draft-ietf-ccamp-general-constraint-encode-20.txt   rfc7579.txt 
Network Working Group G. Bernstein
Internet Draft Grotto Networking
Intended status: Standards Track Y. Lee
Expires: June 2015 D. Li
Huawei
W. Imajuku
NTT
February 23, 2015
General Network Element Constraint Encoding for GMPLS Controlled Internet Engineering Task Force (IETF) G. Bernstein, Ed.
Networks Request for Comments: 7579 Grotto Networking
Category: Standards Track Y. Lee, Ed.
ISSN: 2070-1721 D. Li
Huawei
W. Imajuku
NTT
J. Han
Huawei
June 2015
draft-ietf-ccamp-general-constraint-encode-20.txt General Network Element Constraint Encoding
for GMPLS-Controlled Networks
Abstract Abstract
Generalized Multiprotocol Label Switching can be used to control a Generalized Multiprotocol Label Switching (GMPLS) can be used to
wide variety of technologies. In some of these technologies, network control a wide variety of technologies. In some of these
elements and links may impose additional routing constraints such as technologies, network elements and links may impose additional
asymmetric switch connectivity, non-local label assignment, and routing constraints such as asymmetric switch connectivity, non-local
label range limitations on links. label assignment, and label range limitations on links.
This document provides efficient, protocol-agnostic encodings for This document provides efficient, protocol-agnostic encodings for
general information elements representing connectivity and label general information elements representing connectivity and label
constraints as well as label availability. It is intended that constraints as well as label availability. It is intended that
protocol-specific documents will reference this memo to describe how protocol-specific documents will reference this memo to describe how
information is carried for specific uses. information is carried for specific uses.
Status of this Memo Status of This Memo
This Internet-Draft is submitted to IETF in full conformance with
the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."
Internet-Draft General Network Element Constraint Encoding February
2015
The list of current Internet-Drafts can be accessed at This is an Internet Standards Track document.
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at This document is a product of the Internet Engineering Task Force
http://www.ietf.org/shadow.html (IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
This Internet-Draft will expire on June 23, 2015. Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7579.
Copyright Notice Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with carefully, as they describe your rights and restrictions with respect
respect to this document. Code Components extracted from this to this document. Code Components extracted from this document must
document must include Simplified BSD License text as described in include Simplified BSD License text as described in Section 4.e of
Section 4.e of the Trust Legal Provisions and are provided without the Trust Legal Provisions and are provided without warranty as
warranty as described in the Simplified BSD License. described in the Simplified BSD License.
Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].
Table of Contents Table of Contents
1. Introduction...................................................3 1. Introduction ....................................................3
1.1. Node Switching Asymmetry Constraints......................4 1.1. Node Switching Asymmetry Constraints .......................3
1.2. Non-Local Label Assignment Constraints....................4 1.2. Non-local Label Assignment Constraints .....................4
2. Encoding.......................................................5 1.3. Conventions Used in This Document ..........................4
2.1. Connectivity Matrix Field.................................5 2. Encoding ........................................................4
2.2. Port Label Restriction Field..............................7 2.1. Connectivity Matrix Field ..................................5
2.2.1. SIMPLE_LABEL.........................................8 2.2. Port Label Restrictions Field ..............................6
2.2.2. CHANNEL_COUNT........................................9 2.2.1. SIMPLE_LABEL ........................................8
2.2.3. LABEL_RANGE..........................................9 2.2.2. CHANNEL_COUNT .......................................8
2.2.3. LABEL_RANGE .........................................9
Internet-Draft General Network Element Constraint Encoding February 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT ........................9
2015 2.2.5. LINK_LABEL_EXCLUSIVITY .............................10
2.3. Link Set Field ............................................10
2.2.4. SIMPLE_LABEL & CHANNEL_COUNT........................10 2.4. Available Labels Field ....................................12
2.2.5. Link Label Exclusivity..............................10 2.5. Shared Backup Labels Field ................................13
2.3. Link Set Field...........................................11 2.6. Label Set Field ...........................................14
2.4. Available Labels Field...................................13 3. Security Considerations ........................................16
2.5. Shared Backup Labels Field...............................14 4. IANA Considerations ............................................17
2.6. Label Set Field..........................................14 5. References .....................................................17
2.6.1. Inclusive/Exclusive Label Lists.....................15 5.1. Normative References ......................................17
2.6.2. Inclusive/Exclusive Label Ranges....................16 5.2. Informative References ....................................18
2.6.3. Bitmap Label Set....................................17 Appendix A. Encoding Examples .....................................19
3. Security Considerations.......................................17 A.1. Link Set Field ............................................19
4. IANA Considerations...........................................18 A.2. Label Set Field ...........................................19
5. Acknowledgments...............................................18 A.3. Connectivity Matrix .......................................20
APPENDIX A: Encoding Examples....................................19 A.4. Connectivity Matrix with Bidirectional Symmetry ...........24
A.1. Link Set Field...........................................19 A.5. Priority Flags in Available/Shared Backup Labels ..........26
A.2. Label Set Field..........................................19 Contributors ......................................................27
A.3. Connectivity Matrix......................................20 Authors' Addresses ................................................28
A.4. Connectivity Matrix with Bi-directional Symmetry.........23
A.5. Priority Flags in Available/Shared Backup Labels.........25
6. References....................................................27
6.1. Normative References.....................................27
6.2. Informative References...................................28
7. Contributors..................................................29
Authors' Addresses...............................................30
1. Introduction 1. Introduction
Some data plane technologies that wish to make use of a GMPLS Some data-plane technologies that wish to make use of a GMPLS control
control plane contain additional constraints on switching capability plane contain additional constraints on switching capability and
and label assignment. In addition, some of these technologies must label assignment. In addition, some of these technologies must
perform non-local label assignment based on the nature of the perform non-local label assignment based on the nature of the
technology, e.g., wavelength continuity constraint in Wavelength technology, e.g., wavelength continuity constraint in Wavelength
Switched Optical Networks (WSON) [RFC6163]. Such constraints can Switched Optical Networks (WSONs) [RFC6163]. Such constraints can
lead to the requirement for link by link label availability in path lead to the requirement for link-by-link label availability in path
computation and label assignment. computation and label assignment.
This document provides efficient encodings of information needed by This document provides efficient encodings of information needed by
the routing and label assignment process in technologies such as the routing and label assignment process in technologies such as WSON
WSON and are potentially applicable to a wider range of and are potentially applicable to a wider range of technologies.
technologies. Such encodings can be used to extend GMPLS signaling Such encodings can be used to extend GMPLS signaling and routing
and routing protocols. In addition these encodings could be used by protocols. In addition, these encodings could be used by other
other mechanisms to convey this same information to a path mechanisms to convey this same information to a path computation
computation element (PCE). element (PCE).
Internet-Draft General Network Element Constraint Encoding February
2015
1.1. Node Switching Asymmetry Constraints 1.1. Node Switching Asymmetry Constraints
For some network elements, the ability of a signal or packet on a For some network elements, the ability of a signal or packet on a
particular input port to reach a particular output port may be particular input port to reach a particular output port may be
limited. In addition, in some network elements the connectivity limited. Additionally, in some network elements (e.g., a simple
between some input ports and output ports may be fixed, e.g., a multiplexer), the connectivity between some input and output ports
simple multiplexer. To take into account such constraints during may be fixed. To take into account such constraints during path
path computation, we model this aspect of a network element via a computation, we model this aspect of a network element via a
connectivity matrix. connectivity matrix.
The connectivity matrix (ConnectivityMatrix) represents either the The connectivity matrix (ConnectivityMatrix) represents either the
potential connectivity matrix for asymmetric switches or fixed potential connectivity matrix for asymmetric switches or fixed
connectivity for an asymmetric device such as a multiplexer. Note connectivity for an asymmetric device such as a multiplexer. Note
that this matrix does not represent any particular internal blocking that this matrix does not represent any particular internal blocking
behavior but indicates which input ports and labels (e.g., behavior but indicates which input ports and labels (e.g.,
wavelengths) could possibly be connected to a particular output port wavelengths) could possibly be connected to a particular output port
and label pair. Representing internal state dependent blocking for a and label pair. Representing internal state-dependent blocking for a
node is beyond the scope of this document and, due to its highly node is beyond the scope of this document and, due to its highly
implementation-dependent nature, would most likely not be subject to implementation-dependent nature, would most likely not be subject to
standardization in the future. The connectivity matrix is a standardization in the future. The connectivity matrix is a
conceptual M*m by N*n matrix where M represents the number of input conceptual M*m by N*n matrix where M represents the number of input
ports each with m labels and N the number of output ports each with ports (each with m labels) and N the number of output ports (each
n labels. with n labels).
1.2. Non-Local Label Assignment Constraints 1.2. Non-local Label Assignment Constraints
If the nature of the equipment involved in a network results in a If the nature of the equipment involved in a network results in a
requirement for non-local label assignment, we can have constraints requirement for non-local label assignment, we can have constraints
based on limits imposed by the ports themselves and those that are based on limits imposed by the ports themselves and those that are
implied by the current label usage. Note that constraints such as implied by the current label usage. Note that constraints such as
these only become important when label assignment has a non-local these only become important when label assignment has a non-local
character. For example, in MPLS an LSR may have a limited range of character. For example, in MPLS, an LSR may have a limited range of
labels available for use on an output port, and a set of labels labels available for use on an output port and a set of labels
already in use on that port, and hence unavailable for use. This already in use on that port; these are therefore unavailable for use.
information, however, does not need to be shared unless there is This information, however, does not need to be shared unless there is
some limitation on the LSR's label swapping ability. For example, if some limitation on the LSR's label swapping ability. For example, if
a TDM node lacks the ability to perform time-slot interchange, or a a Time Division Multiplexer (TDM) node lacks the ability to perform
WSON lacks the ability to perform wavelength conversion, then the time-slot interchange or a WSON lacks the ability to perform
label assignment process is not local to a single node. In this wavelength conversion, then the label assignment process is not local
case, it may be advantageous to share the label assignment to a single node. In this case, it may be advantageous to share the
constraint information for use in path computation. label assignment constraint information for use in path computation.
Port label restrictions (PortLabelRestriction) model the label Port label restrictions (PortLabelRestriction) model the label
restrictions that the network element (node) and link may impose on restrictions that the network element (node) and link may impose on a
a port. These restrictions tell us what labels may or may not be port. These restrictions tell us what labels may or may not be used
on a link and are intended to be relatively static. More dynamic
information is contained in the information on available labels.
Port label restrictions are specified relative to the port in general
or to a specific connectivity matrix for increased modeling
flexibility. [Switch] gives an example where both switch and fixed
connectivity matrices are used and both types of constraints occur on
the same port.
Internet-Draft General Network Element Constraint Encoding February 1.3. Conventions Used in This Document
2015
used on a link and are intended to be relatively static. More The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
dynamic information is contained in the information on available "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
labels. Port label restrictions are specified relative to the port document are to be interpreted as described in RFC 2119 [RFC2119].
in general or to a specific connectivity matrix for increased
modeling flexibility. Reference [Switch] gives an example where both
switch and fixed connectivity matrices are used and both types of
constraints occur on the same port.
2. Encoding 2. Encoding
This section provides encodings for the information elements defined This section provides encodings for the information elements defined
in [RWA-Info] that have applicability to WSON. The encodings are in [RFC7446] that have applicability to WSON. The encodings are
designed to be suitable for use in the GMPLS routing protocols OSPF designed to be suitable for use in the GMPLS routing protocols OSPF
[RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) [RFC4203] and IS-IS [RFC5307] and in the PCE Communication Protocol
[RFC5440]. Note that the information distributed in [RFC4203] and (PCEP) [RFC5440]. Note that the information distributed in [RFC4203]
[RFC5307] is arranged via the nesting of sub-TLVs within TLVs and and [RFC5307] is arranged via the nesting of sub-TLVs within TLVs;
this document defines elements to be used within such constructs. this document defines elements to be used within such constructs.
Specific constructs of sub-TLVs and the nesting of sub-TLVs of the Specific constructs of sub-TLVs and the nesting of sub-TLVs of the
information element defined by this document will be defined in the information element defined by this document will be defined in the
respective protocol enhancement documents. respective protocol enhancement documents.
2.1. Connectivity Matrix Field 2.1. Connectivity Matrix Field
The Connectivity Matrix Field represents how input ports are The Connectivity Matrix Field represents how input ports are
connected to output ports for network elements. The switch and fixed connected to output ports for network elements. The switch and fixed
connectivity matrices can be compactly represented in terms of a connectivity matrices can be compactly represented in terms of a
minimal list of input and output port set pairs that have mutual minimal list of input and output port set pairs that have mutual
connectivity. As described in [Switch], such a minimal list connectivity. As described in [Switch], such a minimal list
representation leads naturally to a graph representation for path representation leads naturally to a graph representation for path
computation purposes that involves the fewest additional nodes and computation purposes; this representation involves the fewest
links. additional nodes and links.
The Connectivity Matrix is uniquely identified only by the
advertising node. There may be more than one Field associated with a
node as a node can partition the switch matrix into several sub-
matrices. This partitioning is primarily to limit the size of any
individual information element used to represent the matrix and to
enable incremental updates. When the matrix is partitioned into sub-
matrices, each sub-matrix will be mutually exclusive to one another
in representing which ports/labels are associated with each sub-
matrix. This implies that two matrices will not have the same {src
port, src label, dst port, dst label}.
Internet-Draft General Network Element Constraint Encoding February The Connectivity Matrix Field is uniquely identified only by the
2015 advertising node. There may be more than one Connectivity Matrix
Field associated with a node as a node can partition the switch
matrix into several sub-matrices. This partitioning is primarily to
limit the size of any individual information element used to
represent the matrix and to enable incremental updates. When the
matrix is partitioned into sub-matrices, each sub-matrix will be
mutually exclusive to one another in representing which ports/labels
are associated with each sub-matrix. This implies that two matrices
will not have the same {src port, src label, dst port, dst label}.
Each sub-matrix is identified via a different Matrix ID which MUST Each sub-matrix is identified via a different Matrix ID that MUST
represent a unique combination of {src port, src label, dst port, represent a unique combination of {src port, src label, dst port, dst
dst label}. label}.
A TLV encoding of this list of link set pairs is: A TLV encoding of this list of link set pairs is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn | MatrixID | Reserved | | Conn | MatrixID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set A #1 | | Link Set A #1 |
: : : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set B #1 : | Link Set B #1 :
: : : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set pairs as needed | | Additional Link Set Pairs as Needed |
: to specify connectivity : : to Specify Connectivity :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Where:
Connectivity (Conn) (4 bit) is the device type. Connectivity (Conn) (4 bits) is the device type.
0 -- the device is fixed 0 - the device is fixed
1 -- the device is switched (e.g., ROADM/OXC) 1 - the device is switched (e.g., Reconfigurable Optical Add/Drop
Multiplexer / Optical Cross-Connect (ROADM/OXC))
MatrixID represents the ID of the connectivity matrix and is an 8 MatrixID represents the ID of the connectivity matrix and is an 8-bit
bit integer. The value of 0xFF is reserved for use with port label integer. The value of 0xFF is reserved for use with port label
constraints and should not be used to identify a connectivity matrix. constraints and should not be used to identify a connectivity matrix.
Link Set A #1 and Link Set B #1 together represent a pair of link Link Set A #1 and Link Set B #1 together represent a pair of link
sets. See Section 2.3. for a detail description of the link set sets. See Section 2.3 for a detailed description of the Link Set
field. There are two permitted combinations for the link set field Field. There are two permitted combinations for the Link Set Field
parameter "dir" for Link Set A and B pairs: parameter "dir" for link set A and B pairs:
o Link Set A dir=input, Link Set B dir=output o Link Set A dir=input, Link Set B dir=output
In this case, the meaning of the pair of link sets A and B in this In this case, the meaning of the pair of link sets A and B is that
case is that any signal that inputs a link in set A can be any signal that inputs a link in set A can be potentially switched
potentially switched out of an output link in set B. out of an output link in set B.
Internet-Draft General Network Element Constraint Encoding February
2015
o Link Set A dir=bidirectional, Link Set B dir=bidirectional o Link Set A dir=bidirectional, Link Set B dir=bidirectional
The meaning of the pair of link sets A and B in this case is that In this case, the meaning of the pair of link sets A and B is that
any signal that inputs on the links in set A can potentially any signal that inputs on the links in set A can potentially
output on a link in set B, and any input signal on the links in output on a link in set B and any input signal on the links in set
set B can potentially output on a link in set A. If link set A is B can potentially output on a link in set A. If link set A is an
an input and link set B is an output for a signal, then it input and link set B is an output for a signal, then it implies
implies that link set A is an output and link set B is an input that link set A is an output and link set B is an input for that
for that signal. signal.
See Appendix A for both types of encodings as applied to a ROADM See Appendix A for both types of encodings as applied to a ROADM
example. example.
2.2. Port Label Restriction Field 2.2. Port Label Restrictions Field
Port Label Restriction Field tells us what labels may or may not be The Port Label Restrictions Field tells us what labels may or may not
used on a link. be used on a link.
The port label restriction can be encoded as follows: More than one The port label restrictions can be encoded as follows. More than one
of these fields may be needed to fully specify a complex port of these fields may be needed to fully specify a complex port
constraint. When more than one of these fields are present, the constraint. When more than one of these fields is present, the
resulting restriction is the union of the restrictions expressed in resulting restriction is the union of the restrictions expressed in
each field. The use of the reserved value of 0xFF for the MatrixID each field. The use of the reserved value of 0xFF for the MatrixID
indicates that a restriction applies to the port, and not to a indicates that a restriction applies to the port and not to a
specific connectivity matrix. specific connectivity matrix.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType | SwitchingCap | Encoding | | MatrixID | RstType | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Restriction Parameters per Restriction Type | | Additional Restriction Parameters per Restriction Type |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where: Where:
MatrixID: either is the value in the corresponding Connectivity MatrixID: either is the value in the corresponding Connectivity
Matrix field or takes the value 0xFF to indicate the restriction Matrix Field or takes the value 0xFF to indicate the restriction
applies to the port regardless of any Connectivity Matrix. applies to the port regardless of any connectivity matrix.
RstType (Restriction Type) can take the following values and RstType (Restriction Type) can take the following values and
meanings: meanings:
Internet-Draft General Network Element Constraint Encoding February 0: SIMPLE_LABEL (Simple label selective restriction). See
2015 Section 2.2.1 for details.
0: SIMPLE_LABEL (Simple label selective restriction; See
Section 2.2.1 for details)
1: CHANNEL_COUNT (Channel count restriction; See Section 2.2.2 1: CHANNEL_COUNT (Channel count restriction). See Section 2.2.2
for details) for details.
2: LABEL_RANGE (Label range device with a movable center label 2: LABEL_RANGE (Label range device with a movable center label and
and width; See Section 2.2.3 for details) width). See Section 2.2.3 for details.
3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL 3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL and
and CHANNEL_COUNT restriction. The accompanying label set and CHANNEL_COUNT restriction. The accompanying label set and
channel count indicate labels permitted on the port and the channel count indicate labels permitted on the port and the
maximum number of channels that can be simultaneously used on maximum number of channels that can be simultaneously used on
the port; See Section 2.2.4 for details) the port). See Section 2.2.4 for details.
4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once 4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once
amongst a set of specified ports; See Section 2.2.5 for amongst a set of specified ports). See Section 2.2.5 for
details) details.
SwitchingCap (Switching Capability) is defined in [RFC4203] and Switching Cap (Switching Capability) is defined in [RFC4203], and LSP
Encoding in [RFC3471]. The combination of these fields defines the Encoding Type is defined in [RFC3471]. The combination of these
type of labels used in specifying the port label restrictions as fields defines the type of labels used in specifying the port label
well as the interface type to which these restrictions apply. restrictions as well as the interface type to which these
restrictions apply.
Additional Restriction Parameters per RestrictionType field is an The Additional Restriction Parameters per RestrictionType field is an
optional field that describes additional restriction parameters for optional field that describes additional restriction parameters for
each RestrictionType pertaining to specific protocols. each RestrictionType pertaining to specific protocols.
2.2.1. SIMPLE_LABEL 2.2.1. SIMPLE_LABEL
In the case of the SIMPLE_LABEL, The format is given by: In the case of SIMPLE_LABEL, the format is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 0 | SwitchingCap | Encoding | | MatrixID | RstType = 0 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field | | Label Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying label set indicates the labels In this case, the accompanying label set indicates the labels
permitted on the port/matrix. permitted on the port/matrix.
See Section 2.6 for the definition of label set. See Section 2.6 for the definition of label set.
Internet-Draft General Network Element Constraint Encoding February 2.2.2. CHANNEL_COUNT
2015
2.2.2. CHANNEL_COUNT
In the case of the CHANNEL_COUNT, the format is given by: In the case of CHANNEL_COUNT, the format is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 1 | SwitchingCap | Encoding | | MatrixID | RstType = 1 |Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MaxNumChannels | | MaxNumChannels |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying MaxNumChannels indicates the maximum In this case, the accompanying MaxNumChannels indicates the maximum
number of channels (labels) that can be simultaneously used on the number of channels (labels) that can be simultaneously used on the
port/matrix. port/matrix.
MaxNumChannels is a 32-bit integer. MaxNumChannels is a 32-bit integer.
2.2.3. LABEL_RANGE 2.2.3. LABEL_RANGE
In the case of the LABEL_RANGE, the format is given by: In the case of LABEL_RANGE, the format is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 2 | Switching Cap | Encoding | | MatrixID | RstType = 2 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MaxLabelRange | | MaxLabelRange |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field | | Label Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This is a generalization of the waveband device. The MaxLabelRange This is a generalization of the waveband device. The MaxLabelRange
indicates the maximum width of the waveband in terms of the channels indicates the maximum width of the waveband in terms of the channels
spacing given in the Label Set Field. The corresponding label set is spacing given in the Label Set Field. The corresponding label set is
used to indicate the overall tuning range. used to indicate the overall tuning range.
MaxLabelRange is a 32-bit integer. MaxLabelRange is a 32-bit integer.
See Section 2.6.2 for the explanation of label range. See Section 2.6.2 for an explanation of label range.
Internet-Draft General Network Element Constraint Encoding February
2015
2.2.4. SIMPLE_LABEL & CHANNEL_COUNT 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT
In the case of the SIMPLE_LABEL & CHANNEL_COUNT the format is given In the case of SIMPLE_LABEL & CHANNEL_COUNT, the format is:
by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 3 | SwitchingCap | Encoding | | MatrixID | RstType = 3 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MaxNumChannels | | MaxNumChannels |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field | | Label Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying label set and MaxNumChannels indicate In this case, the accompanying label set and MaxNumChannels indicate
labels permitted on the port and the maximum number of labels that labels permitted on the port and the maximum number of labels that
can be simultaneously used on the port. can be simultaneously used on the port.
See Section 2.6 for the definition of label set. See Section 2.6 for the definition of label set.
2.2.5. Link Label Exclusivity 2.2.5. LINK_LABEL_EXCLUSIVITY
In the case of the Link Label Exclusivity the format is given by: In the case of Link Label Exclusivity, the format is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 4 | SwitchingCap | Encoding | | MatrixID | RstType = 4 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set Field | | Link Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying link set indicates that a label may be In this case, the accompanying link set indicates that a label may be
used at most once among the ports in the link set field. See Section used at most once among the ports in the Link Set Field.
2.3 for the definition of link set.
Internet-Draft General Network Element Constraint Encoding February See Section 2.3 for the definition of link set.
2015
2.3. Link Set Field 2.3. Link Set Field
We will frequently need to describe properties of groups of links. We will frequently need to describe properties of groups of links.
To do so efficiently we can make use of a link set concept similar To do so efficiently, we can make use of a link set concept similar
to the label set concept of [RFC3471]. This Link Set Field is used to the label set concept of [RFC3471]. The Link Set Field is used in
in the <ConnectivityMatrix>, which is defined in Section 2.1. The the <ConnectivityMatrix>, which is defined in Section 2.1. The
information carried in a Link Set is defined by: information carried in a link set is defined as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action |Dir| Format | Length | | Action |Dir| Format | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier 1 | | Link Identifier 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : : : :
: : : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier N | | Link Identifier N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits Action: 8 bits
0 - Inclusive List
Indicates that one or more link identifiers are included in the Link
Set. Each identifies a separate link that is part of the set.
1 - Inclusive Range 0 - Inclusive List
Indicates that the Link Set defines a range of links. It contains Indicates that one or more link identifiers are included in
two link identifiers. The first identifier indicates the start of the link set. Each identifies a separate link that is part of
the range. The second identifier indicates the end of the range. All the set.
links with numeric values between the bounds are considered to be
part of the set. A value of zero in either position indicates that
there is no bound on the corresponding portion of the range. Note
that the Action field can be set to 0x01 (Inclusive Range) only when
identifier for unnumbered link is used.
Dir: Directionality of the Link Set (2 bits) 1 - Inclusive Range
0 -- bidirectional Indicates that the link set defines a range of links. It
contains two link identifiers. The first identifier indicates
the start of the range. The second identifier indicates the
end of the range. All links with numeric values between the
bounds are considered to be part of the set. A value of zero
in either position indicates that there is no bound on the
corresponding portion of the range. Note that the Action
field can be set to 0x01 (Inclusive Range) only when the
identifier for unnumbered link is used.
1 -- input Dir: Directionality of the link set (2 bits)
Internet-Draft General Network Element Constraint Encoding February 0 - bidirectional
2015
2 -- output 1 - input
For example, in optical networks we think in terms of unidirectional 2 - output
as well as bidirectional links. For example, label restrictions or
connectivity may be different for an input port, than for its
"companion" output port if one exists. Note that "interfaces" such
as those discussed in the Interfaces MIB [RFC2863] are assumed to be
bidirectional. This also applies to the links advertised in various
link state routing protocols.
Format: The format of the link identifier (6 bits) In optical networks, we think in terms of unidirectional and
bidirectional links. For example, label restrictions or
connectivity may be different for an input port than for its
"companion" output port, if one exists. Note that "interfaces"
such as those discussed in the Interfaces MIB [RFC2863] are
assumed to be bidirectional. This also applies to the links
advertised in various link state routing protocols.
0 -- Link Local Identifier Format: The format of the link identifier (6 bits)
Indicates that the links in the Link Set are identified by link 0 - Link Local Identifier
local identifiers. All link local identifiers are supplied in the
context of the advertising node.
1 -- Local Interface IPv4 Address Indicates that the links in the link set are identified by
link local identifiers. All link local identifiers are
supplied in the context of the advertising node.
2 -- Local Interface IPv6 Address 1 - Local Interface IPv4 Address
Indicates that the links in the Link Set are identified by Local Indicates that the links in the link set are identified by
Interface IP Address. Local Interface IPv4 Address.
Others -- Reserved for future use. 2 - Local Interface IPv6 Address
Note that all link identifiers in the same list must be of the same Indicates that the links in the link set are identified by
type. Local Interface IPv6 Address.
Length: 16 bits Others - Reserved for future use
Note that all link identifiers in the same list must be of the
same type.
This field indicates the total length in bytes of the Link Set field. Length: 16 bits
Link Identifier: length is dependent on the link format This field indicates the total length in bytes of the Link Set
Field.
The link identifier represents the port which is being described Link Identifier: length is dependent on the link format
either for connectivity or label restrictions. This can be the link
local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS OSPF
routing, and [RFC5307] IS-IS GMPLS routing. The use of the link
local identifier format can result in more compact encodings when
the assignments are done in a reasonable fashion.
Internet-Draft General Network Element Constraint Encoding February The link identifier represents the port that is being described
2015 either for connectivity or for label restrictions. This can be
the link local identifier of GMPLS routing [RFC4202], GMPLS OSPF
routing [RFC4203], and IS-IS GMPLS routing [RFC5307]. The use of
the link local identifier format can result in more compact
encodings when the assignments are done in a reasonable fashion.
2.4. Available Labels Field 2.4. Available Labels Field
The Available Labels Field consists of priority flags, and a single The Available Labels Field consists of priority flags and a single
variable length label set field as follows: variable-length Label Set Field as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PRI | Reserved | | PRI | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field | | Label Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Where:
PRI (Priority Flags, 8 bits): A bitmap used to indicate which PRI (Priority Flags, 8 bits): A bitmap used to indicate which
priorities are being advertised. The bitmap is in ascending order, priorities are being advertised. The bitmap is in ascending order,
with the leftmost bit representing priority level 0 (i.e., the with the leftmost bit representing priority level 0 (i.e., the
highest) and the rightmost bit representing priority level 7 (i.e., highest) and the rightmost bit representing priority level 7 (i.e.,
the lowest). A bit MUST be set (1) corresponding to each priority the lowest). A bit MUST be set (1) corresponding to each priority
represented in the sub-TLV, and MUST NOT be set (0) when the represented in the sub-TLV and MUST NOT be set (0) when the
corresponding priority is not represented. If a label is available corresponding priority is not represented. If a label is available
at priority M it MUST be advertised available at each priority N < at priority M, it MUST be advertised available at each priority N <
M. At least one priority level MUST be advertised. M. At least one priority level MUST be advertised.
The PRI field indicates the availability of the labels for use in The PRI field indicates the availability of the labels for use in
LSP set up and pre-emption as described in [RFC3209]. Label Switched Path (LSP) setup and preemption as described in
[RFC3209].
When a label is advertised as available for priorities 0, 1, ... M When a label is advertised as available for priorities 0, 1, ... M,
it may be used by any LSP of priority N <= M. When a label is in use it may be used by any LSP of priority N <= M. When a label is in use
by an LSP of priority M it may be used by an LSP of priority N < M by an LSP of priority M, it may be used by an LSP of priority N < M
if LSP preemption is supported. if LSP preemption is supported.
When a label was initially advertised as available for priorities, When a label was initially advertised as available for priorities 0,
0, 1, ... M and once a label is used for an LSP at a priority, say N 1, ... M and once a label is used for an LSP at a priority, say N
(N<=M), then this label is advertised as available for 0, ... N-1. (N<=M), then this label is advertised as available for 0, ... N-1.
Note that Label Set Field is defined in Section 2.6. See Appendix Note that the Label Set Field is defined in Section 2.6. See
A.5. for illustrative examples. Appendix A.5 for illustrative examples.
Internet-Draft General Network Element Constraint Encoding February
2015
2.5. Shared Backup Labels Field 2.5. Shared Backup Labels Field
The Shared Backup Labels Field consists of priority flags, and The Shared Backup Labels Field consists of priority flags and a
single variable length label set field as follows: single variable-length Label Set Field as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PRI | Reserved | | PRI | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field | | Label Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Where:
PRI (Priority Flags, 8 bits): A bitmap used to indicate which PRI (Priority Flags, 8 bits): A bitmap used to indicate which
priorities are being advertised. The bitmap is in ascending order, priorities are being advertised. The bitmap is in ascending order,
with the leftmost bit representing priority level 0 (i.e., the with the leftmost bit representing priority level 0 (i.e., the
highest) and the rightmost bit representing priority level 7 (i.e., highest) and the rightmost bit representing priority level 7 (i.e.,
the lowest). A bit MUST be set (1) corresponding to each priority the lowest). A bit MUST be set (1) corresponding to each priority
represented in the sub-TLV, and MUST NOT be set (0) when the represented in the sub-TLV and MUST NOT be set (0) when the
corresponding priority is not represented. If a label is available corresponding priority is not represented. If a label is available
at priority M it MUST be advertised available at each priority N < at priority M, it MUST be advertised available at each priority N <
M. At least one priority level MUST be advertised. M. At least one priority level MUST be advertised.
The same LSP set up and pre-emption rules specified in Section 2.4 The same LSP setup and preemption rules specified in Section 2.4
apply here. apply here.
Note that Label Set Field is defined in Section 2.6. See Appendix Note that Label Set Field is defined in Section 2.6. See
A.5. for illustrative examples. Appendix A.5 for illustrative examples.
2.6. Label Set Field
Label Set Field is used within the <AvailableLabels> or the 2.6. Label Set Field
<SharedBackupLabels>, which is defined in Sections 2.4. and 2.5.,
respectively. It is also used within the <SIMPLE_LABEL>,
<LABEL_RANGE>, <SIMPLE_LABEL> or <CHANNEL_COUNT>, which is defined
in Sections 2.1.1. - 2.1.4., respectively.
The general format for a label set is given below. This format uses The Label Set Field is used within the Available Labels Field or the
the Action concept from [RFC3471] with an additional Action to Shared Backup Labels Field, defined in Sections 2.4 and 2.5,
define a "bit map" type of label set. Labels are variable in length. respectively. It is also used within SIMPLE_LABEL, LABEL_RANGE, or
Action specific fields are defined below. SIMPLE_LABEL & CHANNEL_COUNT, defined in Sections 2.2.1, 2.2.3, and
2.2.4, respectively.
Internet-Draft General Network Element Constraint Encoding February The general format for a label set is given below. This format uses
2015 the Action concept from [RFC3471] with an additional Action to define
a "bitmap" type of label set. Labels are variable in length.
Action-specific fields are defined in Sections 2.6.1, 2.6.2, and
2.6.3.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action| Num Labels = N | Length | | Action| Num Labels = N | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Base Label | | Base Label |
| . . . | | . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Action specific fields) | | (Action-specific fields) |
| . . . . | | . . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: Action:
0 - Inclusive List 0 - Inclusive List
1 - Exclusive List
2 - Inclusive Range 1 - Exclusive List
3 - Exclusive Range 2 - Inclusive Range
4 - Bitmap Set 3 - Exclusive Range
Num Labels is generally the number of labels. It has a specific 4 - Bitmap Set
meaning depending on the action value. See Sections 2.6.1 - 2.6.3
for details. Num Labels is a 12 bit integer.
Length is the length in bytes of the entire label set field. Num Labels is generally the number of labels. It has a specific
meaning depending on the Action value. See Sections 2.6.1, 2.6.2,
and 2.6.3 for details. Num Labels is a 12-bit integer.
2.6.1. Inclusive/Exclusive Label Lists Length is the length in bytes of the entire Label Set Field.
In the case of the inclusive/exclusive lists the wavelength set 2.6.1. Inclusive/Exclusive Label Lists
format is given by:
Internet-Draft General Network Element Constraint Encoding February For inclusive/exclusive lists (Action = 0 or 1), the wavelength set
2015 format is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 or 1 | Num Labels = 2 | Length | |0 or 1 | Num Labels = 2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label #1 | | Label #1 |
| . . . | | . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label #N | | Label #N |
| . . . | | . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where: Label #1 is the first label to be included/excluded, and Label #N is
the last label to be included/excluded. Num Labels MUST match
Label #1 is the first Label to be included/excluded and Label #N is with N.
the last Label to be included/excluded. Num Labels MUST match with
N.
2.6.2. Inclusive/Exclusive Label Ranges 2.6.2. Inclusive/Exclusive Label Ranges
In the case of inclusive/exclusive ranges the label set format is For inclusive/exclusive ranges (Action = 2 or 3), the label set
given by: format is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|2 or 3 | Num Labels | Length | |2 or 3 | Num Labels | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Label | | Start Label |
| . . . | | . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| End Label | | End Label |
| . . . | | . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note that Start Label is the first Label in the range to be Note that Start Label is the first label in the range to be
included/excluded and End Label is the last label in the same range. included/excluded, and End Label is the last label in the same range.
Num Labels MUST be two. Num Labels MUST be two.
Internet-Draft General Network Element Constraint Encoding February 2.6.3. Bitmap Label Set
2015
2.6.3. Bitmap Label Set
In the case of Action = 4, the bitmap the label set format is given For bitmap sets (Action = 4), the label set format is:
by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Num Labels | Length | | 4 | Num Labels | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Base Label | | Base Label |
| . . . | | . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bit Map Word #1 (Lowest numerical labels) | | Bitmap Word #1 (Lowest numerical labels) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bit Map Word #N (Highest numerical labels) | | Bitmap Word #N (Highest numerical labels) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Num Labels in this case tells us the number of labels In this case, Num Labels tells us the number of labels represented by
represented by the bit map. Each bit in the bit map represents a the bitmap. Each bit in the bitmap represents a particular label
particular label with a value of 1/0 indicating whether the label is with a value of 1/0 indicating whether or not the label is in the
in the set or not. Bit position zero represents the lowest label and set. Bit position zero represents the lowest label and corresponds
corresponds to the base label, while each succeeding bit position to the base label, while each succeeding bit position represents the
represents the next label logically above the previous. next label logically above the previous.
The size of the bit map is Num Labels bits, but the bit map is The size of the bitmap is Num Labels bits, but the bitmap is padded
padded out to a full multiple of 32 bits so that the field is a out to a full multiple of 32 bits so that the field is a multiple of
multiple of four bytes. Bits that do not represent labels (i.e., four bytes. Bits that do not represent labels SHOULD be set to zero
those in positions (Num Labels) and beyond) SHOULD be set to zero
and MUST be ignored. and MUST be ignored.
3. Security Considerations 3. Security Considerations
This document defines protocol-independent encodings for WSON This document defines protocol-independent encodings for WSON
information and does not introduce any security issues. information and does not introduce any security issues.
However, other documents that make use of these encodings within However, other documents that make use of these encodings within
protocol extensions need to consider the issues and risks associated protocol extensions need to consider the issues and risks associated
Internet-Draft General Network Element Constraint Encoding February
2015
with inspection, interception, modification, or spoofing of any of with inspection, interception, modification, or spoofing of any of
this information. It is expected that any such documents will this information. It is expected that any such documents will
describe the necessary security measures to provide adequate describe the necessary security measures to provide adequate
protection. A general discussion on security in GMPLS networks can protection. A general discussion on security in GMPLS networks can
be found in [RFC5920]. be found in [RFC5920].
4. IANA Considerations 4. IANA Considerations
This document provides general protocol independent information This document provides general protocol-independent information
encodings. There is no IANA allocation request for the information encodings. There is no IANA allocation request for the information
elements defined in this document. IANA allocation requests will be elements defined in this document. IANA allocation requests will be
addressed in protocol specific documents based on the encodings addressed in protocol-specific documents based on the encodings
defined here. defined here.
5. Acknowledgments 5. References
This document was prepared using 2-Word-v2.0.template.dot. 5.1. Normative References
Internet-Draft General Network Element Constraint Encoding February [G.694.1] ITU-T, "Spectral grids for WDM applications: DWDM
2015 frequency grid", ITU-T Recommendation G.694.1, February
2012.
APPENDIX A: Encoding Examples [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
Here we give examples of the general encoding extensions applied to [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
some simple ROADM network elements and links. MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
<http://www.rfc-editor.org/info/rfc2863>.
A.1. Link Set Field [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<http://www.rfc-editor.org/info/rfc3209>.
Suppose that we wish to describe a set of input ports that are have [RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label
link local identifiers number 3 through 42. In the link set field we Switching (GMPLS) Signaling Functional Description",
set the Action = 1 to denote an inclusive range; the Dir = 1 to RFC 3471, DOI 10.17487/RFC3471, January 2003,
denote input links; and, the Format = 0 to denote link local <http://www.rfc-editor.org/info/rfc3471>.
identifiers. In particular we have:
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
Extensions in Support of Generalized Multi-Protocol Label
Switching (GMPLS)", RFC 4202, DOI 10.17487/RFC4202,
October 2005, <http://www.rfc-editor.org/info/rfc4202>.
[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
<http://www.rfc-editor.org/info/rfc4203>.
[RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008,
<http://www.rfc-editor.org/info/rfc5307>.
[RFC6205] Otani, T., Ed., and D. Li, Ed., "Generalized Labels for
Lambda-Switch-Capable (LSC) Label Switching Routers",
RFC 6205, DOI 10.17487/RFC6205, March 2011,
<http://www.rfc-editor.org/info/rfc6205>.
5.2. Informative References
[RFC5440] Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", RFC 5440,
DOI 10.17487/RFC5440, March 2009,
<http://www.rfc-editor.org/info/rfc5440>.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
<http://www.rfc-editor.org/info/rfc5920>.
[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku,
"Framework for GMPLS and Path Computation Element (PCE)
Control of Wavelength Switched Optical Networks (WSONs)",
RFC 6163, DOI 10.17487/RFC6163, April 2011,
<http://www.rfc-editor.org/info/rfc6163>.
[RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku,
"Routing and Wavelength Assignment Information Model for
Wavelength Switched Optical Networks", RFC 7446,
DOI 10.17487/RFC7446, February 2015,
<http://www.rfc-editor.org/info/rfc7446>.
[Switch] Bernstein, G., Lee, Y., Gavler, A., and J. Martensson,
"Modeling WDM Wavelength Switching Systems for Use in
GMPLS and Automated Path Computation", Journal of Optical
Communications and Networking, Volume 1, Issue 1,
pp. 187-195, June 2009.
Appendix A. Encoding Examples
This appendix contains examples of the general encoding extensions
applied to some simple ROADM network elements and links.
A.1. Link Set Field
Suppose that we wish to describe a set of input ports that have link
local identifiers numbered 3 through 42. In the Link Set Field, we
set Action = 1 to denote an inclusive range, Dir = 1 to denote input
links, and Format = 0 to denote link local identifiers. Thus, we
have:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 | | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 | | Link Local Identifier = #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 | | Link Local Identifier = #42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.2. Label Set Field A.2. Label Set Field
Example:
A 40 channel C-Band DWDM system with 100GHz spacing with lowest In this example, we use a 40-channel C-Band Dense Wavelength Division
frequency 192.0THz (1561.4nm) and highest frequency 195.9THz Multiplexing (DWDM) system with 100 GHz spacing with lowest frequency
(1530.3nm). These frequencies correspond to n = -11, and n = 28 192.0 THz (1561.4 nm) and highest frequency 195.9 THz (1530.3 nm).
respectively. Now suppose the following channels are available: These frequencies correspond to n = -11 and n = 28, respectively.
Now suppose the following channels are available:
Frequency (THz) n Value bit map position Frequency (THz) n Value bitmap position
-------------------------------------------------- --------------------------------------------------
192.0 -11 0 192.0 -11 0
192.5 -6 5 192.5 -6 5
193.1 0 11 193.1 0 11
193.9 8 19 193.9 8 19
194.0 9 20 194.0 9 20
195.2 21 32 195.2 21 32
195.8 27 38 195.8 27 38
Using the label format defined in [RFC6205], with the Grid value set Using the label format defined in [RFC6205], with the Grid value set
to indicate an ITU-T A/2 [G.694.1] DWDM grid, C.S. set to indicate to indicate an ITU-T A/2 [G.694.1] DWDM grid and C.S. set to indicate
100GHz this lambda bit map set would then be encoded as follows: 100 GHz, this lambda bitmap set would then be encoded as follows:
Internet-Draft General Network Element Constraint Encoding February
2015
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Num Labels = 40 | Length = 16 bytes | | 4 | Num Labels = 40 | Length = 16 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 | |Grid | C.S. | Reserved | n for lowest frequency = -11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
To encode this same set as an inclusive list we would have: To encode this same set as an inclusive list, we would have:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | Num Labels = 7 | Length = 32 bytes | | 0 | Num Labels = 7 | Length = 32 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 | |Grid | C.S. | Reserved | n for lowest frequency = -11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -6 | |Grid | C.S. | Reserved | n for lowest frequency = -6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 20, line 42 skipping to change at page 20, line 43
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 8 | |Grid | C.S. | Reserved | n for lowest frequency = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 9 | |Grid | C.S. | Reserved | n for lowest frequency = 9 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 21 | |Grid | C.S. | Reserved | n for lowest frequency = 21 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 27 | |Grid | C.S. | Reserved | n for lowest frequency = 27 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.3. Connectivity Matrix A.3. Connectivity Matrix
Example:
Suppose we have a typical 2-degree 40 channel ROADM. In addition to
its two line side ports it has 80 add and 80 drop ports. The picture
Internet-Draft General Network Element Constraint Encoding February
2015
below illustrates how a typical 2-degree ROADM system that works Suppose we have a typical 2-degree 40-channel ROADM. In addition to
with bi-directional fiber pairs is a highly asymmetrical system its two line side ports, it has 80 add and 80 drop ports. The figure
composed of two unidirectional ROADM subsystems. below illustrates how a typical 2-degree ROADM system that works with
bidirectional fiber pairs is a highly asymmetrical system composed of
two unidirectional ROADM subsystems.
(Tributary) Ports #3-#42 (Tributary) Ports #3-#42
Input added to Output dropped from Input added to Output dropped from
West Line Output East Line Input West Line Output East Line Input
vvvvv ^^^^^ vvvvv ^^^^^
| |||.| | |||.| | |||.| | |||.|
+-----| |||.|--------| |||.|------+ +-----| |||.|--------| |||.|------+
| +----------------------+ | | +----------------------+ |
| | | | | | | |
Output | | Unidirectional ROADM | | Input Output | | Unidirectional ROADM | | Input
skipping to change at page 21, line 40 skipping to change at page 21, line 33
Input | | | | Output Input | | | | Output
| | _ | | | | _ | |
| +----------------------+ | | +----------------------+ |
+-----| |||.|--------| |||.|------+ +-----| |||.|--------| |||.|------+
| |||.| | |||.| | |||.| | |||.|
vvvvv ^^^^^ vvvvv ^^^^^
(Tributary) Ports #43-#82 (Tributary) Ports #43-#82
Output dropped from Input added to Output dropped from Input added to
West Line Input East Line Output West Line Input East Line Output
Referring to the figure we see that the Input direction of ports #3- Referring to the figure above, we see that the Input direction of
#42 (add ports) can only connect to the output on port #1. While the ports #3-#42 (add ports) can only connect to the output on port #1
Input side of port #2 (line side) can only connect to the output on while the Input side of port #2 (line side) can only connect to the
ports #3-#42 (drop) and to the output on port #1 (pass through). output on ports #3-#42 (drop) and to the output on port #1 (pass
Similarly, the input direction of ports #43-#82 can only connect to through). Similarly, the input direction of ports #43-#82 can only
the output on port #2 (line). While the input direction of port #1 connect to the output on port #2 (line) while the input direction of
can only connect to the output on ports #43-#82 (drop) or port #2 port #1 can only connect to the output on ports #43-#82 (drop) or
(pass through). We can now represent this potential connectivity port #2 (pass through). We can now represent this potential
matrix as follows. This representation uses only 29 32-bit words. connectivity matrix as follows. This representation uses only 29
32-bit words.
Internet-Draft General Network Element Constraint Encoding February
2015
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | MatrixID | Reserved | | Conn = 1 | MatrixID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 | | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 23, line 4 skipping to change at page 22, line 49
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 | | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 | | Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 | | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 | | Link Local Identifier = #43 |
Internet-Draft General Network Element Constraint Encoding February
2015
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 | | Link Local Identifier = #82 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 | | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 | | Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|| Length = 8 | | Action=0 |0 1|0 0 0 0 0 0|| Length = 8 |
skipping to change at page 23, line 38 skipping to change at page 24, line 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 8 | | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 | | Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 | | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 | | Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.4. Connectivity Matrix with Bi-directional Symmetry A.4. Connectivity Matrix with Bidirectional Symmetry
If one has the ability to renumber the ports of the previous example If one has the ability to renumber the ports of the previous example
as shown in the next figure then we can take advantage of the bi- as shown in the next figure, then we can take advantage of the
directional symmetry and use bi-directional encoding of the bidirectional symmetry and use bidirectional encoding of the
connectivity matrix. Note that we set dir=bidirectional in the link connectivity matrix. Note that we set dir=bidirectional in the Link
set fields. Set Fields.
Internet-Draft General Network Element Constraint Encoding February
2015
(Tributary) (Tributary)
Ports #3-42 Ports #43-82 Ports #3-42 Ports #43-82
West Line Output East Line Input West Line Output East Line Input
vvvvv ^^^^^ vvvvv ^^^^^
| |||.| | |||.| | |||.| | |||.|
+-----| |||.|--------| |||.|------+ +-----| |||.|--------| |||.|------+
| +----------------------+ | | +----------------------+ |
| | | | | | | |
Output | | Unidirectional ROADM | | Input Output | | Unidirectional ROADM | | Input
skipping to change at page 25, line 5 skipping to change at page 25, line 5
Input | | | | Output Input | | | | Output
| | _ | | | | _ | |
| +----------------------+ | | +----------------------+ |
+-----| |||.|--------| |||.|------+ +-----| |||.|--------| |||.|------+
| |||.| | |||.| | |||.| | |||.|
vvvvv ^^^^^ vvvvv ^^^^^
Ports #3-#42 Ports #43-82 Ports #3-#42 Ports #43-82
Output dropped from Input added to Output dropped from Input added to
West Line Input East Line Output West Line Input East Line Output
Internet-Draft General Network Element Constraint Encoding February
2015
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | MatrixID | Reserved | | Conn = 1 | MatrixID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Add/Drops #3-42 to Line side #1 Note: Add/Drop #3-42 to Line side #1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 0|0 0 0 0 0 0| Length = 12 | | Action=1 |0 0|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 | | Link Local Identifier = #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 | | Link Local Identifier = #42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 | | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 | | Link Local Identifier = #1 |
skipping to change at page 25, line 48 skipping to change at page 26, line 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 | | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 | | Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 | | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 | | Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.5. Priority Flags in Available/Shared Backup Labels A.5. Priority Flags in Available/Shared Backup Labels
If one wants to make a set of labels (indicated by Label Set Field If one wants to make a set of labels (indicated by Label Set Field
#1) available only for the highest priority level (Priority Level 0) #1) available only for the highest priority level (Priority Level 0)
while allowing a set of labels (indicated by Label Set Field #2) to
Internet-Draft General Network Element Constraint Encoding February be available to all priority levels, the following encoding will
2015
while allowing a set of labels (indicated by Label Set Field #2)
available to all priority levels, the following encoding will
express such need. express such need.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 0 0 0| Reserved | |1 0 0 0 0 0 0 0| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field #1 | | Label Set Field #1 |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 1 1 1 1 1| Reserved | |1 1 1 1 1 1 1 1| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field #2 | | Label Set Field #2 |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Internet-Draft General Network Element Constraint Encoding February Contributors
2015
6. References
6.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", RFC 2863, June 2000.
[RFC3209] Awduche, D., et al. "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, December 2001.
[RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Functional Description", RFC 3471,
January 2003.
[G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM
applications: DWDM frequency grid", June, 2002.
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
Extensions in Support of Generalized Multi-Protocol Label
Switching (GMPLS)", RFC 4202, October 2005
[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4203, October 2005.
[RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 5307, October 2008.
[RFC6205] T. Otani, Ed. and D. Li, Ed., "Generalized Labels for
Lambda-Switch-Capable (LSC) Label Switching Routers", RFC
6205, March 2011.
Internet-Draft General Network Element Constraint Encoding February
2015
6.2. Informative References
[RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
Element (PCE) communication Protocol (PCEP) - Version 1",
RFC5440.
[RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, July 2010.
[RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and
Path Computation Element (PCE) Control of Wavelength
Switched Optical Networks (WSONs)", RFC 6163, April 2011.
[Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, "Modeling
WDM Wavelength Switching Systems for Use in GMPLS and
Automated Path Computation", Journal of Optical
Communications and Networking, vol. 1, June, 2009, pp.
187-195.
[RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
Wavelength Assignment Information Model for Wavelength
Switched Optical Networks", work in progress: draft-ietf-
ccamp-rwa-info.
Internet-Draft General Network Element Constraint Encoding February
2015
7. Contributors
Diego Caviglia Diego Caviglia
Ericsson Ericsson
Via A. Negrone 1/A 16153 Via A. Negrone 1/A 16153
Genoa Italy Genoa
Italy
Phone: +39 010 600 3736 Phone: +39 010 600 3736
Email: diego.caviglia@ericsson.com EMail: diego.caviglia@ericsson.com
Anders Gavler Anders Gavler
Acreo AB Acreo AB
Electrum 236 Electrum 236
SE - 164 40 Kista Sweden SE - 164 40 Kista
Sweden
Email: Anders.Gavler@acreo.se EMail: Anders.Gavler@acreo.se
Jonas Martensson Jonas Martensson
Acreo AB Acreo AB
Electrum 236 Electrum 236
SE - 164 40 Kista, Sweden SE - 164 40 Kista
Sweden
Email: Jonas.Martensson@acreo.se EMail: Jonas.Martensson@acreo.se
Itaru Nishioka Itaru Nishioka
NEC Corp. NEC Corp.
1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1753 Simonumabe
Nakahara-ku, Kawasaki, Kanagawa 211-8666
Japan Japan
Phone: +81 44 396 3287 Phone: +81 44 396 3287
Email: i-nishioka@cb.jp.nec.com EMail: i-nishioka@cb.jp.nec.com
Rao Rajan Rao Rajan
Infinera Infinera
EMail: rrao@infinera.com
Email: rrao@infinera.com
Giovanni Martinelli Giovanni Martinelli
CISCO Cisco
EMail: giomarti@cisco.com
Email: giomarti@cisco.com
Remi Theillaud Remi Theillaud
Internet-Draft General Network Element Constraint Encoding February
2015
Marben Marben
remi.theillaud@marben-products.com EMail: remi.theillaud@marben-products.com
Authors' Addresses Authors' Addresses
Greg M. Bernstein (ed.) Greg M. Bernstein (editor)
Grotto Networking Grotto Networking
Fremont California, USA Fremont, California
United States
Phone: (510) 573-2237 Phone: (510) 573-2237
Email: gregb@grotto-networking.com EMail: gregb@grotto-networking.com
Young Lee (ed.) Young Lee (editor)
Huawei Technologies Huawei Technologies
1700 Alma Drive, Suite 100 1700 Alma Drive, Suite 100
Plano, TX 75075 Plano, TX 75075
USA United States
Phone: (972) 509-5599 (x2240) Phone: (972) 509-5599 (x2240)
Email: ylee@huawei.com EMail: ylee@huawei.com
Dan Li Dan Li
Huawei Technologies Co., Ltd. Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base, F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District Bantian, Longgang District
Shenzhen 518129 P.R.China Shenzhen 518129
China
Phone: +86-755-28973237 Phone: +86-755-28973237
Email: danli@huawei.com EMail: danli@huawei.com
Wataru Imajuku Wataru Imajuku
NTT Network Innovation Labs NTT Network Innovation Labs
1-1 Hikari-no-oka, Yokosuka, Kanagawa 1-1 Hikari-no-oka, Yokosuka, Kanagawa
Japan Japan
Phone: +81-(46) 859-4315 Phone: +81-(46) 859-4315
Email: imajuku.wataru@lab.ntt.co.jp EMail: imajuku.wataru@lab.ntt.co.jp
Internet-Draft General Network Element Constraint Encoding February
2015
Jianrui Han Jianrui Han
Huawei Technologies Co., Ltd. Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base, F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District Bantian, Longgang District
Shenzhen 518129 P.R.China Shenzhen 518129
China
Phone: +86-755-28972916 Phone: +86-755-28972916
Email: hanjianrui@huawei.com EMail: hanjianrui@huawei.com
 End of changes. 199 change blocks. 
587 lines changed or deleted 488 lines changed or added

This html diff was produced by rfcdiff 1.42. The latest version is available from http://tools.ietf.org/tools/rfcdiff/