
Internet Engineering Task Force (IETF) E. Rescorla
Request for Comments: 5746 RTFM, Inc.
Updates: 5246 , 4366 , 4347 , 4346 , 2246 M. Ray
Category: Standards Track S. Dispensa
ISSN: 2070-1721 PhoneFactor
 N. Oskov
 Microsoft
 February 2010

 Transport Layer Security (TLS) Renegotiation Indication Extension

Abstract

 Secure Socket Layer (SSL) and Transport Layer Security (TLS)
 renegotiation are vulnerable to an attack in which the attacker forms
 a TLS connection with the target server, injects content of his
 choice, and then splices in a new TLS connection from a client. The
 server treats the client’s initial TLS handshake as a renegotiation
 and thus believes that the initial data transmitted by the attacker
 is from the same entity as the subsequent client data. This
 specification defines a TLS extension to cryptographically tie
 renegotiations to the TLS connections they are being performed over,
 thus preventing this attack.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741 .

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5746 .

Rescorla, et al. Standards Track [Page 1]

https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc5741#section-2
http://www.rfc-editor.org/info/rfc5746

RFC 5746 TLS Renegotiation Extension February 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction .. 3
 2. Conventions Used in This Document 4
 3. Secure Renegotiation Definition 4
 3.1 . Additional Connection State 4
 3.2 . Extension Definition 5
 3.3. Renegotiation Protection Request Signaling Cipher
 Suite Value .. 6
 3.4 . Client Behavior: Initial Handshake 6
 3.5 . Client Behavior: Secure Renegotiation 7
 3.6 . Server Behavior: Initial Handshake 7
 3.7 . Server Behavior: Secure Renegotiation 8
 4. Backward Compatibility .. 9
 4.1 . Client Considerations 9
 4.2 . Client Behavior: Legacy (Insecure) Renegotiation 10
 4.3 . Server Considerations 10
 4.4 . Server Behavior: Legacy (Insecure) Renegotiation 11
 4.5 . SSLv3 ... 11
 5. Security Considerations .. 12
 6. IANA Considerations .. 13
 7. Acknowledgements ... 13
 8. References ... 13
 8.1 . Normative References 13
 8.2 . Informative References 13

Rescorla, et al. Standards Track [Page 2]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

RFC 5746 TLS Renegotiation Extension February 2010

1. Introduction

 TLS [RFC5246] allows either the client or the server to initiate
 renegotiation -- a new handshake that establishes new cryptographic
 parameters. Unfortunately, although the new handshake is carried out
 using the cryptographic parameters established by the original
 handshake, there is no cryptographic binding between the two. This
 creates the opportunity for an attack in which the attacker who can
 intercept a client’s transport layer connection can inject traffic of
 his own as a prefix to the client’s interaction with the server. One
 form of this attack [Ray09] proceeds as shown below:

 Client Attacker Server
 ------ ------- ------
 <----------- Handshake ---------->
 <======= Initial Traffic ========>
 <-------------------------- Handshake ============================>
 <======================== Client Traffic ==========================>

 To start the attack, the attacker forms a TLS connection to the
 server (perhaps in response to an initial intercepted connection from
 the client). He then sends any traffic of his choice to the server.
 This may involve multiple requests and responses at the application
 layer, or may simply be a partial application layer request intended
 to prefix the client’s data. This traffic is shown with == to
 indicate it is encrypted. He then allows the client’s TLS handshake
 to proceed with the server. The handshake is in the clear to the
 attacker but encrypted over the attacker’s TLS connection to the
 server. Once the handshake has completed, the client communicates
 with the server over the newly established security parameters with
 the server. The attacker cannot read this traffic, but the server
 believes that the initial traffic to and from the attacker is the
 same as that to and from the client.

 If certificate-based client authentication is used, the server will
 see a stream of bytes where the initial bytes are protected but
 unauthenticated by TLS and subsequent bytes are authenticated by TLS
 and bound to the client’s certificate. In some protocols (notably
 HTTPS), no distinction is made between pre- and post-authentication
 stages and the bytes are handled uniformly, resulting in the server
 believing that the initial traffic corresponds to the authenticated
 client identity. Even without certificate-based authentication, a
 variety of attacks may be possible in which the attacker convinces
 the server to accept data from it as data from the client. For
 instance, if HTTPS [RFC2818] is in use with HTTP cookies [RFC2965],
 the attacker may be able to generate a request of his choice
 validated by the client’s cookie.

Rescorla, et al. Standards Track [Page 3]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc2818
https://tools.ietf.org/pdf/rfc2965

RFC 5746 TLS Renegotiation Extension February 2010

 Some protocols -- such as IMAP or SMTP -- have more explicit
 transitions between authenticated and unauthenticated phases and
 require that the protocol state machine be partly or fully reset at
 such transitions. If strictly followed, these rules may limit the
 effect of attacks. Unfortunately, there is no requirement for state
 machine resets at TLS renegotiation, and thus there is still a
 potential window of vulnerability, for instance, by prefixing a
 command that writes to an area visible by the attacker with a command
 by the client that includes his password, thus making the client’s
 password visible to the attacker (note that this precise attack does
 not work with challenge-response authentication schemes, but other
 attacks may be possible). Similar attacks are available with SMTP,
 and in fact do not necessarily require the attacker to have an
 account on the target server.

 It is important to note that in both cases these attacks are possible
 because the client sends unsolicited authentication information
 without requiring any specific data from the server over the TLS
 connection. Protocols that require a round trip to the server over
 TLS before the client sends sensitive information are likely to be
 less vulnerable.

 These attacks can be prevented by cryptographically binding
 renegotiation handshakes to the enclosing TLS cryptographic
 parameters, thus allowing the server to differentiate renegotiation
 from initial negotiation, as well as preventing renegotiations from
 being spliced in between connections. An attempt by an attacker to
 inject himself as described above will result in a mismatch of the
 cryptographic binding and can thus be detected. The data used in the
 extension is similar to, but not the same as, the data used in the
 tls-unique and/or tls-unique-for-telnet channel bindings described in
 [TLS-CHANNEL-BINDINGS]; however, this extension is not a general-
 purpose RFC 5056 [RFC5056] channel binding facility.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Secure Renegotiation Definition

3.1 . Additional Connection State

 Both client and server need to store three additional values for each
 TLS connection state (see RFC 5246, Section 6.1). Note that these
 values are specific to connection (not a TLS session cache entry).

Rescorla, et al. Standards Track [Page 4]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc5056
https://tools.ietf.org/pdf/rfc5056
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc5246#section-6.1

RFC 5746 TLS Renegotiation Extension February 2010

 o a "secure_renegotiation" flag, indicating whether secure
 renegotiation is in use for this connection.

 o "client_verify_data": the verify_data from the Finished message
 sent by the client on the immediately previous handshake. For
 currently defined TLS versions and cipher suites, this will be a
 12-byte value; for SSLv3, this will be a 36-byte value.

 o "server_verify_data": the verify_data from the Finished message
 sent by the server on the immediately previous handshake.

3.2 . Extension Definition

 This document defines a new TLS extension, "renegotiation_info" (with
 extension type 0xff01), which contains a cryptographic binding to the
 enclosing TLS connection (if any) for which the renegotiation is
 being performed. The "extension data" field of this extension
 contains a "RenegotiationInfo" structure:

 struct {
 opaque renegotiated_connection<0..255>;
 } RenegotiationInfo;

 The contents of this extension are specified as follows.

 o If this is the initial handshake for a connection, then the
 "renegotiated_connection" field is of zero length in both the
 ClientHello and the ServerHello. Thus, the entire encoding of the
 extension is ff 01 00 01 00. The first two octets represent the
 extension type, the third and fourth octets the length of the
 extension itself, and the final octet the zero length byte for the
 "renegotiated_connection" field.

 o For ClientHellos that are renegotiating, this field contains the
 "client_verify_data" specified in Section 3.1 .

 o For ServerHellos that are renegotiating, this field contains the
 concatenation of client_verify_data and server_verify_data. For
 current versions of TLS, this will be a 24-byte value (for SSLv3,
 it will be a 72-byte value).

 This extension also can be used with Datagram TLS (DTLS) [RFC4347].
 Although, for editorial simplicity, this document refers to TLS, all
 requirements in this document apply equally to DTLS.

Rescorla, et al. Standards Track [Page 5]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc4347

RFC 5746 TLS Renegotiation Extension February 2010

3.3 . Renegotiation Protection Request Signaling Cipher Suite Value

 Both the SSLv3 and TLS 1.0/TLS 1.1 specifications require
 implementations to ignore data following the ClientHello (i.e.,
 extensions) if they do not understand it. However, some SSLv3 and
 TLS 1.0 implementations incorrectly fail the handshake in such a
 case. This means that clients that offer the "renegotiation_info"
 extension may encounter handshake failures. In order to enhance
 compatibility with such servers, this document defines a second
 signaling mechanism via a special Signaling Cipher Suite Value (SCSV)
 "TLS_EMPTY_RENEGOTIATION_INFO_SCSV", with code point {0x00, 0xFF}.
 This SCSV is not a true cipher suite (it does not correspond to any
 valid set of algorithms) and cannot be negotiated. Instead, it has
 the same semantics as an empty "renegotiation_info" extension, as
 described in the following sections. Because SSLv3 and TLS
 implementations reliably ignore unknown cipher suites, the SCSV may
 be safely sent to any server. The SCSV can also be included in the
 SSLv2 backward compatible CLIENT-HELLO (see Appendix E.2 of
 [RFC5246]).

 Note: a minimal client that does not support renegotiation at all
 can simply use the SCSV in all initial handshakes. The rules in the
 following sections will cause any compliant server to abort the
 handshake when it sees an apparent attempt at renegotiation by such a
 client.

3.4 . Client Behavior: Initial Handshake

 Note that this section and Section 3.5 apply to both full handshakes
 and session resumption handshakes.

 o The client MUST include either an empty "renegotiation_info"
 extension, or the TLS_EMPTY_RENEGOTIATION_INFO_SCSV signaling
 cipher suite value in the ClientHello. Including both is NOT
 RECOMMENDED.

 o When a ServerHello is received, the client MUST check if it
 includes the "renegotiation_info" extension:

 * If the extension is not present, the server does not support
 secure renegotiation; set secure_renegotiation flag to FALSE.
 In this case, some clients may want to terminate the handshake
 instead of continuing; see Section 4.1 for discussion.

Rescorla, et al. Standards Track [Page 6]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc5246#appendix-E.2
https://tools.ietf.org/pdf/rfc5246#appendix-E.2

RFC 5746 TLS Renegotiation Extension February 2010

 * If the extension is present, set the secure_renegotiation flag
 to TRUE. The client MUST then verify that the length of the
 "renegotiated_connection" field is zero, and if it is not, MUST
 abort the handshake (by sending a fatal handshake_failure
 alert).

 Note: later in Section 3 , "abort the handshake" is used as
 shorthand for "send a fatal handshake_failure alert and
 terminate the connection".

 o When the handshake has completed, the client needs to save the
 client_verify_data and server_verify_data values for future use.

3.5 . Client Behavior: Secure Renegotiation

 This text applies if the connection’s "secure_renegotiation" flag is
 set to TRUE (if it is set to FALSE, see Section 4.2).

 o The client MUST include the "renegotiation_info" extension in the
 ClientHello, containing the saved client_verify_data. The SCSV
 MUST NOT be included.

 o When a ServerHello is received, the client MUST verify that the
 "renegotiation_info" extension is present; if it is not, the
 client MUST abort the handshake.

 o The client MUST then verify that the first half of the
 "renegotiated_connection" field is equal to the saved
 client_verify_data value, and the second half is equal to the
 saved server_verify_data value. If they are not, the client MUST
 abort the handshake.

 o When the handshake has completed, the client needs to save the new
 client_verify_data and server_verify_data values.

3.6 . Server Behavior: Initial Handshake

 Note that this section and Section 3.7 apply to both full handshakes
 and session-resumption handshakes.

 o When a ClientHello is received, the server MUST check if it
 includes the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV. If it does,
 set the secure_renegotiation flag to TRUE.

Rescorla, et al. Standards Track [Page 7]

https://tools.ietf.org/pdf/rfc5746

RFC 5746 TLS Renegotiation Extension February 2010

 o The server MUST check if the "renegotiation_info" extension is
 included in the ClientHello. If the extension is present, set
 secure_renegotiation flag to TRUE. The server MUST then verify
 that the length of the "renegotiated_connection" field is zero,
 and if it is not, MUST abort the handshake.

 o If neither the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV nor the
 "renegotiation_info" extension was included, set the
 secure_renegotiation flag to FALSE. In this case, some servers
 may want to terminate the handshake instead of continuing; see
 Section 4.3 for discussion.

 o If the secure_renegotiation flag is set to TRUE, the server MUST
 include an empty "renegotiation_info" extension in the ServerHello
 message.

 o When the handshake has completed, the server needs to save the
 client_verify_data and server_verify_data values for future use.

 TLS servers implementing this specification MUST ignore any unknown
 extensions offered by the client and they MUST accept version numbers
 higher than their highest version number and negotiate the highest
 common version. These two requirements reiterate preexisting
 requirements in RFC 5246 and are merely stated here in the interest
 of forward compatibility.

 Note that sending a "renegotiation_info" extension in response to a
 ClientHello containing only the SCSV is an explicit exception to the
 prohibition in RFC 5246, Section 7.4.1.4 , on the server sending
 unsolicited extensions and is only allowed because the client is
 signaling its willingness to receive the extension via the
 TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV. TLS implementations MUST
 continue to comply with Section 7.4.1.4 for all other extensions.

3.7 . Server Behavior: Secure Renegotiation

 This text applies if the connection’s "secure_renegotiation" flag is
 set to TRUE (if it is set to FALSE, see Section 4.4).

 o When a ClientHello is received, the server MUST verify that it
 does not contain the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV. If
 the SCSV is present, the server MUST abort the handshake.

 o The server MUST verify that the "renegotiation_info" extension is
 present; if it is not, the server MUST abort the handshake.

Rescorla, et al. Standards Track [Page 8]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5246#section-7.4.1.4

RFC 5746 TLS Renegotiation Extension February 2010

 o The server MUST verify that the value of the
 "renegotiated_connection" field is equal to the saved
 client_verify_data value; if it is not, the server MUST abort the
 handshake.

 o The server MUST include a "renegotiation_info" extension
 containing the saved client_verify_data and server_verify_data in
 the ServerHello.

 o When the handshake has completed, the server needs to save the new
 client_verify_data and server_verify_data values.

4. Backward Compatibility

 Existing implementations that do not support this extension are
 widely deployed and, in general, must interoperate with newer
 implementations that do support it. This section describes
 considerations for backward compatible interoperation.

4.1 . Client Considerations

 If a client offers the "renegotiation_info" extension or the
 TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV and the server does not reply
 with "renegotiation_info" in the ServerHello, then this indicates
 that the server does not support secure renegotiation. Because some
 attacks (see Section 1) look like a single handshake to the client,
 the client cannot determine whether or not the connection is under
 attack. Note, however, that merely because the server does not
 acknowledge the extension does not mean that it is vulnerable; it
 might choose to reject all renegotiations and simply not signal it.
 However, it is not possible for the client to determine purely via
 TLS mechanisms whether or not this is the case.

 If clients wish to ensure that such attacks are impossible, they need
 to terminate the connection immediately upon failure to receive the
 extension without completing the handshake. Such clients MUST
 generate a fatal "handshake_failure" alert prior to terminating the
 connection. However, it is expected that many TLS servers that do
 not support renegotiation (and thus are not vulnerable) will not
 support this extension either, so in general, clients that implement
 this behavior will encounter interoperability problems. There is no
 set of client behaviors that will guarantee security and achieve
 maximum interoperability during the transition period. Clients need
 to choose one or the other preference when dealing with potentially
 un-upgraded servers.

Rescorla, et al. Standards Track [Page 9]

https://tools.ietf.org/pdf/rfc5746

RFC 5746 TLS Renegotiation Extension February 2010

4.2 . Client Behavior: Legacy (Insecure) Renegotiation

 This text applies if the connection’s "secure_renegotiation" flag is
 set to FALSE.

 It is possible that un-upgraded servers will request that the client
 renegotiate. It is RECOMMENDED that clients refuse this
 renegotiation request. Clients that do so MUST respond to such
 requests with a "no_renegotiation" alert (RFC 5246 requires this
 alert to be at the "warning" level). It is possible that the
 apparently un-upgraded server is in fact an attacker who is then
 allowing the client to renegotiate with a different, legitimate,
 upgraded server. If clients nevertheless choose to renegotiate, they
 MUST behave as described below.

 Clients that choose to renegotiate MUST provide either the
 TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV or "renegotiation_info" in
 their ClientHello. In a legitimate renegotiation with an un-upgraded
 server, that server should ignore both of these signals. However, if
 the server (incorrectly) fails to ignore extensions, sending the
 "renegotiation_info" extension may cause a handshake failure. Thus,
 it is permitted, though NOT RECOMMENDED, for the client to simply
 send the SCSV. This is the only situation in which clients are
 permitted to not send the "renegotiation_info" extension in a
 ClientHello that is used for renegotiation.

 Note that in the case of a downgrade attack, if this is an initial
 handshake from the server’s perspective, then use of the SCSV from
 the client precludes detection of this attack by the server (if this
 is a renegotiation from the server’s perspective, then it will detect
 the attack). However, the attack will be detected by the client when
 the server sends an empty "renegotiation_info" extension and the
 client is expecting one containing the previous verify_data. By
 contrast, if the client sends the "renegotiation_info" extension,
 then the server will immediately detect the attack.

 When the ServerHello is received, the client MUST verify that it does
 not contain the "renegotiation_info" extension. If it does, the
 client MUST abort the handshake. (Because the server has already
 indicated it does not support secure renegotiation, the only way that
 this can happen is if the server is broken or there is an attack.)

4.3 . Server Considerations

 If the client does not offer the "renegotiation_info" extension or
 the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV, then this indicates that
 the client does not support secure renegotiation. Although the
 attack described in Section 1 looks like two handshakes to the

Rescorla, et al. Standards Track [Page 10]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc5246

RFC 5746 TLS Renegotiation Extension February 2010

 server, other attacks may be possible in which the renegotiation is
 seen only by the client. If servers wish to ensure that such attacks
 are impossible, they need to terminate the connection immediately
 upon failure to negotiate the use of secure renegotiation. Servers
 that do choose to allow connections from unpatched clients can still
 prevent the attack described in Section 1 by refusing to renegotiate
 over those connections.

 In order to enable clients to probe, even servers that do not support
 renegotiation MUST implement the minimal version of the extension
 described in this document for initial handshakes, thus signaling
 that they have been upgraded.

4.4 . Server Behavior: Legacy (Insecure) Renegotiation

 This text applies if the connection’s "secure_renegotiation" flag is
 set to FALSE.

 It is RECOMMENDED that servers not permit legacy renegotiation. If
 servers nevertheless do permit it, they MUST follow the requirements
 in this section.

 o When a ClientHello is received, the server MUST verify that it
 does not contain the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV. If
 the SCSV is present, the server MUST abort the handshake.

 o The server MUST verify that the "renegotiation_info" extension is
 not present; if it is, the server MUST abort the handshake.

4.5 . SSLv3

 While SSLv3 is not a protocol under IETF change control (see
 [SSLv3]), it was the original basis for TLS and most TLS
 implementations also support SSLv3. The IETF encourages SSLv3
 implementations to adopt the "renegotiation_info" extension and SCSV
 as defined in this document. The semantics of the SCSV and extension
 are identical to TLS stacks except for the size of the verify_data
 values, which are 36 bytes long each. Note that this will require
 adding at least minimal extension processing to such stacks. Clients
 that support SSLv3 and offer secure renegotiation (either via SCSV or
 "renegotiation_info") MUST accept the "renegotiation_info" extension
 from the server, even if the server version is {0x03, 0x00}, and
 behave as described in this specification. TLS servers that support
 secure renegotiation and support SSLv3 MUST accept SCSV or the
 "renegotiation_info" extension and respond as described in this
 specification even if the offered client version is {0x03, 0x00}.
 SSLv3 does not define the "no_renegotiation" alert (and does

Rescorla, et al. Standards Track [Page 11]

https://tools.ietf.org/pdf/rfc5746

RFC 5746 TLS Renegotiation Extension February 2010

 not offer a way to indicate a refusal to renegotiate at a "warning"
 level). SSLv3 clients that refuse renegotiation SHOULD use a fatal
 handshake_failure alert.

5. Security Considerations

 The extension described in this document prevents an attack on TLS.
 If this extension is not used, TLS renegotiation is subject to an
 attack in which the attacker can inject their own conversation with
 the TLS server as a prefix to the client’s conversation. This attack
 is invisible to the client and looks like an ordinary renegotiation
 to the server. The extension defined in this document allows
 renegotiation to be performed safely. Servers SHOULD NOT allow
 clients to renegotiate without using this extension. Many servers
 can mitigate this attack simply by refusing to renegotiate at all.

 While this extension mitigates the man-in-the-middle attack described
 in the overview, it does not resolve all possible problems an
 application may face if it is unaware of renegotiation. For example,
 during renegotiation, either the client or the server can present a
 different certificate than was used earlier. This may come as a
 surprise to application developers (who might have expected, for
 example, that a "getPeerCertificates()" API call returns the same
 value if called twice), and might be handled in an insecure way.

 TLS implementations SHOULD provide a mechanism to disable and enable
 renegotiation.

 TLS implementers are encouraged to clearly document how renegotiation
 interacts with the APIs offered to applications (for example, which
 API calls might return different values on different calls, or which
 callbacks might get called multiple times).

 To make life simpler for applications that use renegotiation but do
 not expect the certificate to change once it has been authenticated,
 TLS implementations may also wish to offer the applications the
 option to abort the renegotiation if the peer tries to authenticate
 with a different certificate and/or different server name (in the
 server_name extension) than was used earlier. TLS implementations
 may alternatively offer the option to disable renegotiation once the
 client certificate has been authenticated. However, enabling these
 options by default for all applications could break existing
 applications that depend on using renegotiation to change from one
 certificate to another. (For example, long-lived TLS connections
 could change to a renewed certificate; or renegotiation could select
 a different cipher suite that requires using a different
 certificate.)

Rescorla, et al. Standards Track [Page 12]

https://tools.ietf.org/pdf/rfc5746

RFC 5746 TLS Renegotiation Extension February 2010

 Finally, designers of applications that depend on renegotiation are
 reminded that many TLS APIs represent application data as a simple
 octet stream; applications may not be able to determine exactly which
 application data octets were received before, during, or after
 renegotiation. Especially if the peer presents a different
 certificate during renegotiation, care is needed when specifying how
 the application should handle the data.

6. IANA Considerations

 IANA has added the extension code point 65281 (0xff01), which has
 been used for prototype implementations, for the "renegotiation_info"
 extension to the TLS ExtensionType values registry.

 IANA has added TLS cipher suite number 0x00,0xFF with name
 TLS_EMPTY_RENEGOTIATION_INFO_SCSV to the TLS Cipher Suite registry.

7. Acknowledgements

 This vulnerability was originally discovered by Marsh Ray and
 independently rediscovered by Martin Rex. The general concept behind
 the extension described here was independently invented by Steve
 Dispensa, Nasko Oskov, and Eric Rescorla with refinements from Nelson
 Bolyard, Pasi Eronen, Michael D’Errico, Stephen Farrell, Michael
 Gray, David-Sarah Hopwood, Ben Laurie, David Makepeace, Bodo Moeller,
 Martin Rex, Peter Robinson, Jesse Walker, Nico Williams, and other
 members of the Project Mogul team and the TLS WG.

8. References

8.1 . Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246 , August 2008.

8.2 . Informative References

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347 , April 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056 , November 2007.

Rescorla, et al. Standards Track [Page 13]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4347
https://tools.ietf.org/pdf/rfc5056

RFC 5746 TLS Renegotiation Extension February 2010

 [TLS-CHANNEL-BINDINGS]
 Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", Work in Progress, October 2009.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818 , May 2000.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965 , October 2000.

 [Ray09] Ray, M., "Authentication Gap in TLS Renegotiation",
 November 2009, < http://extendedsubset.com/?p=8 >.

 [SSLv3] Freier, A., Karlton, P., and P. Kocher, "The SSL Protocol
 Version 3.0", Work in Progress, November 1996.

Rescorla, et al. Standards Track [Page 14]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc2818
https://tools.ietf.org/pdf/rfc2965
http://extendedsubset.com/?p=8

RFC 5746 TLS Renegotiation Extension February 2010

Authors’ Addresses

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 EMail: ekr@rtfm.com

 Marsh Ray
 PhoneFactor
 7301 W 129th Street
 Overland Park, KS 66213
 USA

 EMail: marsh@extendedsubset.com

 Steve Dispensa
 PhoneFactor
 7301 W 129th Street
 Overland Park, KS 66213
 USA

 EMail: dispensa@phonefactor.com

 Nasko Oskov
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 USA

 EMail: nasko.oskov@microsoft.com

Rescorla, et al. Standards Track [Page 15]

https://tools.ietf.org/pdf/rfc5746

