< draft-ietf-detnet-yang-02.txt   draft-ietf-detnet-yang-03.txt >
Network Working Group X. Geng Network Working Group X. Geng
Internet-Draft M. Chen Internet-Draft M. Chen
Intended status: Standards Track Huawei Technologies Intended status: Standards Track Huawei Technologies
Expires: September 27, 2019 Z. Li Expires: January 9, 2020 Y. Ryoo
ETRI
Z. Li
China Mobile China Mobile
R. Rahman R. Rahman
Cisco Systems Cisco Systems
March 26, 2019 July 08, 2019
Deterministic Networking (DetNet) Configuration YANG Model Deterministic Networking (DetNet) Configuration YANG Model
draft-ietf-detnet-yang-02 draft-ietf-detnet-yang-03
Abstract Abstract
This document contains the specification for Deterministic Networking This document contains the specification for Deterministic Networking
flow configuration YANG Model. The model allows for provisioning of flow configuration YANG Model. The model allows for provisioning of
end-to-end DetNet service along the path without dependency on any end-to-end DetNet service along the path without dependency on any
signaling protocol. signaling protocol.
The YANG module defined in this document conforms to the Network The YANG module defined in this document conforms to the Network
Management Datastore Architecture (NMDA). Management Datastore Architecture (NMDA).
skipping to change at page 1, line 46 skipping to change at page 1, line 48
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/. Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 27, 2019. This Internet-Draft will expire on January 9, 2020.
Copyright Notice Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of (https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 3
3. DetNet Configuration Model . . . . . . . . . . . . . . . . . 4 3. DetNet Configuration Model . . . . . . . . . . . . . . . . . 3
3.1. DetNet Service Proxy Configuration Attributes . . . . . . 4 3.1. DetNet Appliction Flow Configuration Attributes . . . . . 3
3.2. DetNet Service Layer Configuration Attributes . . . . . . 5 3.2. DetNet Service Sub-layer Configuration Attributes . . . . 4
3.3. DetNet Transport Layer Configuration Attributes . . . . . 8 3.3. DetNet Forwarding Sub-layer Configuration Attributes . . 4
4. DetNet Configuration YANG Structure . . . . . . . . . . . . . 9 3.4. DetNet Sub-network Configurations Attributes . . . . . . 5
5. DetNet Configuration YANG Model . . . . . . . . . . . . . . . 17 4. Overview of DetNet YANG Structure . . . . . . . . . . . . . . 5
6. Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1. DetNet YANG Structure Considerations . . . . . . . . . . 5
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 43 4.2. DetNet YANG Structure . . . . . . . . . . . . . . . . . . 6
8. Security Considerations . . . . . . . . . . . . . . . . . . . 43 4.2.1. YANG Structure of Application Flow . . . . . . . . . 6
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2. YANG Structure of DetNet Service Sub-layer . . . . . 6
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.3. YANG Structure of DetNet Forwarding Sub-layer . . . . 8
10.1. Normative References . . . . . . . . . . . . . . . . . . 43 4.2.4. YANG Structure of DetNet sub-network . . . . . . . . 9
10.2. Informative References . . . . . . . . . . . . . . . . . 44 5. DetNet Configuration YANG Model . . . . . . . . . . . . . . . 10
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 46 6. Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . 34
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 34
8. Security Considerations . . . . . . . . . . . . . . . . . . . 34
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 34
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.1. Normative References . . . . . . . . . . . . . . . . . . 34
10.2. Informative References . . . . . . . . . . . . . . . . . 35
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 37
1. Introduction 1. Introduction
Deterministic Networking (DetNet) [I-D.ietf-detnet-architecture] is Deterministic Networking (DetNet) [I-D.ietf-detnet-architecture] is
defined to provide high-quality network service with extremely low defined to provide high-quality network service with extremely low
packet loss rate, bounded low latency and jitter. packet loss rate, bounded low latency and jitter.
DetNet flow information is defined Information models for DetNet are categorized as flow models, service
in[I-D.ietf-detnet-flow-information-model], and the DetNet models are models and configuration models, which is defined in
categorized as: [I-D.ietf-detnet-flow-information-model].
o Flow models: describe characteristics of data flows. These models
describe in detail all relevant aspects of a flow that are needed
to support the flow properly by the network between the source and
the destination(s).
o Service models: describe characteristics of services being
provided for data flows over a network. These models can be
treated as a network operator independent information model.
o Configuration models: describe in detail the settings required on
network nodes to serve a data flow properly. Service and flow
information models are used between the user and the network
operator. Configuration information models are used between the
management/control plane entity of the network and the network
nodes.
They are shown in the Figure 1.
User Network Operator
flow/service
+---+ model +---+
| | <---------------> | X | management/control
+---+ +-+-+ plane entity
^
| configuration
| model
+------------+
v | |
+-+ | v network
+-+ v +-+ nodes
+-+ +-+
+-+
Figure 1. Three Information Models
DetNet YANG [RFC7950] [RFC6991] models include:
DetNet YANG [RFC7950] [RFC6991] models are used for DetNet service Configuration models are used for DetNet topology discovery and
configurations, QoS configuration and topology discovery. DetNet DetNet flow configuration . This document defines a YANG model for
topology model is defined in ietf-detnet-topology-yang. This DetNet flow configurations based on YANG data types and modeling
document defines two YANG models, which are referred to as DetNet language defined in [RFC6991] and [RFC7950]. A YANG model for
flow configuration model and DetNet transport QoS model. DetNet flow topology discovery is defined in [I-D.ietf-detnet-topology-yang].
model is designed for DetNet flow path configuration and flow status The DetNet configuration YANG model is designed for DetNet flow path
reporting. DetNet transport QoS model is designed for QoS attributes establishment, flow status reporting, and DetNet functions
configuration of transport tunnels to achieve end-to-end bounded configuration in order to achieve end-to-end bounded latency and zero
latency and zero congestion loss. congestion loss.
2. Terminologies 2. Terminologies
This documents uses the terminologies defined in This documents uses the terminologies defined in
[I-D.ietf-detnet-architecture]. [I-D.ietf-detnet-architecture].
3. DetNet Configuration Model 3. DetNet Configuration Model
DetNet flow configuration includes DetNet Service Proxy DetNet flow configuration includes DetNet App-flow configuration,
configuration, DetNet Service Layer configuration and DetNet DetNet Service Sub-layer configuration, and DetNet Forwarding Sub-
Transport Layer configuration. The corresponding attributes used in layer configuration and DetNet sub-network. The corresponding
different layers are defined in Section 3.1, 3.2, 3.3, respectively. attributes used in different sub-layers are defined in Section 3.1,
3.2, 3.3, 3.4 respectively.
3.1. DetNet Service Proxy Configuration Attributes 3.1. DetNet Appliction Flow Configuration Attributes
DetNet service proxy is responsible for mapping between application DetNet application flow is responsible for mapping between
flows and DetNet flows at the edge node(egress/ingress node). Where application flows and DetNet flows at the edge node(egress/ingress
the application flows can be either layer 2 or layer 3 flows. To node). Where the application flows can be either layer 2 or layer 3
identify a flow at the User Network Interface (UNI), as defined in flows. To identify a flow at the User Network Interface (UNI), as
[I-D.ietf-detnet-flow-information-model], the following flow defined in [I-D.ietf-detnet-flow-information-model], the following
attributes are introduced: flow attributes are introduced:
o DetNet L3 Flow Identification, refers to Section 7.1.1 of o DetNet L3 Flow Identification, refers to Section 7.1.1 of
[I-D.ietf-detnet-flow-information-model] [I-D.ietf-detnet-flow-information-model]
o DetNet L2 Flow Identification, refers to Section 7.1.2 of o DetNet L2 Flow Identification, refers to Section 7.1.2 of
[I-D.ietf-detnet-flow-information-model] [I-D.ietf-detnet-flow-information-model]
DetNet service proxy can also do flow filtering and policing at the Application flow can also do flow filtering and policing at the
ingress to prevent the misbehaviored flows from going into the ingress to prevent the misbehaviored flows from going into the
network, which needs: network, which needs:
o Traffic Specification, refers to Section 7.2 of o Traffic Specification, refers to Section 7.2 of
[I-D.ietf-detnet-flow-information-model] [I-D.ietf-detnet-flow-information-model]
The YANG module structure is shown below: 3.2. DetNet Service Sub-layer Configuration Attributes
| +--rw client-flow* [flow-id]
| | +--rw flow-id uint32
| | +--rw flow-rank? boolean
| | +--rw (flow-type)?
| | | +--:(l2-flow)
| | | | +--rw source-mac-address? yang:mac-address
| | | | +--rw destination-mac-address? yang:mac-address
| | | | +--rw ethertype? eth:ethertype
| | | | +--rw vlan-id? uint16
| | | | +--rw pcp
| | | +--:(l3-flow)
| | | +--rw (ip-flow-type)?
| | | | +--:(ipv4)
| | | | | +--rw src-ipv4-address? inet:ipv4-address
| | | | | +--rw dest-ipv4-address? inet:ipv4-address
| | | | | +--rw dscp? uint8
| | | | +--:(ipv6)
| | | | +--rw src-ipv6-address? inet:ipv6-address
| | | | +--rw dest-ipv6-address? inet:ipv6-address
| | | | +--rw traffic-class? uint8
| | | | +--rw flow-label? inet:ipv6-flow-label
| | | +--rw source-port? inet:port-number
| | | +--rw destination-port? inet:port-number
| | | +--rw protocol? uint8
| | +--rw traffic-specification
| | +--rw interval? uint32
| | +--rw max-packets-per-interval? uint32
| | +--rw max-payload-size? uint32
| | +--rw average-packets-per-interval? uint32
| | +--rw average-payload-size? uint32
| +--rw service-function? service-function-type
| +--rw sequence-number-generation-type? sequence-number-generation
| +--rw sequence-number-length? uint8
3.2. DetNet Service Layer Configuration Attributes
DetNet service functions, e.g., DetNet tunnel initialization/ DetNet service functions, e.g., DetNet tunnel initialization/
termination and service protection, are provided in DetNet service termination and service protection, are provided in DetNet service
layer. To support these functions, the following service attributes sub-layer. To support these functions, the following service
need to be configured: attributes need to be configured:
o DetNet flow identification, refers to Section 7.1.3 of o DetNet flow identification, refers to Section 8.1.3 of
[I-D.ietf-detnet-flow-information-model]. [I-D.ietf-detnet-flow-information-model].
o Service function indication, indicates which service function will o Service function indication, indicates which service function will
be invoked at a DetNet edge, relay node or end station. (DetNet be invoked at a DetNet edge, relay node or end station. (DetNet
tunnel initialization or termination are default functions in tunnel initialization or termination are default functions in
DetNet service layer, so there is no need for explicit DetNet service layer, so there is no need for explicit
indication.) indication.)
o Flow Rank, refers to Section 7.3 of o Flow Rank, refers to Section 8.3 of
[I-D.ietf-detnet-flow-information-model]. [I-D.ietf-detnet-flow-information-model].
o Service Rank, refers to Section 7.4 of o Service Rank, refers to Section 16 of
[I-D.ietf-detnet-flow-information-model]. [I-D.ietf-detnet-flow-information-model].
o Service decapsulation, refers to Section 6.2 of o Service Sub-layer, refers to Section 4.5 and Section 4.6 of
[I-D.ietf-detnet-dp-sol-mpls] [I-D.ietf-detnet-mpls]
o Transport decapsulation, refers to Section 6.2 of
[I-D.ietf-detnet-dp-sol-mpls] and Section 3 of
[I-D.ietf-detnet-dp-sol-ip]
o Service encapsulation, refers to Section 6.2 of
[I-D.ietf-detnet-dp-sol-mpls]
o Transport encapsulation, refers to Section 6.2 of
[I-D.ietf-detnet-dp-sol-mpls]and Section 3 of
[I-D.ietf-detnet-dp-sol-ip]
The YANG module structure is shown below:
+--:(relay-node) {detnet-mpls-dp-sol}? o Forwarding Sub-layer, refers to Section 4.3 of
| +--rw relay-node [I-D.ietf-detnet-ip] and Section 4.5 and Section 4.6 of
| +--rw name? string [I-D.ietf-detnet-mpls]
| +--rw service-rank
| +--rw in-segment* [in-segment-id]
| | +--rw in-segment-id uint32
| | +--rw (flow-type)?
| | | +--:(IP)
| | | | +--rw (ip-flow-type)?
| | | | | +--:(ipv4)
| | | | | | +--rw src-ipv4-address? inet:ipv4-address
| | | | | | +--rw dest-ipv4-address? inet:ipv4-address
| | | | | | +--rw dscp? uint8
| | | | | +--:(ipv6)
| | | | | +--rw src-ipv6-address? inet:ipv6-address
| | | | | +--rw dest-ipv6-address? inet:ipv6-address
| | | | | +--rw traffic-class? uint8
| | | | | +--rw flow-label? inet:ipv6-flow-label
| | | | +--rw source-port? inet:port-number
| | | | +--rw destination-port? inet:port-number
| | | | +--rw protocol? uint8
| | | +--:(MPLS)
| | | +--rw service-label uint32
| | +--rw service-function? service-function-type
| +--rw out-segment* [out-segment-id]
| +--rw out-segment-id uint32
| +--rw detnet-service-encapsulation
| | +--rw service-label uint32
| | +--rw control-word? uint32
| +--rw detnet-transport-encapsulation
| +--rw (tunnel-type)?
| | +--:(IPv4) {ipv4-tunnel}?
| | | +--rw ipv4-encapsulation
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw ttl? uint8
| | | +--rw dscp? uint8
| | +--:(IPv6) {ipv6-tunnel}?
| | | +--rw ipv6-encapsulation
| | | +--rw src-ipv6-address inet:ipv6-address
| | | +--rw dest-ipv6-address inet:ipv6-address
| | | +--rw next-header uint8
| | | +--rw traffic-class? uint8
| | | +--rw flow-label? inet:ipv6-flow-label
| | | +--rw hop-limit? uint8
| | +--:(MPLS) {mpls-tunnel}?
| | | +--rw mpls-encapsulation
| | | +--rw label-operations* [label-oper-id]
| | | +--rw label-oper-id uint32
| | | +--rw (label-actions)?
| | | +--:(label-push)
| | | | +--rw label-push
| | | | +--rw label uint32
| | | | +--rw s-bit? boolean
| | | | +--rw tc-value? uint8
| | | | +--rw ttl-value? uint8
| | | +--:(label-swap)
| | | +--rw label-swap
| | | +--rw out-label uint32
| | | +--rw ttl-action? ttl-action-definition
| | +--:(MPLS-over-UDP) {mpls-over-udp-tunnel}?
| | +--rw mpls-over-udp-encaplustion
| | +--rw label-operations* [label-oper-id]
| | | +--rw label-oper-id uint32
| | | +--rw (label-actions)?
| | | +--:(label-push)
| | | | +--rw label-push
| | | | +--rw label uint32
| | | | +--rw s-bit? boolean
| | | | +--rw tc-value? uint8
| | | | +--rw ttl-value? uint8
| | | +--:(label-swap)
| | | +--rw label-swap
| | | +--rw out-label uint32
| | | +--rw ttl-action? ttl-action-definition
| | +--rw source-port? inet:port-number
| | +--rw destination-port? inet:port-number
| | +--rw (address-family)?
| | +--:(IPv4)
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw ttl? uint8
| | | +--rw dscp? uint8
| | +--:(IPv6)
| | +--rw src-ipv6-address inet:ipv6-address
| | +--rw dest-ipv6-address inet:ipv6-address
| | +--rw next-header uint8
| | +--rw traffic-class? uint8
| | +--rw flow-label? inet:ipv6-flow-label
| | +--rw hop-limit? uint8
3.3. DetNet Transport Layer Configuration Attributes 3.3. DetNet Forwarding Sub-layer Configuration Attributes
As defined in [I-D.ietf-detnet-architecture], DetNet transport layer As defined in [I-D.ietf-detnet-architecture], DetNet forwarding sub-
optionally provides congestion protection for DetNet flows over paths layer optionally provides congestion protection for DetNet flows over
provided by the underlying network. Explicit route is another paths provided by the underlying network. Explicit route is another
mechanism that is used by DetNet to avoid temporary interruptions mechanism that is used by DetNet to avoid temporary interruptions
caused by the convergence of routing or bridging protocols, and it is caused by the convergence of routing or bridging protocols, and it is
also implemented at the DetNet transport layer. also implemented at the DetNet forwarding sub-layer.
To support congestion protection and explicit route, the following To support congestion protection and explicit route, the following
transport layer related attributes are necessary: transport layer related attributes are necessary:
o Traffic Specification, refers to Section 7.2 of o Traffic Specification, refers to Section 7.2 of
[I-D.ietf-detnet-flow-information-model]. It may used for [I-D.ietf-detnet-flow-information-model]. It may used for
bandwidth reservation, flow shaping, filtering and policing. bandwidth reservation, flow shaping, filtering and policing.
o Explicit path, existing explicit route mechanisms can be reused. o Explicit path, existing explicit route mechanisms can be reused.
For example, if Segment Routing (SR) tunnel is used as the For example, if Segment Routing (SR) tunnel is used as the
transport tunnel, the configuration is mainly at the ingress node transport tunnel, the configuration is mainly at the ingress node
of the transport layer; if the static MPLS tunnel is used as the of the transport layer; if the static MPLS tunnel is used as the
transport tunnel, the configurations need to be at every transit transport tunnel, the configurations need to be at every transit
node along the path; for pure IP based transport tunnel, it's node along the path; for pure IP based transport tunnel, it's
similar to the static MPLS case. similar to the static MPLS case.
The YANG module structure is shown below: 3.4. DetNet Sub-network Configurations Attributes
+--:(transit-node) TBD
| +--rw transit-node
| +--rw interval? uint32
| +--rw max-packets-per-interval? uint32
| +--rw max-payload-size? uint32
| +--rw average-packets-per-interval? uint32
| +--rw average-payload-size? uint32
The parameters for DetNet transport QoS are defined in Section 5. 4. Overview of DetNet YANG Structure
4. DetNet Configuration YANG Structure 4.1. DetNet YANG Structure Considerations
module: ietf-detnet-flow-config The picture shows that the general structure of the DetNet YANG
+--rw detnet-flow Model:
+--rw (detnet-node-role)?
+--:(transit-node)
| +--rw transit-node
| +--rw interval? uint32
| +--rw max-packets-per-interval? uint32
| +--rw max-payload-size? uint32
| +--rw average-packets-per-interval? uint32
| +--rw average-payload-size? uint32
+--:(relay-node) {detnet-mpls-dp-sol}?
| +--rw relay-node
| +--rw name? string
| +--rw service-rank
| +--rw in-segment* [in-segment-id]
| | +--rw in-segment-id uint32
| | +--rw (flow-type)?
| | | +--:(IP)
| | | | +--rw (ip-flow-type)?
| | | | | +--:(ipv4)
| | | | | | +--rw src-ipv4-address? inet:ipv4-address
| | | | | | +--rw dest-ipv4-address? inet:ipv4-address
| | | | | | +--rw dscp? uint8
| | | | | +--:(ipv6)
| | | | | +--rw src-ipv6-address? inet:ipv6-address
| | | | | +--rw dest-ipv6-address? inet:ipv6-address
| | | | | +--rw traffic-class? uint8
| | | | | +--rw flow-label? inet:ipv6-flow-label
| | | | +--rw source-port? inet:port-number
| | | | +--rw destination-port? inet:port-number
| | | | +--rw protocol? uint8
| | | +--:(MPLS)
| | | +--rw service-label uint32
| | +--rw service-function? service-function-type
| +--rw out-segment* [out-segment-id]
| +--rw out-segment-id uint32
| +--rw detnet-service-encapsulation
| | +--rw service-label uint32
| | +--rw control-word? uint32
| +--rw detnet-transport-encapsulation
| +--rw (tunnel-type)?
| | +--:(IPv4) {ipv4-tunnel}?
| | | +--rw ipv4-encapsulation
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw ttl? uint8
| | | +--rw dscp? uint8
| | +--:(IPv6) {ipv6-tunnel}?
| | | +--rw ipv6-encapsulation
| | | +--rw src-ipv6-address inet:ipv6-address
| | | +--rw dest-ipv6-address inet:ipv6-address
| | | +--rw next-header uint8
| | | +--rw traffic-class? uint8
| | | +--rw flow-label? inet:ipv6-flow-label
| | | +--rw hop-limit? uint8
| | +--:(MPLS) {mpls-tunnel}?
| | | +--rw mpls-encapsulation
| | | +--rw label-operations* [label-oper-id]
| | | +--rw label-oper-id uint32
| | | +--rw (label-actions)?
| | | +--:(label-push)
| | | | +--rw label-push
| | | | +--rw label uint32
| | | | +--rw s-bit? boolean
| | | | +--rw tc-value? uint8
| | | | +--rw ttl-value? uint8
| | | +--:(label-swap)
| | | +--rw label-swap
| | | +--rw out-label uint32
| | | +--rw ttl-action? ttl-action-definition
| | +--:(MPLS-over-UDP) {mpls-over-udp-tunnel}?
| | +--rw mpls-over-udp-encaplustion
| | +--rw label-operations* [label-oper-id]
| | | +--rw label-oper-id uint32
| | | +--rw (label-actions)?
| | | +--:(label-push)
| | | | +--rw label-push
| | | | +--rw label uint32
| | | | +--rw s-bit? boolean
| | | | +--rw tc-value? uint8
| | | | +--rw ttl-value? uint8
| | | +--:(label-swap)
| | | +--rw label-swap
| | | +--rw out-label uint32
| | | +--rw ttl-action? ttl-action-definition
| | +--rw source-port? inet:port-number
| | +--rw destination-port? inet:port-number
| | +--rw (address-family)?
| | +--:(IPv4)
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw ttl? uint8
| | | +--rw dscp? uint8
| | +--:(IPv6)
| | +--rw src-ipv6-address inet:ipv6-address
| | +--rw dest-ipv6-address inet:ipv6-address
| | +--rw next-header uint8
| | +--rw traffic-class? uint8
| | +--rw flow-label? inet:ipv6-flow-label
| | +--rw hop-limit? uint8
| +--rw interval? uint32
| +--rw max-packets-per-interval? uint32
| +--rw max-payload-size? uint32
| +--rw average-packets-per-interval? uint32
| +--rw average-payload-size? uint32
+--:(edge-node) {detnet-mpls-dp-sol}?
| +--rw edge-node
| +--rw (edge-node-type)?
| +--:(ingress-node)
| | +--rw client-flow* [flow-id]
| | | +--rw flow-id uint32
| | | +--rw flow-rank? boolean
| | | +--rw (flow-type)?
| | | | +--:(l2-flow)
| | | | | +--rw source-mac-address? yang:mac-address
| | | | | +--rw destination-mac-address? yang:mac-address
| | | | | +--rw ethertype? eth:ethertype
| | | | | +--rw vlan-id? uint16
| | | | | +--rw pcp
| | | | +--:(l3-flow)
| | | | +--rw (ip-flow-type)?
| | | | | +--:(ipv4)
| | | | | | +--rw src-ipv4-address? inet:ipv4-address
| | | | | | +--rw dest-ipv4-address? inet:ipv4-address
| | | | | | +--rw dscp? uint8
| | | | | +--:(ipv6)
| | | | | +--rw src-ipv6-address? inet:ipv6-address
| | | | | +--rw dest-ipv6-address? inet:ipv6-address
| | | | | +--rw traffic-class? uint8
| | | | | +--rw flow-label? inet:ipv6-flow-label
| | | | +--rw source-port? inet:port-number
| | | | +--rw destination-port? inet:port-number
| | | | +--rw protocol? uint8
| | | +--rw traffic-specification
| | | +--rw interval? uint32
| | | +--rw max-packets-per-interval? uint32
| | | +--rw max-payload-size? uint32
| | | +--rw average-packets-per-interval? uint32
| | | +--rw average-payload-size? uint32
| | +--rw service-function? service-function-type
| | +--rw sequence-number-generation-type? sequence-number-generation
| | +--rw sequence-number-length? uint8
| | +--rw out-segment* [out-segment-id]
| | +--rw out-segment-id uint32
| | +--rw detnet-service-encapsulation
| | | +--rw service-label uint32
| | | +--rw control-word? uint32
| | +--rw detnet-transport-encapsulation
| | +--rw (tunnel-type)?
| | | +--:(IPv4) {ipv4-tunnel}?
| | | | +--rw ipv4-encapsulation
| | | | +--rw src-ipv4-address inet:ipv4-address
| | | | +--rw dest-ipv4-address inet:ipv4-address
| | | | +--rw protocol uint8
| | | | +--rw ttl? uint8
| | | | +--rw dscp? uint8
| | | +--:(IPv6) {ipv6-tunnel}?
| | | | +--rw ipv6-encapsulation
| | | | +--rw src-ipv6-address inet:ipv6-address
| | | | +--rw dest-ipv6-address inet:ipv6-address
| | | | +--rw next-header uint8
| | | | +--rw traffic-class? uint8
| | | | +--rw flow-label? inet:ipv6-flow-label
| | | | +--rw hop-limit? uint8
| | | +--:(MPLS) {mpls-tunnel}?
| | | | +--rw mpls-encapsulation
| | | | +--rw label-operations* [label-oper-id]
| | | | +--rw label-oper-id uint32
| | | | +--rw (label-actions)?
| | | | +--:(label-push)
| | | | | +--rw label-push
| | | | | +--rw label uint32
| | | | | +--rw s-bit? boolean
| | | | | +--rw tc-value? uint8
| | | | | +--rw ttl-value? uint8
| | | | +--:(label-swap)
| | | | +--rw label-swap
| | | | +--rw out-label uint32
| | | | +--rw ttl-action? ttl-action-definition
| | | +--:(MPLS-over-UDP) {mpls-over-udp-tunnel}?
| | | +--rw mpls-over-udp-encaplustion
| | | +--rw label-operations* [label-oper-id]
| | | | +--rw label-oper-id uint32
| | | | +--rw (label-actions)?
| | | | +--:(label-push)
| | | | | +--rw label-push
| | | | | +--rw label uint32
| | | | | +--rw s-bit? boolean
| | | | | +--rw tc-value? uint8
| | | | | +--rw ttl-value? uint8
| | | | +--:(label-swap)
| | | | +--rw label-swap
| | | | +--rw out-label uint32
| | | | +--rw ttl-action? ttl-action-definition
| | | +--rw source-port? inet:port-number
| | | +--rw destination-port? inet:port-number
| | | +--rw (address-family)?
| | | +--:(IPv4)
| | | | +--rw src-ipv4-address inet:ipv4-address
| | | | +--rw dest-ipv4-address inet:ipv4-address
| | | | +--rw protocol uint8
| | | | +--rw ttl? uint8
| | | | +--rw dscp? uint8
| | | +--:(IPv6)
| | | +--rw src-ipv6-address inet:ipv6-address
| | | +--rw dest-ipv6-address inet:ipv6-address
| | | +--rw next-header uint8
| | | +--rw traffic-class? uint8
| | | +--rw flow-label? inet:ipv6-flow-label
| | | +--rw hop-limit? uint8
| | +--rw interval? uint32
| | +--rw max-packets-per-interval? uint32
| | +--rw max-payload-size? uint32
| | +--rw average-packets-per-interval? uint32
| | +--rw average-payload-size? uint32
| +--:(egress-node)
| +--rw in-segment* [in-segment-id]
| | +--rw in-segment-id uint32
| | +--rw (flow-type)?
| | | +--:(IP)
| | | | +--rw (ip-flow-type)?
| | | | | +--:(ipv4)
| | | | | | +--rw src-ipv4-address? inet:ipv4-address
| | | | | | +--rw dest-ipv4-address? inet:ipv4-address
| | | | | | +--rw dscp? uint8
| | | | | +--:(ipv6)
| | | | | +--rw src-ipv6-address? inet:ipv6-address
| | | | | +--rw dest-ipv6-address? inet:ipv6-address
| | | | | +--rw traffic-class? uint8
| | | | | +--rw flow-label? inet:ipv6-flow-label
| | | | +--rw source-port? inet:port-number
| | | | +--rw destination-port? inet:port-number
| | | | +--rw protocol? uint8
| | | +--:(MPLS)
| | | +--rw service-label uint32
| | +--rw service-function? service-function-type
| +--rw (tunnel-type)?
| | +--:(ipv4) {ipv4-tunnel}?
| | | +--rw ipv4-decap
| | | +--rw ipv4-decap tunnel-decap-action-def
| | | +--rw ttl-action? ttl-action-def
| | +--:(ipv6) {ipv6-tunnel}?
| | | +--rw ipv6-decap
| | | +--rw ipv6-decap tunnel-decap-action-def
| | | +--rw hop-limit-action? hop-limit-action-def
| | +--:(mpls) {mpls-tunnel}?
| | +--rw label-pop
| | +--rw label-pop mpls-label-action-def
| | +--rw ttl-action? ttl-action-def
| +--rw label-pop mpls-label-action-def
| +--rw ttl-action? ttl-action-def
+--:(end-station)
+--rw end-station
+--rw (edge-node-type)?
+--:(ingress-node)
| +--rw client-flow* [flow-id]
| | +--rw flow-id uint32
| | +--rw flow-rank? boolean
| | +--rw (flow-type)?
| | | +--:(l2-flow)
| | | | +--rw source-mac-address? yang:mac-address
| | | | +--rw destination-mac-address? yang:mac-address
| | | | +--rw ethertype? eth:ethertype
| | | | +--rw vlan-id? uint16
| | | | +--rw pcp
| | | +--:(l3-flow)
| | | +--rw (ip-flow-type)?
| | | | +--:(ipv4)
| | | | | +--rw src-ipv4-address? inet:ipv4-address
| | | | | +--rw dest-ipv4-address? inet:ipv4-address
| | | | | +--rw dscp? uint8
| | | | +--:(ipv6)
| | | | +--rw src-ipv6-address? inet:ipv6-address
| | | | +--rw dest-ipv6-address? inet:ipv6-address
| | | | +--rw traffic-class? uint8
| | | | +--rw flow-label? inet:ipv6-flow-label
| | | +--rw source-port? inet:port-number
| | | +--rw destination-port? inet:port-number
| | | +--rw protocol? uint8
| | +--rw traffic-specification
| | +--rw interval? uint32
| | +--rw max-packets-per-interval? uint32
| | +--rw max-payload-size? uint32
| | +--rw average-packets-per-interval? uint32
| | +--rw average-payload-size? uint32
| +--rw service-function? service-function-type
| +--rw sequence-number-generation-type? sequence-number-generation
| +--rw sequence-number-length? uint8
| +--rw out-segment* [out-segment-id]
| +--rw out-segment-id uint32
| +--rw detnet-service-encapsulation
| | +--rw service-label uint32
| | +--rw control-word? uint32
| +--rw detnet-transport-encapsulation
| +--rw (tunnel-type)?
| | +--:(IPv4) {ipv4-tunnel}?
| | | +--rw ipv4-encapsulation
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw ttl? uint8
| | | +--rw dscp? uint8
| | +--:(IPv6) {ipv6-tunnel}?
| | | +--rw ipv6-encapsulation
| | | +--rw src-ipv6-address inet:ipv6-address
| | | +--rw dest-ipv6-address inet:ipv6-address
| | | +--rw next-header uint8
| | | +--rw traffic-class? uint8
| | | +--rw flow-label? inet:ipv6-flow-label
| | | +--rw hop-limit? uint8
| | +--:(MPLS) {mpls-tunnel}?
| | | +--rw mpls-encapsulation
| | | +--rw label-operations* [label-oper-id]
| | | +--rw label-oper-id uint32
| | | +--rw (label-actions)?
| | | +--:(label-push)
| | | | +--rw label-push
| | | | +--rw label uint32
| | | | +--rw s-bit? boolean
| | | | +--rw tc-value? uint8
| | | | +--rw ttl-value? uint8
| | | +--:(label-swap)
| | | +--rw label-swap
| | | +--rw out-label uint32
| | | +--rw ttl-action? ttl-action-definition
| | +--:(MPLS-over-UDP) {mpls-over-udp-tunnel}?
| | +--rw mpls-over-udp-encaplustion
| | +--rw label-operations* [label-oper-id]
| | | +--rw label-oper-id uint32
| | | +--rw (label-actions)?
| | | +--:(label-push)
| | | | +--rw label-push
| | | | +--rw label uint32
| | | | +--rw s-bit? boolean
| | | | +--rw tc-value? uint8
| | | | +--rw ttl-value? uint8
| | | +--:(label-swap)
| | | +--rw label-swap
| | | +--rw out-label uint32
| | | +--rw ttl-action? ttl-action-definition
| | +--rw source-port? inet:port-number
| | +--rw destination-port? inet:port-number
| | +--rw (address-family)?
| | +--:(IPv4)
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw ttl? uint8
| | | +--rw dscp? uint8
| | +--:(IPv6)
| | +--rw src-ipv6-address inet:ipv6-address
| | +--rw dest-ipv6-address inet:ipv6-address
| | +--rw next-header uint8
| | +--rw traffic-class? uint8
| | +--rw flow-label? inet:ipv6-flow-label
| | +--rw hop-limit? uint8
| +--rw interval? uint32
| +--rw max-packets-per-interval? uint32
| +--rw max-payload-size? uint32
| +--rw average-packets-per-interval? uint32
| +--rw average-payload-size? uint32
+--:(egress-node)
+--rw in-segment* [in-segment-id]
| +--rw in-segment-id uint32
| +--rw (flow-type)?
| | +--:(IP)
| | | +--rw (ip-flow-type)?
| | | | +--:(ipv4)
| | | | | +--rw src-ipv4-address? inet:ipv4-address
| | | | | +--rw dest-ipv4-address? inet:ipv4-address
| | | | | +--rw dscp? uint8
| | | | +--:(ipv6)
| | | | +--rw src-ipv6-address? inet:ipv6-address
| | | | +--rw dest-ipv6-address? inet:ipv6-address
| | | | +--rw traffic-class? uint8
| | | | +--rw flow-label? inet:ipv6-flow-label
| | | +--rw source-port? inet:port-number
| | | +--rw destination-port? inet:port-number
| | | +--rw protocol? uint8
| | +--:(MPLS)
| | +--rw service-label uint32
| +--rw service-function? service-function-type
+--rw (tunnel-type)?
| +--:(ipv4) {ipv4-tunnel}?
| | +--rw ipv4-decap
| | +--rw ipv4-decap tunnel-decap-action-def
| | +--rw ttl-action? ttl-action-def
| +--:(ipv6) {ipv6-tunnel}?
| | +--rw ipv6-decap
| | +--rw ipv6-decap tunnel-decap-action-def
| | +--rw hop-limit-action? hop-limit-action-def
| +--:(mpls) {mpls-tunnel}?
| +--rw label-pop
| +--rw label-pop mpls-label-action-def
| +--rw ttl-action? ttl-action-def
+--rw label-pop mpls-label-action-def
+--rw ttl-action? ttl-action-def
5. DetNet Configuration YANG Model +-----------+
|ietf-detnet|
+-----+-----+
|
+-------------+------+--------+--------------+
| | | |
+-----+-----+ +-----+-----+ +-------+------+ +-----+-----+
| App Flows | |service s-l| |forwarding s-l| |sub-network|
+-----------+ +-----------+ +--------------+ +-----------+
<CODE BEGINS> file "ietf-detnet@20190321.yang" There are four instances in DetNet YANG Model: App-flow instance,
module ietf-detnet{ service sub-layer instance, forwarding sub-layer instance and sub-
namespace "urn:ietf:params:xml:ns:yang:ietf-detnet"; network instance, respectively corresponding to four parts of DetNet
//yang-version 1.1; functions defined in section 3. In each instance, there are four
prefix "detnet-flow"; elements: name, in-segments, out-segments and operations, which
means:
import ietf-yang-types { o Name: indicates the key value of the instance identification.
prefix "yang";
}
import ietf-interfaces { o In-segments: indicates the key value of identification, e.g.,
prefix "if"; Layer 2 App flow identification, Layer 3 App flow identification
} and DetNet flow identification.
import ietf-inet-types{ o Out-segments: indicates the information of DetNet processing(e.g.,
prefix "inet"; DetNet forwarding, DetNet header Encapsulation) and the mapping
} relationship to the lower sub-layer/sub-network.
/* import ietf-ethertypes { o Operations: indicates DetNet functions, e.g., DetNet forwarding
prefix "eth"; functions, DetNet Service functions, DetNet Resource Reservation.
}*/
import ietf-routing-types { These elements are different when the technologies used for the
prefix "rt-types"; specific instance is different. So this structure is abstract, which
} allows for different technology specifics as defined in different
data plane drafts.
organization "IETF DetNet Working Group"; 4.2. DetNet YANG Structure
contact 4.2.1. YANG Structure of Application Flow
"WG Web: <http://tools.ietf.org/wg/detnet/>
WG List: <mailto: detnet@ietf.org>
WG Chair: Lou Berger
<mailto:lberger@labn.net>
Janos Farkas The picture below shows that the general YANG structure of DetNet
<janos.farkas@ericsson.com> App-flow:
Editor: Xuesong Geng +--rw app-flow
<mailto:gengxuesong@huawei.com> | +--rw operations
| | +--rw sequence-number
| | +--rw sequence-number-generation-type? sequence-number-generation-type
| | +--rw sequence-number-length? uint8
| +--rw in-segments
| | +--rw app-flow-type? flow-type-ref
| | +--rw source-mac-address? yang:mac-address
| | +--rw destination-mac-address? yang:mac-address
| | +--rw ethertype? eth:ethertype
| | +--rw vlan-id? uint16
| | +--rw pcp? uint8
| | +--rw src-ipv4-prefix inet:ipv4-prefix
| | +--rw dest-ipv4-prefix inet:ipv4-prefix
| | +--rw protocol uint8
| | +--rw dscp? uint8
| | +--rw dscp-bitmask? uint8
| | +--rw src-ipv6-prefix inet:ipv6-prefix
| | +--rw dest-ipv6-prefix inet:ipv6-prefix
| | +--rw next-header uint8
| | +--rw traffic-class? uint8
| | +--rw traffic-class-bitmask? uint8
| | +--rw flow-label? inet:ipv6-flow-label
| | +--rw flow-label-flag? boolean
| | +--rw lower-source-port? inet:port-number
| | +--rw upper-source-port? inet:port-number
| | +--rw lower-destination-port? inet:port-number
| | +--rw upper-destination-port? inet:port-number
| +--rw out-segments
| +--rw detnet-service-sub-layer? lower-layer-ref
Editor: Mach Chen 4.2.2. YANG Structure of DetNet Service Sub-layer
<mailto:mach.chen@huawei.com>
Editor: Zhenqiang Li The picture shows that the general YANG structure of DetNet Service
<lizhenqiang@chinamobile.com> Sub-layer:
Editor: Reshad Rahman +--rw service-sub-layer
<rrahman@cisco.com>"; | +--rw operations
description | | +--rw service-operation
"This YANG module describes the parameters needed | | | +--rw service-operation-type? service-operation-ref
for DetNet flow configuration and flow status | | +--rw service-protection
reporting."; | | +--rw service-protection-type? service-protection-type
| +--rw in-segments
| | +--rw detnet-service-type? flow-type-ref
| | +--rw detnet-service-list* [detnet-service-index]
| | +--rw detnet-service-index uint8
| | +--rw src-ipv4-prefix inet:ipv4-prefix
| | +--rw dest-ipv4-prefix inet:ipv4-prefix
| | +--rw protocol uint8
| | +--rw dscp? uint8
| | +--rw dscp-bitmask? uint8
| | +--rw src-ipv6-prefix inet:ipv6-prefix
| | +--rw dest-ipv6-prefix inet:ipv6-prefix
| | +--rw next-header uint8
| | +--rw traffic-class? uint8
| | +--rw traffic-class-bitmask? uint8
| | +--rw flow-label? inet:ipv6-flow-label
| | +--rw flow-label-flag? boolean
| | +--rw mpls-flow-identification
| | +--rw platform-label-flag? boolean
| | +--rw non-platform-label-space
| | | +--rw incoming-interface? if:interface-ref
| | | +--rw non-platform-label-stack* [index]
| | | +--rw index uint8
| | | +--rw label? rt-type:mpls-label
| | | +--rw tc? uint8
| | +--rw platform-label-space
| | +--rw label? rt-type:mpls-label
| | +--rw tc? uint8
| +--rw out-segments
| +--rw detnet-service-processing-type? flow-type-ref
| +--rw detnet-service-encapsulation
| +--rw detnet-service-processing-list* [detnet-service-processing-index]
| +--rw detnet-service-processing-index uint32
| +--rw ip-flow
| | +--rw ipv4-flow
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw dscp? uint8
| | +--rw ipv6-flow
| | | +--rw src-ipv6-address inet:ipv6-address
| | | +--rw dest-ipv6-address inet:ipv6-address
| | | +--rw next-header uint8
| | | +--rw traffic-class? uint8
| | | +--rw flow-label? inet:ipv6-flow-label
| | +--rw l4-port-header
| | +--rw source-port? inet:port-number
| | +--rw destination-port? inet:port-number
| +--rw mpls-flow
| | +--rw detnet-mpls-label-stack* [index]
| | +--rw index uint8
| | +--rw label? rt-type:mpls-label
| | +--rw tc? uint8
| | +--rw s-bit? boolean
| | +--rw d-cw-encapsulate-flag? boolean
| +--rw detnet-forwarding-sub-layer-info
| +--rw detnet-forwarding-sub-layer? lower-layer-ref
revision "2018-09-10" { 4.2.3. YANG Structure of DetNet Forwarding Sub-layer
description "initial revision";
reference "RFC XXXX: draft-geng-detnet-config-yang-05";
}
feature ipv4-tunnel { The picture shows that the general YANG structure of DetNet
description Forwarding Sub-layer:
"This feature means that a node support
IPv4 tunnel encapsulation capability.";
}
feature ipv6-tunnel { +--rw forwarding-sub-layer
description | +--rw operations
"This feature means that a node support | | +--rw forwarding-operation
IPv6 tunnel encapsulation capability."; | | | +--rw forwarding-operation-type? forwarding-operation-ref
} | | +--rw resource-allocate
| | | +--rw interval? uint32
| | | +--rw max-packets-per-interval? uint32
| | | +--rw max-payload-size? uint32
| | | +--rw average-packets-per-interval? uint32
| | | +--rw average-payload-size? uint32
| | +--rw qos
| +--rw in-segments
| | +--rw detnet-forwarding-type? flow-type-ref
| | +--rw src-ipv4-prefix inet:ipv4-prefix
| | +--rw dest-ipv4-prefix inet:ipv4-prefix
| | +--rw protocol uint8
| | +--rw dscp? uint8
| | +--rw dscp-bitmask? uint8
| | +--rw src-ipv6-prefix inet:ipv6-prefix
| | +--rw dest-ipv6-prefix inet:ipv6-prefix
| | +--rw next-header uint8
| | +--rw traffic-class? uint8
| | +--rw traffic-class-bitmask? uint8
| | +--rw flow-label? inet:ipv6-flow-label
| | +--rw flow-label-flag? boolean
| | +--rw mpls-flow-identification
| | +--rw platform-label-flag? boolean
| | +--rw non-platform-label-space
| | | +--rw incoming-interface? if:interface-ref
| | | +--rw non-platform-label-stack* [index]
| | | +--rw index uint8
| | | +--rw label? rt-type:mpls-label
| | | +--rw tc? uint8
| | +--rw platform-label-space
| | +--rw label? rt-type:mpls-label
| | +--rw tc? uint8
| +--rw out-segments
| +--rw detnet-forwarding-processing-type? flow-type-ref
| +--rw natively-detnet-forwarding
| | +--rw ipv4-flow
| | | +--rw ipv4-next-hop-address? inet:ipv4-address
| | +--rw ipv6-flow
| | +--rw ipv6-next-hop-address? inet:ipv6-address
| +--rw detnet-forwarding-encapsulation
| +--rw ip-flow
| | +--rw ipv4-flow
| | | +--rw src-ipv4-address inet:ipv4-address
| | | +--rw dest-ipv4-address inet:ipv4-address
| | | +--rw protocol uint8
| | | +--rw dscp? uint8
| | +--rw ipv6-flow
| | | +--rw src-ipv6-address inet:ipv6-address
| | | +--rw dest-ipv6-address inet:ipv6-address
| | | +--rw next-header uint8
| | | +--rw traffic-class? uint8
| | | +--rw flow-label? inet:ipv6-flow-label
| | +--rw l4-port-header
| | +--rw source-port? inet:port-number
| | +--rw destination-port? inet:port-number
| +--rw mpls-flow
| | +--rw detnet-mpls-label-stack* [index]
| | +--rw index uint8
| | +--rw label? rt-type:mpls-label
| | +--rw tc? uint8
| | +--rw s-bit? boolean
| | +--rw d-cw-encapsulate-flag? boolean
| +--rw lower-layer-info
| +--rw lower-layer-type? flow-type-ref
| +--rw interface
| | +--rw outgoing-interface? if:interface-ref
| +--rw sub-layer
| +--rw sub-layer? lower-layer-ref
feature mpls-tunnel { 4.2.4. YANG Structure of DetNet sub-network
description
"This feature means that a node support
MPLS tunnel encapsulation capability.";
}
feature mpls-over-udp-tunnel { TBD
description
"This feature means that a node supports
MPLS over UDP tunnel encapsulation
capability.";
}
feature detnet-mpls-dp-sol { 5. DetNet Configuration YANG Model
description
"This feature means that MPLS data plane
solution is supported.";
}
identity detnet-node-role { <CODE BEGINS> file ietf-detnet-config@20190324.yang
description module ietf-detnet-config {
"base detnet-node-role"; namespace "urn:ietf:params:xml:ns:yang:ietf-detnet-config";
} prefix "ietf-detnet";
identity end-station { import ietf-yang-types {
base detnet-node-role; prefix "yang";
description }
"Commonly called a 'host' in IETF documents,
and an 'end station' is IEEE 802 documents.
End systems of interest to this document
are either sources or destinations of DetNet
flows. And end system may or may not be
DetNet transport layer aware or DetNet
service layer aware.";
}
identity edge-node { import ietf-inet-types{
base detnet-node-role; prefix "inet";
description }
"An instance of a DetNet relay node that
includes either a DetNet service layer proxy
function for DetNet service protection (e.g.
the addition or removal of packet sequencing
information) for one or more end systems, or
starts or terminate congestion protection at
the DetNet transport layer,analogous to a
Label Edge Router (LER).";
}
identity relay-node { import ietf-ethertypes {
base detnet-node-role; prefix "eth";
description }
"A DetNet node including a service layer
function that interconnects different DetNet
transport layer paths to provide service
protection. A DetNet relay node can be a bridge,
a router, a firewall, or any other system that
participates in the DetNet service layer. It
typically incorporates DetNet transport layer
functions as well, in which case it is
collocated with a transit node.";
}
identity transit-node { import ietf-routing-types {
base detnet-node-role; prefix "rt-type";
description }
"A node operating at the DetNet transport layer,
that utilizes link layer and/or network layer
switching across multiple links and/or
sub-networks to provide paths for DetNet
service layer functions. Optionally provides
congestion protection over those paths. An MPLS
LSR is an example of a DetNet transit node.";
}
identity tunnel-decap-action { import ietf-interfaces {
description prefix "if";
"Base identify from which all tunnel decap }
actions are derived.
Tunnel decap actions include:
ipv4-decap - to decap an IPv4 tunnel,
ipv6-decap - to decap an IPv6 tunnel.";
}
identity ipv4-decap { organization "IETF DetNet Working Group";
base "tunnel-decap-action";
description
"IPv4 tunnel decap.";
}
identity ipv6-decap { contact
base "tunnel-decap-action"; "WG Web: <http://tools.ietf.org/wg/detnet/>
description WG List: <mailto: detnet@ietf.org>
"IPv4 tunnel decap."; WG Chair: Lou Berger
} <mailto:lberger@labn.net>
typedef tunnel-decap-action-def { Janos Farkas
type identityref { <mailto:janos.farkas@ericsson.com>
base "tunnel-decap-action";
}
description
"Tunnel decap def.";
}
identity ttl-action { Editor: Xuesong Geng
description <mailto:gengxuesong@huawei.com>
"Base identity from which all TTL
actions are derived.";
}
identity no-action { Editor: Mach Chen
base "ttl-action"; <mailto:mach.chen@huawei.com>
description
"Do nothing regarding the TTL.";
}
identity copy-to-inner { Editor: Zhenqiang Li
base "ttl-action"; <mailto:lizhenqiang@chinamobile.com>
description
"Copy the TTL of the outer header
to the inner header.";
}
identity decrease-and-copy-to-inner { Editor: Reshad Rahman
base "ttl-action"; <mailto:rrahman@cisco.com>
description
"Decrease TTL by one and copy the TTL
to the inner header.";
}
typedef ttl-action-def { Editor: Yeoncheol Ryoo
type identityref { <mailto:dbduscjf@etri.re.kr>";
base "ttl-action";
}
description
"TTL action definition.";
}
identity hop-limit-action { description
description "This YANG module describes the parameters needed
"Base identity from which all hop limit for DetNet flow configuration and flow status reporting";
actions are derived.";
}
typedef hop-limit-action-def { revision 2019-03-24 {
type identityref { description "initial revision";
base "hop-limit-action"; reference "RFC XXXX: draft-ietf-detnet-yang-02";
} }
description
"hop limit action definition.";
}
identity mpls-label-action { identity ttl-action {
description description
"Base identity from which all MPLS label "Base identity from which all TTL
operations are derived. actions are derived";
The MPLS label stack operations include: }
push - to add a new label to a label stack,
pop - to pop the top label from a label stack,
swap - to exchange the top label of a label
stack with new label.";
}
identity label-push { identity no-action {
base "mpls-label-action"; base "ttl-action";
description description
"MPLS label stack operation: push."; "Do nothing regarding the TTL";
} }
identity label-pop { identity copy-to-inner {
base "mpls-label-action"; base "ttl-action";
description description
"MPLS label stack operation: pop."; "Copy the TTL of the outer header
} to the inner header";
}
identity label-swap { identity decrease-and-copy-to-inner {
base "mpls-label-action"; base "ttl-action";
description description
"MPLS label stack operation: swap."; "Decrease TTL by one and copy the TTL
} to the inner header";
}
typedef mpls-label-action-def { identity config-type {
type identityref { description
base "mpls-label-action"; "Base identity from which all configuration instances are derived";
} }
description
"MPLS label action definition.";
}
identity detnet-transport-layer {
description
"The layer that optionally provides congestion
protection for DetNet flows over paths provided
by the underlying network.";
}
identity detnet-service-layer { identity App-flow {
description base "config-type";
"The layer at which service protection is description
provided, either packet sequencing, replication, "App-flow configuration";
and elimination or packet encoding"; }
}
typedef service-function-type { identity service-sub-layer {
type enumeration { base "config-type";
enum null { description
description "A DetNet MPLS or IP service sub-layer configuration";
"No service function is enabled."; }
}
enum replication {
description
"A Packet Replication Function (PRF) replicates
DetNet flow packets and forwards them to one or
more next hops in the DetNet domain. The number
of packet copies sent to each next hop is a
DetNet flow specific parameter at the node doing
the replication. PRF can be implemented by an
edge node, a relay node, or an end system";
}
enum elimination {
description
"A Packet Elimination Function (PEF) eliminates
duplicate copies of packets to prevent excess
packets flooding the network or duplicate
packets being sent out of the DetNet domain.
PEF can be implemented by an edge node, a relay
node, or an end system.";
}
enum ordering {
description
"A Packet Ordering Function (POF) re-orders
packets within a DetNet flow that are received
out of order. This function can be implemented
by an edge node, a relay node, or an end system.";
}
enum elimination-ordering {
description
"A combination of PEF and POF that can be
implemented by an edge node, a relay node, or
an end system.";
}
enum elimination-replication {
description
"A combination of PEF and PRF that can be
implemented by an edge node, a relay node, or
an end system";
}
enum elimination-ordering-replicaiton {
description
"A combination of PEF, POF and PRF that can be
implemented by an edge node, a relay node, or
an end system";
}
}
description
"DetNet service function and function combination
types.";
}
typedef sequence-number-generation { identity forwarding-sub-layer {
type enumeration { base "config-type";
enum "copy-from-app-flow" { description
description "A DetNet MPLS or IP forwarding sub-layer configuration";
"DetNet flow sequence number is copied }
from application flow.";
}
enum "generated-by-edge-node" {
description
"DetNet flow sequence number is generated
by DetNet edge node.";
}
}
description
"DetNet sequence number generation types.";
}
grouping detnet-sequence-number { identity tsn-sub-network {
description base "config-type";
"DetNet sequence number."; description
leaf sequence-number-generation-type { "A TSN sub-net configuration";
type sequence-number-generation; }
description
"The way on how sequence number is generated.";
}
leaf sequence-number-length {
type uint8;
description
"DetNet sequence number length.";
}
}
grouping detnet-transport-identifier { identity flow-type {
description description
"DetNet transport identifier"; "Base identity from which all flow type are derived";
} }
grouping detnet-transport-qos { identity ipv4 {
//Editor notes: this will be defined in a separate base "flow-type";
// YANG model (detnet-transport-qos). description
// More inputs and discussions are needed here. "An IPv4 flow";
description }
"DetNet transport tunnel QoS attributes.";
uses traffic-specification;
}
grouping ipv4-header { identity ipv6 {
description base "flow-type";
"The IPv4 header encapsulation information."; description
leaf src-ipv4-address { "An IPv6 flow";
type inet:ipv4-address; }
mandatory true;
description
"The source IP address of the header.";
}
leaf dest-ipv4-address {
type inet:ipv4-address;
mandatory true;
description
"The destination IP address of the header.";
}
leaf protocol {
type uint8;
mandatory true;
description
"The protocol id of the header.";
}
leaf ttl {
type uint8;
description
"The TTL of the header.";
}
leaf dscp {
type uint8;
description
"The DSCP field of the header.";
}
}
grouping ipv6-header { identity mpls {
description base "flow-type";
"The IPv6 header encapsulation information."; description
leaf src-ipv6-address { "An MPLS flow";
type inet:ipv6-address; }
mandatory true;
description
"The source IP address of the header.";
}
leaf dest-ipv6-address {
type inet:ipv6-address;
mandatory true;
description
"The destination IP address of the header.";
}
leaf next-header {
type uint8;
mandatory true;
description
"The next header of the IPv6 header.";
}
leaf traffic-class {
type uint8;
description
"The traffic class value of the header.";
}
leaf flow-label {
type inet:ipv6-flow-label;
description
"The flow label of the header.";
}
leaf hop-limit {
type uint8 {
range "1..255";
}
description
"The hop limit of the header.";
}
}
grouping mpls-header { identity l2 {
description base "flow-type";
"The MPLS encapsulation header information."; description
"An MPLS flow";
list label-operations { }
key "label-oper-id";
description
"Label operations.";
leaf label-oper-id {
type uint32;
description
"An optional identifier that points
to a label operation.";
}
choice label-actions {
description
"Label action options.";
case label-push {
container label-push {
description
"Label push operation.";
leaf label {
type uint32;
mandatory true;
description
"The label to be pushed.";
}
leaf s-bit {
type boolean;
description
"The s-bit of the label to be pushed.";
}
leaf tc-value {
type uint8;
description
"The traffic class value of the label
to be pushed.";
}
leaf ttl-value {
type uint8;
description
"The TTL value of the label to be
pushed.";
}
}
}
case label-swap {
container label-swap {
description
"Label swap operation.";
leaf out-label {
type uint32;
mandatory true;
description
"The out MPLS label.";
}
leaf ttl-action {
type ttl-action-def;
description
"The label ttl actions:
- No-action, or
- Copy to inner label,or
- Decrease (the in label) by 1 and
copy to the out label.";
}
}
}
}
}
}
grouping mpls-detnet-header { identity tsn {
description base "flow-type";
"The MPLS DetNet encapsulation header information."; description
leaf service-label { "An MPLS flow";
type uint32; }
mandatory true;
description
"The service label of the DetNet header.";
}
leaf control-word {
type uint32;
description
"The control word of the DetNet header.";
}
}
grouping udp-header { identity service-operation {
description description
"UDP header."; "Base identity from which all service operation are derived";
leaf source-port { }
type inet:port-number;
description
"The source port number.";
}
leaf destination-port {
type inet:port-number;
description
"The destination port number.";
}
} identity service-initiation {
base "service-operation";
description
"A DetNet service encapsulates";
}
grouping transport-tunnel-encap { identity service-termination {
description base "service-operation";
"Defines the transport tunnel encapsulation description
header."; "A DetNet service decapsulates";
choice tunnel-type { }
description
"Tunnel type includes: IPv4, IPv6, MPLS,
MPLS over UDP tunnels.";
case IPv4 { identity service-relay {
if-feature ipv4-tunnel; base "service-operation";
description description
"IPv4 tunnel."; "A DetNet service swap";
container ipv4-encapsulation { }
description
"IPv4 encapsulation.";
uses ipv4-header;
}
}
case IPv6 {
if-feature ipv6-tunnel;
description
"IPv6 tunnel.";
container ipv6-encapsulation {
description
"IPv6 encapsulation.";
uses ipv6-header;
}
}
case MPLS {
if-feature mpls-tunnel;
description
"MPLS tunnel.";
container mpls-encapsulation {
description
"MPLS encapsulation.";
uses mpls-header;
}
}
case MPLS-over-UDP {
if-feature mpls-over-udp-tunnel;
description
"MPLS over UDP tunnel.";
container mpls-over-udp-encaplustion {
description
"MPLS over udp encapsulation.";
uses mpls-header; identity forwarding-operation {
uses udp-header; description
choice address-family { "Base identity from which all data plane operation are derived";
description }
"According to IP address family(IPv4 and IPv6)
to apply corresponding IP header.";
case IPv4 {
description
"IPv4 address family.";
uses ipv4-header;
}
case IPv6 {
description
"IPv6 address family.";
uses ipv6-header;
}
}
}
}
}
}
grouping transport-tunnel-decap { identity natively-forward {
description base "forwarding-operation";
"Tunnel decapsulation inforamtion."; description
choice tunnel-type { "A packet natively forward to lower-layer";
description }
"Nexthop tunnel type options.";
case ipv4 {
if-feature ipv4-tunnel;
container ipv4-decap {
description
"IPv4 decap.";
leaf ipv4-decap {
type tunnel-decap-action-def;
mandatory true;
description
"IPv4 decap operations.";
}
leaf ttl-action {
type ttl-action-def;
description
"The ttl actions:
no-action or copy to inner header.";
}
}
}
case ipv6 {
if-feature ipv6-tunnel;
container ipv6-decap {
description
"IPv6 decap.";
leaf ipv6-decap {
type tunnel-decap-action-def;
mandatory true;
description
"IPv6 decap operations.";
}
leaf hop-limit-action {
type hop-limit-action-def;
description
"The hop limit actions:
no-action or copy to inner header.";
}
}
}
case mpls {
if-feature mpls-tunnel;
container label-pop {
description
"MPLS decap.";
leaf label-pop {
type mpls-label-action-def;
mandatory true;
description
"Pop a label from the label stack.";
}
leaf ttl-action {
type ttl-action-def;
description
"The label ttl actions:
no-action or copy to inner label/header.";
}
}
}
}
}
grouping detnet-transport-instance { identity impose-and-forward {
description base "forwarding-operation";
"An instance of the DetNet transport layer, which description
depends on the specific data plane that is used "Impose a header(MPLS/IP) and forward to lower-layer";
as the underlay tunnel."; }
uses transport-tunnel-encap; identity pop-and-forward {
uses detnet-transport-qos; base "forwarding-operation";
description
"Pop an identified packet header and forward to lower-layer";
}
} identity pop-impose-and-forward {
base "forwarding-operation";
description
"Pop an identified packet header, impose a one or more outgoing
header and forward to lower-layer ";
}
grouping ipv6-flow-identification { identity swap-and-forward {
description base "forwarding-operation";
"IPv6 flow identification."; description
leaf src-ipv6-address { "Swap an identified packet header with outgoing header and forward
type inet:ipv6-address; to lower-layer ";
description }
"The source IP address of the header.";
}
leaf dest-ipv6-address {
type inet:ipv6-address;
description
"The destination IP address of the header.";
}
leaf traffic-class {
type uint8;
description
"The traffic class value of the header.";
}
leaf flow-label {
type inet:ipv6-flow-label;
description
"The flow label of the header.";
}
leaf source-port {
type inet:port-number;
description
"The source port number.";
}
leaf destination-port {
type inet:port-number;
description
"The destination port number.";
}
leaf protocol {
type uint8;
description
"The protocol id of the header.";
}
}
grouping ipv4-flow-identification { identity pop-and-lookup {
description base "forwarding-operation";
"IPv4 flow identification."; description
leaf src-ipv4-address { "Pop an identified packet header and perform a lookup";
type inet:ipv4-address; }
description identity label-space {
"The source IP address of the header of description
a DetNet flow."; "Base identity from which all label space are derived";
} }
leaf dest-ipv4-address {
type inet:ipv4-address;
description
"The destination IP address of the header
of a DetNet flow.";
}
leaf dscp {
type uint8;
description
"The DSCP field of the header of a DetNet flow..";
}
leaf source-port {
type inet:port-number;
description
"The source port number.";
}
leaf destination-port {
type inet:port-number;
description
"The destination port number.";
}
leaf protocol {
type uint8;
description
"The protocol id of the header of a DetNet flow..";
}
}
grouping ip-flow-identification { identity platform-label {
description base "label-space";
"IP flow identification."; description
choice ip-flow-type { "label allocated from the platform label space";
description }
"IP flow types: IPv4, IPv6.";
case ipv4 {
description
"IPv4 flow identification.";
leaf src-ipv4-address {
type inet:ipv4-address;
description
"The source IP address of the header.";
}
leaf dest-ipv4-address {
type inet:ipv4-address;
description
"The destination IP address of the header.";
}
leaf dscp {
type uint8;
description
"The DSCP field of the header.";
}
}
case ipv6 {
description
"IPv6 flow identification.";
leaf src-ipv6-address {
type inet:ipv6-address;
description
"The source IP address of the header.";
}
leaf dest-ipv6-address {
type inet:ipv6-address;
description
"The destination IP address of the header.";
}
leaf traffic-class {
type uint8;
description
"The traffic class value of the header.";
}
leaf flow-label {
type inet:ipv6-flow-label;
description
"The flow label of the header.";
}
}
}
leaf source-port {
type inet:port-number;
description
"The source port number.";
}
leaf destination-port {
type inet:port-number;
description
"The destination port number.";
}
leaf protocol {
type uint8;
description
"The protocol id of the header.";
}
} identity non-platform-label {
base "label-space";
description
"label allocated from the non-platform label space";
}
grouping l3-flow-identification { typedef ttl-action-definition {
description type identityref {
"Layer 3 flow identification in a DetNet base "ttl-action";
domain."; }
choice flow-type { description
description "TTL action definition";
"L3 DetNet flow types: IP and MPLS.";
case IP {
description
"IP (IPv4 or IPv6) flow identification.";
uses ip-flow-identification;
}
case MPLS {
description
"MPLS flow identification.";
leaf service-label {
type uint32;
mandatory true;
description
"The service label of a DetNet flow.";
}
}
}
} //l3-flow-identification
grouping in-segments { }
description
"From a receiving node point of view, In-segments
are a set of instances of a DetNet flow at the
receiving node. This occurs when Packet Replication
Function (PRF) is enabled at an upstream node or
multiple flows map/aggregate to a single DetNet
flow.";
list in-segment {
key "in-segment-id";
description typedef config-type-ref {
"A list of in segments, there will be type identityref {
multiple in-segments for a DetNet flow base "config-type";
when PRF and PEF enabled."; }
description
"config-type-ref";
}
leaf in-segment-id { typedef flow-type-ref {
type uint32; type identityref {
description base "flow-type";
"in-segment identifier."; }
} description
uses l3-flow-identification; "flow-type-ref";
}
leaf service-function { typedef service-operation-ref{
type service-function-type; type identityref {
description base "service-operation";
"DetNet service function indication."; }
} description
} "service-operation-ref";
} }
grouping out-segments { typedef forwarding-operation-ref {
description type identityref {
"Out-segments are a set of instances of base "forwarding-operation";
a DetNet flow, this occurs when implement }
packet replication function, where an description
in-segment of a DetNet flow is replicated "forwarding-operation-ref";
to multiple out-segments."; }
list out-segment { typedef label-space-ref {
key "out-segment-id"; type identityref {
description base "label-space";
"A list of segments, there will be multiple }
out-segments when perform PRF."; description
leaf out-segment-id { "label-space-ref";
type uint32; }
description
"The out-segment identifier";
}
container detnet-service-encapsulation { typedef lower-layer-ref {
description type leafref {
"Only MPLS based DetNet defines DetNet path "/ietf-detnet:detnet-config/ietf-detnet:detnet-config-list"
service layer. The service encapsulation + "/ietf-detnet:name";
includes service label and control word."; }
uses mpls-detnet-header; description
} "lower-layer-ref";
}
container detnet-transport-encapsulation { typedef service-protection-type {
description type enumeration {
"Each out-segment corresponds to a enum none {
transport instance."; description
uses detnet-transport-instance; "no service protection provide";
} }
} enum replication {
} description
"A Packet Replication Function (PRF) replicates
DetNet flow packets and forwards them to one or
more next hops in the DetNet domain. The number
of packet copies sent to each next hop is a
DetNet flow specific parameter at the node doing
the replication. PRF can be implemented by an
edge node, a relay node, or an end system";
}
enum elimination {
description
"A Packet Elimination Function (PEF) eliminates
duplicate copies of packets to prevent excess
packets flooding the network or duplicate
packets being sent out of the DetNet domain.
PEF can be implemented by an edge node, a relay
node, or an end system.";
}
enum ordering {
description
"A Packet Ordering Function (POF) re-orders
packets within a DetNet flow that are received
out of order. This function can be implemented
by an edge node, a relay node, or an end system.";
}
enum elimination-ordering {
description
"A combination of PEF and POF that can be
implemented by an edge node, a relay node, or
an end system.";
}
enum elimination-replication {
description
"A combination of PEF and PRF that can be
implemented by an edge node, a relay node, or
an end system";
}
enum elimination-ordering-replicaiton {
description
"A combination of PEF, POF and PRF that can be
implemented by an edge node, a relay node, or
an end system";
}
}
description
"service-protection-type";
}
grouping detnet-service-instance { typedef sequence-number-generation-type {
type enumeration {
enum none {
description description
"An end-2-end DetNet service is consisted of "No sequence number generation function provide";
multiple segments. The concept of segment is }
similar to PW segment. For DetNet, since the enum copy-from-app-flow {
existing of PREOF, there could be three cases: description
1 - One in-segment maps to multiple "Copy the app-flow sequence number to the DetNet-flow";
out-segments, when implement PRF; }
2 - Multiple in-segments map to one enum generate-by-detnet-flow {
out-segment, when implement PEF; description
3 - Multiple in-segments map to multiple "Generate the sequence number by DetNet flow";
out-segments, when implement a combination }
of PEF and PRF."; }
description
"sequence-number-generation-type";
}
leaf name { grouping l4-port-header {
type string; description
description "The TCP/UDP port(source/destination) information";
"The name of the service instance. This MUST leaf source-port {
be unique across all service instances in type inet:port-number;
a given network device."; description
} "The source port number";
}
leaf destination-port {
type inet:port-number;
description
"The destination port number";
}
}
leaf service-rank { grouping ipv4-header {
type boolean; description
description "The IPv4 packet header information";
"Service rank is used by the network to decide
which services can and cannot exist when network
resources reach their limit. Rank is used to help
to determine which services can be dropped (i.e.,
removed from node configuration) if a port of a
node becomes oversubscribed (e.g., due to network
reconfiguration). The true value is more important
than the false value (i.e., services with false
are dropped first).";
reference
"draft-ietf-detnet-flow-information-model";
}
uses in-segments;
uses out-segments;
}
grouping l2-flow-identification-at-uni { leaf src-ipv4-address {
description type inet:ipv4-address;
"Layer 2 flow identification at UNI."; mandatory true;
leaf source-mac-address { description
type yang:mac-address; "The source IP address of the header";
description }
"The source MAC address used for leaf dest-ipv4-address {
flow identification."; type inet:ipv4-address;
} mandatory true;
leaf destination-mac-address { description
type yang:mac-address; "The destination IP address of the header";
description }
"The destination MAC address used for leaf protocol {
flow identification."; type uint8;
} mandatory true;
description
"The protocol of the header";
}
leaf dscp {
type uint8;
description
"The DSCP field of the header";
}
}
/* leaf ethertype { grouping ipv6-header {
type eth:ethertype; description
description "The IPv6 packet header information";
"The Ethernet Type (or Length) value represented leaf src-ipv6-address {
in the canonical order defined by IEEE 802. type inet:ipv6-address;
The canonical representation uses lowercase mandatory true;
characters."; description
reference "The source IP address of the header";
"IEEE 802-2014 Clause 9.2"; }
} leaf dest-ipv6-address {
*/ type inet:ipv6-address;
mandatory true;
description
"The destination IP address of the header";
}
leaf next-header {
type uint8;
mandatory true;
description
"The next header of the IPv6 header";
}
leaf traffic-class {
type uint8;
description
"The traffic class value of the header";
}
leaf flow-label {
type inet:ipv6-flow-label;
description
"The flow label value of the header";
}
}
leaf vlan-id { grouping mpls-header {
type uint16 { description
range "1..4094"; "The MPLS packet header information";
} leaf label {
description type rt-type:mpls-label;
"Vlan Identifier used for L2 flow identification."; description
} "The label value of the MPLS header";
container pcp { }
//Todo leaf tc {
description type uint8;
"PCP used for L2 flow identification."; description
} "The traffic class value of the MPLS header";
} }
leaf s-bit {
type boolean;
description
"The s-bit value of the MPLS header,
which indicates the bottom of the label shack";
}
leaf d-cw-encapsulate-flag {
type boolean;
description
"the indication of whether D-CW is encapsulated or not,
when the D-CW is encapsulated, the sequence number is
determined by sequence generation type";
}
}
grouping l3-flow-identification-at-uni { grouping l2-header {
description description
"Layer 3 flow identification at UNI."; "The Ethernet or TSN packet header information";
uses ip-flow-identification; leaf source-mac-address {
} type yang:mac-address;
description
"The source MAC address value of the ethernet header";
}
leaf destination-mac-address {
type yang:mac-address;
description
"The destination MAC address value of the ethernet header";
}
leaf ethertype {
type eth:ethertype;
description
"The ethernet packet type value of the ethernet header";
}
leaf vlan-id {
type uint16;
description
"The Vlan value of the ethernet header";
}
leaf pcp {
type uint8;
description
"The priority value of the ethernet header";
}
}
grouping traffic-specification { grouping l4-port-identification {
description description
"traffic-specification specifies how the Source "The TCP/UDP port(source/destination) identification information";
transmits packets for the flow. This is the leaf lower-source-port {
promise/request of the Source to the network. type inet:port-number;
The network uses this traffic specification description
to allocate resources and adjust queue "The lower source port number of the source port range";
parameters in network nodes."; }
reference leaf upper-source-port {
"draft-ietf-detnet-flow-information-model"; type inet:port-number;
description
"The upper source port number of the source port range";
}
leaf lower-destination-port {
type inet:port-number;
description
"The lower destination port number or the destination port range";
}
leaf upper-destination-port {
type inet:port-number;
description
"The upper destination port number of the destination port range";
}
}
leaf interval { grouping ipv4-flow-identification {
type uint32; description
description "The IPv4 packet header identification information";
"The period of time in which the traffic
specification cannot be exceeded"; leaf src-ipv4-prefix {
} type inet:ipv4-prefix;
leaf max-packets-per-interval { mandatory true;
type uint32; description
description "The source IP address of the header";
"The maximum number of packets that the }
source will transmit in one Interval."; leaf dest-ipv4-prefix {
} type inet:ipv4-prefix;
leaf max-payload-size { mandatory true;
type uint32; description
description "The destination IP address of the header";
"The maximum payload size that the source }
will transmit."; leaf protocol {
} type uint8;
leaf average-packets-per-interval { mandatory true;
type uint32; description
description "The protocol of the header";
"The average number of packets that the }
source will transmit in one Interval"; leaf dscp {
} type uint8;
leaf average-payload-size { description
type uint32; "The DSCP field of the header";
description }
"The average payload size that the leaf dscp-bitmask {
source will transmit."; type uint8;
} description
"The bitmask value that determines whether to use
the DSCP(IPv4) value for flow identification or not";
} }
}
grouping client-flows-at-uni { grouping ipv6-flow-identification {
description description
"The attributes of the client flow at UNI. When "The IPv6 packet header identification information";
flow aggregation is enabled at ingress, multiple leaf src-ipv6-prefix {
client flows map to a DetNet service instance."; type inet:ipv6-prefix;
list client-flow { mandatory true;
key "flow-id"; description
description "The source IP address of the header";
"A list of client flows."; }
leaf flow-id { leaf dest-ipv6-prefix {
type uint32; type inet:ipv6-prefix;
description mandatory true;
"Flow identifier that is unique in a network description
device for client flow identification"; "The destination IP address of the header";
}
leaf next-header {
type uint8;
mandatory true;
description
"The next header of the IPv6 header";
}
leaf traffic-class {
type uint8;
description
"The traffic class value of the header";
}
leaf traffic-class-bitmask {
type uint8;
description
"The bitmask value that determines whether to use
the Traffic class(IPv6) value for flow identification or not";
}
leaf flow-label {
type inet:ipv6-flow-label;
description
"The flow label value of the header";
}
leaf flow-label-flag {
type boolean;
description
"The flag that determines whether to use
the Flow Label value for flow identification or not";
}
}
} grouping mpls-flow-identification {
leaf flow-rank { description
type boolean; "The MPLS packet header identification information";
description leaf label {
"Flow rank is used by the network type rt-type:mpls-label;
to decide which flows can and cannot exist description
when network resources reach their limit. "The label value of the MPLS header";
Rank is used to help to determine which flows }
can be dropped (i.e., removed from node leaf tc {
configuration) if a port of a node becomes type uint8;
oversubscribed (e.g., due to network description
reconfiguration). The true value is more "The traffic class value of the MPLS header";
important than the false value (i.e., flows }
with false are dropped first)."; }
reference
"draft-ietf-detnet-flow-information-model";
}
choice flow-type {
description
"Client flow type: layer 2 flow, layer 3
flow.";
case l2-flow {
description
"Ethernet flow identification.";
uses l2-flow-identification-at-uni;
}
case l3-flow {
description
"Layer 3 flow identification, including
IPv4,IPv6 and MPLS.";
uses l3-flow-identification-at-uni;
}
}
container traffic-specification {
description
"The traffic specification of the client flow.";
uses traffic-specification;
}
}
}
grouping detnet-service-decap { grouping l2-flow-identification {
description description
"DetNet service decapsulation inforamtion."; "The Ethernet or TSN packet header identification information";
leaf service-label-pop { leaf source-mac-address {
type mpls-label-action-def; type yang:mac-address;
mandatory true; description
description "The source MAC address value of the ethernet header";
"Pop the DetNet service label."; }
} leaf destination-mac-address {
leaf ttl-action { type yang:mac-address;
type ttl-action-def; description
description "The destination MAC address value of the ethernet header";
"The label ttl actions: }
no-action or copy to inner label/header."; leaf ethertype {
} type eth:ethertype;
} description
"The ethernet packet type value of the ethernet header";
}
leaf vlan-id {
type uint16;
description
"The Vlan value of the ethernet header";
}
leaf pcp {
type uint8;
description
"The priority value of the ethernet header";
}
}
grouping detnet-service-proxy-instance { grouping traffic-specification {
description description
"Mapping between App-flows and DetNet flows."; "traffic-specification specifies how the Source
transmits packets for the flow. This is the
promise/request of the Source to the network.
The network uses this traffic specification
to allocate resources and adjust queue
parameters in network nodes.";
reference
"draft-ietf-detnet-flow-information-model";
leaf interval {
type uint32;
description
"The period of time in which the traffic
specification cannot be exceeded";
}
leaf max-packets-per-interval{
type uint32;
description
"The maximum number of packets that the
source will transmit in one Interval.";
}
leaf max-payload-size{
type uint32;
description
"The maximum payload size that the source
will transmit.";
}
leaf average-packets-per-interval {
type uint32;
description
"The average number of packets that the
source will transmit in one Interval";
}
leaf average-payload-size {
type uint32;
description
"The average payload size that the
source will transmit.";
}
}
choice edge-node-type { container detnet-config {
description description
"There are two types of edge node: ingress node and "DetNet configurations";
egress node"; leaf node-id {
case ingress-node { type yang:dotted-quad;
uses client-flows-at-uni; description
leaf service-function { "A 32-bit number in the form of a dotted quad that is used by
type service-function-type; identifying a DetNet node";
description }
"DetNet service function indication."; list detnet-config-list {
} key "name";
uses detnet-sequence-number; description
uses out-segments; "list of the DetNet configurations";
} leaf name {
case egress-node { type string;
uses in-segments; description
uses transport-tunnel-decap; "The name to identify the DetNet configuration";
uses detnet-service-decap; }
} leaf config-type {
} type config-type-ref;
} description
"The DetNet configuration type such as a App-flow, service
sub-layer, forwarding sub-layer, and TSN sub-network";
}
container App-flow {
when "../config-type = 'ietf-detnet:App-flow'";
description
"The DetNet App-flow configuration";
container operations {
description "operations";
container sequence-number {
description "The DetNet sequence number operations grouping";
leaf sequence-number-generation-type {
type sequence-number-generation-type;
description "The DetNet sequence number generation type";
}
leaf sequence-number-length {
type uint8;
description
"The DetNet sequence number length";
}
}
}
container in-segments {
description "The App-flow identification information";
leaf app-flow-type {
type flow-type-ref;
description
"The App-flow type such as a L2, IPv4, and IPv6";
}
uses l2-flow-identification {
when "app-flow-type = 'ietf-detnet:tsn' or 'ietf-detnet:l2'";
}
uses ipv4-flow-identification {
when "app-flow-type = 'ietf-detnet:ipv4'";
}
uses ipv6-flow-identification {
when "app-flow-type = 'ietf-detnet:ipv6'";
}
uses l4-port-identification {
when "app-flow-type = 'ietf-detnet:ipv6' or 'ietf-detnet:ipv4'";
or 'ietf-detnet:ipv4'";
}
}
container out-segments {
description
"The DetNet service information associated with this App-flow";
leaf detnet-service-sub-layer {
type lower-layer-ref;
description "Specify associated service sub-layer";
}
}
}
container service-sub-layer {
when "../config-type = 'ietf-detnet:service-sub-layer'";
description "The DetNet service sub-layer configuration";
container operations {
description
"The DetNet service sub-layer operations grouping";
container service-operation {
description "The DetNet service operations grouping";
leaf service-operation-type {
type service-operation-ref;
description
"The DetNet service operations type such as DetNet
service initiation, termination, and relay";
}
}
container service-protection {
description
"The DetNet service protection operations grouping";
leaf service-protection-type {
type service-protection-type;
description
"The DetNet service protection type such as PRF, PEF, PEOF,
PERF, and PEORF";
}
}
}
container in-segments {
when "../operations/service-operation"
+ "/service-operation-type != 'service-initation'";
description
"DetNet service identification information";
leaf detnet-service-type {
type flow-type-ref;
description
"incoming DetNet service flow type";
}
list detnet-service-list {
key "detnet-service-index";
description
"Incoming DetNet member flows or a compound flow";
leaf detnet-service-index {
type uint8;
description
"Incoming DetNet service index";
}
uses ipv4-flow-identification {
when "../detnet-service-type = 'ietf-detnet:ipv4'";
}
uses ipv6-flow-identification {
when "../detnet-service-type = 'ietf-detnet:ipv6'";
}
container mpls-flow-identification {
when "../../detnet-service-type = 'ietf-detnet:mpls'";
description
"MPLS type DetNet service identification";
leaf label-space {
type label-space-ref;
description
"Indicate the incoming MPLS label is associated with
platform label space or not";
}
container non-platform-label-space {
when "../label-space = 'ietf-detnet:non-platform-label'";
description
"MPLS label is associated with non-platform label space,
all of the F-labels and incoming interface information was
used for identification";
leaf incoming-interface {
type if:interface-ref;
description
"DetNet service incoming interface information";
}
list non-platform-label-stack {
key "index";
description
"All of the label information from the outer label
to the current label";
leaf index {
type uint8;
description
"Index of the labels stack";
}
uses mpls-flow-identification;
}
}
container platform-label-space {
when "../label-space = 'ietf-detnet:platform-label'";
description
"MPLS label is associated with platform label space, only
the F-label is used for identification";
uses mpls-flow-identification;
}
}
}
}
container out-segments {
when "../operations/service-operation"
+ "/service-operation-type != 'service-termination'";
description
"DetNet Service outgoing processing grouping";
container detnet-flow { leaf detnet-service-processing-type {
type flow-type-ref;
description
"Outgoing DetNet service flow type";
}
container detnet-service-encapsulation {
description
"DetNet service encapsulation information";
list detnet-service-processing-list {
key "detnet-service-processing-index";
description
"The list of single or multiple outgoing DetNet service(s)";
leaf detnet-service-processing-index {
type uint32;
description "Outgoing segment entry";
}
container ip-flow {
when "../../../detnet-service-processing-type ="
+ "'ietf-detnet:ipv4' or 'ietf-detnet:ipv6'";
description
"IP type DetNet flow(s) encapsulation information";
container ipv4-flow {
when "../../../../detnet-service-processing-type ="
+ "'ietf-detnet:ipv4'";
description
"IPv4 packet header encapsulation information";
uses ipv4-header;
}
container ipv6-flow {
when "../../../../detnet-service-processing-type ="
+ "'ietf-detnet:ipv6'";
description
"IPv6 packet header encapsulation information";
uses ipv6-header;
}
container l4-port-header {
description
"TCP/UDP source or destination port number";
uses l4-port-header;
}
}
container mpls-flow {
when "../../../detnet-service-processing-type ="
+ "'ietf-detnet:mpls'";
description
"MPLS type DetNet flow(s) encapsulation information";
list detnet-mpls-label-stack {
key "index";
description
"The list of MPLS labels stack for swap or encapsulation";
leaf index {
type uint8;
description "Index of the labels stack";
}
uses mpls-header;
}
}
container detnet-forwarding-sub-layer-info {
description
"The forwarding sub-layer information that associated with
this DetNet service sub-layer";
leaf detnet-forwarding-sub-layer {
type lower-layer-ref;
description
"Specify associated forwarding sub-layer";
}
}
}
}
}
}
container forwarding-sub-layer {
when "../config-type = 'ietf-detnet:forwarding-sub-layer'";
description
"The DetNet forwarding sub-layer configuration";
container operations {
description
"The DetNet forwarding sub-layer operations grouping";
container forwarding-operation {
description
"DetNet forwarding function operations grouping";
leaf forwarding-operation-type {
type forwarding-operation-ref;
description
"DetNet forwarding operation type such as
natively forward, impose and forward, pop and forward,
pop and impose and forward, swap and forward,
and pop and lookup";
}
}
container resource-allocate {
description
"resource-allocation function operations grouping";
uses traffic-specification;
}
container qos {
description
"QoS function operations grouping";
}
}
container in-segments {
description
"DetNet forwarding sub-layer packet identification information";
leaf detnet-forwarding-type {
type flow-type-ref;
description
"incoming DetNet forwarding packet type";
}
uses ipv4-flow-identification {
when "detnet-forwardinge-type = 'ietf-detnet:ipv4'";
}
uses ipv6-flow-identification {
when "detnet-forwarding-type = 'ietf-detnet:ipv6'";
}
container mpls-flow-identification {
when "../detnet-forwarding-type = 'ietf-detnet:mpls'";
description
"MPLS type identification information";
leaf label-space {
type label-space-ref;
description
"Indicate the incoming MPLS label is associated with platform
label space or not";
}
container non-platform-label-space {
when "../label-space = 'ietf-detnet:non-platform-label'";
description
"MPLS label is associated with non-platform label space,
all of the F-labels and incoming interface information was
used for identification";
leaf incoming-interface {
type if:interface-ref;
description
"The information of DetNet forwarding packet incoming
interface";
}
list non-platform-label-stack {
key "index";
description
"All of the label information from the outer label to
the current label";
leaf index {
type uint8;
description
"index number 0 indicate last inner label";
}
uses mpls-flow-identification;
}
}
container platform-label-space {
when "../label-space = 'ietf-detnet:platform-label'";
description
"MPLS label is associated with platform label space, only
the F-label is used for identification";
uses mpls-flow-identification;
}
}
}
container out-segments {
description
"DetNet forwarding sub-layer packet processing information";
leaf detnet-forwarding-processing-type {
type flow-type-ref;
description
"outgoing DetNet forwarding packet type";
}
container natively-detnet-forwarding {
when "../../operations/forwarding-operation"
+ " /forwarding-operation-type = 'natively-forwarding'";
description
"Packet forwarding processing information";
container ipv4-flow {
when "../../detnet-forwarding-processing-type ="
+ "'ietf-detnet:ipv4'";
description
"IPv4 type packet forwarding information";
leaf ipv4-next-hop-address {
type inet:ipv4-address;
description
"IPv4 type Next hop IP address";
}
}
container ipv6-flow {
when "../../detnet-forwarding-processing-type ="
+ "'ietf-detnet:ipv6'";
description
"IPv6 type packet forwarding information";
leaf ipv6-next-hop-address {
type inet:ipv6-address;
description
"IPv6 type Next hop IP address";
}
}
}
container detnet-forwarding-encapsulation {
when "../../operations/forwarding-operation"
+ "/forwarding-operation-type != 'natively-forward'";
description
"Packet encapsulation information";
container ip-flow {
when "../../detnet-forwarding-processing-type = "
+ "'ietf-detnet:ipv4' or 'ietf-detnet:ipv6'";
description
"The IP type DetNet flow(s) encapsulation information";
container ipv4-flow {
when "../../../detnet-forwarding-processing-type = "
+ "'ietf-detnet:ipv4'";
description
"IPv4 packet header encapsulation information";
uses ipv4-header;
}
container ipv6-flow {
when "../../../detnet-forwarding-processing-type = "
+ "'ietf-detnet:ipv6'";
description
"IPv6 packet header encapsulation information";
uses ipv6-header;
}
container l4-port-header {
description
"TCP/UDP source or destination port number";
uses l4-port-header;
}
}
container mpls-flow {
when "../../detnet-forwarding-processing-type = "
+ "'ietf-detnet:mpls'";
description
"MPLS label encapsulation information";
list detnet-mpls-label-stack {
key "index";
description
"The list of MPLS labels stack for swap or encapsulation";
leaf index {
type uint8;
description
"Index of the labels stack";
}
uses mpls-header;
}
}
container lower-layer-info {
description
"The lower-layer information associated with
this forwarding sub-layer";
leaf lower-layer-type {
type flow-type-ref;
description
"indicate lower-layer type";
}
container interface {
when "../lower-layer-type = 'ietf-detnet:l2'";
description
"indicate the lower-layer is the outgoing interface";
leaf outgoing-interface {
type if:interface-ref;
description
"Outgoing interface";
}
}
container sub-layer {
when "../lower-layer-type != 'ietf-detnet:l2'";
description
"indicate the lower-layer is some of the DetNet sub-layer
or TSN sub-network";
leaf sub-layer {
type lower-layer-ref;
description
"Specify associated DetNet sub-layer or TSN sub-network";
}
}
}
}
}
}
container sub-network {
when "../config-type = 'ietf-detnet:tsn-sub-network'";
description description
"DetNet flow configuration and status reporting."; "sub-network";
choice detnet-node-role{ }
description }
"Depends on the role of a node to configure }
corresponding flow parameters."; }
case transit-node {
description
"DetNet flow configuration parameters for
transit nodes.";
container transit-node {
description
"Transit node container.";
uses detnet-transport-qos;
}
}
case relay-node {
if-feature detnet-mpls-dp-sol;
description
"DetNet flow configuration parameters for
relay nodes.";
container relay-node {
description
"Relay node container.";
uses detnet-service-instance;
}
}
case edge-node {
if-feature detnet-mpls-dp-sol;
description
"DetNet flow configuration parameters for
edge nodes.";
container edge-node {
description
"Edge node container.";
uses detnet-service-proxy-instance;
}
}
case end-station {
description
"DetNet flow configuration parameters for
end stations.";
container end-station {
description
"End station container.";
uses detnet-service-proxy-instance;
}
}
}
}
}
<CODE ENDS>
<CODE ENDS>
6. Open Issues 6. Open Issues
There are some open issues that are still under discussion: There are some open issues that are still under discussion:
o The Relationship with 802.1 TSN YANG models is TBD. TSN YANG o The Relationship with 802.1 TSN YANG models is TBD. TSN YANG
models include: P802.1Qcw, which defines TSN YANG for Qbv, Qbu, models include: P802.1Qcw, which defines TSN YANG for Qbv, Qbu,
and Qci, and P802.1CBcv, which defines YANG for 802.1CB. The and Qci, and P802.1CBcv, which defines YANG for 802.1CB. The
possible problem here is how to avoid possible overlap among yang possible problem here is how to avoid possible overlap among yang
models defined in IETF and IEEE. A common YANG model may be models defined in IETF and IEEE. A common YANG model may be
defined in the future to shared by both TSN and DetNet. More defined in the future to shared by both TSN and DetNet. More
skipping to change at page 43, line 34 skipping to change at page 34, line 40
9. Acknowledgements 9. Acknowledgements
10. References 10. References
10.1. Normative References 10.1. Normative References
[I-D.finn-detnet-bounded-latency] [I-D.finn-detnet-bounded-latency]
Finn, N., Boudec, J., Mohammadpour, E., Zhang, J., Varga, Finn, N., Boudec, J., Mohammadpour, E., Zhang, J., Varga,
B., and J. Farkas, "DetNet Bounded Latency", draft-finn- B., and J. Farkas, "DetNet Bounded Latency", draft-finn-
detnet-bounded-latency-03 (work in progress), March 2019. detnet-bounded-latency-04 (work in progress), June 2019.
[I-D.ietf-detnet-architecture] [I-D.ietf-detnet-architecture]
Finn, N., Thubert, P., Varga, B., and J. Farkas, Finn, N., Thubert, P., Varga, B., and J. Farkas,
"Deterministic Networking Architecture", draft-ietf- "Deterministic Networking Architecture", draft-ietf-
detnet-architecture-12 (work in progress), March 2019. detnet-architecture-13 (work in progress), May 2019.
[I-D.ietf-detnet-dp-sol-ip]
Korhonen, J. and B. Varga, "DetNet IP Data Plane
Encapsulation", draft-ietf-detnet-dp-sol-ip-02 (work in
progress), March 2019.
[I-D.ietf-detnet-dp-sol-mpls]
Korhonen, J. and B. Varga, "DetNet MPLS Data Plane
Encapsulation", draft-ietf-detnet-dp-sol-mpls-02 (work in
progress), March 2019.
[I-D.ietf-detnet-flow-information-model] [I-D.ietf-detnet-flow-information-model]
Farkas, J., Varga, B., Cummings, R., and Y. Jiang, "DetNet Farkas, J., Varga, B., Cummings, R., and Y. Jiang, "DetNet
Flow Information Model", draft-ietf-detnet-flow- Flow Information Model", draft-ietf-detnet-flow-
information-model-03 (work in progress), March 2019. information-model-03 (work in progress), March 2019.
[I-D.ietf-detnet-ip]
Varga, B., Farkas, J., Berger, L., Fedyk, D., Malis, A.,
Bryant, S., and J. Korhonen, "DetNet Data Plane: IP",
draft-ietf-detnet-ip-01 (work in progress), July 2019.
[I-D.ietf-detnet-mpls]
Varga, B., Farkas, J., Berger, L., Fedyk, D., Malis, A.,
Bryant, S., and J. Korhonen, "DetNet Data Plane: MPLS",
draft-ietf-detnet-mpls-00 (work in progress), May 2019.
[I-D.ietf-detnet-topology-yang]
Geng, X., Chen, M., Li, Z., and R. Rahman, "Deterministic
Networking (DetNet) Topology YANG Model", draft-ietf-
detnet-topology-yang-00 (work in progress), January 2019.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>. <https://www.rfc-editor.org/info/rfc2119>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013, RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>. <https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
skipping to change at page 44, line 38 skipping to change at page 35, line 48
distribution-03 (work in progress), October 2018. distribution-03 (work in progress), October 2018.
[I-D.ietf-detnet-use-cases] [I-D.ietf-detnet-use-cases]
Grossman, E., "Deterministic Networking Use Cases", draft- Grossman, E., "Deterministic Networking Use Cases", draft-
ietf-detnet-use-cases-20 (work in progress), December ietf-detnet-use-cases-20 (work in progress), December
2018. 2018.
[I-D.ietf-teas-yang-te] [I-D.ietf-teas-yang-te]
Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin, Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin,
"A YANG Data Model for Traffic Engineering Tunnels and "A YANG Data Model for Traffic Engineering Tunnels and
Interfaces", draft-ietf-teas-yang-te-19 (work in Interfaces", draft-ietf-teas-yang-te-21 (work in
progress), February 2019. progress), April 2019.
[I-D.ietf-teas-yang-te-topo] [I-D.ietf-teas-yang-te-topo]
Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Dios, "YANG Data Model for Traffic Engineering (TE) O. Dios, "YANG Data Model for Traffic Engineering (TE)
Topologies", draft-ietf-teas-yang-te-topo-19 (work in Topologies", draft-ietf-teas-yang-te-topo-22 (work in
progress), February 2019. progress), June 2019.
[I-D.thubert-tsvwg-detnet-transport] [I-D.thubert-tsvwg-detnet-transport]
Thubert, P., "A Transport Layer for Deterministic Thubert, P., "A Transport Layer for Deterministic
Networks", draft-thubert-tsvwg-detnet-transport-01 (work Networks", draft-thubert-tsvwg-detnet-transport-01 (work
in progress), October 2017. in progress), October 2017.
[I-D.varga-detnet-service-model] [I-D.varga-detnet-service-model]
Varga, B. and J. Farkas, "DetNet Service Model", draft- Varga, B. and J. Farkas, "DetNet Service Model", draft-
varga-detnet-service-model-02 (work in progress), May varga-detnet-service-model-02 (work in progress), May
2017. 2017.
skipping to change at page 46, line 29 skipping to change at page 37, line 40
Xuesong Geng Xuesong Geng
Huawei Technologies Huawei Technologies
Email: gengxuesong@huawei.com Email: gengxuesong@huawei.com
Mach(Guoyi) Chen Mach(Guoyi) Chen
Huawei Technologies Huawei Technologies
Email: mach.chen@huawei.com Email: mach.chen@huawei.com
Yeoncheol Ryoo
ETRI
Email: dbduscjf@etri.re.kr
Zhenqiang Li Zhenqiang Li
China Mobile China Mobile
Email: lizhenqiang@chinamobile.com Email: lizhenqiang@chinamobile.com
Reshad Rahman Reshad Rahman
Cisco Systems Cisco Systems
Email: rrahman@cisco.com Email: rrahman@cisco.com
 End of changes. 125 change blocks. 
1787 lines changed or deleted 1386 lines changed or added

This html diff was produced by rfcdiff 1.47. The latest version is available from http://tools.ietf.org/tools/rfcdiff/