draft-ietf-ccamp-optical-impairment-topology-yang-00.txt   draft-ietf-ccamp-optical-impairment-topology-yang-01.txt 
CCAMP Working Group Y. Lee CCAMP Working Group Y. Lee
Internet Draft H. Zheng Internet Draft Futurewei
Intended Status: Standard Track I. Busi Intended Status: Standard Track
Huawei Expires: November 27, 2019 V. Lopez
Expires: October 9, 2019
N. Sambo
Scuola Superiore Sant'Anna
V. Lopez
Telefonica Telefonica
G. Galimberti G. Galimberti
G. Martinelli
Cisco Cisco
Jean Luc Auge Jean Luc Auge
Ester LE Rouzic
Julien Meuric
Orange Orange
D. Beller D. Beller
S. Belotti
E. Griseri
Nokia Nokia
Gert Grammel May 27, 2019
Juniper
April 9, 2019
A Yang Data Model for Optical Impairment-aware Topology A Yang Data Model for Optical Impairment-aware Topology
draft-ietf-ccamp-optical-impairment-topology-yang-00 draft-ietf-ccamp-optical-impairment-topology-yang-01
Abstract Abstract
In order to provision an optical connection through optical In order to provision an optical connection through optical
networks, a combination of path continuity, resource availability, networks, a combination of path continuity, resource availability,
and impairment constraints must be met to determine viable and and impairment constraints must be met to determine viable and
optimal paths through the network. The determination of appropriate optimal paths through the network. The determination of appropriate
paths is known as Impairment-Aware Routing and Wavelength Assignment paths is known as Impairment-Aware Routing and Wavelength Assignment
(IA-RWA) for WSON, while it is known as Impairment-Aware Routing and (IA-RWA) for WSON, while it is known as Impairment-Aware Routing and
Spectrum Assigment (IA-RSA) for SSON. Spectrum Assigment (IA-RSA) for SSON.
skipping to change at page 2, line 19 skipping to change at page 2, line 4
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet- other groups may also distribute working documents as Internet-
Drafts. Drafts.
Internet-Drafts are draft documents valid for a maximum of six Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress." reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html http://www.ietf.org/shadow.html
This Internet-Draft will expire on October 9, 2019. This Internet-Draft will expire on November 27, 2019.
Copyright Notice Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
skipping to change at page 3, line 4 skipping to change at page 2, line 28
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License. warranty as described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction...................................................3 1. Introduction...................................................3
1.1. Terminology...............................................4 1.1. Terminology...............................................4
1.2. Tree diagram..............................................4 1.2. Tree diagram..............................................4
1.3. Prefixes in Data Node Names...............................5 1.3. Prefixes in Data Node Names...............................4
2. Reference Architecture.........................................6 2. Reference Architecture.........................................5
2.1. Control Plane Architecture................................6 2.1. Control Plane Architecture................................5
2.2. Transport Data Plane......................................7 2.2. Transport Data Plane......................................6
2.3. OMS Media Links...........................................7 2.3. OMS Media Links...........................................7
2.3.1. Optical Tributary Signal Group (OTSiG)...............8 2.3.1. Optical Tributary Signal (OTSi)......................7
2.4. Amplifiers................................................9 2.3.2. Optical Tributary Signal Group (OTSiG)...............7
2.4.1. In-Line Amplifier...................................10 2.3.3. Media Channel Group (MCG)............................9
2.5. Transponders.............................................10 2.4. Amplifiers...............................................11
2.6. WSS/Filter...............................................10 2.5. Transponders.............................................11
2.7. Optical Fiber............................................10 2.6. WSS/Filter...............................................12
3. YANG Model (Tree Structure)...................................11 2.7. Optical Fiber............................................12
4. Optical Impairment Topology YANG Model........................12 3. YANG Model (Tree Structure)...................................12
5. Security Considerations.......................................31 4. Optical Impairment Topology YANG Model........................14
6. IANA Considerations...........................................31 5. Security Considerations.......................................34
7. Acknowledgments...............................................32 6. IANA Considerations...........................................34
8. References....................................................33 7. Acknowledgments...............................................35
8.1. Normative References.....................................33 8. References....................................................36
8.2. Informative References...................................33 8.1. Normative References.....................................36
9. Contributors..................................................34 8.2. Informative References...................................36
Authors' Addresses...............................................34 9. Contributors..................................................38
Authors' Addresses...............................................38
1. Introduction 1. Introduction
In order to provision an optical connection (an optical path) In order to provision an optical connection (an optical path)
through a wavelength switched optical networks (WSONs) or spectrum through a wavelength switched optical networks (WSONs) or spectrum
switched optical networks (SSONs), a combination of path continuity, switched optical networks (SSONs), a combination of path continuity,
resource availability, and impairment constraints must be met to resource availability, and impairment constraints must be met to
determine viable and optimal paths through the network. The determine viable and optimal paths through the network. The
determination of appropriate paths is known as Impairment-Aware determination of appropriate paths is known as Impairment-Aware
Routing and Wavelength Assignment (IA-RWA) [RFC6566] for WSON, while Routing and Wavelength Assignment (IA-RWA) [RFC6566] for WSON, while
skipping to change at page 4, line 5 skipping to change at page 3, line 36
described in this document is a WSON/SSON technology-specific Yang described in this document is a WSON/SSON technology-specific Yang
model based on the information model developed in [RFC7446] and the model based on the information model developed in [RFC7446] and the
two encoding documents [RFC7581] and [RFC7579] that developed two encoding documents [RFC7581] and [RFC7579] that developed
protocol independent encodings based on [RFC7446]. protocol independent encodings based on [RFC7446].
The intent of this document is to provide a Yang data model, which The intent of this document is to provide a Yang data model, which
can be utilized by a Multi-Domain Service Coordinator (MDSC) to can be utilized by a Multi-Domain Service Coordinator (MDSC) to
collect states of WSON impairment data from the Transport PNCs to collect states of WSON impairment data from the Transport PNCs to
enable impairment-aware optical path computation according to the enable impairment-aware optical path computation according to the
ACTN Architecture [RFC8453]. The communication between controllers ACTN Architecture [RFC8453]. The communication between controllers
is done via a NETCONF [RFC8341]. Similarly, this model can also be is done via a NETCONF [RFC8341] or a RESTCONF [RFC8040]. Similarly,
exported by the MDSC to a Customer Network Controller (CNC), which this model can also be exported by the MDSC to a Customer Network
can run an offline planning process to map latter the services in Controller (CNC), which can run an offline planning process to map
the network. latter the services in the network.
This document augments the generic TE topology draft [TE-TOPO] where This document augments the generic TE topology draft [TE-TOPO] where
possible. possible.
This document defines one YANG module: ietf-optical-impairment- This document defines one YANG module: ietf-optical-impairment-
topology (Section 3) according to the new Network Management topology (Section 3) according to the new Network Management
Datastore Architecture [RFC8342]. Datastore Architecture [RFC8342].
1.1. Terminology 1.1. Terminology
Refer to [RFC4847] and [RFC5253] for the key terms used in this Refer to [RFC6566], [RFC7698], and [G.807] for the key terms used in
document. this document.
The following terms are defined in [RFC7950] and are not redefined The following terms are defined in [RFC7950] and are not redefined
here: here:
o client o client
o server o server
o augment o augment
skipping to change at page 5, line 14 skipping to change at page 4, line 48
1.3. Prefixes in Data Node Names 1.3. Prefixes in Data Node Names
In this document, names of data nodes and other data model objects In this document, names of data nodes and other data model objects
are prefixed using the standard prefix associated with the are prefixed using the standard prefix associated with the
corresponding YANG imported modules, as shown in Table 1. corresponding YANG imported modules, as shown in Table 1.
+------------------+----------------------------------+------------+ +------------------+----------------------------------+------------+
| Prefix | YANG module | Reference | | Prefix | YANG module | Reference |
+------------------+----------------------------------+------------+ +------------------+----------------------------------+------------+
| optical-imp-topo | ietf-optical-impairment-topology | [RFC XXXX] | | optical-imp-topo | ietf-optical-impairment-topology | [RFCXXXX] |
| layer0-types | ietf-layer0-types | [WSON-topo]| | layer0-types | ietf-layer0-types | [L0-Types] |
| nw | ietf-network | [RFC8345] | | nw | ietf-network | [RFC8345] |
| nt | ietf-network-topology | [RFC8345] | | nt | ietf-network-topology | [RFC8345] |
| tet | ietf-te-topology | [TE-TOPO] | | tet | ietf-te-topology | [TE-TOPO] |
+------------------+----------------------------------+------------+ +------------------+----------------------------------+------------+
Table 1: Prefixes and corresponding YANG modules Table 1: Prefixes and corresponding YANG modules
Note: The RFC Editor will replace XXXX with the number assigned to Note: The RFC Editor will replace XXXX with the number assigned to
the RFC once this draft becomes an RFC. the RFC once this draft becomes an RFC.
2. Reference Architecture 2. Reference Architecture
2.1. Control Plane Architecture 2.1. Control Plane Architecture
Figure 1 shows the control plane architecture. Figure 1 shows the control plane architecture.
+--------+
| MDSC |
+--------+
Scope of this ID -------> ||
| ||
| +------------------------+
| | OPTICAL |
+---------+ | | DOMAIN | +---------+
| Device | | | CONTROLLER | | Device |
| config. | | +------------------------+ | config. |
+---------+ v // || \\ +---------+
______|______ // || \\ ______|______
/ OT \ // || \\ / OT \
| +--------+ |// __--__ \\| +--------+ |
| |Vend. A |--|----+ ( ) +----|--| Vend. A| |
| +--------+ | | ~-( )-~ | | +--------+ |
| +--------+ | +---/ \---+ | +--------+ |
| |Vend. B |--|--+ / \ +--|--| Vend. B| |
| +--------+ | +---( OLS Segment )---+ | +--------+ |
| +--------+ | +---( )---+ | +--------+ |
| |Vend. C |--|--+ \ / +--|--| Vend. C| |
| +--------+ | +---\ /---+ | +--------+ |
| +--------+ | | ~-( )-~ | | +--------+ |
| |Vend. D |--|----+ (__ __) +----|--| Vend. D| |
| +--------+ | -- | +--------+ |
\_____________/ \_____________/
^ ^
| |
| |
Scope of draft-ietf-ccamp-dwdm-if-param-yang
Figure 1. Control Plane Architecture Figure 1. Control Plane Architecture
The models developed in this document is an abstracted Yang model The models developed in this document is an abstracted Yang model
that may be used in the interfaces colored in yellow in Figure 1. It that may be used in the interfaces between the MDSC and the Optical
is not intended to support detailed device congiuration model. Domain Controller (aka MPI) and between the Optical Domain
Device configuration model is supported by the models presented in Controller and the Optical Device (aka SBI) in Figure 1. It is not
[draft-ietf-ccamp-dwdm-if-parameter-yang]. intended to support detailed low-level DWDM interface model. DWDM
interface model is supported by the models presented in [draft-ietf-
ccamp-dwdm-if-parameter-yang].
2.2. Transport Data Plane 2.2. Transport Data Plane
This section provides the description of the reference optical This section provides the description of the reference optical
network architecture and its relevant components to support optical network architecture and its relevant components to support optical
impairment-aware path computation. impairment-aware path computation.
Figure 2 shows the reference architecture. Figure 2 shows the reference architecture.
+-------------------+ +-------------------+ +-------------------+ +-------------------+
| ROADM Node | | ROADM Node | | ROADM Node | | ROADM Node |
| | | | | | | |
| PA +-------+ BA | ILA ILA | PA +-------+ BA | | PA +-------+ BA | ILA | PA +-------+ BA |
| +-+ | WSS/ | +-+ | _____ +--+ ____ +--+ _____ | +-+ | WSS/ | +-+ | | +-+ | WSS/ | +-+ | _____ +--+ _____ | +-+ | WSS/ | +-+ |
---|-| |-|Filter |-| |-|-()____)--| |-()___)-| |-()____)--|-| |-|Filter |-| |-|--- --|-| |-|Filter |-| |-|-()____)--| |-()____)-|-| |-|Filter |-| |-|--
| +-+ | | +-+ | +--+ +--+ | +-+ | | +-+ | | +-+ | | +-+ | +--+ | +-+ | | +-+ |
| +-------+ | optical | +-------+ | | +-------+ | optical | +-------+ |
| | | | | fiber | | | | | | | | | | fiber | | | | |
| | | | | | | | | | | | | | | | | | | |
| o-o-o | | o-o-o | | o-o-o | | o-o-o |
| transponders | | transponders | | transponders | | transponders |
+-------------------+ +-------------------+ +-------------------+ +-------------------+
OTS Link OTS Link OTS Link OTS Link OTS Link
-----------> --------> -----------> -----------> ---------->
OMS Link OMS Link
----------------------------------------------> --------------------------------->
PA: Pre-Amplifier PA: Pre-Amplifier
BA: Booster Amplifier BA: Booster Amplifier
ILA: In-Line Amplifier ILA: In-Line Amplifier
Figure 2. Reference Architecture for Optical Transport Network Figure 2. Reference Architecture for Optical Transport Network
BA (on the left side ROADM) is the ingress Amplifier and PA (on the BA (on the left side ROADM) is the ingress Amplifier and PA (on the
right side ROADM is the egress amplifier for the OMS link shown in right side ROADM is the egress amplifier for the OMS link shown in
the Figure. the Figure.
skipping to change at page 8, line 4 skipping to change at page 7, line 13
the Figure. the Figure.
2.3. OMS Media Links 2.3. OMS Media Links
According to [G.872], OMS Media Link represents a media link between According to [G.872], OMS Media Link represents a media link between
two ROADM. Specifically, it originates at the ROADM's Filter in the two ROADM. Specifically, it originates at the ROADM's Filter in the
source ROADM and terminates at the ROADM's Filter in the destination source ROADM and terminates at the ROADM's Filter in the destination
ROADM. ROADM.
OTS Media Link represents a media link: OTS Media Link represents a media link:
(i) between ROADM's BA and ILA; (i) between ROADM's BA and ILA;
(ii) between a pair of ILAs; (ii) between a pair of ILAs;
(iii) between ILA and ROADM's PA. (iii) between ILA and ROADM's PA.
OMS Media link can be decomposed of a number of elements, which are OMS Media link can be decomposed in a sequence of OTS links type
basically OTS links type (i), (ii), and (iii) as discussed above. (i), (ii), and (iii) as discussed above. OMS Media link would give
OMS Media link would give an abstracted view of impairment data an abstracted view of impairment data (e.g., power, OSNR, etc.) to
(e.g., power, OSNR, etc.) to the network controller. the network controller.
2.3.1. Optical Tributary Signal Group (OTSiG) For the sake of optical impairment evaluation OMS Media link can be
also decomposed in a sequence of elements such as BA, fiber section,
ILA, concentrated loss and PA.
The Media Channel and Network Media Channel are well modelled by the 2.3.1. Optical Tributary Signal (OTSi)
RFC7698, RFC7699 and RFC7792 reflecting the ITU-T Recommendations
G.694.1 and G.698.2.
Some work is in progress in ITU-T SG15/Q12 to define Network Media The OTSi is defined in ITU-T Recommendation G.959.1, section 3.2.4
Channel (group) that is capable of accommodating the optical [G.959.1]. The YANG model defined below assumes that a single OTSi
tributary signals (OTSi) belonging to optical tributary signal group consists of a single modulated optical carrier. This single
(OTSiG). ( see new ITU-T Draft Recommendation G.807)). modulated optical carrier conveys digital information.
Characteristics of the OTSi signal are modulation scheme (e.g. QPSK,
8-QAM, 16-QAM, etc.), baud rate (measure of the symbol rate), pulse
shaping (e.g. raised cosine - complying with the Nyquist inter
symbol interference criterion), etc.
Currently, no models exist (in the IETF nor ITU-T SG15) that define 2.3.2. Optical Tributary Signal Group (OTSiG)
how the optical tributary signals are described inside the Network
Media Channel Group in terms of OTSi identifier, OTSi carrier
frequency and OTSi signal width.
There are several options how the mentioned parameters can be The definition of the OTSiG is currently being moved from ITU-T
described. One option is to use the description defined in draft- Recommendation G.709 [G.709] to the new draft Recommendation G.807
ggalimbe-ccamp-flexigrid-carrier-label. (still work in progress) [G.807]. The OTSiG is an electrical signal
that is carried by one or more OTSi's. The relationship between the
OTSiG and the the OTSi's is described in ITU-T draft Recommendation
G.807, section 10.2 [G.807]. The YANG model below supports both
cases: the single OTSi case where the OTSiG contains a single OTSi
(see ITU-T draft Recommendation G.807, Figure 10-2) and the multiple
OTSi case where the OTSiG consists of more than one OTSi (see ITU-T
draft Recommendation G.807, Figure 10-3). From a layer 0 topology
YANG model perspective, the OTSiG is a logical construct that
associates the OTSi's, which belong to the same OTSiG. The typical
application of an OTSiG consisting of more than one OTSi is inverse
multiplexing. Constraints exist for the OTSi's belonging to the same
OTSiG such as: (i) all OTSi's must be co-routed over the same
optical fibers and nodes and (ii) the differential delay between the
different OTSi's may not exceed a certain limit. Example: a 400Gbps
client signal may be carried by 4 OTSi's where each OTSi carries
100Gbps of client traffic.
A second option is to describe the OTsi carrier frequency relative OTSiG
to the anchor frequency 193.1THz based on a well-defined granularity __________________________/\__________________________
(e.g. OTSi carrier frequency = 193100 (GHz) + K * granularity (GHz) / \
where K is a signed integer value). m=7
- - - +---------------------------X---------------------------+ - -
/ / / | | / /
/ / /| OTSi OTSi OTSi OTSi |/ / /
/ / / | ^ ^ ^ ^ | / /
/ / /| | | | | |/ / /
/ / / | | | | | | / /
/ / /| | | | | |/ / /
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
--+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---
n = ?
K1 K2 K3 K4
A third option is to explicitly describe the OTSi carrier frequency 2.3.3 Media Channel (MC)
and the OTSi signal width in GHz with a certain accuracy.
It is proposed to use the third option which is independent of the The definition of the MC is currently being moved from ITU-T
n, m values alredy define in ITU-T Recommendation G.694.1. Recommendation G.872 [G.872] to the new draft Recommendation G.807
(still work in progress) [G.807]. Section 3.2.2 defines the term MC
and section 7.1.2 provides a more detailed description with some
examples. The definition of the MC is very generic (see ITU-T draft
Recommendation G.807, Figure 7-1). In the YANG model below, the MC
is used with the following semantics:
The OTSi carrier frequency is described in GHz with 3 fractional The MC is an end-to-end topological network construct and can be
digits (decimal 64 fraction digits 3). considered as an "optical pipe" with a well-defined frequency slot
between one or more optical transmitters each generating an OTSi and
the corresponding optical receivers terminating the OTSi's. If the
MC carries more than one OTSi, it is assumed that these OTSi's
belong to the same OTSiG.
The OTSi signal width is described in GHz with 3 fractional digits m=8
(decimal 64 fraction digits 3) and includes the signal roll off as +-------------------------------X------------------------------+
well as some guard band. | | |
| +----------X----------+ | +----------X----------+ |
| | OTSi | | OTSi | |
| | o | | | o | |
| | | | | | | |
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
--+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--
| n=4 |
K1 K2
The accuracy of 0.001 GHz does not impose a requirement on the <------------------------ Media Channel ----------------------->
optical transceiver components (optical transmitter) in terms of
carrier frequency tuneability precision. Today's components
typically provide a tunability precision in the range of 1..1.5GHz
(carrier frequency offset compared to the configured nominal carrier
frequency). Future components may provide a better precision as
technology evolves.
If needed, a controller may retrieve the transceiver properties in The frequency slot of the MC is defined by the n value defining the
terms of carrier frequency tuneability precision in order to be central frequency of the MC and the m value that defines the width
capable of properly configuring the underlying transceiver. of the MC following the flexible grid definition in ITU-T
Recommendation G.694.1 [G.694.1]. In this model, the effective
frequency slot as defined in ITU-T draft Recommendation G.807 is
equal to the frequency slot of this end-to-end MC. It is also
assumed that ROADM devices can switch MCs. For various reasons (e.g.
differential delay), it is preferred to use a single MC for all
OTSi's of the same OTSiG. It may however not always be possible to
find a single MC for carrying all OTSi's of an OTSiG due to spectrum
occupation along the OTSiG path.
[Note from the Editor]: 2.3.3. Media Channel Group (MCG)
The definition of the MCG is currently work in progress in ITU-T and
is defined in section 7.1.3 of the new ITU-T draft Recommendation
G.807 (still work in progress) [G.807]. The YANG model below assumes
that the MCG is a logical grouping of one or more MCs that are used
to to carry all OTSi's belonging to the same OTSiG.
As this description is arbitrarily proposed by the authors to cover The MCG can be considered as an association of MCs without defining
a lack of information in IETF and ITU-T, a liaison request to ITU-T a hierarchy where each MC is defined by its (n,m) value pair. An MCG
is needed. consists of more than one MC when no single MC can be found from
source to destination that is wide enough to accommodate all OTSi's
(modulated carriers) that belong to the same OTSiG. In such a case
the set of OTSi's belonging to a single OTSiG have to be split
across 2 or more MCs.
The authors are willing to contribute to Liaison editing and to MCG1 = {M1.1, M1.2}
consider any feedback and proposal from ITU-T. _______________________/\_____________________________
/ \
M1.1 M2 M1.2
________/\____________ _____/\______ ____/\_____
/ \ / \/ \
- - +-------------------------------------------------------+ - -
/ / | | / / / / / / /| | / /
/ /| OTSi OTSi OTSi |/ / / / / / / | OTSi |/ /
/ / | ^ ^ ^ | / / / / / / /| ^ | / /
/ /| | | | |/ / / / / / / | | |/ /
/ / | | | | | / / / / / / /| | | / /
/ /| | | | |/ / / / / / / | | |/ /
-7 -1 0 1 2 3 4 5 6 7 8 9 10 . . . . . 17 . . 21
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n=0 n=11 n=17
K1 K2 K3 K4
The MCG is relevant for path computation because all end-to-end MCs
belonging to the same MCG have to be co-routed, i.e., have to follow
the same path. Additional constraints may exist (e.g. differential
delay).
2.4. Amplifiers 2.4. Amplifiers
There are three basic types of amplifiers. ILA is In-Line Amplifier Optical amplifiers are in charge of amplifying the optical signal in
which is a separate node type while Pre-Amplifier and Booster the optical itself without any electrical conversion. There are
Amplifier are integral elements of ROADM node. From a data modeling three main technologies to build amplifiers: Erbium Doped Fiber
perspective, Pre-Amplifier and Booster Amplifier are internal Amplifier (EDFA), Raman Fiber Amplifier (RFA), and Semiconductor
functions of a ROADM node and as such these elements are hidden Optical Amplifier (SOA). Nowadays, most of optical networks uses
within ROADM node. In this document, we would avoid internal node EDFAs. However, RFA has an attractive feature that it works in any
details, but attempt to abstract as much as possible. wavelength band with a similar or lower noise figures compared to
EDFA. On the other hand, RFAs consumes more power and are more
expensive than EDFAs.
Amplifiers can be classified according to their location in the
communication link. There are three basic types of amplifiers: ILA,
Pre-Amplifier and Booster. ILA is In-Line Amplifier which is a
separate node type while Pre-Amplifier and Booster Amplifier are
integral elements of ROADM node. From a data modeling perspective,
Pre-Amplifier and Booster Amplifier are internal functions of a
ROADM node and as such these elements are hidden within ROADM node.
In this document, we would avoid internal node details, but attempt
to abstract as much as possible.
One modeling consideration of the ROADM internal is to model power One modeling consideration of the ROADM internal is to model power
parameter through the ROADM, factoring the output power from the parameter through the ROADM, factoring the output power from the
Pre-Amplifier minus the ROADM power loss would give the input power Pre-Amplifier minus the ROADM power loss would give the input power
to the Booster Amplifier. In other words, Power_in (@ ROADM Booster) to the Booster Amplifier. In other words, Power_in (@ ROADM Booster)
= Power_out (@ ROADM Pre-Amplifier) - Power_loss (@ ROADM = Power_out (@ ROADM Pre-Amplifier) - Power_loss (@ ROADM
WSS/Filter). WSS/Filter).
2.4.1. In-Line Amplifier
(Need to explain details including VOA)
2.5. Transponders 2.5. Transponders
A Transponder is the element that sends and receives the optical A Transponder is the element that sends and receives the optical
signal from a fiber. A transponder is typically characterized by its signal from a fiber. A transponder is typically characterized by its
data rate and the maximum distance the signal can travel. Channel data rate and the maximum distance the signal can travel. Channel
frequency, per channel input power, FEC and Modulation are also frequency, per channel input power, FEC and Modulation are also
associated with a transponder. From a path computation point of associated with a transponder. From a path computation point of
view, the selection of the compatible source and destination view, the selection of the compatible source and destination
transponders is an important factor for optical signal to traverse transponders is an important factor for optical signal to traverse
through the fiber. There are three main approaches to determine through the fiber. There are three main approaches to determine
optical signal compatibility. Application Code based on G.682.2 is optical signal compatibility. Application Code based on G.698.2 is
one approach that only checks the code at both ends of the one approach that only checks the code at both ends of the link.
interface. Another approach is organization codes that are specific Another approach is organization codes that are specific to an
to an organization or a vendor. The third approach is specify all organization or a vendor. The third approach is specify all the
the relevant parameters explicitly, e.g., FEC type, Modulation type, relevant parameters explicitly, e.g., FEC type, Modulation type,
etc. etc.
[Editor's Note: The current YANG model described in Section 3 with
respect to the relationship between the transponder attributes and
the OTSi will need to be investigated in the future revision]
2.6. WSS/Filter 2.6. WSS/Filter
WSS separates the incoming light input spectrally as well as WSS separates the incoming light input spectrally as well as
spatially, then chooses the wavelength that is of interest by spatially, then chooses the wavelength that is of interest by
deflecting it from the original optical path and then couple it to deflecting it from the original optical path and then couple it to
another optical fibre port. WSS/Filter is internal to ROADM. So this another optical fibre port. WSS/Filter is internal to ROADM. So this
document does not model the inside of ROADM. document does not model the inside of ROADM.
2.7. Optical Fiber 2.7. Optical Fiber
skipping to change at page 11, line 7 skipping to change at page 12, line 32
several fiber-level parameters that need to be factored in, such as, several fiber-level parameters that need to be factored in, such as,
fiber-type, length, loss coefficient, pmd, connectors (in/out). fiber-type, length, loss coefficient, pmd, connectors (in/out).
ITU-T G.652 defines Standard Singlemode Fiber; G.654 Cutoff Shifted ITU-T G.652 defines Standard Singlemode Fiber; G.654 Cutoff Shifted
Fiber; G.655 Non-Zero Dispersion Shifted Fiber; G.656 Non-Zero Fiber; G.655 Non-Zero Dispersion Shifted Fiber; G.656 Non-Zero
Dispersion for Wideband Optical Transport; G.657 Bend-Insensitive Dispersion for Wideband Optical Transport; G.657 Bend-Insensitive
Fiber. There may be other fiber-types that need to be considered. Fiber. There may be other fiber-types that need to be considered.
3. YANG Model (Tree Structure) 3. YANG Model (Tree Structure)
module: ietf-optical-impairment-topology module: ietf-optical-impairment-topology
augment /nw:networks/nw:network/nw:network-types/tet:te-topology: augment /nw:networks/nw:network/nw:network-types/tet:te-topology:
+--rw optical-impairment-topology! +--rw optical-impairment-topology!
augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes: augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes:
+--ro OMS-attributes +--ro OMS-attributes
+--ro generalized-snr? decimal64 +--ro generalized-snr? decimal64
+--ro equalization-mode identityref +--ro equalization-mode identityref
+--ro (power-param)? +--ro (power-param)?
| +--:(channel-power) | +--:(channel-power)
| | +--ro nominal-channel-power? decimal64 | | +--ro nominal-channel-power? decimal64
| +--:(power-spectral-density) | +--:(power-spectral-density)
| +--ro nominal-power-spectral-density? decimal64 | +--ro nominal-power-spectral-density? decimal64
+--ro network-media-channel-group* [i] +--ro media-channel-group* [i]
| +--ro i int16 | +--ro i int16
| +--ro current-channels* [flex-n] | +--ro media-channels* [flexi-n]
| | +--ro flex-n uint16 | +--ro flexi-n uint16
| | +--ro flex-m? uint16 | +--ro flexi-m? uint16
| +--ro OTSiG-container* [carrier-id] | +--ro OTSiG-ref? leafref
| +--ro carrier-id int16 | +--ro OTSi-ref? leafref
| +--ro OTSi-carrier-frequency? decimal64 +--ro OMS-elements* [elt-index]
| +--ro OTSi-signal-width? decimal64 +--ro elt-index uint16
| +--ro channel-delta-power? decimal64 +--ro uid? string
+--ro OMS-elements* [elt-index] +--ro type identityref
+--ro elt-index uint16 +--ro element
+--ro uid? string +--ro (element)?
+--ro type identityref +--:(amplifier)
+--ro element | +--ro amplifier
+--ro (element)? | +--ro type_variety string
+--:(amplifier) | +--ro operational
| +--ro amplifier | +--ro actual-gain
| +--ro type_variety string | | decimal64
| +--ro operational | +--ro tilt-target
| +--ro actual-gain decimal64 | | decimal64
| +--ro tilt-target decimal64 | +--ro out-voa
| +--ro out-voa decimal64 | | decimal64
| +--ro in-voa decimal64 | +--ro in-voa
| +--ro (power-param)? | | decimal64
| +--:(channel-power) | +--ro (power-param)?
| | +--ro nominal-channel-power? decimal64 | +--:(channel-power)
| +--:(power-spectral-density) | | +--ro nominal-channel-power?
| +--ro nominal-power-spectral-density? decimal64 | | decimal64
+--:(fiber) | +--:(power-spectral-density)
| +--ro fiber | +--ro nominal-power-spectral-density?
| +--ro type_variety string | decimal64
| +--ro length decimal64 +--:(fiber)
| +--ro loss_coef decimal64 | +--ro fiber
| +--ro total_loss decimal64 | +--ro type_variety string
| +--ro pmd? decimal64 | +--ro length decimal64
| +--ro conn_in? decimal64 | +--ro loss_coef decimal64
| +--ro conn_out? decimal64 | +--ro total_loss decimal64
+--:(concentratedloss) | +--ro pmd? decimal64
+--ro concentratedloss | +--ro conn_in? decimal64
+--ro loss? decimal64 | +--ro conn_out? decimal64
augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-point: +--:(concentratedloss)
+--ro transponders-list* [transponder-id] +--ro concentratedloss
+--ro transponder-id uint32 +--ro loss? decimal64
+--ro (mode)? augment /nw:networks/nw:network/nw:node/tet:te
| +--:(G.692.2) /tet:tunnel-termination-point:
| | +--ro G.692.2? layer0-types:standard-mode +--ro OTSiG-element* [OTSiG-identifier]
| +--:(organizational_mode) | +--ro OTSiG-identifier int16
| | +--ro operational-mode? layer0-types:operational-mode | +--ro OTSiG-container
| | +--ro organization-identifier? layer0-types:vendor-identifier | +--ro OTSi* [OTSi-carrier-id]
| +--:(explicit_mode) | +--ro OTSi-carrier-id int16
| +--ro available-modulation* identityref | +--ro OTSi-carrier-frequency? decimal64
| +--ro modulation-type? identityref | +--ro OTSi-signal-width? decimal64
| +--ro available-baud-rates* uint32 | +--ro channel-delta-power? decimal64
| +--ro configured-baud-rate? uint32 +--ro transponders-list* [transponder-id]
| +--ro available-FEC* identityref +--ro transponder-id uint32
| +--ro FEC-type? identityref +--ro (mode)?
| +--ro FEC-code-rate? decimal64 | +--:(G.692.2)
| +--ro FEC-threshold? decimal64 | | +--ro standard_mode? layer0-types:standard-mode
+--ro power? int32 | +--:(organizational_mode)
+--ro power-min? int32 | | +--ro operational-mode?
+--ro power-max? int32 | | | layer0-types:operational-mode
augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-point: | | +--ro organization-identifier?
+--ro transponder-list* [carrier-id] | | layer0-types:vendor-identifier
+--ro carrier-id uint32 | +--:(explicit_mode)
| +--ro available-modulation* identityref
| +--ro modulation-type? identityref
| +--ro available-baud-rates* uint32
| +--ro configured-baud-rate? uint32
| +--ro available-FEC* identityref
| +--ro FEC-type? identityref
| +--ro FEC-code-rate? decimal64
| +--ro FEC-threshold? decimal64
+--ro power? int32
+--ro power-min? int32
+--ro power-max? int32
augment /nw:networks/nw:network/nw:node/tet:te
/tet:tunnel-termination-point:
+--ro transponder-list* [carrier-id]
+--ro carrier-id uint32
4. Optical Impairment Topology YANG Model 4. Optical Impairment Topology YANG Model
<CODE BEGINS> file ietf-optical-impairment-topology@2018-02-27.yang <CODE BEGINS> file ietf-optical-impairment-topology@2018-05-22.yang
module ietf-optical-impairment-topology {
module ietf-optical-impairment-topology {
yang-version 1.1; yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology"; namespace "urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology";
prefix "optical-imp-topo"; prefix "optical-imp-topo";
import ietf-network { import ietf-network {
prefix "nw"; prefix "nw";
} }
import ietf-network-topology { import ietf-network-topology {
prefix "nt"; prefix "nt";
} }
import ietf-te-topology { import ietf-te-topology {
prefix "tet"; prefix "tet";
} }
import ietf-layer0-types { import ietf-layer0-types {
prefix "layer0-types"; prefix "layer0-types";
skipping to change at page 13, line 24 skipping to change at page 15, line 20
} }
import ietf-layer0-types { import ietf-layer0-types {
prefix "layer0-types"; prefix "layer0-types";
} }
organization organization
"IETF CCAMP Working Group"; "IETF CCAMP Working Group";
contact contact
"Editor: Young Lee <leeyoung@huawei.com> "Editor: Young Lee <younglee.tx@gmail.com>
Editor: Haomian Zheng <zhenghaomian@huawei.com> Editor: Haomian Zheng <zhenghaomian@huawei.com>
Editor: Nicola Sambo <nicosambo@gmail.com> Editor: Nicola Sambo <nicosambo@gmail.com>
Editor: Victor Lopez <victor.lopezalvarez@telefonica.com> Editor: Victor Lopez <victor.lopezalvarez@telefonica.com>
Editor: Gabriele Galimberti <ggalimbe@cisco.com> Editor: Gabriele Galimberti <ggalimbe@cisco.com>
Editor: Giovanni Martinelli <giomarti@cisco.com>
Editor: Auge Jean-Luc <jeanluc.auge@orange.com> Editor: Auge Jean-Luc <jeanluc.auge@orange.com>
Editor: Le Rouzic Esther <esther.lerouzic@orange.com> Editor: Le Rouzic Esther <esther.lerouzic@orange.com>
Editor: Julien Meuric <julien.meuric@orange.com> Editor: Julien Meuric <julien.meuric@orange.com>
Editor: Italo Busi <Italo.Busi@huawei.com>"; Editor: Italo Busi <Italo.Busi@huawei.com>
Editor: Dieter Beller <dieter.beller@nokia.com>
Editor: Sergio Belotti <Sergio.belotti@nokia.com>
Editor: Griseri Enrico <enrico.griseri@nokia.com>
Editor: Gert Grammel <ggrammel@juniper.net>";
description description
"This module contains a collection of YANG definitions for "This module contains a collection of YANG definitions for
impairment-aware optical networks. impairment-aware optical networks.
Copyright (c) 2019 IETF Trust and the persons identified as Copyright (c) 2019 IETF Trust and the persons identified as
authors of the code. All rights reserved. authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's Legal License set forth in Section 4.c of the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info)."; (http://trustee.ietf.org/license-info).";
revision 2019-02-27 { revision 2019-05-22 {
description description
"Initial Version"; "Initial Version";
reference reference
"RFC XXXX: A Yang Data Model for Impairment-aware "RFC XXXX: A Yang Data Model for Impairment-aware
Optical Networks"; Optical Networks";
} }
identity modulation { identity modulation {
description "base identity for modulation type"; description "base identity for modulation type";
} }
skipping to change at page 15, line 15 skipping to change at page 17, line 16
} }
identity FEC { identity FEC {
description description
"Enumeration that defines the type of "Enumeration that defines the type of
Forward Error Correction"; Forward Error Correction";
} }
identity reed-solomon { identity reed-solomon {
base FEC; base FEC;
description description
"Reed-Solomon error correction"; "Reed-Solomon error correction";
} }
identity hamming-code { identity hamming-code {
base FEC; base FEC;
description description
"Hamming Code error correction"; "Hamming Code error correction";
} }
identity golay { identity golay {
base FEC; base FEC;
description "Golay error correction"; description "Golay error correction";
} }
typedef fiber-type { typedef fiber-type {
type enumeration { type enumeration {
enum G.652 { enum G.652 {
description "G.652 Standard Singlemode Fiber"; description "G.652 Standard Singlemode Fiber";
} }
enum G.654 { enum G.654 {
description "G.654 Cutoff Shifted Fiber"; description "G.654 Cutoff Shifted Fiber";
} }
enum G.653 { enum G.653 {
description "G.653 Dispersion Shifted Fiber"; description "G.653 Dispersion Shifted Fiber";
} }
enum G.655 { enum G.655 {
description "G.655 Non-Zero Dispersion Shifted Fiber"; description "G.655 Non-Zero Dispersion Shifted Fiber";
} }
enum G.656 { enum G.656 {
description "G.656 Non-Zero Dispersion for Wideband description "G.656 Non-Zero Dispersion for Wideband
Optical Transport"; Optical Transport";
} }
enum G.657 { enum G.657 {
description "G.657 Bend-Insensitive Fiber"; description "G.657 Bend-Insensitive Fiber";
} }
} }
description description
"ITU-T based fiber-types"; "ITU-T based fiber-types";
} }
grouping transponder-attributes { grouping transponder-attributes {
description "Configuration of an optical transponder"; description "Configuration of an optical transponder";
leaf-list available-modulation { leaf-list available-modulation {
type identityref { type identityref {
base modulation; base modulation;
} }
config false; config false;
description description
"List determining all the available modulations"; "List determining all the available modulations";
} }
leaf modulation-type { leaf modulation-type {
type identityref { type identityref {
base modulation; base modulation;
} }
config false; config false;
description description
"Modulation configured for the transponder"; "Modulation configured for the transponder";
} }
leaf-list available-baud-rates { leaf-list available-baud-rates {
type uint32; type uint32;
units Bd; units Bd;
config false; config false;
description description
"list of available baud-rates. Baud-rate is the unit for "list of available baud-rates. Baud-rate is the unit for
symbol rate or modulation rate in symbols per second or symbol rate or modulation rate in symbols per second or
pulses per second. It is the number of distinct symbol pulses per second. It is the number of distinct symbol
changes (signaling events) made to the transmission medium changes (signaling events) made to the transmission medium
per second in a digitally modulated signal or a line code"; per second in a digitally modulated signal or a line code";
} }
leaf configured-baud-rate { leaf configured-baud-rate {
type uint32; type uint32;
units Bd; units Bd;
config false; config false;
description "configured baud-rate"; description "configured baud-rate";
} }
leaf-list available-FEC { leaf-list available-FEC {
type identityref { type identityref {
base FEC; base FEC;
} }
config false; config false;
description "List determining all the available FEC"; description "List determining all the available FEC";
} }
leaf FEC-type { leaf FEC-type {
type identityref { type identityref {
base FEC; base FEC;
} }
config false; config false;
description description
"FEC type configured for the transponder"; "FEC type configured for the transponder";
} }
leaf FEC-code-rate { leaf FEC-code-rate {
type decimal64 { type decimal64 {
fraction-digits 8; fraction-digits 8;
range "0..max"; range "0..max";
} }
config false; config false;
description "FEC-code-rate"; description "FEC-code-rate";
} }
leaf FEC-threshold { leaf FEC-threshold {
type decimal64 { type decimal64 {
fraction-digits 8; fraction-digits 8;
range "0..max"; range "0..max";
} }
config false; config false;
description description
"Threshold on the BER, for which FEC is able to correct errors"; "Threshold on the BER, for which FEC is able to correct errors";
} }
} }
grouping sliceable-transponder-attributes { grouping sliceable-transponder-attributes {
description description
"Configuration of a sliceable transponder."; "Configuration of a sliceable transponder.";
list transponder-list { list transponder-list {
key "carrier-id"; key "carrier-id";
skipping to change at page 17, line 50 skipping to change at page 19, line 51
leaf carrier-id { leaf carrier-id {
type uint32; type uint32;
config false; config false;
description "Identifier of the carrier"; description "Identifier of the carrier";
} }
} }
} }
grouping optical-fiber-data { grouping optical-fiber-data {
description description
"optical link (fiber) attributes with impairment data"; "optical link (fiber) attributes with impairment data";
leaf fiber-type { leaf fiber-type {
type fiber-type; type fiber-type;
config false; config false;
description "fiber-type"; description "fiber-type";
} }
leaf span-length { leaf span-length {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
skipping to change at page 18, line 24 skipping to change at page 20, line 26
description "the lenght of the fiber span in km"; description "the lenght of the fiber span in km";
} }
leaf input-power { leaf input-power {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units "dBm"; units "dBm";
config false; config false;
description description
"Average input power level estimated at the receiver "Average input power level estimated at the receiver
of the link"; of the link";
} }
leaf output-power { leaf output-power {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units "dBm"; units "dBm";
description description
"Mean launched power at the transmitter of the link"; "Mean launched power at the transmitter of the link";
} }
leaf pmd { leaf pmd {
type decimal64 { type decimal64 {
fraction-digits 8; fraction-digits 8;
range "0..max"; range "0..max";
} }
units "ps/(km)^0.5"; units "ps/(km)^0.5";
config false; config false;
description description
"Polarization Mode Dispersion"; "Polarization Mode Dispersion";
} }
leaf cd { leaf cd {
type decimal64 { type decimal64 {
fraction-digits 5; fraction-digits 5;
} }
units "ps/nm/km"; units "ps/nm/km";
config false; config false;
description description
"Cromatic Dispersion"; "Cromatic Dispersion";
} }
leaf osnr { leaf osnr {
type decimal64 { type decimal64 {
fraction-digits 5; fraction-digits 5;
} }
units "dB"; units "dB";
config false; config false;
description description
"Optical Signal-to-Noise Ratio (OSNR) estimated "Optical Signal-to-Noise Ratio (OSNR) estimated
at the receiver"; at the receiver";
} }
leaf sigma { leaf sigma {
type decimal64 { type decimal64 {
fraction-digits 5; fraction-digits 5;
} }
units "dB"; units "dB";
config false; config false;
description description
"sigma in the Gausian Noise Model"; "sigma in the Gausian Noise Model";
} }
} }
grouping optical-channel-data { grouping optical-channel-data {
description description
"optical impairment data per channel/wavelength"; "optical impairment data per channel/wavelength";
leaf bit-rate { leaf bit-rate {
type decimal64 { type decimal64 {
fraction-digits 8; fraction-digits 8;
range "0..max"; range "0..max";
} }
units "Gbit/s"; units "Gbit/s";
config false; config false;
description description
"Gross bit rate"; "Gross bit rate";
} }
leaf BER { leaf BER {
type decimal64 { type decimal64 {
fraction-digits 18; fraction-digits 18;
range "0..max"; range "0..max";
} }
config false; config false;
description description
"BER (Bit Error Rate)"; "BER (Bit Error Rate)";
}
}
leaf ch-input-power { leaf ch-input-power {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units "dBm"; units "dBm";
config false; config false;
description description
"Per channel average input power level "Per channel average input power level
estimated at the receiver of the link"; estimated at the receiver of the link";
} }
leaf ch-pmd { leaf ch-pmd {
type decimal64 { type decimal64 {
fraction-digits 8; fraction-digits 8;
range "0..max"; range "0..max";
} }
units "ps/(km)^0.5"; units "ps/(km)^0.5";
config false; config false;
description description
"per channel Polarization Mode Dispersion"; "per channel Polarization Mode Dispersion";
} }
leaf ch-cd { leaf ch-cd {
type decimal64 { type decimal64 {
fraction-digits 5; fraction-digits 5;
} }
units "ps/nm/km"; units "ps/nm/km";
config false; config false;
description description
"per channel Cromatic Dispersion"; "per channel Cromatic Dispersion";
} }
leaf ch-osnr { leaf ch-osnr {
type decimal64 { type decimal64 {
fraction-digits 5; fraction-digits 5;
} }
units "dB"; units "dB";
config false; config false;
description description
"per channel Optical Signal-to-Noise Ratio "per channel Optical Signal-to-Noise Ratio
(OSNR) estimated at the receiver"; (OSNR) estimated at the receiver";
} }
leaf q-factor { leaf q-factor {
type decimal64 { type decimal64 {
fraction-digits 5; fraction-digits 5;
} }
units "dB"; units "dB";
config false; config false;
description description
"q-factor estimated at the receiver"; "q-factor estimated at the receiver";
} }
} }
grouping standard_mode { grouping standard_mode {
description description
"ITU-T G.698.2 standard mode that guarantees interoperability. "ITU-T G.698.2 standard mode that guarantees interoperability.
It must be an string with the following format: It must be an string with the following format:
B-DScW-ytz(v) where all these attributes are conformant B-DScW-ytz(v) where all these attributes are conformant
to the ITU-T recomendation"; to the ITU-T recomendation";
leaf standard_mode { leaf standard_mode {
skipping to change at page 21, line 43 skipping to change at page 23, line 45
config false; config false;
description description
"configured organization- or vendor-specific "configured organization- or vendor-specific
application identifiers (AI) supported by the transponder"; application identifiers (AI) supported by the transponder";
} }
leaf organization-identifier { leaf organization-identifier {
type layer0-types:vendor-identifier; type layer0-types:vendor-identifier;
config false; config false;
description description
"organization identifier that uses organizational "organization identifier that uses organizational
mode"; mode";
} }
} }
/* /*
* Identities * Identities
*/ */
identity type-element { identity type-element {
description description
skipping to change at page 23, line 6 skipping to change at page 25, line 8
description description
"all elements must use power (dBm)"; "all elements must use power (dBm)";
} }
/* /*
* Groupings * Groupings
*/ */
grouping amplifier-params { grouping amplifier-params {
description "describes parameters for an amplifier"; description "describes parameters for an amplifier";
container amplifier{ container amplifier{
description "amplifier type, operatonal parameters are described"; description "amplifier type, operatonal parameters are described";
leaf type_variety { leaf type_variety {
type string ; type string ;
mandatory true ; mandatory true ;
description description
"String identifier of amplifier type referencing "String identifier of amplifier type referencing
a specification in a separate equipment catalog"; a specification in a separate equipment catalog";
} }
container operational { container operational {
description "amplifier operationnal parameters"; description "amplifier operationnal parameters";
leaf actual-gain { leaf actual-gain {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB ; units dB ;
mandatory true ; mandatory true ;
description ".."; description "..";
} }
leaf tilt-target { leaf tilt-target {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
mandatory true ; mandatory true ;
description ".."; description "..";
} }
leaf out-voa { leaf out-voa {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB; units dB;
mandatory true; mandatory true;
description ".."; description "..";
} }
leaf in-voa { leaf in-voa {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB; units dB;
mandatory true; mandatory true;
description ".."; description "..";
} }
uses power-param; uses power-param;
} }
} }
} }
grouping fiber-params { grouping fiber-params {
description "String identifier of fiber type referencing a specification in a description "String identifier of fiber type referencing a specification in a
separate equipment catalog"; separate equipment catalog";
container fiber { container fiber {
description "fiber characteristics"; description "fiber characteristics";
leaf type_variety { leaf type_variety {
type string ; type string ;
mandatory true ; mandatory true ;
description "fiber type"; description "fiber type";
} }
leaf length { leaf length {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units km; units km;
mandatory true ; mandatory true ;
description "length of fiber"; description "length of fiber";
} }
leaf loss_coef { leaf loss_coef {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB/km; units dB/km;
mandatory true ; mandatory true ;
description "loss coefficient of the fiber"; description "loss coefficient of the fiber";
} }
leaf total_loss { leaf total_loss {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB; units dB;
mandatory true ; mandatory true ;
description description
"includes all losses: fiber loss and conn_in and conn_out losses"; "includes all losses: fiber loss and conn_in and conn_out losses";
} }
leaf pmd{ leaf pmd{
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units sqrt(ps); units sqrt(ps);
description "pmd of the fiber"; description "pmd of the fiber";
} }
leaf conn_in{ leaf conn_in{
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB; units dB;
description "connector-in"; description "connector-in";
} }
leaf conn_out{ leaf conn_out{
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB; units dB;
description "connector-out"; description "connector-out";
} }
} }
} }
grouping roadm-params{ grouping roadm-params{
description "roadm parameters description"; description "roadm parameters description";
container roadm{ container roadm{
description "roadm parameters"; description "roadm parameters";
leaf type_variety { leaf type_variety {
type string ; type string ;
mandatory true ; mandatory true ;
description "String identifier of roadm type referencing a specification in a description "String identifier of roadm type referencing a specification in a
separate equipment catalog"; separate equipment catalog";
} }
leaf loss { leaf loss {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB ; units dB ;
description ".."; description "..";
} }
} }
} }
grouping concentratedloss-params{ grouping concentratedloss-params{
description "concentrated loss"; description "concentrated loss";
container concentratedloss{ container concentratedloss{
description "concentrated loss"; description "concentrated loss";
leaf loss { leaf loss {
type decimal64 { type decimal64 {
fraction-digits 2; fraction-digits 2;
} }
units dB ; units dB ;
description ".."; description "..";
} }
} }
} }
skipping to change at page 26, line 4 skipping to change at page 28, line 6
} }
} }
} }
grouping power-param{ grouping power-param{
description description
"optical power or PSD after the ROADM or after the out-voa"; "optical power or PSD after the ROADM or after the out-voa";
choice power-param { choice power-param {
description description
"select the mode: channel power or power spectral density"; "select the mode: channel power or power spectral density";
case channel-power { case channel-power {
/* when "../../equalization-mode='channel-power'"; */ /* when "equalization-mode='channel-power'"; */
leaf nominal-channel-power{ leaf nominal-channel-power{
type decimal64 { type decimal64 {
fraction-digits 1; fraction-digits 1;
} }
units dBm ; units dBm ;
description description
" Reference channel power after the ROADM or after the out-voa. "; " Reference channel power after the ROADM or after the out-voa. ";
} }
} }
case power-spectral-density{ case power-spectral-density{
/* when "../../equalization-mode='power-spectral-density'"; */ /* when "equalization-mode='power-spectral-density'"; */
leaf nominal-power-spectral-density{ leaf nominal-power-spectral-density{
type decimal64 { type decimal64 {
fraction-digits 16; fraction-digits 16;
} }
units W/Hz ; units W/Hz ;
description description
" Reference power spectral density after the ROADM or after the out-voa. " Reference power spectral density after the ROADM or after the out-voa.
Typical value : 3.9 E-14, resolution 0.1nW/MHz"; Typical value : 3.9 E-14, resolution 0.1nW/MHz";
} }
} }
skipping to change at page 26, line 50 skipping to change at page 28, line 51
leaf equalization-mode{ leaf equalization-mode{
type identityref { type identityref {
base type-power-mode; base type-power-mode;
} }
mandatory true; mandatory true;
description "equalization mode"; description "equalization mode";
} }
uses power-param; uses power-param;
} }
grouping network-media-channel-group { grouping OTSiG {
description "network media channel group"; description "OTSiG definition , representing client digital information stream
list network-media-channel-group { supported by 1 or more OTSi";
key "i";
container OTSiG-container {
config false;
description description
"list of network media channel group's member"; "the container contains the related list of OTSi.
The list could also be of only 1 element";
list OTSi {
key "OTSi-carrier-id";
description
"list of OTSi's under OTSi-G";
leaf OTSi-carrier-id {
type int16;
description "OTSi carrier-id";
}
leaf OTSi-carrier-frequency {
type decimal64 {
fraction-digits 3;
}
units GHz;
config false;
description
"OTSi carrier frequency";
}
leaf OTSi-signal-width {
type decimal64 {
fraction-digits 3;
}
units GHz;
config false;
description
"OTSi signal width";
}
leaf channel-delta-power {
type decimal64 {
fraction-digits 2;
}
units dB;
config false;
description
"optional ; delta power to ref channel input-power applied
to this media channel";
}
}
} // OTSiG container
} // OTSiG grouping
grouping media-channel-groups {
description "media channel groups";
list media-channel-group {
key "i";
description
"list of media channel groups";
leaf i { leaf i {
type int16; type int16;
description "index of network media channel group member"; description "index of media channel group member";
} }
list current-channels { list media-channels {
key "flex-n"; key "flexi-n";
description description
"list of media channels in the OMS"; "list of media channels represented as (n,m)";
uses layer0-types:flexi-grid-channel;
uses layer0-types:flex-grid-channel; leaf OTSiG-ref {
} type leafref {
path "/nw:networks/nw:network/nw:node/tet:te" +
"/tet:tunnel-termination-point/OTSiG-element/OTSiG-identifier" ;
list OTSiG-container { }
key "carrier-id"; description
description "Reference to the OTSiG list to get OTSiG identifier of the
"list of OTSi under OTSi-G"; OSiG carried by this media channel that reports the transient stat";
leaf carrier-id {
type int16;
description "carrier-id under OTSi-G";
}
leaf OTSi-carrier-frequency {
type decimal64 {
fraction-digits 3;
}
units GHz;
config false;
description
"OTSi carrier frequency";
}
leaf OTSi-signal-width {
type decimal64 {
fraction-digits 3;
} }
units GHz; leaf OTSi-ref {
config false; type leafref {
description path "/nw:networks/nw:network/nw:node/tet:te" +
"OTSi signal width"; "/tet:tunnel-termination-point/OTSiG-element[OTSiG-
} identifier=current()/../OTSiG-ref]/"+
leaf channel-delta-power { "OTSiG-container/OTSi/OTSi-carrier-id" ;
type decimal64 {
fraction-digits 2;
} }
units dB;
config false;
description description
"optional ; delta power to ref channel input-power applied to this "Reference to the OTSi list supporting the related OTSiG" ;
channel";
} }
}
} } // media channels list
} } // media-channel-groups list
} // media media-channel-groups grouping
grouping oms-element { grouping oms-element {
description "OMS description"; description "OMS description";
list OMS-elements { list OMS-elements {
key "elt-index"; key "elt-index";
description description
"defines the spans and the amplifier blocks of the amplified lines"; "defines the spans and the amplifier blocks of the amplified lines";
leaf elt-index { leaf elt-index {
type uint16; type uint16;
description description
skipping to change at page 28, line 32 skipping to change at page 31, line 18
} }
leaf uid { leaf uid {
type string; type string;
description description
"unique id of the element if it exists"; "unique id of the element if it exists";
} }
leaf type { leaf type {
type identityref { type identityref {
base type-element; base type-element;
} }
mandatory true; mandatory true;
description "element type"; description "element type";
} }
container element { container element {
description "element of the list of elements of the OMS"; description "element of the list of elements of the OMS";
choice element { choice element {
description "OMS element type"; description "OMS element type";
case amplifier { case amplifier {
/* when "../..type = 'Edfa'"; */ /* when "type = 'Edfa'"; */
uses amplifier-params ; uses amplifier-params ;
} }
case fiber { case fiber {
/* when "../../type = 'Fiber'"; */ /* when "type = 'Fiber'"; */
uses fiber-params ; uses fiber-params ;
} }
case concentratedloss { case concentratedloss {
/* when "../../type = 'Concentratedloss'"; */ /* when "type = 'Concentratedloss'"; */
uses concentratedloss-params ; uses concentratedloss-params ;
} }
} }
} }
} }
} }
/* Data nodes */ /* Data nodes */
augment "/nw:networks/nw:network/nw:network-types" augment "/nw:networks/nw:network/nw:network-types"
+ "/tet:te-topology" { + "/tet:te-topology" {
description "optical-impairment topology augmented"; description "optical-impairment topology augmented";
container optical-impairment-topology { container optical-impairment-topology {
presence "indicates an impairment-aware topology of optical networks"; presence "indicates an impairment-aware topology of optical networks";
description description
"Container to identify impairment-aware topology type"; "Container to identify impairment-aware topology type";
} }
} }
augment "/nw:networks/nw:network/nt:link/tet:te" augment "/nw:networks/nw:network/nt:link/tet:te"
+ "/tet:te-link-attributes" { + "/tet:te-link-attributes" {
when "/nw:networks/nw:network/nw:network-types" when "/nw:networks/nw:network/nw:network-types"
+"/tet:te-topology/optical-imp-topo:optical-impairment-topology" { +"/tet:te-topology/optical-imp-topo:optical-impairment-topology" {
description description
"This augment is only valid for Optical Impairment."; "This augment is only valid for Optical Impairment.";
} }
description "Optical Link augmentation for impairment data."; description "Optical Link augmentation for impairment data.";
container OMS-attributes { container OMS-attributes {
config false; config false;
description "OMS attributes"; description "OMS attributes";
uses oms-general-optical-params; uses oms-general-optical-params;
uses network-media-channel-group; uses media-channel-groups;
uses oms-element; uses oms-element;
} }
} }
augment "/nw:networks/nw:network/nw:node/tet:te" augment "/nw:networks/nw:network/nw:node/tet:te"
+ "/tet:tunnel-termination-point" { + "/tet:tunnel-termination-point" {
when "/nw:networks/nw:network/nw:network-types" when "/nw:networks/nw:network/nw:network-types"
+"/tet:te-topology/optical-imp-topo:optical-impairment-topology" { +"/tet:te-topology/optical-imp-topo:optical-impairment-topology" {
description
"This augment is only valid for Impairment with non-sliceable
transponder model";
}
description description
"Tunnel termination point augmentation for non-sliceable "This augment is only valid for Impairment with non-sliceable
transponder model."; transponder model";
}
description
"Tunnel termination point augmentation for non-sliceable
transponder model.";
list OTSiG-element {
key "OTSiG-identifier";
config false;
description
"the list of possible OTSiG representing client digital stream";
leaf OTSiG-identifier {
type int16;
description "index of OTSiG element";
}
uses OTSiG;
}
list transponders-list { list transponders-list {
key "transponder-id"; key "transponder-id";
config false; config false;
description "list of transponders"; description "list of transponders";
leaf transponder-id { leaf transponder-id {
type uint32;
description "transponder identifier"; type uint32;
description "transponder identifier";
} }
choice mode { choice mode {
description "standard mode, organizational mode or explicit mode"; description "standard mode, organizational mode or explicit mode";
case G.692.2 { case G.692.2 {
uses standard_mode; uses standard_mode;
} }
case organizational_mode { case organizational_mode {
skipping to change at page 30, line 44 skipping to change at page 33, line 45
config false; config false;
description "minimum power of the transponder"; description "minimum power of the transponder";
} }
leaf power-max { leaf power-max {
type int32; type int32;
units "dBm"; units "dBm";
config false; config false;
description "maximum power of the transponder"; description "maximum power of the transponder";
} }
} }
} }
augment "/nw:networks/nw:network/nw:node/tet:te" augment "/nw:networks/nw:network/nw:node/tet:te"
+ "/tet:tunnel-termination-point" { + "/tet:tunnel-termination-point" {
when "/nw:networks/nw:network/nw:network-types" when "/nw:networks/nw:network/nw:network-types"
+"/tet:te-topology/optical-imp-topo:optical-impairment-topology" { +"/tet:te-topology/optical-imp-topo:optical-impairment-topology" {
description
"This augment is only valid for optical impairment with sliceable
transponder model";
}
description description
"Tunnel termination point augmentation for sliceable transponder model."; "This augment is only valid for optical impairment with sliceable
uses sliceable-transponder-attributes; transponder model";
}
description
"Tunnel termination point augmentation for sliceable transponder model.";
uses sliceable-transponder-attributes;
} }
} }
<CODE ENDS> <CODE ENDS>
5. Security Considerations 5. Security Considerations
The configuration, state, and action data defined in this document The configuration, state, and action data defined in this document
are designed to be accessed via a management protocol with a secure are designed to be accessed via a management protocol with a secure
transport layer, such as NETCONF [RFC6241]. The NETCONF access transport layer, such as NETCONF [RFC6241]. The NETCONF access
control model [RFC6536] provides the means to restrict access for control model [RFC6536] provides the means to restrict access for
skipping to change at page 32, line 4 skipping to change at page 35, line 4
XML: N/A, the requested URI is an XML namespace. XML: N/A, the requested URI is an XML namespace.
-------------------------------------------------------------------- --------------------------------------------------------------------
This document registers the following YANG modules in the YANG This document registers the following YANG modules in the YANG
Module Names registry [RFC7950]: Module Names registry [RFC7950]:
-------------------------------------------------------------------- --------------------------------------------------------------------
name: ietf-optical-impairment-topology name: ietf-optical-impairment-topology
namespace: urn:ietf:params:xml:ns:yang:ietf-optical-impairment- namespace: urn:ietf:params:xml:ns:yang:ietf-optical-impairment-
topology topology
prefix: optical-imp-topo
reference: RFC XXXX (TDB) reference: RFC XXXX (TDB)
-------------------------------------------------------------------- --------------------------------------------------------------------
7. Acknowledgments 7. Acknowledgments
We thank Dieter Bella and Sergio Belotti for useful discussions and We thank Daniele Ceccarelli and Oscar G. De Dios for useful
motivation for this work. discussions and motivation for this work.
8. References 8. References
8.1. Normative References 8.1. Normative References
8.2. Informative References [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, August 2016.
[RFC8040] A. Bierman, M. Bjorklund, K. Watsen, "RESTCONF Protocol",
RFC 8040, January 2017.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", RFC 8341, March 2018.
8.2. Informative References
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, June 2011. (NETCONF)", RFC 6241, June 2011.
[RFC6566] Y. Lee, G. Bernstein, D. Li, G. Martinelli, "A Framework [RFC6566] Y. Lee, G. Bernstein, D. Li, G. Martinelli, "A Framework
for the Control of Wavelength Switched Optical Networks for the Control of Wavelength Switched Optical Networks
(WSONs) with Impairments", RFC 6566, March 2012. (WSONs) with Impairments", RFC 6566, March 2012.
[RFC7446] Y. Lee, G. Bernstein, D. Li, W. Imajuku, "Routing and [RFC7446] Y. Lee, G. Bernstein, D. Li, W. Imajuku, "Routing and
Wavelength Assignment Information Model for Wavelength Wavelength Assignment Information Model for Wavelength
Switched Optical Networks", RFC 7446, Feburary 2015. Switched Optical Networks", RFC 7446, Feburary 2015.
[RFC7579] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General [RFC7579] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General Network
Network Element Constraint Encoding for GMPLS Controlled Element Constraint Encoding for GMPLS Controlled
Networks", RFC 7579, June 2015. Networks", RFC 7579, June 2015.
[RFC7581] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and [RFC7581] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
Wavelength Assignment Information Encoding for Wavelength Wavelength Assignment Information Encoding for Wavelength
Switched Optical Networks", RFC 7581, June 2015. Switched Optical Networks", RFC 7581, June 2015.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", [RFC7698] O. Gonzalez de Dios, Ed. and R. Casellas, Ed., "Framework
RFC 7950, August 2016. and Requirements for GMPLS-Based Control of Flexi-Grid
Dense Wavelength Division Multiplexing (DWDM) Networks",
RFC 7698, November 2015.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration [RFC8340] M. Bjorklund, L. Berger, Ed., "YANG Tree Diagrams", RFC
Access Control Model", RFC 8341, March 2018. 8340, March 2018.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, March 2018. (NMDA)", RFC 8342, March 2018.
[RFC8345] A. Clemm, et al, "A YANG Data Model for Network [RFC8345] A. Clemm, et al, "A YANG Data Model for Network
Topologies", RFC 8345, March 2018. Topologies", RFC 8345, March 2018.
[TE-TOPO] X. Liu, et al., "YANG Data Model for TE Topologies", work [TE-TOPO] X. Liu, et al., "YANG Data Model for TE Topologies", work
in progress: draft-ietf-teas-yang-te-topo. in progress: draft-ietf-teas-yang-te-topo.
[RFC8453] Ceccarelli, D. and Y. Lee, "Framework for Abstraction and [RFC8453] Ceccarelli, D. and Y. Lee, "Framework for Abstraction and
Control of Traffic Engineered Networks", RFC 8453, August Control of Traffic Engineered Networks", RFC 8453, August
2018. 2018.
[WSON-Topo] Y. Lee, Ed., "A Yang Data Model for WSON Optical [WSON-Topo] Y. Lee, Ed., "A Yang Data Model for WSON Optical
Networks", draft-ietf-ccamp-wson-yang-13, work in Networks", draft-ietf-ccamp-wson-yang-13, work in
progress. progress.
[L0-Types] Y. Lee, Ed., "A YANG Data Model for Layer 0 Types",
draft-ietf-ccamp-layer0-types, work in progress.
[G.807] "Draft new Recommendation ITU-T G.807 (ex G.media)", ITU-T
Recommendation G.807, work in progress.
[G.709] "Interfaces for the Optical Transport Network (OTN)", ITU-T
Recommendation G.709, June 2016.
[G.694.1] "Spectral grids for WDM applications: DWDM frequency
grid", ITU-T Recommendation G.694.1, February 2012.
[G.959.1] "Optical transport network physical layer interfaces",
ITU-T Recommendation G.959.1, February 2012.
[G.872] "Architecture of optical transport networks", ITU-T
Recommendation G.872, January 2017.
9. Contributors 9. Contributors
Jonas Martensson Jonas Martensson
Acro RISE
Email: jonas.martensson@ri.se Email: jonas.martensson@ri.se
Aihua Guo
Huawei Technologies
Email: aguo@futurewei.com
Authors' Addresses Authors' Addresses
Young Lee Young Lee
Huawei Technologies Futurewei Technologies
Email: leeyoung@huawei.com Email: younglee.tx@gmail.com
Haomian Zheng Haomian Zheng
Huawei Technologies Huawei Technologies
Email: zhenghaomian@huawei.com Email: zhenghaomian@huawei.com
Italo Busi Italo Busi
Huawei Technologies Huawei Technologies
Email: Italo.Busi@huawei.com Email: Italo.Busi@huawei.com
 End of changes. 147 change blocks. 
426 lines changed or deleted 634 lines changed or added

This html diff was produced by rfcdiff 1.47. The latest version is available from http://tools.ietf.org/tools/rfcdiff/