Moving Outdated TCP Extensions and TCP-Related Documents
to Historic or Informational Status

Abstract

This document reclassifies several TCP extensions and TCP-related documents that either have been superseded, have never seen widespread use, or are no longer recommended for use to "Historic" status. The affected documents are RFCs 675, 721, 761, 813, 816, 879, 896, 1078, and 6013. Additionally, this document reclassifies RFCs 700, 794, 814, 817, 872, 889, 964, and 1071 to "Informational" status.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7805.
1. Introduction

TCP has a long history. Over time, many RFCs have accumulated that describe aspects of the TCP protocol, implementation, and extensions. Some of these have been superseded, are no longer recommended for use, or have simply never seen widespread use.

Sections 6 and 7.1 of the TCP roadmap document [RFC7414] already reclassified a number of TCP extensions as "Historic" and describes the reasons for doing so, but it did not instruct the RFC Editor to change the status of these RFCs in the RFC database. The purpose of this document is to do just that.

In addition, this document reclassifies all other documents mentioned in the TCP roadmap that currently have an "Unknown" status to either "Historic" or "Informational".
2. Status Changes

The following two sections give a short justification why a specific TCP extension or a TCP-related document is being reclassified as "Historic" or "Informational". In addition, the letter code after an RFC number indicates from which original status a particular RFC is changed to "Historic" or "Informational" (see BCP 9 [RFC2026] for an explanation of these categories):

- **S** - Standards Track (Proposed Standard, Draft Standard, or Internet Standard)
- **E** - Experimental
- **I** - Informational
- **H** - Historic
- **B** - Best Current Practice
- **U** - Unknown (not formally defined)

For the content of the documents itself, the reader is referred either to the corresponding RFC or, for a brief description, to the TCP roadmap document [RFC7414].

2.1. Moving to "Historic" Status

This document changes the status of the following RFCs to "Historic" [RFC2026]:

- [RFC675] U, "Specification of Internet Transmission Control Program" was replaced by the final TCP specification [RFC793]
- [RFC721] U, "Out-of-Band Control Signals in a Host-to-Host Protocol" was a proposal that was not incorporated into the final TCP specification [RFC793]
- [RFC761] U, "DoD Standard Transmission Control Protocol" was replaced by the final TCP specification [RFC793]
- [RFC813] U, "Window and Acknowledgement Strategy in TCP" was incorporated into [RFC1122]
- [RFC816] U, "Fault Isolation and Recovery" was incorporated into [RFC1122] and [RFC5461]
o [RFC879] U, "The TCP Maximum Segment Size and Related Topics" was incorporated into [RFC1122] and [RFC6691]

o [RFC896] U, "Congestion Control in IP/TCP Internetworks" was incorporated into [RFC1122] and [RFC6633]

o [RFC1078] U, "TCP Port Service Multiplexer (TCPMUX)" should be deprecated, because:
 * It modifies the TCP connection establishment semantics by also completing the three-way handshake when a service is not available.
 * It requires all new connections to be received on a single port, which limits the number of connections between two machines.
 * It complicates firewall implementation and management because all services share the same port number.
 * There are very limited deployments, and these are not used in an Internet context. (The only reported use is for SGI’s Data Migration Facility in private networks.)

o [RFC6013] E, "TCP Cookie Transactions (TCPCT)" should be deprecated (although only published in 2011) because:
 * It uses the experimental TCP option codepoints, which prohibit a large-scale deployment.
 * [RFC7413] and [TCP-EDO] are alternatives that have more "rough consensus and running code" behind them.
 * There are no known wide-scale deployments.

2.2. Moving to "Informational" Status

This document changes the status of the following RFCs to "Informational" [RFC2026]:

o [RFC700] U, "A Protocol Experiment", which presents a field report about the deployment of a very early version of TCP

o [RFC794] U, "Pre-emption", which recommends that operating systems need to manage their limited resources, which may include TCP connection state

o [RFC814] U, "Name, Addresses, Ports, and Routes", which gives guidance on designing tables and algorithms to keep track of various identifiers within a TCP/IP implementation

o [RFC817] U, "Modularity and Efficiency in Protocol Implementation", which contains general implementation suggestions
o [RFC872] U, "TCP-on-a-LAN", which concludes that the fear of using TCP on a local network is unfounded

o [RFC889] U, "Internet Delay Experiments", which describes experiments with the TCP retransmission timeout calculation

o [RFC964] U, "Some Problems with the Specification of the Military Standard Transmission Control Protocol", which points out several specification bugs in the US Military’s MIL-STD-1778 document, which was intended as a successor to [RFC793]

o [RFC1071] U, "Computing the Internet Checksum", which lists a number of implementation techniques for efficiently computing the Internet checksum

3. Security Considerations

This document introduces no new security considerations. Each RFC listed in this document attempts to address the security considerations of the specification it contains.

4. References

4.1. Normative References

4.2. Informative References

Acknowledgments

The authors thank John Leslie, Pasi Sarolahti, Richard Scheffenegger, Martin Stiemerling, Joe Touch, Valdis Kletnieks, and Greg Skinner for their contributions.

Lars Eggert has received funding from the European Union’s Horizon 2020 research and innovation program 2014-2018 under grant agreement No. 644866 (SSICLOPS). This document reflects only the authors’ views, and the European Commission is not responsible for any use that may be made of the information it contains.

Authors’ Addresses

Alexander Zimmermann
Email: alexander@zimmermann.eu.com

Wesley M. Eddy
MTI Systems
Suite 170, 18013 Cleveland Parkway
Cleveland, OH 44135
United States
Phone: +1-216-433-6682
Email: wes@mti-systems.com

Lars Eggert
NetApp
Sonnenallee 1
Kirchheim 85551
Germany
Phone: +49 151 12055791
Email: lars@netapp.com