it does not contain the PINGPROC_PINGBACK procedure. It is useful for compatibility with old client programs, and as this program matures, it may be dropped from the protocol entirely.
12.2. The RPC Language Specification

The RPC language is identical to the XDR language defined in RFC 4506, except for the added definition of a "program-def", described below.

```
program-def:
  "program" identifier "{" version-def version-def *
  "}" "=" constant ";"

version-def:
  "version" identifier "{" procedure-def procedure-def *
  "}" "=" constant ";"

procedure-def:
  proc-return identifier "{" proc-firstarg ("," type-specifier )* "}" "=" constant ";"

proc-return: "void" | type-specifier

proc-firstarg: "void" | type-specifier
```

12.3. Syntax Notes

- The following keywords are added and cannot be used as identifiers: "program" and "version".

- A version name cannot occur more than once within the scope of a program definition. Neither can a version number occur more than once within the scope of a program definition.

- A procedure name cannot occur more than once within the scope of a version definition. Neither can a procedure number occur more than once within the scope of version definition.

- Program identifiers are in the same name space as constant and type identifiers.

- Only unsigned constants can be assigned to programs, versions, and procedures.

- Current RPC language compilers do not generally support more than one type-specifier in procedure argument lists; the usual practice is to wrap arguments into a structure.
13. IANA Considerations

The assignment of RPC program numbers, authentication flavor numbers, and authentication status numbers has in the past been performed by Sun Microsystems, Inc (Sun). This is inappropriate for an IETF Standards Track protocol, as such work is done well by the Internet Assigned Numbers Authority (IANA). This document proposes the transfer of authority over RPC program numbers, authentication flavor numbers, and authentication status numbers described here from Sun Microsystems, Inc. to IANA and describes how IANA will maintain and assign these numbers. Users of RPC protocols will benefit by having an independent body responsible for these number assignments.

13.1. Numbering Requests to IANA

Appendix B of this document describes the information to be sent to IANA to request one or more RPC numbers and the rules that apply. IANA will store the request for documentary purposes and put the following information into the public registry:

- The short description of purpose and use
- The program number(s) assigned
- The short identifier string(s)

13.2. Protecting Past Assignments

Sun has made assignments in both the RPC program number space and the RPC authentication flavor number space since the original deployment of RPC. The assignments made by Sun Microsystems are still valid, and will be preserved. Sun has communicated all current assignments in both number spaces to IANA and final handoff of number assignment is complete. Current program and auth number assignments are provided in Appendix C. Current authentication status numbers are listed in Section 9 of this document in the "enum auth_stat" definition.

13.3. RPC Number Assignment

Future IANA practice will deal with the following partitioning of the 32-bit number space as listed in Section 8.3. Detailed information for the administration of the partitioned blocks in Section 8.3 is given below.
13.3.1. To Be Assigned By IANA

The first block will be administered by IANA, with previous assignments by Sun protected. Previous assignments were restricted to the range decimal 100000-399999 (0x000186a0 to 0x00061a7f); therefore, IANA will begin assignments at decimal 400000. Individual numbers should be grated on a First Come First Served basis, and blocks should be granted under rules related to the size of the block.

13.3.2. Defined by Local Administrator

The "Defined by local administrator" block is available for any local administrative domain to use, in a similar manner to IP address ranges reserved for private use. The expected use would be through the establishment of a local domain "authority" for assigning numbers from this range. This authority would establish any policies or procedures to be used within that local domain for use or assignment of RPC numbers from the range. The local domain should be sufficiently isolated that it would be unlikely that RPC applications developed by other local domains could communicate with the domain. This could result in RPC number contention, which would cause one of the applications to fail. In the absence of a local administrator, this block can be utilized in a "Private Use" manner per [RFC5226].

13.3.3. Transient Block

The "Transient" block can be used by any RPC application on an "as available" basis. This range is intended for services that can communicate a dynamically selected RPC program number to clients of the service. Any mechanism can be used to communicate the number. For example, either shared memory when the client and server are located on the same system or a network message (either RPC or otherwise) that disseminates the selected number can be used.

The transient block is not administered. An RPC service uses this range by selecting a number in the transient range and attempting to register that number with the local system’s RPC bindery (see the RPCBPROC_SET or PMAPPROC_SET procedures in "Binding Protocols for ONC RPC Version 2", [RFC1833]). If successful, no other RPC service was using that number and the RPC Bindery has assigned that number to the requesting RPC application. The registration is valid until the RPC Bindery terminates, which normally would only happen if the system reboots, causing all applications, including the RPC service using the transient number, to terminate. If the transient number registration fails, another RPC application is using the number and
the requestor must select another number and try again. To avoid conflicts, the recommended method is to select a number randomly from the transient range.

13.3.4. Reserved Block

The "Reserved" blocks are available for future use. RPC applications must not use numbers in these ranges unless their use is allowed by future action by the IESG.

13.3.5. RPC Number Sub-Blocks

RPC numbers are usually assigned for specific RPC services. Some applications, however, require multiple RPC numbers for a service. The most common example is an RPC service that needs to have multiple instances of the service active simultaneously at a specific site. RPC does not have an "instance identifier" in the protocol, so either a mechanism must be implemented to multiplex RPC requests amongst various instances of the service or unique RPC numbers must be used by each instance.

In these cases, the RPC protocol used with the various numbers may be different or the same. The numbers may either be assigned dynamically by the application, or as part of a site-specific administrative decision. If possible, RPC services that dynamically assign RPC numbers should use the "Transient" RPC number block defined in Section 13.3.3. If not possible, RPC number sub-blocks may be requested.

Assignment of RPC Number Sub-Blocks is controlled by the size of the sub-block being requested. "Specification Required" and "IESG Approval" are used as defined by Section 4.1 of [RFC5226].

<table>
<thead>
<tr>
<th>Size of sub-block</th>
<th>Assignment Method</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 100 numbers</td>
<td>First Come First Served</td>
<td>IANA</td>
</tr>
<tr>
<td>Up to 1000 numbers</td>
<td>Specification Required</td>
<td>IANA</td>
</tr>
<tr>
<td>More than 1000 numbers</td>
<td>IESG Approval required</td>
<td>IESG</td>
</tr>
</tbody>
</table>

Note: sub-blocks can be any size. The limits given above are maximums, and smaller size sub-blocks are allowed.

Sub-blocks sized up to 100 numbers may be assigned by IANA on a First Come First Served basis. The RPC Service Description included in the range must include an indication of how the sub-block is managed. At a minimum, the statement should indicate whether the sub-block is
used with a single RPC protocol or multiple RPC protocols, and
whether the numbers are dynamically assigned or statically (through
administrative action) assigned.

Sub-blocks of up to 1000 numbers must be documented in detail. The
documentation must describe the RPC protocol or protocols that are to
be used in the range. It must also describe how the numbers within
the sub-block are to be assigned or used.

Sub-blocks sized over 1000 numbers must be documented as described
above, and the assignment must be approved by the IESG. It is
expected that this will be rare.

In order to avoid multiple requests of large blocks of numbers, the
following rule is proposed.

Requests up to and including 100 RPC numbers are handled via the
First Come First Served assignment method. This 100 number threshold
applies to the total number of RPC numbers assigned to an individual
or entity. For example, if an individual or entity first requests,
say, 70 numbers, and then later requests 40 numbers, then the request
for the 40 numbers will be assigned via the Specification Required
method. As long as the total number of numbers assigned does not
exceed 1000, IANA is free to waive the Specification Required
assignment for incremental requests of less than 100 numbers.

If an individual or entity has under 1000 numbers and later requests
an additional set of numbers such that the individual or entity would
be granted over 1000 numbers, then the additional request will
require IESG Approval.

13.4. RPC Authentication Flavor Number Assignment

The second number space is the authentication mechanism identifier,
or "flavor", number. This number is used to distinguish between
various authentication mechanisms that can be optionally used with an
RPC message. An authentication identifier is used in the "flavor"
field of the "opaque_auth" structure.

13.4.1. Assignment Policy

Appendix B of this document describes the information to be sent to
IANA to request one or more RPC auth numbers and the rules that
apply. IANA will store the request for documentary purposes and put
the following information into the public registry:
13.4.2. Auth Flavors vs. Pseudo-Flavors

Recent progress in RPC security has moved away from new auth flavors as used by AUTH_DH [DH], and has focused on using the existing RPCSEC_GSS [RFC2203] flavor and inventing novel GSS-API (Generic Security Services Application Programming Interface) mechanisms that can be used with it. Even though RPCSEC_GSS is an assigned authentication flavor, use of a new RPCSEC_GSS mechanism with the Network File System (NFS) ([RFC1094] [RFC1813], and [RFC3530]) will require the registration of ‘pseudo-flavors’ that are used to negotiate security mechanisms in an unambiguous way, as defined by [RFC2623]. Existing pseudo-flavors have been granted in the decimal range 390000-390255. New pseudo-flavor requests will be granted by IANA within this block on a First Come First Served basis.

For non-pseudo-flavor requests, IANA will begin granting RPC authentication flavor numbers at 400000 on a First Come First Served basis to avoid conflicts with currently granted numbers.

For authentication flavors or RPCSEC_GSS mechanisms to be used on the Internet, it is strongly advised that an Informational or Standards Track RFC be published describing the authentication mechanism behaviour and parameters.

13.5. Authentication Status Number Assignment

The final number space is the authentication status or "auth_stat" values that describe the nature of a problem found during an attempt to authenticate or validate authentication. The complete initial list of these values is found in Section 9 of this document, in the "auth_stat" enum listing. It is expected that it will be rare to add values, but that a small number of new values may be added from time to time as new authentication flavors introduce new possibilities. Numbers should be granted on a First Come First Served basis to avoid conflicts with currently granted numbers.

13.5.1. Assignment Policy

Appendix B of this document describes the information to be sent to IANA to request one or more auth_stat values and the rules that apply. IANA will store the request for documentary purposes, and put the following information into the public registry:
14. Security Considerations

AUTH_SYS as described in Appendix A is known to be insecure due to the lack of a verifier to permit the credential to be validated. AUTH_SYS SHOULD NOT be used for services that permit clients to modify data. AUTH_SYS MUST NOT be specified as RECOMMENDED or REQUIRED for any Standards Track RPC service.

AUTH_DH as mentioned in Sections 8.2 and 13.4.2 is considered obsolete and insecure; see [RFC2695]. AUTH_DH SHOULD NOT be used for services that permit clients to modify data. AUTH_DH MUST NOT be specified as RECOMMENDED or REQUIRED for any Standards Track RPC service.

[RFC2203] defines a new security flavor, RPCSEC_GSS, which permits GSS-API [RFC2743] mechanisms to be used for securing RPC. All non-trivial RPC programs developed in the future should implement RPCSEC_GSS-based security appropriately. [RFC2623] describes how this was done for a widely deployed RPC program.

Standards Track RPC services MUST mandate support for RPCSEC_GSS, and MUST mandate support for an authentication pseudo-flavor with appropriate levels of security, depending on the need for simple authentication, integrity (a.k.a. non-repudiation), or data privacy.
Appendix A: System Authentication

The client may wish to identify itself, for example, as it is identified on a UNIX system. The flavor of the client credential is "AUTH_SYS". The opaque data constituting the credential encodes the following structure:

```c
struct authsys_parms {
  unsigned int stamp;
  string machinename<255>;
  unsigned int uid;
  unsigned int gid;
  unsigned int gids<16>;
};
```

The "stamp" is an arbitrary ID that the caller machine may generate. The "machinename" is the name of the caller’s machine (like "krypton"). The "uid" is the caller’s effective user ID. The "gid" is the caller’s effective group ID. "gids" are a counted array of groups that contain the caller as a member. The verifier accompanying the credential should have "AUTH_NONE" flavor value (defined above). Note that this credential is only unique within a particular domain of machine names, uids, and gids.

The flavor value of the verifier received in the reply message from the server may be "AUTH_NONE" or "AUTH_SHORT". In the case of "AUTH_SHORT", the bytes of the reply verifier’s string encode an opaque structure. This new opaque structure may now be passed to the server instead of the original "AUTH_SYS" flavor credential. The server may keep a cache that maps shorthand opaque structures (passed back by way of an "AUTH_SHORT" style reply verifier) to the original credentials of the caller. The caller can save network bandwidth and server cpu cycles by using the shorthand credential.

The server may flush the shorthand opaque structure at any time. If this happens, the remote procedure call message will be rejected due to an authentication error. The reason for the failure will be "AUTH_REJECTEDCRED". At this point, the client may wish to try the original "AUTH_SYS" style of credential.

It should be noted that use of this flavor of authentication does not guarantee any security for the users or providers of a service, in itself. The authentication provided by this scheme can be considered legitimate only when applications using this scheme and the network can be secured externally, and privileged transport addresses are used for the communicating end-points (an example of this is the use of privileged TCP/UDP ports in UNIX systems -- note that not all systems enforce privileged transport address mechanisms).
Appendix B: Requesting RPC-Related Numbers from IANA

RPC program numbers, authentication flavor numbers, and authentication status numbers that must be unique across all networks are assigned by the Internet Assigned Number Authority. To apply for a single number or a block of numbers, electronic mail must be sent to IANA <iana@iana.org> with the following information:

- The type of number(s) (program number or authentication flavor number or authentication status number) sought
- How many numbers are sought
- The name of the person or company that will use the number
- An "identifier string" that associates the number with a service
- Email address of the contact person for the service that will be using the number
- A short description of the purpose and use of the number
- If an authentication flavor number is sought, and the number will be a ‘pseudo-flavor’ intended for use with RPCSEC_GSS and NFS, mappings analogous to those in Section 4.2 of [RFC2623]

Specific numbers cannot be requested. Numbers are assigned on a First Come First Served basis.

For all RPC authentication flavor and authentication status numbers to be used on the Internet, it is strongly advised that an Informational or Standards Track RFC be published describing the authentication mechanism behaviour and parameters.
Appendix C: Current Number Assignments

<table>
<thead>
<tr>
<th>Description/Owner</th>
<th>RPC Program Number</th>
<th>Short Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>portmapper</td>
<td>100000</td>
<td>pmapprog portmap rpcbind</td>
</tr>
<tr>
<td>remote stats</td>
<td>100001</td>
<td>rstatprog</td>
</tr>
<tr>
<td>remote users</td>
<td>100002</td>
<td>rusersprog</td>
</tr>
<tr>
<td>nfs</td>
<td>100003</td>
<td>nfs</td>
</tr>
<tr>
<td>yellow pages (NIS)</td>
<td>100004</td>
<td>ypprog ypserv</td>
</tr>
<tr>
<td>mount demon</td>
<td>100005</td>
<td>mountprog</td>
</tr>
<tr>
<td>remote dbx</td>
<td>100006</td>
<td>dbxprog</td>
</tr>
<tr>
<td>yp binder (NIS)</td>
<td>100007</td>
<td>ypbindprog ypbind</td>
</tr>
<tr>
<td>shutdown msg</td>
<td>100008</td>
<td>wall</td>
</tr>
<tr>
<td>yppasswd server</td>
<td>100009</td>
<td>yppasswdprog yppasswdd</td>
</tr>
<tr>
<td>ether stats</td>
<td>100010</td>
<td>etherstatprog</td>
</tr>
<tr>
<td>disk quotas</td>
<td>100011</td>
<td>rquota</td>
</tr>
<tr>
<td>spray packets</td>
<td>100012</td>
<td>spray</td>
</tr>
<tr>
<td>3270 mapper</td>
<td>100013</td>
<td>ibm3270prog</td>
</tr>
<tr>
<td>RJE mapper</td>
<td>100014</td>
<td>ibmrjeprog</td>
</tr>
<tr>
<td>selection service</td>
<td>100015</td>
<td>selnsvcprog</td>
</tr>
<tr>
<td>remote database access</td>
<td>100016</td>
<td>rdatabaseprog</td>
</tr>
<tr>
<td>remote execution</td>
<td>100017</td>
<td>rexec</td>
</tr>
<tr>
<td>Alice Office Automation</td>
<td>100018</td>
<td>aliceprog</td>
</tr>
<tr>
<td>scheduling service</td>
<td>100019</td>
<td>schedprog</td>
</tr>
<tr>
<td>local lock manager</td>
<td>100020</td>
<td>lockprog llockmgr</td>
</tr>
<tr>
<td>network lock manager</td>
<td>100021</td>
<td>netlockprog nlockmgr</td>
</tr>
<tr>
<td>x.25 intr protocol</td>
<td>100022</td>
<td>x25progs</td>
</tr>
<tr>
<td>status monitor 1</td>
<td>100023</td>
<td>statmon1</td>
</tr>
<tr>
<td>status monitor 2</td>
<td>100024</td>
<td>statmon2</td>
</tr>
<tr>
<td>selection library</td>
<td>100025</td>
<td>selnlibprog</td>
</tr>
<tr>
<td>boot parameters service</td>
<td>100026</td>
<td>bootparam</td>
</tr>
<tr>
<td>mazewars game</td>
<td>100027</td>
<td>mazeprog</td>
</tr>
<tr>
<td>yp update (NIS)</td>
<td>100028</td>
<td>yppupdateprog yppupdate</td>
</tr>
<tr>
<td>key server</td>
<td>100029</td>
<td>keyserverprog</td>
</tr>
<tr>
<td>secure login</td>
<td>100030</td>
<td>securecmdprog</td>
</tr>
<tr>
<td>nfs net forwarder init</td>
<td>100031</td>
<td>netfwdiprog</td>
</tr>
<tr>
<td>nfs net forwarder trans</td>
<td>100032</td>
<td>netfwdtprog</td>
</tr>
<tr>
<td>sunlink MAP</td>
<td>100033</td>
<td>sunlinkmap</td>
</tr>
<tr>
<td>network monitor</td>
<td>100034</td>
<td>netmonprog</td>
</tr>
<tr>
<td>lightweight database</td>
<td>100035</td>
<td>dbaseprog</td>
</tr>
<tr>
<td>password authorization</td>
<td>100036</td>
<td>pwdauthprog</td>
</tr>
<tr>
<td>translucent file svc</td>
<td>100037</td>
<td>tfsprog</td>
</tr>
<tr>
<td>nse server</td>
<td>100038</td>
<td>nseprog</td>
</tr>
<tr>
<td>nse activate daemon</td>
<td>100039</td>
<td>nse_activate_prog</td>
</tr>
<tr>
<td>sunview help</td>
<td>100040</td>
<td>sunview_help_prog</td>
</tr>
<tr>
<td>pnp install</td>
<td>100041</td>
<td>pnp_prog</td>
</tr>
<tr>
<td>ip addr alloc</td>
<td>100042</td>
<td>ipaddr_alloc_prog</td>
</tr>
<tr>
<td>show filehandle</td>
<td>100043</td>
<td>filehandle</td>
</tr>
<tr>
<td>MVS NFS mount</td>
<td>100044</td>
<td>mvsnfsprogs</td>
</tr>
<tr>
<td>remote user file operations</td>
<td>100045</td>
<td>rem_fileop_user_prog</td>
</tr>
<tr>
<td>batched ypupdate</td>
<td>100046</td>
<td>batch_yppdateprog</td>
</tr>
<tr>
<td>network execution mgr</td>
<td>100047</td>
<td>nem_prog</td>
</tr>
<tr>
<td>raytrace/mandelbrot remote daemon</td>
<td>100048</td>
<td>raytrace_rd_prog</td>
</tr>
<tr>
<td>raytrace/mandelbrot local daemon</td>
<td>100049</td>
<td>raytrace_ld_prog</td>
</tr>
<tr>
<td>remote group file operations</td>
<td>100050</td>
<td>rem_fileop_group_prog</td>
</tr>
<tr>
<td>remote system file operations</td>
<td>100051</td>
<td>rem_fileop_system_prog</td>
</tr>
<tr>
<td>remote system role operations</td>
<td>100052</td>
<td>rem_system_role_prog</td>
</tr>
<tr>
<td>gpd lego fb simulator</td>
<td>100053</td>
<td>[unknown]</td>
</tr>
<tr>
<td>gpd simulator interface</td>
<td>100054</td>
<td>[unknown]</td>
</tr>
<tr>
<td>ioadmd</td>
<td>100055</td>
<td>ioadmd</td>
</tr>
<tr>
<td>filemerge</td>
<td>100056</td>
<td>filemerge_prog</td>
</tr>
<tr>
<td>Name Binding Program</td>
<td>100057</td>
<td>namebind_prog</td>
</tr>
<tr>
<td>sunlink NJE</td>
<td>100058</td>
<td>njeprog</td>
</tr>
<tr>
<td>MVS NFS get attribute service</td>
<td>100059</td>
<td>mvsattrprog</td>
</tr>
<tr>
<td>SunAccess/SunLink resource manager</td>
<td>100060</td>
<td>rmgrprog</td>
</tr>
<tr>
<td>UID allocation service</td>
<td>100061</td>
<td>uidalloprog</td>
</tr>
<tr>
<td>license broker</td>
<td>100062</td>
<td>lbserverprog</td>
</tr>
<tr>
<td>NETlicense client binder</td>
<td>100063</td>
<td>lbbinderprog</td>
</tr>
<tr>
<td>GID allocation service</td>
<td>100064</td>
<td>gidallocprog</td>
</tr>
<tr>
<td>SunIsam</td>
<td>100065</td>
<td>sunisamprogs</td>
</tr>
<tr>
<td>Remote Debug Server</td>
<td>100066</td>
<td>rdbsrvprog</td>
</tr>
<tr>
<td>Network Directory Daemon</td>
<td>100067</td>
<td>[unknown]</td>
</tr>
<tr>
<td>Network Calendar Program</td>
<td>100068</td>
<td>cmsd cm</td>
</tr>
<tr>
<td>ypxfrd</td>
<td>100069</td>
<td>ypxfrd</td>
</tr>
<tr>
<td>rpc.timed</td>
<td>100070</td>
<td>timedprog</td>
</tr>
<tr>
<td>bugtraqq</td>
<td>100071</td>
<td>bugtraq</td>
</tr>
<tr>
<td>Connectathon Billboard - NFS</td>
<td>100073</td>
<td>[unknown]</td>
</tr>
<tr>
<td>Connectathon Billboard - X</td>
<td>100074</td>
<td>[unknown]</td>
</tr>
<tr>
<td>Sun tool for scheduling rooms</td>
<td>100075</td>
<td>schedroom</td>
</tr>
<tr>
<td>Authentication Negotiation</td>
<td>100076</td>
<td>authnegotiate_prog</td>
</tr>
<tr>
<td>Database manipulation</td>
<td>100077</td>
<td>attribute_prog</td>
</tr>
<tr>
<td>Kerberos authentication daemon</td>
<td>100078</td>
<td>kerbprog</td>
</tr>
<tr>
<td>Internal testing product (no name)</td>
<td>100079</td>
<td>[unknown]</td>
</tr>
<tr>
<td>Sun Consulting Special</td>
<td>100080</td>
<td>autodump_prog</td>
</tr>
<tr>
<td>Event protocol</td>
<td>100081</td>
<td>event_svc</td>
</tr>
<tr>
<td>bugtraqq</td>
<td>100082</td>
<td>bugtraq_qd</td>
</tr>
<tr>
<td>ToolTalk and Link Service Project</td>
<td>100083</td>
<td>database service</td>
</tr>
<tr>
<td>Consulting Services</td>
<td>100084</td>
<td>[unknown]</td>
</tr>
<tr>
<td>Consulting Services</td>
<td>100085</td>
<td>[unknown]</td>
</tr>
<tr>
<td>Consulting Services</td>
<td>100086</td>
<td>[unknown]</td>
</tr>
<tr>
<td>Jupiter Administration</td>
<td>100087</td>
<td>adm_agent admind</td>
</tr>
<tr>
<td></td>
<td>100088</td>
<td>[unknown]</td>
</tr>
</tbody>
</table>
Dual Disk support 100089 [unknown]
DocViewer 1.1 100090 libdsd/dsd
ToolTalk 100092 remote_activation_svc
Consulting Services 100093 host_checking
SNA peer-to-peer 100094 [unknown]
Roger Riggs 100095 searchit
Robert Allen 100096 mesgtool
SNA 100097 [unknown]
SISU 100098 networked version of CS5
NFS Automount File System 100099 autos
100100 msgboard
event dispatching agent [eventd] 100101 netmg_eventd_prog
statistics/event logger [netlogd] 100102 netmg_netlogd_prog
topology display manager [topology] 100103 netmg_topology_prog
syncstat agent [syncstatd] 100104 netmg_syncstatd_prog
ip packet stats agent [ippktd] 100105 netmg_ippktd_prog
netmg config agent [configd] 100106 netmg_configd_prog
restat agent [restatd] 100107 netmg_restatd_prog
lpq agent [lpstatd] 100108 netmg_lprstatd_prog
netmg activity agent [mgtlogd] 100109 netmg_mgtlogd_prog
proxy DECnet NCP agent [proxydni] 100110 netmg_proxydni_prog
topology mapper agent [mapperd] 100111 netmg_mapperd_prog
netstat agent [netstatd] 100112 netmg_netstatd_prog
sample netmg agent [sampled] 100113 netmg_sampled_prog
X.25 statistics agent [vcstatd] 100114 netmg_vcstatd_prog
Frame Relay 100128 [unknown]
PPF agent 100129 [unknown]
localhad 100130 rpc.localhad
layers2 100131 na.layers2
token ring agent 100132 na.tr
related to lockd and statd 100133 nsm_addr
Kerberos project 100134 kwarn
etherif2 100135 na.etherif2
hostmem2 100136 na.hostmem2
iostat2 100137 na.iostat2
snmpv2 100138 na.snmpv2
Cooperative Console 100139 cc_sender
na.cpustat 100140 na.cpustat
Sun Cluster SC3.0 100141 rgmd_receptionist
100142 fed
Network Storage 100143 rdc
Sun Cluster products 100144 nafo
SunCluster 3.0 100145 scadmd
ASN.1 100146 amiserv
100147 amiaux # BER and DER
 encode and decode
Delegate Management Server 100148 dm
<table>
<thead>
<tr>
<th>Service Name</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>rkstat</td>
<td>100149</td>
</tr>
<tr>
<td>ocfserv</td>
<td>100150</td>
</tr>
<tr>
<td>sccheckd</td>
<td>100151</td>
</tr>
<tr>
<td>autoclientd</td>
<td>100152</td>
</tr>
<tr>
<td>sunvts</td>
<td>100153</td>
</tr>
<tr>
<td>ssmond</td>
<td>100154</td>
</tr>
<tr>
<td>smserverd</td>
<td>100155</td>
</tr>
<tr>
<td>test1</td>
<td>100156</td>
</tr>
<tr>
<td>test2</td>
<td>100157</td>
</tr>
<tr>
<td>test3</td>
<td>100158</td>
</tr>
<tr>
<td>test4</td>
<td>100159</td>
</tr>
<tr>
<td>test5</td>
<td>100160</td>
</tr>
<tr>
<td>test6</td>
<td>100161</td>
</tr>
<tr>
<td>test7</td>
<td>100162</td>
</tr>
<tr>
<td>test8</td>
<td>100163</td>
</tr>
<tr>
<td>test9</td>
<td>100164</td>
</tr>
<tr>
<td>test10</td>
<td>100165</td>
</tr>
<tr>
<td>nfsmapid</td>
<td>100166</td>
</tr>
<tr>
<td>SUN_WBEM_C_CIMON_HANDLE</td>
<td>100167</td>
</tr>
<tr>
<td>sacmmd</td>
<td>100168</td>
</tr>
<tr>
<td>fmd_adm</td>
<td>100169</td>
</tr>
<tr>
<td>fmd_api</td>
<td>100170</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100171</td>
</tr>
<tr>
<td>idmapd</td>
<td>100172</td>
</tr>
<tr>
<td>na.snmptrap</td>
<td>100173-100174</td>
</tr>
<tr>
<td>showme</td>
<td>100175</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100176-100199</td>
</tr>
<tr>
<td>MVS/NFS Memory usage stats server</td>
<td>100200 [unknown]</td>
</tr>
<tr>
<td>Netapp</td>
<td>100201-100207</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100208-100210</td>
</tr>
<tr>
<td>8.0 SunLink SNA RJE</td>
<td>100211 [unknown]</td>
</tr>
<tr>
<td>8.0 SunLink SNA RJE</td>
<td>100212 [unknown]</td>
</tr>
<tr>
<td>ShowMe</td>
<td>100213</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100214 [unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100215 [unknown]</td>
</tr>
<tr>
<td>AUTH_RSA Key service</td>
<td>100216 keyrsa</td>
</tr>
<tr>
<td>SunSelect PC license service</td>
<td>100217 [unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100218 sunsolve</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100219 cstatd</td>
</tr>
<tr>
<td>xfn_server_prog</td>
<td>100220</td>
</tr>
<tr>
<td>kcs_network_io kcs</td>
<td>100221</td>
</tr>
<tr>
<td>ha_dbms_serv</td>
<td>100222</td>
</tr>
<tr>
<td>[unknown]</td>
<td>100223-100225 [unknown]</td>
</tr>
<tr>
<td>hafaultd</td>
<td>100226</td>
</tr>
<tr>
<td>nfs_acl</td>
<td>100227</td>
</tr>
<tr>
<td>dlmd</td>
<td>100228</td>
</tr>
</tbody>
</table>
100229 metad
100230 metamhd
100231 nfsauth
100232 sadmind
100233 ufsd
100234 grpservd
100235 cachefsd
100236 msmprog Media_Server
100237 ihnamed
100238 ihnetd
100239 ihsecured
100240 ihclassmgrd
100241 ihrepositoryd
100242 metamedd rpc.metamedd
100243 contentmanager cm
100244 symon
100245 pld genesil
100246 ctid
 cluster_transport_interface
100247 ccd
 cluster_configuration_db
100248 pmfd
100249 dmi2_client
100250 mfs_admin
100251 ndshared_unlink
100252 ndshared_touch
100253 ndshared_slink
100254 cbs control_board_server
100255 skiserv
100256 nfsxa nfsxattr
100257 ndshared_disable
100258 ndshared_enable
100259 sms_account_admin
100260 sms_modem_admin
100261 sms_r_login
100262 sms_r_subaccount_mgt
100263 sms_service_admin
100264 session_admin
100265 canci_anncs_program
100266 canci_sms_program
100267 msmp
100268 halck
100269 halogmsg
100270 nfs_id_map
100271 ncall
100272 hmip
100273 repl_mig
100274 repl_mig_cb
<table>
<thead>
<tr>
<th>Service Description</th>
<th>Number Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS+</td>
<td>100300</td>
</tr>
<tr>
<td>NIS+</td>
<td>100301 - 100302</td>
</tr>
<tr>
<td>NIS+ call back protocol</td>
<td>(unknown)</td>
</tr>
<tr>
<td>NIS+ Password Update Daemon</td>
<td>100303</td>
</tr>
<tr>
<td>FNS context update in NIS</td>
<td>100304</td>
</tr>
<tr>
<td>unassigned</td>
<td>100310 - 100398</td>
</tr>
<tr>
<td>nfscksum</td>
<td>100399</td>
</tr>
<tr>
<td>network utilization agent</td>
<td>100400</td>
</tr>
<tr>
<td>network rpc ping agent</td>
<td>100401</td>
</tr>
<tr>
<td>picsprint</td>
<td>100403 - 100404</td>
</tr>
<tr>
<td>rdmaconfig</td>
<td>100417</td>
</tr>
<tr>
<td>IETF NFSv4 Working Group - FedFS</td>
<td>100418 - 100421</td>
</tr>
<tr>
<td>unassigned</td>
<td>100422 - 100423</td>
</tr>
<tr>
<td>Sun Microsystems</td>
<td>100500 - 100532</td>
</tr>
<tr>
<td>unassigned</td>
<td>100533</td>
</tr>
<tr>
<td>nse link daemon</td>
<td>101002</td>
</tr>
<tr>
<td>nse link application</td>
<td>101003</td>
</tr>
<tr>
<td>unassigned</td>
<td>101004 - 101005</td>
</tr>
<tr>
<td>unassigned</td>
<td>101100 - 101100</td>
</tr>
<tr>
<td>AssetLite</td>
<td>102000</td>
</tr>
<tr>
<td>PagerTool</td>
<td>102001</td>
</tr>
<tr>
<td>Discover</td>
<td>102002</td>
</tr>
<tr>
<td>unassigned</td>
<td>102003 - 102003</td>
</tr>
<tr>
<td>ShowMe</td>
<td>105000</td>
</tr>
<tr>
<td>Registry</td>
<td>105002</td>
</tr>
<tr>
<td>Print-server</td>
<td>105003</td>
</tr>
<tr>
<td>Proto-server</td>
<td>105004</td>
</tr>
<tr>
<td>Service Type</td>
<td>Port Range</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Notification-server</td>
<td>105005</td>
</tr>
<tr>
<td>Transfer-agent-server</td>
<td>105006</td>
</tr>
<tr>
<td>unassigned</td>
<td>105007 - 110000</td>
</tr>
<tr>
<td></td>
<td>110001</td>
</tr>
<tr>
<td></td>
<td>110002</td>
</tr>
<tr>
<td></td>
<td>110003</td>
</tr>
<tr>
<td></td>
<td>120001</td>
</tr>
<tr>
<td></td>
<td>120002</td>
</tr>
<tr>
<td></td>
<td>120003</td>
</tr>
<tr>
<td>unassigned</td>
<td>120004 - 120099</td>
</tr>
<tr>
<td></td>
<td>120100</td>
</tr>
<tr>
<td></td>
<td>120101</td>
</tr>
<tr>
<td></td>
<td>120102</td>
</tr>
<tr>
<td></td>
<td>120103</td>
</tr>
<tr>
<td></td>
<td>120104</td>
</tr>
<tr>
<td>unassigned</td>
<td>120105 - 120125</td>
</tr>
<tr>
<td></td>
<td>120126</td>
</tr>
<tr>
<td></td>
<td>120127</td>
</tr>
<tr>
<td>unassigned</td>
<td>120128 - 150000</td>
</tr>
<tr>
<td>pc passwd authorization</td>
<td>150001</td>
</tr>
<tr>
<td>TOPS name mapping</td>
<td>150002</td>
</tr>
<tr>
<td>TOPS external attribute storage</td>
<td>150003</td>
</tr>
<tr>
<td>TOPS hierarchical file system</td>
<td>150004</td>
</tr>
<tr>
<td>TOPS NFS transparency extensions</td>
<td>150005</td>
</tr>
<tr>
<td>PC NFS License</td>
<td>150006</td>
</tr>
<tr>
<td>RDA</td>
<td>150007</td>
</tr>
<tr>
<td>WabiServer</td>
<td>150008</td>
</tr>
<tr>
<td>WabiServer</td>
<td>150009</td>
</tr>
<tr>
<td>unassigned</td>
<td>150010 - 160000</td>
</tr>
<tr>
<td></td>
<td>160001</td>
</tr>
<tr>
<td></td>
<td>160002</td>
</tr>
<tr>
<td>unassigned</td>
<td>160003 - 170099</td>
</tr>
<tr>
<td></td>
<td>170100</td>
</tr>
<tr>
<td></td>
<td>170101</td>
</tr>
<tr>
<td></td>
<td>170102</td>
</tr>
<tr>
<td></td>
<td>170103</td>
</tr>
<tr>
<td></td>
<td>170104</td>
</tr>
<tr>
<td></td>
<td>170105</td>
</tr>
<tr>
<td>unassigned</td>
<td>170106 - 179999</td>
</tr>
<tr>
<td></td>
<td>180000</td>
</tr>
<tr>
<td></td>
<td>180001</td>
</tr>
<tr>
<td></td>
<td>180002</td>
</tr>
<tr>
<td></td>
<td>180003</td>
</tr>
<tr>
<td></td>
<td>180004</td>
</tr>
<tr>
<td></td>
<td>180005</td>
</tr>
<tr>
<td></td>
<td>180006</td>
</tr>
<tr>
<td></td>
<td>180007</td>
</tr>
<tr>
<td></td>
<td>180008</td>
</tr>
</tbody>
</table>

Thurlow Standards Track [Page 33]
180009 cghapresenceprog
180010 cgdmssyncprog
180011 cgdmncscliprog
180012 cgdmrcrcsscliprog
180013 cgdmrcrcsssvcproG
180014 chmprog
180015 chmsysprog
180016 crcsapiprog
180017 cktmprog
180018 cricponentproG
180019 crimqueryprog
180020 crimsecondaryprog
180021 crimservicesprog
180022 crimsyscomponentproG
180023 crimsysservicesprog
180024 csmagtapiprog
180025 csmagtcallbackprog
180026 csmreplicaprog
180027 csmrsvprog
180028 cssccltprog
180029 csscsrvprog
180030 csscopresultproG

unassigned 180031 - 199999
200000 pyramid_nfs
200001 pyramid_reserved
200002 cadds_image
200003 stellar_name_prog
200004 [unknown]
200005 [unknown]
200006 pacl
200007 lookupids
200008 ax_statd_prog
200009 ax_statd2_prog
200010 edm
200011 dtedirwd
200012 [unknown]
200013 [unknown]
200014 [unknown]
200015 [unknown]
200016 easerpcd
200017 rlxnfs
200018 sascuiddprog
200019 knfspd
200020 ftnfsd ftnfsd_program
200021 ftsyncd ftsyncd_program
200022 ftstatd ftstatd_program
200023 exportmap
200024 nfs_metadata
unassigned

200201 ecoal
200202 eamon
200203 ecolic
200204 cs_printstatus_svr
200205 ecodisc

unassigned

200206 - 300000
300001 adt_rflockprog
300002 columbinel
300003 system33_prog
300004 frame_progl
300005 uimxprog
300006 rvd
300007 entombing daemon
300008 account_mgmt_system
300009 frame_prog2
300010 beeper_access
300011 dptuprog
300012 mx-bcp
300013 instrument-file-access
300014 file-system-statistics
300015 unify-database-server
300016 tmd_msg
300017 [unknown]
300018 [unknown]
300019 automounter_access
300020 lock_server
300021 [unknown]
300022 office-automation-1
300023 office-automation-2
300024 office-automation-3
300025 office-automation-4
300026 office-automation-5
300027 office-automation-6
300028 office-automation-7
300029 local-data-manager
300030 chide
300031 csi_program
300032 [unknown]
300033 online-help
300034 case-tool
300035 delta
300036 rgi
300037 instrument-config-server
300038 [unknown]
300039 [unknown]
300040 dtia-rpc-server
300041 cms
viewer
aqm
exclaim
masterplan
fig_tool
[unknown]
[unknown]
[unknown]
remote-lock-manager
[unknown]
gdebug
ldebug
rscanner
[unknown]
[unknown]
[unknown]
[unknown]
[unknown]
[unknown]
[unknown]
nSERVER
[unknown]
<table>
<thead>
<tr>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>smartdoc</td>
</tr>
<tr>
<td>superping</td>
</tr>
<tr>
<td>distributed-chembench</td>
</tr>
<tr>
<td>uacman/alfil-uacman</td>
</tr>
<tr>
<td>ait_rcagent_prog</td>
</tr>
<tr>
<td>ait_rcagent_appl_prog</td>
</tr>
<tr>
<td>smart</td>
</tr>
<tr>
<td>ecoprog</td>
</tr>
<tr>
<td>leonardo</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>wingz</td>
</tr>
<tr>
<td>teidan</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>cadc_fhlockprog</td>
</tr>
<tr>
<td>highscan</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>opennavigator</td>
</tr>
<tr>
<td>aarpcxfer</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>gorggs</td>
</tr>
<tr>
<td>licsrv</td>
</tr>
<tr>
<td>issdemon</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>maximize</td>
</tr>
<tr>
<td>cgm_server</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>agent_rpc</td>
</tr>
<tr>
<td>docmaker</td>
</tr>
<tr>
<td>docmaker</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
<tr>
<td>[unknown]</td>
</tr>
</tbody>
</table>
300138 [unknown]
300139 iesx
300140 [unknown]
300141 [unknown]
300142 [unknown]
300143 [unknown]
300144 smart-mbs
300145 [unknown]
300146 [unknown]
300147 docimage
300148 [unknown]
300149 dmc-interface
300150 [unknown]
300151 jss
300152 [unknown]
300153 arimage
300154 xdb-workbench
300155 frontdesk
300156 dmc
300157 expressight-6000
300158 graph service program
300159 [unknown]
300160 [unknown]
300161 [unknown]
300162 [unknown]
300163 [unknown]
300164 [unknown]
300165 [unknown]
300166 [unknown]
300167 [unknown]
300168 [unknown]
300169 [unknown]
300170 [unknown]
300171 [unknown]
300172 [unknown]
300173 [unknown]
300174 [unknown]
300175 [unknown]
300176 rlpr
300177 nx_hostdprog
300178 netuser-x
300179 rmntprog
300180 [unknown]
300181 mipe
300182 [unknown]
300183 collectorprog
300184 uslookup_PROG
300185 viewstation
iate
[unknown]
[unknown]
[unknown]
imsvtprog
[unknown]
[unknown]
[unknown]
pmdb
pmda
[unknown]
[unknown]
trend_idbd
rres
sd.masterd
sd.executiond
sd.listend
sd.reserve1
sd.reserve2
msbd
stagedprog
mountprog
watchdprog
pms
[unknown]
session_server_program
session_program
debug_serverprog
[unknown]
[unknown]
paceprog
[unknown]
mbus
aframes2ps
npartprog
cmlserver
cmlbridge
sailfrogsfaxprog
sailfroghoneprog
sailfrogvmailprog
wserviceprog arcstorm
hld
alive
radsp
radavx
radview
rays_prog
rays_prog
300281 [unknown]
300282 [unknown]
300283 [unknown]
300284 conmanprog
300285 jincv2
300286 isls
300287 systemstatprog
300288 fxpsprog
300289 callpath
300290 axess
300291 armor_rpcd
300292 armor_dictionary_rpcd
300293 armor_miscd
300294 filetransfer_prog
300295 bl_swda
300296 bl_hwda
300297 [unknown]
300298 [unknown]
300299 [unknown]
300300 filemon
300301 acunetprog
300302 rbuild
300303 assistprog
300304 tog
300305 [unknown]
300306 sns7000
300307 igprog
300308 tgprog
300309 plc
300310 pxman pxlsprog
300311 hde_server hdeserver
300312 tsslicenseprog
300313 rpc.explorerd
300314 chrd
300315 tbisam
300316 tbs
300317 adsprog
300318 sponsorprog
300319 querycmprog
300320 [unknown]
300321 [unknown]
300322 mobil1
300323 sld
300324 service_locator_daemon
300325 linkprog
300326 codexdaemonprog
300327 drprog
300328 ressys_commands
300328 stamp
300329 matlab
300330 schedid
300331 upcprog
300332 xferbkch
300333 xfer
300334 qbthd
300335 qbabort
300336 lsd
300337 geomgrd
300338 generic_fts
300339 ft_ack
300340 lymb
300341 vantage
300342 cltstd clooptstdprog
300343 clui clui_prog
300344 testerd tstdprog
300345 extsim
300346 cmd_dispatch maxm_ems
300347 callpath_receive_program
300348 x3270prog
300349 sbc_lag
300350 sbc_frsa
300351 sbc_frs
300352 atommgr
300353 geostrat
300354 dbvialu6.2
300355 [unknown]
300356 fxncprog
300357 infopolic
300358 [unknown]
300359 aagns
300360 aagms
300361 [unknown]
300362 clarion_mgr
300363 setcimrpc
300364 virtual_protocol_adapter
300365 unibart
300366 uniarcl
300367 unifile
300368 unisrex
300369 uniscmd
300370 rsc
300371 set
300372 desaf-ws/key
300373 reeldb
300374 nl
300375 rmd
300376 agcd
300377 rsynd
300378 rcnlib
300379 rcnlib_attach
300380 evergreen_mgmt_agent
300381 fx104prog
300382 rui
 remote_user_interface
300383 ovomd
300384 [unknown]
300385 [unknown]
300386 system_server
300387 pipecs_cs_pipeprog
 ppktrpc
300388 uv-net univision
300389 auexe
300390 audip
300391 mqi
300392 eva
300393 eeei_reserved_1
300394 eeeiReserved2
300395 eeeiReserved3
300396 eeeiReserved4
300397 eeeiReserved5
300398 eeeiReserved6
300399 eeeiReserved7
300400 eeeiReserved8
300401 cpri
300402 wg_idms_manager
300403 timequota
300404 spiff
300405-300414 ov_oem_svc
300415 ov_msg_ctlg_svc
300416 ov_advt_reg_svc
300417-300424 showkron
300425 daatd
300426 swiftnet
300427 ovomdel
300428 ovomreq
300429 msg_dispatcher
300430 pcshare_server
300431 rcvs
300432 fdfserv
300433 bsdd
300434 drdd
300435 mif_gutsprog
300436 mif_guiprog
300437 twolfd
300491 dbqtsd
300492 kms
300493 rpc.iced
300494 calc2s
300495 ptouidprogs
300496 docs1s
300497 new
300498 collagebdg
300499 ars_server
300500 ars_client
300501 vr_catalog
300502 vr_tdb
300503 ama
300504 evama
300505 conama
300506 service_process
300507 reuse_proxy
300508 mars_ctrl
300509 mars_db
300510 mars_com
300511 mars_admch
300512 tbpipcip
300513 tcp_acs_svc
300514 inout_svc
300515 csoft_wp
300516 mcf
300517 eventprog
300518 dg_pc_idimsg
300519 dg_pc_idiaux
300520 atsr_gc
300521 alarm alarm_prog
300522 fts_prog
300523 dcs_prog
300524 ihb_prog
300525 [unknown]
300526 [unknown]
300527 clu_info_prog
300528 rmfm
300529 c2sdodcd
300530 interahelp
300531 callpathasyncmsghandler
300532 optix_arc
300533 optix ts
300534 optix_wf
300535 maxopenc
300536 cev cev_server
300537 sitewideprog
300538 dres
300539 drsdm
300540 dasgate
300541 dcdbd
300542 dcpsd
300543 supportlink_prog
300544 broker
300545 listener
300546 multiaccess
300547 spai_interface
300548 spai_adaption
300549 chimera_ci
 chimera_clientinterface
300550 chimera_pi
 chimera_processinvoker
300551 teamware_f1
 teamware.Foundationlevel
300552 teamware_sl
 teamware.Systemlevel
300553 teamware_ui
 teamware_userinterface
300554 lprm
300555 mpsprog
 Mensuration_Proxy_Server
300556 mo_symdis
300557 retsideprog
300558 slp
300559 slm-api
300560 im_rpc_teamconference
300561 license_prog_license
300562 stuple_stuple_prog
300563 upasswd_prog
300564 gentranmentorsecurity
300565 gentranmentorprovider
300566 latituded
 latitude_license_server
300567 gentranmentorreq1
300568 gentranmentorreq2
300569 gentranmentorreq3
300570 rj_server
300571 gws-rdb
300572 gws-mpmd
300573 gws-spmd
300574 vwcalcld
300575 vworad
300576 vwsybd
300577 vwave
300578 online_assistant
300579 internet_assistant
300580 spawnd
300581 procmgrg
300582 cfgdbd
300583 logutild
300584 ibis
300585 ibisaux
300586 aapi
300587 rstrt
300588 hbeat
300589 pcspu
300590 empress
300591 sched_server
 LiveScheduler
300592 path_server
 LiveScheduler
300593 c2sdmd
300594 c2scf
300595 btsas
300596 sdtas
300597 appie
300598 dmi
300599 pscd
 panther software corp daemon
301600 sisd
301601 cpwebserver
301602 wwcommo
301603 mx-mie
301604 mx-mie-debug
301605 idmn
301606 ssrv
301607 vpnsrver
301608 samserver
301609 sams_server
301610 chrysalis
301611 ddm
301612 ddm-is
301613 mx-bcp-debug
301614 upmrdrd
301615 upmbsd
301616 res
301617 colortron
301618 zrs
301619 afpsrv
301620 apxft
301621 nrp
301622 hpid
301623 mailwatch
301624 fos bc_fcrb_receiver
<table>
<thead>
<tr>
<th>Process ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300625</td>
<td>cs_sysadmin_svr</td>
</tr>
<tr>
<td>300626</td>
<td>cs_controller_svr</td>
</tr>
<tr>
<td>300627</td>
<td>nokia_nms_eai</td>
</tr>
<tr>
<td>300628</td>
<td>dbg</td>
</tr>
<tr>
<td>300629</td>
<td>remex</td>
</tr>
<tr>
<td>300630</td>
<td>cs_bind</td>
</tr>
<tr>
<td>300631</td>
<td>idm</td>
</tr>
<tr>
<td>300632</td>
<td>prpasswd</td>
</tr>
<tr>
<td>300633</td>
<td>iw-pw</td>
</tr>
<tr>
<td>300634</td>
<td>starrb</td>
</tr>
<tr>
<td>300635</td>
<td>Impress_Server</td>
</tr>
<tr>
<td>300636</td>
<td>colorstar</td>
</tr>
<tr>
<td>300637</td>
<td>gwugui</td>
</tr>
<tr>
<td>300638</td>
<td>gwsgui</td>
</tr>
<tr>
<td>300639</td>
<td>dai_command_proxy</td>
</tr>
<tr>
<td>300640</td>
<td>dai_alarm_server</td>
</tr>
<tr>
<td>300641</td>
<td>dai_fui_proxy</td>
</tr>
<tr>
<td>300642</td>
<td>spai_command_proxy</td>
</tr>
<tr>
<td>300643</td>
<td>spai_alarm_server</td>
</tr>
<tr>
<td>300644</td>
<td>iris</td>
</tr>
<tr>
<td>300645</td>
<td>hcxttp</td>
</tr>
<tr>
<td>300646</td>
<td>updatedb rsched</td>
</tr>
<tr>
<td>300647</td>
<td>urnd urn</td>
</tr>
<tr>
<td>300648</td>
<td>iqwpsrv</td>
</tr>
<tr>
<td>300649</td>
<td>dskutild</td>
</tr>
<tr>
<td>300650</td>
<td>online</td>
</tr>
<tr>
<td>300651</td>
<td>nlserv</td>
</tr>
<tr>
<td>300652</td>
<td>acsm</td>
</tr>
<tr>
<td>300653</td>
<td>dg_clar_sormsg</td>
</tr>
<tr>
<td>300654</td>
<td>wwpollerrpc</td>
</tr>
<tr>
<td>300655</td>
<td>wwmodelrpc</td>
</tr>
<tr>
<td>300656</td>
<td>nsprofd</td>
</tr>
<tr>
<td>300657</td>
<td>nsdstd</td>
</tr>
<tr>
<td>300658</td>
<td>recollect</td>
</tr>
<tr>
<td>300659</td>
<td>lssexecd lss_res</td>
</tr>
<tr>
<td>300660</td>
<td>lssagend lss_rea</td>
</tr>
<tr>
<td>300661</td>
<td>cdinfo</td>
</tr>
<tr>
<td>300662</td>
<td>sninsr_addon</td>
</tr>
<tr>
<td>300663</td>
<td>mm-sap</td>
</tr>
<tr>
<td>300664</td>
<td>ks</td>
</tr>
<tr>
<td>300665</td>
<td>psched</td>
</tr>
<tr>
<td>300666</td>
<td>tekdvfs</td>
</tr>
<tr>
<td>300667</td>
<td>storxll</td>
</tr>
<tr>
<td>300668</td>
<td>nisse</td>
</tr>
<tr>
<td>300669</td>
<td>lbadvise</td>
</tr>
<tr>
<td>300670</td>
<td>atcinstaller</td>
</tr>
<tr>
<td>300671</td>
<td>atntstarter</td>
</tr>
<tr>
<td>300672</td>
<td>NetML</td>
</tr>
<tr>
<td>Process Name</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>tdmesmge</td>
<td></td>
</tr>
<tr>
<td>tdmesmgd</td>
<td></td>
</tr>
<tr>
<td>tdmesmgt</td>
<td></td>
</tr>
<tr>
<td>oim</td>
<td></td>
</tr>
<tr>
<td>mediamanagement</td>
<td></td>
</tr>
<tr>
<td>rdbprog feldowsrv</td>
<td></td>
</tr>
<tr>
<td>rpwdprog rpwd</td>
<td></td>
</tr>
<tr>
<td>sapi-trace</td>
<td></td>
</tr>
<tr>
<td>sapi-master-daemon</td>
<td></td>
</tr>
<tr>
<td>omdcuprog om-dcu</td>
<td></td>
</tr>
<tr>
<td>wwpromcmon</td>
<td></td>
</tr>
<tr>
<td>tndidprog</td>
<td></td>
</tr>
<tr>
<td>rkey_setsecretprog</td>
<td></td>
</tr>
<tr>
<td>asdu_server_prog</td>
<td></td>
</tr>
<tr>
<td>pwrctrnl</td>
<td></td>
</tr>
<tr>
<td>siunixd</td>
<td></td>
</tr>
<tr>
<td>wmapi</td>
<td></td>
</tr>
<tr>
<td>cross_reference_ole</td>
<td></td>
</tr>
<tr>
<td>rtc</td>
<td></td>
</tr>
<tr>
<td>disp</td>
<td></td>
</tr>
<tr>
<td>sql_compilation_agent</td>
<td></td>
</tr>
<tr>
<td>tnsysprog</td>
<td></td>
</tr>
<tr>
<td>ius-sapimd</td>
<td></td>
</tr>
<tr>
<td>apteam-dx</td>
<td></td>
</tr>
<tr>
<td>rmsrpc</td>
<td></td>
</tr>
<tr>
<td>seismic_system</td>
<td></td>
</tr>
<tr>
<td>remote</td>
<td></td>
</tr>
<tr>
<td>ttl_ts_event nokia_nms</td>
<td></td>
</tr>
<tr>
<td>fxrs</td>
<td></td>
</tr>
<tr>
<td>onlicense</td>
<td></td>
</tr>
<tr>
<td>vxkey</td>
<td></td>
</tr>
<tr>
<td>dinis</td>
<td></td>
</tr>
<tr>
<td>sched2d schedule-2</td>
<td></td>
</tr>
<tr>
<td>sched3d schedule-3</td>
<td></td>
</tr>
<tr>
<td>sched4d schedule-4</td>
<td></td>
</tr>
<tr>
<td>sched5d schedule-5</td>
<td></td>
</tr>
<tr>
<td>sched6d schedule-6</td>
<td></td>
</tr>
<tr>
<td>sched7d schedule-7</td>
<td></td>
</tr>
<tr>
<td>sched8d schedule-8</td>
<td></td>
</tr>
<tr>
<td>sched9d schedule-9</td>
<td></td>
</tr>
<tr>
<td>adtsqry</td>
<td></td>
</tr>
<tr>
<td>adserv</td>
<td></td>
</tr>
<tr>
<td>adrepserv</td>
<td></td>
</tr>
<tr>
<td>[unknown]</td>
<td></td>
</tr>
<tr>
<td>caad</td>
<td></td>
</tr>
<tr>
<td>caaui</td>
<td></td>
</tr>
<tr>
<td>cescda</td>
<td></td>
</tr>
<tr>
<td>vcapiadmin</td>
<td></td>
</tr>
</tbody>
</table>
300721 vcapi20
300722 tcfs
300723 csed
300724 nothand
300725 hacb
300726 nfauth
300727 imlm
300728 bestcomm
300729 lprpasswd
300730 rprpasswd
300731 proplistd
300732 mikomomc
300733 arepa-cas
300734 [unknown]
300735 [unknown]
300736 ando_ts
300737 intermezzo
300738 ftel-sdh-request
300739 ftel-sdh-response
300740 [unknown]
300741 [unknown]
300742 [unknown]
300743 [unknown]
300744 [unknown]
300745 vrc_abb
300746 vrc_comau
300747 vrc_fanuc
300748 vrc_kuka
300749 vrc_reis
300750 hp_sv6d
300751 correntmgr01
300752 correntike
300753 [unknown]
300754 [unknown]
300755 intransa_location
300756 intransa_management
300757 intransa_federation
300758 portprot
300759 ipmiprot
300760 aceapi
300761 f6000pss
300762 vsmapi_program
300763 ubertuple
300764 ctconcrpcif
300765 mfuadmin
300766 aiols
300767 dsmsrootd
300768 htdl
| 300769 | caba |
| 300770 | vrc_cosimir |
| 300771 | cmhelmd |
| 300772 | polynomial |
| 300773 | [unknown] |
| 300774 | [unknown] |
| 300775 | [unknown] |
| 300776 | [unknown] |
| 300777 | [unknown] |
| 300778 | [unknown] |
| 300779 | [unknown] |
| 300780 | [unknown] |
| 300781 | dsmrecalld |
| 300782 | [unknown] |
| 300783 | [unknown] |
| 300784 | twrgcontrol |
| 300785 | twrled |
| 300786 | twrcfgdb |

BMC software

| 300787-300886 |

unassigned

| 300887 - 300999 |

Sun Microsystems

| 301000-302000 | 2000 numbers |

unassigned

| 302001-349999 |

American Airlines

| 350000 - 350999 |

Acucobol Inc.

| 351000 - 351099 |

The Bristol Group

| 351100 - 351249 |

Amteva Technologies

| 351250 - 351349 |

Sterling Software ITD

351350	wfmMgmtApp
351351	wfmMgmtDataSrv
351352	wfmMgmtFut1
351353	wfmMgmtFut1
351354	wfmAPM
351355	wfmIAMgr
351356	wfmECMgr
351357	wfmLookOut
351358	wfmAgentFut1
351359	wfmAgentFut2

unassigned

| 351360 - 351406 |

Thurlow Standards Track [Page 51]
351370 sched20d
351371 sched21d
351372 sched22d
351373 sched23d
351374 sched24d
351375 sched25d
351376 sched26d
351377 sched27d
351378 sched28d
351379 sched29d
351380 sched30d
351381 sched31d
351382 sched32d
351383 sched33d
351384 sched34d
351385 sched35d
351386 sched36d
351387 sched37d
351388 sched38d
351389 sched39d
351390 consoleserver
351391 scheduleserver
351392 RDELIVER
351393 REVENTPROG
351394 RSENDEVENTPROG
351395 snapp
351396 snapad
351397 sdsoodb
351398 sdsmain
351399 sdssrv
351400 sdsclnt
351401 sdsreg
351402 fsbatch
351403 fsmonitor
351404 fsdisp
351405 fssession
351406 fslog
351407 svdpappserv
351408 gns
351409 [unknown]
351410 [unknown]
351411 [unknown]
351412 axi
351413 rpcxfr
351414 slm
351415 smbpasswd
351416 tbdbserv
351417 tbprojserv
351418 genericserver
351419 dynarc_ds
351420 dnscmdr
351421 ipcmdr
351422 faild
351423 failmon
351424 faildebug
351425 [unknown]
351426 [unknown]
351427 siemens_srs
351428 bsproxy
351429 ifsrpc
351430 CesPvcSm
351431 FrPvcSm
351432 AtmPvcSm
351433 radius
351434 auditor
351435 sft
351436 voicemail
351437 kis
351438 SOFTSERV_NOTIFY
351439 dynarpc
351440 hc
351441 iopas
351442 iopcs
351443 iopss
351444 spcnfs
351445 spcvss
351446 matilda_sms
351447 matilda_brs
351448 matilda_dbs
351449 matilda_sps
351450 matilda_svs
351451 matilda_sds
351452 matilda_vvs
351453 matilda_stats
351454 xtrade
351455 mapsrv
351456 hp_graphicsd
351457 berkeley_db
351458 io_server
351459 rpc.niod
351460 rpc.kill
351461 hmdisproxy
351462 smdisproxy
351463 avatard
351464 namu
351465	BMCSess
351466	FENS_Sport
351467	EM_CONFIG
351468	EM_CONFIG_RESP
351469	lodge_proof
351470	ARCserveIT-Queue
351471	ARCserveIT-Device
351472	ARCserveIT-Discover
351473	ARCserveIT-Alert
351474	ARCserveIT-Database
351475	scand1
351476	scand2
351477	scand3
351478	scand4
351479	scand5
351480	dscv
351481	cb_svc
351482	[unknown]
351483	iprobe
351484	omniconf
351485	isan

BG Partners

<table>
<thead>
<tr>
<th>351486 - 351500</th>
</tr>
</thead>
<tbody>
<tr>
<td>mond</td>
</tr>
<tr>
<td>iqlremote</td>
</tr>
<tr>
<td>iqlalarm</td>
</tr>
</tbody>
</table>

unassigned

| 351504 - 351599 |

Orion Multisystems

| 351600-351855 |

unassigned

| 351856 - 351899 |

NSP lab

| 351900 - 351999 |

unassigned

| 351999 - 352232 |

<p>| 352233 | asautostart |
| 352234 | asmediad1 |
| 352235 | asmediad2 |
| 352236 | asmediad3 |
| 352237 | asmediad4 |
| 352238 | asmediad5 |
| 352239 | asmediad6 |
| 352240 | asmediad7 |
| 352241 | asmediad8 |
| 352242 | asmediad9 |
| 352243 | asmediad10 |
| 352244 | asmediad11 |
| 352245 | asmediad12 |
| 352246 | asmediad13 |
| 352247 | asmediad14 |
| 352248 | asmediad15 |
| 352249 | asmediad16 |
| 352250 | waruser |</p>
<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>352251</td>
<td>warlogd</td>
</tr>
<tr>
<td>352252</td>
<td>warsvrmgr</td>
</tr>
<tr>
<td>352253</td>
<td>warvfsysd</td>
</tr>
<tr>
<td>352254</td>
<td>warftpd</td>
</tr>
<tr>
<td>352255</td>
<td>warnfsd</td>
</tr>
<tr>
<td>352256</td>
<td>bofproxyc0</td>
</tr>
<tr>
<td>352257</td>
<td>bofproxys0</td>
</tr>
<tr>
<td>352258</td>
<td>bofproxyc1</td>
</tr>
<tr>
<td>352259</td>
<td>bofproxys1</td>
</tr>
<tr>
<td>352260</td>
<td>bofproxyc2</td>
</tr>
<tr>
<td>352261</td>
<td>bofproxys2</td>
</tr>
<tr>
<td>352262</td>
<td>bofproxyc3</td>
</tr>
<tr>
<td>352263</td>
<td>bofproxys3</td>
</tr>
<tr>
<td>352264</td>
<td>bofproxys4</td>
</tr>
<tr>
<td>352265</td>
<td>bofproxys5</td>
</tr>
<tr>
<td>352266</td>
<td>bofproxyc5</td>
</tr>
<tr>
<td>352267</td>
<td>bofproxys6</td>
</tr>
<tr>
<td>352268</td>
<td>bofproxyc6</td>
</tr>
<tr>
<td>352269</td>
<td>bofproxys7</td>
</tr>
<tr>
<td>352270</td>
<td>bofproxyc7</td>
</tr>
<tr>
<td>352271</td>
<td>bofproxys8</td>
</tr>
<tr>
<td>352272</td>
<td>bofproxyc8</td>
</tr>
<tr>
<td>352273</td>
<td>bofproxys9</td>
</tr>
<tr>
<td>352274</td>
<td>bofproxyc9</td>
</tr>
<tr>
<td>352275</td>
<td>bofproxys10</td>
</tr>
<tr>
<td>352276</td>
<td>bofproxyc10</td>
</tr>
<tr>
<td>352277</td>
<td>bofproxys11</td>
</tr>
<tr>
<td>352278</td>
<td>bofproxyc11</td>
</tr>
<tr>
<td>352279</td>
<td>bofproxys12</td>
</tr>
<tr>
<td>352280</td>
<td>bofproxys12</td>
</tr>
<tr>
<td>352281</td>
<td>bofproxys13</td>
</tr>
<tr>
<td>352282</td>
<td>bofproxys13</td>
</tr>
<tr>
<td>352283</td>
<td>bofproxys14</td>
</tr>
<tr>
<td>352284</td>
<td>bofproxys14</td>
</tr>
<tr>
<td>352285</td>
<td>bofproxys15</td>
</tr>
<tr>
<td>352286</td>
<td>bofproxys15</td>
</tr>
<tr>
<td>352287</td>
<td>bofproxys16</td>
</tr>
<tr>
<td>352288</td>
<td>bofproxys16</td>
</tr>
<tr>
<td>352289</td>
<td>bofproxys17</td>
</tr>
<tr>
<td>352290</td>
<td>bofproxys17</td>
</tr>
<tr>
<td>352291</td>
<td>bofproxys18</td>
</tr>
<tr>
<td>352292</td>
<td>bofproxys18</td>
</tr>
</tbody>
</table>

Unassigned Ports:

- 352293-370000
- 370001 [unknown]
- 370002 [unknown]
- 370003 [unknown]
- 370004 [unknown]
- 370005 [unknown]
370006 [unknown]
370007 [unknown]
370008 [unknown]
370009 [unknown]
370010 [unknown]
370011 [unknown]
370012 [unknown]
370013 [unknown]
370014 [unknown]
370015 [unknown]
370016 [unknown]
370017 [unknown]
370018 [unknown]
370019 [unknown]
370020 [unknown]
370021 [unknown]
370022 [unknown]
370023 [unknown]
370024 [unknown]
370025 [unknown]
370026 [unknown]
370027 [unknown]

unassigned 370028 - 379999
380000 opensna
380001 probenet
380002 [unknown]
380003 license
380004 na.3com-remote
380005 na.ntp
380006 probeutil
380007 na.vlb
380008 cds_mhs_agent
380009 cds_x500_agent
380010 cds_mailhub_agent
380011 codex_6500_proxy
380012 codex_6500_trapd
380013 na.nm212
380014 cds_mta_metrics_agent
380015 [unknown]
380016 na.caple
380017 codexcapletrap

Swiss Re 380018-380028
380029 ncstat
380030 ncnfsstat
380031 ftams
380032 na.isotp
380033 na.rfc1006

unassigned 380034 - 389999
Epoch Systems 390000 - 390049
Quickturn Systems 390050 - 390065
Team One Systems 390066 - 390075
General Electric CRD 390076 - 390085
TSIG NFS subcommittee 390086 - 390089
SoftLab ab 390090 - 390099
Legato Network Services 390100 - 390115
 390116 cdsmonitor
 390117 cdslock
 390118 cdslicense
 390119 shm
 390120 rws
 390121 cdc
Data General 390122 - 390141
Perfect Byte 390142 - 390171
JTS Computer Systems 390172 - 390181
Parametric Technology 390182 - 390191
Voxem 390192 - 390199
Effix Systems 390200 - 390299
Motorola 390300 - 390309
Mobile Data Intl. 390310 - 390325
Physikalisches Institut 390326 - 390330
Ergon Informatik AG 390331 - 390340
Analog Devices Inc. 390341 - 390348
Interphase Corporation 390349 - 390358
NeWware 390359 - 390374
Qualix Group 390375 - 390379
Xerox Imaging Systems 390380 - 390389
Noble Net 390390 - 390399
Legato Network Services 390400 - 390499
Client Server Tech. 390500 - 390511
Atria 390512 - 390517
GE NMR Instruments 390518 - 390525
Harris Corp. 390526 - 390530
Unisys 390531 - 390562
Aggregate Computing 390563 - 390572
Interactive Data 390573 - 390580
OKG AB 390581 - 390589
K2 Software 390591 - 390594
Collier Jackson 390595 - 390599
Remedy Corporation 390600 - 390699
Mentor Graphics 390700 - 390799
AT&T Bell Labs (Lucent) 390800 - 390899
Xerox 390900 - 390999
Silicon Graphics 391000 - 391063
Data General 391064 - 391095
Computer Support Corp. 391096 - 391099
Quorum Software Systems 391100 - 391199
InterLinear Technology 391200 - 391209
Highland Software 391210 - 391229
Boeing Comp. Svcs. 391230 - 391249
IBM Sweden 391250 - 391259
Signature Authority Svc 391260 - 391271
ZUMTOBEL Licht GmbH 391272 - 391283
NOAA/ERL 391284 - 391299
NCR Corp. 391300 - 391399
FTP Software 391400 - 391409
Cadre Technologies 391410 - 391433
Visionware Ltd (UK) 391434 - 391439
IBR-Partner AG 391440 - 391449
CAP Programator AB 391450 - 391459
Reichle+De-Massari AG 391460 - 391474
Swiss Bank Corp (London) 391475 - 391484
Unisys Enterprise Svr 391485 - 391489
Intel - Test Dev. Tech. 391490 - 391499
Ampex 391500 - 391755
 391756 naas-spare
 391757 naas-admin
 391758 isps
 391759 isps-admin
 391760 mars
 391761 mars-admin
 391762 attcis_spare0
 391763 attcis_spare1
 391764 mail-server
 391765 mail-server-spare
 391766 attcis_spare2
 391767 attcis_spare3
 391768 attcis_spare4
 391769 attcis_spare5
 391770 attcis_spare6
 391771 attcis_spare7
Integrated Systems, Inc. 391772 - 391779
Parametric Tech., Inc. 391780 - 391789
Ericsson Telecom AB 391790 - 391799
SLAC 391800 - 391849
 391850 qhrdata
 391851 qhrbackup
 391852 minutedata
 391853 prefecture
 391854 supc
 391855 suadmincrw
 391856 suadminnotas
 391857 sumessage
 391858 sublock
 391859 sumotd
staffware dev. (uk) 391860 - 391869
Staffware Dev. (UK) 391870 - 391879
391880 namesrvr
391881 disksrvr
391882 tapesrvr
391883 migsrvr
391884 pdmsrvr
391885 pvrsvr
391886 repacksrvr
391887 [unknown]

Convex Computer Corp. 391888 - 391951
391952 lookoutsrv
391953 lookoutagnt
391954 lookoutprxy
391955 lookoutsnmp
391956 lookoutrmnon
391957 lookoutfut1
391958 lookoutfut2

windward 391959 - 391967
391968 sra_legato
391969 sra_legato_imgsivr
391970 sra_legato_0
391971 sra_legato_1
391972 sra_legato_2
391973 sra_legato_3
391974 sra_legato_4
391975 sra_legato_5
391976 sra_legato_6
391977 sra_legato_7
391978 sra_legato_8
391979 sra_legato_9

Brooktree Corp. 391980 - 391989
Cadence Design Systems 391990 - 391999
J. Frank & Associates 392000 - 392999
Cooperative Solutions 393000 - 393999
Xerox Corp. 394000 - 395023
395024 odbc_sqlretriever
3M 395025 - 395091
Digital Zone Intl. 395092 - 395099
Software Professionals 395100 - 395159
Del Mar Solutions 395160 - 395164
395165 ife-es
395166 ife-resmgr
395167 ife-aes
395168 ife-bite
395169 ife-loader
395170 ife-satcom
395171 ife-seat

Thurlow Standards Track [Page 59]
ifc-dbmgr
ife-testmgr
atrium_server
ase_director
ase_agent
ase_hsm
ase_mgr
ase_sim

Hewlett-Packard 395180 - 395194
XES, Inc. 395195 - 395199
Unitech Products 395200 - 395249
TransSys 395250 - 395505
Unisys Govt Systems 395506 - 395519
Bellcore 395520 - 395529
IBM 395530-395561
AT&T Network Services 395562 - 395571
Data General 395572 - 395577
Swiss Bank Corp 395576 - 395597
Swiss Bank Corp 395578-395598
Novell 395638 - 395643
Computer Associates 395644 - 395650
Omneon Video Networks 395651 - 395656
unassigned 395657 - 395908
UK Post Office 395909 - 395924
AEROSPATIALE 395925 - 395944
Result d.o.o. 395945 - 395964
DataTools, Inc. 395965 - 395980
CADIS, Inc. 395981 - 395990
Cummings Group, Inc. 395991 - 395994
Cadre Technologies 395995 - 395999
American Airlines 396000 - 396999
Ericsson Telecom TM Div 397000 - 398023
IBM 398024 - 398028
Toshiba OME Works 398029 - 398033
TUSC Computer Systems 398034 - 398289
AT&T 398290 - 398320
Ontario Hydro 398321 - 398346
Micron Corporation 398347 - 398364
unassigned 398365 - 398591
Pegasystems, Inc. 398592 - 399616
Spectra Securities Soft 399617 - 399850
QualCom 399851 - 399866
unassigned 399867 - 399884
Altris Software Ltd. 399885 - 399899
ISO/IEC WG11 399900 - 399919
Parametric Technology 399920 - 399949
Dolby Laboratories 399950 - 399981
unassigned 399982 - 399991
Sun-assigned authentication flavor numbers

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Number</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTH_NONE</td>
<td>0</td>
<td>/* no authentication, see RFC 1831 */</td>
</tr>
<tr>
<td>AUTH_SYS</td>
<td>1</td>
<td>/* unix style (uid+gids), RFC 1831 */</td>
</tr>
<tr>
<td>AUTH_SHORT</td>
<td>2</td>
<td>/* short hand unix style, RFC 1831 */</td>
</tr>
<tr>
<td>AUTH_DH</td>
<td>3</td>
<td>/* des style (encrypted timestamp) */</td>
</tr>
<tr>
<td>AUTH_KERB</td>
<td>4</td>
<td>/* kerberos auth, see RFC 2695 */</td>
</tr>
<tr>
<td>AUTH_RSA</td>
<td>5</td>
<td>/* RSA authentication */</td>
</tr>
<tr>
<td>RPCSEC_GSS</td>
<td>6</td>
<td>/* GSS-based RPC security for auth, integrity and privacy, RPC 5403 */</td>
</tr>
</tbody>
</table>

AUTH_NW 30001 NETWARE
AUTH_SEC 200000 TSIG NFS subcommittee
AUTH_ESV 200004 SVr4 ES

AUTH_QQNFS 300000 Univ. of Guelph - Not Quite NFS
AUTH_GSSAPI 300001 OpenVision <john.linn@ov.com>
AUTH_ILU_UGEN 300002 Xerox <janssen@parc.xerox.com>
- ILU Unsecured Generic Identity

Small blocks are assigned out of the 39xxxxx series of numbers

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Number</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTH_SPNEGO</td>
<td>390000</td>
<td>390000 - 390255 NFS 'pseudo' flavors for RPCSEC_GSS</td>
</tr>
<tr>
<td></td>
<td>390003</td>
<td>kerberos_v5 authentication, RFC 2623</td>
</tr>
<tr>
<td></td>
<td>390004</td>
<td>kerberos_v5 with data integrity, RFC 2623</td>
</tr>
<tr>
<td></td>
<td>390005</td>
<td>kerberos_v5 with data privacy, RFC 2623</td>
</tr>
</tbody>
</table>

2000000000 Reserved
2001000000 NeXT Inc.
Normative References

Informative References

Author’s Address

Robert Thurlow
Sun Microsystems, Inc.
500 Eldorado Boulevard, UBRM05-171
Broomfield, CO 80021

Phone: 877-718-3419
EMail: robert.thurlow@sun.com