draft-ietf-ccamp-ospf-interas-te-extension-06.txt   rfc5392.txt 
Network working group M. Chen
Internet Draft Renhai Zhang
Category: Standards Track Huawei Technologies Co.,Ltd
Created: July 27, 2008 Xiaodong Duan
Expires: January 27, 2009 China Mobile
OSPF Extensions in Support of Inter-AS Multiprotocol Label Switching
(MPLS) and Generalized MPLS (GMPLS) Traffic Engineering
draft-ietf-ccamp-ospf-interas-te-extension-06.txt
Status of this Memo Network Working Group M. Chen
Request for Comments: 5392 R. Zhang
Category: Standards Track Huawei Technologies Co., Ltd.
X. Duan
China Mobile
January 2009
By submitting this Internet-Draft, each author represents that OSPF Extensions in Support of Inter-Autonomous System (AS)
any applicable patent or other IPR claims of which he or she is MPLS and GMPLS Traffic Engineering
aware have been or will be disclosed, and any of which he or she
becomes aware will be disclosed, in accordance with Section 6 of
BCP 79.
Internet-Drafts are working documents of the Internet Engineering Status of This Memo
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six This document specifies an Internet standards track protocol for the
months and may be updated, replaced, or obsoleted by other documents Internet community, and requests discussion and suggestions for
at any time. It is inappropriate to use Internet-Drafts as improvements. Please refer to the current edition of the "Internet
reference material or to cite them other than as "work in progress." Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
The list of current Internet-Drafts can be accessed at Copyright Notice
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at Copyright (c) 2009 IETF Trust and the persons identified as the
http://www.ietf.org/shadow.html document authors. All rights reserved.
This Internet-Draft will expire on January 23, 2009. This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
Abstract Abstract
This document describes extensions to the OSPF version 2 and 3 This document describes extensions to the OSPF version 2 and 3
protocols to support Multiprotocol Label Switching (MPLS) and protocols to support Multiprotocol Label Switching (MPLS) and
Generalized MPLS (GMPLS) Traffic Engineering (TE) for multiple Generalized MPLS (GMPLS) Traffic Engineering (TE) for multiple
Autonomous Systems (ASes). OSPF-TE v2 and v3 extensions are defined Autonomous Systems (ASes). OSPF-TE v2 and v3 extensions are defined
for the flooding of TE information about inter-AS links which can be for the flooding of TE information about inter-AS links that can be
used to perform inter-AS TE path computation. used to perform inter-AS TE path computation.
No support for flooding information from within one AS to another AS No support for flooding information from within one AS to another AS
is proposed or defined in this document. is proposed or defined in this document.
Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].
Table of Contents Table of Contents
1. Introduction.................................................3 1. Introduction ....................................................2
2. Problem Statement............................................3 1.1. Conventions Used in This Document ..........................3
2.1. A Note on Non-Objectives................................4 2. Problem Statement ...............................................3
2.2. Per-Domain Path Determination...........................5 2.1. A Note on Non-Objectives ...................................4
2.3. Backward Recursive Path Computation.....................6 2.2. Per-Domain Path Determination ..............................4
3. Extensions to OSPF...........................................7 2.3. Backward Recursive Path Computation ........................6
3.1. LSA Definitions.........................................8 3. Extensions to OSPF ..............................................7
3.1.1. Inter-AS-TE-v2 LSA.................................8 3.1. LSA Definitions ............................................8
3.1.2. Inter-AS-TE-v3 LSA.................................9 3.1.1. Inter-AS-TE-v2 LSA ..................................8
3.2. LSA Payload.............................................9 3.1.2. Inter-AS-TE-v3 LSA ..................................8
3.2.1. Link TLV..........................................10 3.2. LSA Payload ................................................9
3.3. Sub-TLV Detail.........................................11 3.2.1. Link TLV ............................................9
3.3.1. Remote AS Number Sub-TLV..........................11 3.3. Sub-TLV Details ...........................................10
3.3.2. IPv4 Remote ASBR ID Sub-TLV.......................11 3.3.1. Remote AS Number Sub-TLV ...........................10
3.3.3. IPv6 Remote ASBR ID Sub-TLV.......................12 3.3.2. IPv4 Remote ASBR ID Sub-TLV ........................11
4. Procedure for Inter-AS TE Links.............................13 3.3.3. IPv6 Remote ASBR ID Sub-TLV ........................11
4.1. Origin of Proxied TE Information.......................14 4. Procedure for Inter-AS TE Links ................................12
5. Security Considerations.....................................15 4.1. Origin of Proxied TE Information ..........................13
6. IANA Considerations.........................................15 5. Security Considerations ........................................14
6.1. Inter-AS TE OSPF LSA...................................16 6. IANA Considerations ............................................14
6.1.1. Inter-AS-TE-v2 LSA................................16 6.1. Inter-AS TE OSPF LSA ......................................14
6.1.2. Inter-AS-TE-v3 LSA................................16 6.1.1. Inter-AS-TE-v2 LSA .................................14
6.2. OSPF LSA Sub-TLVs type.................................16 6.1.2. Inter-AS-TE-v3 LSA .................................14
7. Acknowledgments.............................................16 6.2. OSPF LSA Sub-TLVs Type ....................................15
8. References..................................................16 7. Acknowledgments ................................................15
8.1. Normative References...................................16 8. References .....................................................15
8.2. Informative References.................................17 8.1. Normative References ......................................15
Authors' Addresses.............................................18 8.2. Informative References ....................................16
Intellectual Property Statement................................18
Disclaimer of Validity.........................................19
Copyright Statement............................................19
1. Introduction 1. Introduction
[OSPF-TE] defines extensions to the OSPF protocol [OSPF] to support [OSPF-TE] defines extensions to the OSPF protocol [OSPF] to support
intra-area Traffic Engineering (TE). The extensions provide a way of intra-area Traffic Engineering (TE). The extensions provide a way of
encoding the TE information for TE-enabled links within the network encoding the TE information for TE-enabled links within the network
(TE links) and flooding this information within an area. Type 10 (TE links) and flooding this information within an area. Type 10
opaque Link State Advertisements (LSAs) [RFC5250] are used to carry Opaque Link State Advertisements (LSAs) [RFC5250] are used to carry
such TE information. Two top-level Type Length Values (TLVs) are such TE information. Two top-level Type Length Values (TLVs) are
defined in [OSPF-TE]: Router Address TLV and Link TLV. The Link TLV defined in [OSPF-TE]: Router Address TLV and Link TLV. The Link TLV
has several nested sub-TLVs which describe the TE attributes for a has several nested sub-TLVs that describe the TE attributes for a TE
TE link. link.
[OSPF-V3-TE] defines similar extensions to OSPFv3 [OSPFV3]. It [OSPF-V3-TE] defines similar extensions to OSPFv3 [OSPFV3]. It
defines a new LSA, which is referred to as the Intra-Area-TE LSA, to defines a new LSA, which is referred to as the Intra-Area-TE LSA, to
advertise TE information. [OSPF-V3-TE] uses "Traffic Engineering advertise TE information. [OSPF-V3-TE] uses "Traffic Engineering
Extensions to OSPF" [OSPF-TE] as a base for TLV definitions and Extensions to OSPF" [OSPF-TE] as a base for TLV definitions and
defines some new TLVs and sub-TLVs to extend TE capabilities to IPv6 defines some new TLVs and sub-TLVs to extend TE capabilities to IPv6
networks. networks.
Requirements for establishing Multiprotocol Label Switching Traffic Requirements for establishing Multiprotocol Label Switching Traffic
Engineering (MPLS-TE) Label Switched Paths (LSPs) that cross Engineering (MPLS-TE) Label Switched Paths (LSPs) that cross multiple
multiple Autonomous Systems (ASes) are described in [INTER-AS-TE- Autonomous Systems (ASes) are described in [INTER-AS-TE-REQ]. As
REQ]. As described in [INTER-AS-TE-REQ], a method SHOULD provide the described in [INTER-AS-TE-REQ], a method SHOULD provide the ability
ability to compute a path spanning multiple ASes. So a path to compute a path spanning multiple ASes. So a path computation
computation entity that may be the head-end Label Switching Router entity that may be the head-end Label Switching Router (LSR), an AS
(LSR), an AS Border Router (ASBR), or a Path Computation Element Border Router (ASBR), or a Path Computation Element [PCE] needs to
(PCE [PCE]) needs to know the TE information not only of the links know the TE information not only of the links within an AS, but also
within an AS, but also of the links that connect to other ASes. of the links that connect to other ASes.
In this document, two new separate LSAs are defined to advertise In this document, two new separate LSAs are defined to advertise
inter-AS TE information for OSPFv2 and OSPFv3 respectively, and inter-AS TE information for OSPFv2 and OSPFv3, respectively, and
three new sub-TLVs are added to the existing Link TLV to extend TE three new sub-TLVs are added to the existing Link TLV to extend TE
capabilities for inter-AS Traffic Engineering. The detailed capabilities for inter-AS Traffic Engineering. The detailed
definitions and procedures are discussed in the following sections. definitions and procedures are discussed in the following sections.
This document does not propose or define any mechanisms to advertise This document does not propose or define any mechanisms to advertise
any other extra-AS TE information within OSPF. See Section 2.1 for a any other extra-AS TE information within OSPF. See Section 2.1 for a
full list of non-objectives for this work. full list of non-objectives for this work.
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
2. Problem Statement 2. Problem Statement
As described in [INTER-AS-TE-REQ], in the case of establishing an As described in [INTER-AS-TE-REQ], in the case of establishing an
inter-AS TE LSP traversing multiple ASes, the Path message [RFC3209] inter-AS TE LSP traversing multiple ASes, the Path message [RFC3209]
may include the following elements in the Explicit Route Object (ERO) may include the following elements in the Explicit Route Object (ERO)
in order to describe the path of the LSP: in order to describe the path of the LSP:
- a set of AS numbers as loose hops; and/or - a set of AS numbers as loose hops; and/or
- a set of LSRs including ASBRs as loose hops. - a set of LSRs including ASBRs as loose hops.
skipping to change at page 4, line 13 skipping to change at page 4, line 4
in order to describe the path of the LSP: in order to describe the path of the LSP:
- a set of AS numbers as loose hops; and/or - a set of AS numbers as loose hops; and/or
- a set of LSRs including ASBRs as loose hops. - a set of LSRs including ASBRs as loose hops.
Two methods for determining inter-AS paths are currently being Two methods for determining inter-AS paths are currently being
discussed. The per-domain method [PD-PATH] determines the path one discussed. The per-domain method [PD-PATH] determines the path one
domain at a time. The backward recursive method [BRPC] uses domain at a time. The backward recursive method [BRPC] uses
cooperation between PCEs to determine an optimum inter-domain path. cooperation between PCEs to determine an optimum inter-domain path.
The sections that follow examine how inter-AS TE link information The sections that follow examine how inter-AS TE link information
could be useful in both cases. could be useful in both cases.
2.1. A Note on Non-Objectives 2.1. A Note on Non-Objectives
It is important to note that this document does not make any change It is important to note that this document does not make any change
to the confidentiality and scaling assumptions surrounding the use to the confidentiality and scaling assumptions surrounding the use of
of ASes in the Internet. In particular, this document is conformant ASes in the Internet. In particular, this document is conformant to
to the requirements set out in [INTER-AS-TE-REQ]. the requirements set out in [INTER-AS-TE-REQ].
The following features are explicitly excluded: The following features are explicitly excluded:
o There is no attempt to distribute TE information from within one o There is no attempt to distribute TE information from within one
AS to another AS. AS to another AS.
o There is no mechanism proposed to distribute any form of TE o There is no mechanism proposed to distribute any form of TE
reachability information for destinations outside the AS. reachability information for destinations outside the AS.
o There is no proposed change to the PCE architecture or usage. o There is no proposed change to the PCE architecture or usage.
o TE aggregation is not supported or recommended. o TE aggregation is not supported or recommended.
o There is no exchange of private information between ASes. o There is no exchange of private information between ASes.
o No OSPF adjacencies are formed on the inter-AS link. o No OSPF adjacencies are formed on the inter-AS link.
Note also that the extensions proposed in this document are used Note also that the extensions proposed in this document are used only
only to advertise information about inter-AS TE links. As such these to advertise information about inter-AS TE links. As such these
extensions address an entirely different problem from L1VPN Auto- extensions address an entirely different problem from L1VPN Auto-
Discovery [L1VPN-OSPF-AD] which defines how TE information about Discovery [L1VPN-OSPF-AD], which defines how TE information about
links between Customer Edge (CE) equipment and Provider Edge (PE) links between Customer Edge (CE) equipment and Provider Edge (PE)
equipment can be advertised in OSPF-TE alongside the auto-discovery equipment can be advertised in OSPF-TE alongside the auto-discovery
information for the CE-PE links. There is no overlap between this information for the CE-PE links. There is no overlap between this
document and [L1VPN-OSPF-AD]. document and [L1VPN-OSPF-AD].
2.2. Per-Domain Path Determination 2.2. Per-Domain Path Determination
In the per-domain method of determining an inter-AS path for an In the per-domain method of determining an inter-AS path for an
MPLS-TE LSP, when an LSR that is an entry-point to an AS receives a MPLS-TE LSP, when an LSR that is an entry point to an AS receives a
Path message from an upstream AS with an ERO containing a next hop Path message from an upstream AS with an ERO containing a next hop
that is an AS number, it needs to find which LSRs (ASBRs) within the that is an AS number, it needs to find which LSRs (ASBRs) within the
local AS are connected to the downstream AS so that it can compute a local AS are connected to the downstream AS so that it can compute a
TE LSP segment across the local AS to one of those LSRs and forward TE LSP segment across the local AS to one of those LSRs and forward
the Path message to it and hence into the next AS. See Figure 1 for the Path message to it and hence into the next AS. See Figure 1 for
an example: an example:
R1------R3----R5-----R7------R9-----R11 R1------R3----R5-----R7------R9-----R11
| | \ | / | | | \ | / |
| | \ | ---- | | | \ | ---- |
skipping to change at page 5, line 34 skipping to change at page 5, line 23
Figure 1: Inter-AS Reference Model Figure 1: Inter-AS Reference Model
The figure shows three ASes (AS1, AS2, and AS3) and twelve LSRs (R1 The figure shows three ASes (AS1, AS2, and AS3) and twelve LSRs (R1
through R12). R3 and R4 are ASBRs in AS1. R5, R6, R7, and R8 are through R12). R3 and R4 are ASBRs in AS1. R5, R6, R7, and R8 are
ASBRs in AS2. R9 and R10 are ASBRs in AS3. ASBRs in AS2. R9 and R10 are ASBRs in AS3.
If an inter-AS TE LSP is planned to be established from R1 to R12, If an inter-AS TE LSP is planned to be established from R1 to R12,
the AS sequence will be: AS1, AS2, AS3. the AS sequence will be: AS1, AS2, AS3.
Suppose that the Path message enters AS2 from R3. The next hop in Suppose that the Path message enters AS2 from R3. The next hop in
the ERO shows AS3, and R5 must determine a path segment across AS2 the ERO shows AS3, and R5 must determine a path segment across AS2 to
to reach AS3. It has a choice of three exit points from AS2 (R6, R7, reach AS3. It has a choice of three exit points from AS2 (R6, R7,
and R8) and it needs to know which of these provide TE connectivity and R8) and it needs to know which of these provide TE connectivity
to AS3, and whether the TE connectivity (for example, available to AS3, and whether the TE connectivity (for example, available
bandwidth) is adequate for the requested LSP. bandwidth) is adequate for the requested LSP.
Alternatively, if the next hop in the ERO is the entry ASBR for AS3 Alternatively, if the next hop in the ERO is the entry ASBR for AS3
(say R9), R5 needs to know which of its exit ASBRs has a TE link (say R9), R5 needs to know which of its exit ASBRs has a TE link that
that connects to R9. Since there may be multiple ASBRs that are connects to R9. Since there may be multiple ASBRs that are connected
connected to R9 (both R7 and R8 in this example), R5 also needs to to R9 (both R7 and R8 in this example), R5 also needs to know the TE
know the TE properties of the inter-AS TE links so that it can properties of the inter-AS TE links so that it can select the correct
select the correct exit ASBR. exit ASBR.
Once the path message reaches the exit ASBR, any choice of inter-AS Once the path message reaches the exit ASBR, any choice of inter-AS
TE link can be made by the ASBR if not already made by entry ASBR TE link can be made by the ASBR if not already made by the entry ASBR
that computed the segment. that computed the segment.
More details can be found in the Section 4. of [PD-PATH], which More details can be found in Section 4 of [PD-PATH], which clearly
clearly points out why advertising of inter-AS links is desired. points out why the advertising of inter-AS links is desired.
To enable R5 to make the correct choice of exit ASBR the following To enable R5 to make the correct choice of exit ASBR, the following
information is needed: information is needed:
o List of all inter-AS TE links for the local AS. o List of all inter-AS TE links for the local AS.
o TE properties of each inter-AS TE link. o TE properties of each inter-AS TE link.
o AS number of the neighboring AS connected to by each inter-AS TE o AS number of the neighboring AS to which each inter-AS TE link
link. is connected.
o Identity (TE Router ID) of the neighboring ASBR connected to by o Identity (TE Router ID) of the neighboring ASBR to which each
each inter-AS TE link. inter-AS TE link is connected.
In GMPLS networks further information may also be required to select In GMPLS networks, further information may also be required to select
the correct TE links as defined in [GMPLS-TE]. the correct TE links as defined in [GMPLS-TE].
The example above shows how this information is needed at the entry The example above shows how this information is needed at the entry
point ASBRs for each AS (or the PCEs that provide computation point ASBRs for each AS (or the PCEs that provide computation
services for the ASBRs), but this information is also needed services for the ASBRs), but this information is also needed
throughout the local AS if path computation function is fully throughout the local AS if path computation function is fully
distributed among LSRs in the local AS, for example to support LSPs distributed among LSRs in the local AS, for example, to support LSPs
that have start points (ingress nodes) within the AS. that have start points (ingress nodes) within the AS.
2.3. Backward Recursive Path Computation 2.3. Backward Recursive Path Computation
Another scenario using PCE techniques has the same problem. [BRPC] Another scenario using PCE techniques has the same problem. [BRPC]
defines a PCE-based TE LSP computation method (called Backward defines a PCE-based TE LSP computation method (called Backward
Recursive Path Computation) to compute optimal inter-domain Recursive Path Computation) to compute optimal inter-domain
constrained MPLS-TE or GMPLS LSPs. In this path computation method, constrained MPLS-TE or GMPLS LSPs. In this path computation method,
a specific set of traversed domains (ASes) are assumed to be a specific set of traversed domains (ASes) are assumed to be selected
selected before computation starts. Each downstream PCE in domain(i) before computation starts. Each downstream PCE in domain(i) returns
returns to its upstream neighbor PCE in domain(i-1) a multipoint-to- to its upstream neighbor PCE in domain(i-1) a multipoint-to-point
point tree of potential paths. Each tree consists of the set of tree of potential paths. Each tree consists of the set of paths from
paths from all Boundary Nodes located in domain(i) to the all Boundary Nodes located in domain(i) to the destination where each
destination where each path satisfies the set of required path satisfies the set of required constraints for the TE LSP
constraints for the TE LSP (bandwidth, affinities, etc.). (bandwidth, affinities, etc.).
So a PCE needs to select Boundary Nodes (that is, ASBRs) that So a PCE needs to select Boundary Nodes (that is, ASBRs) that provide
provide connectivity from the upstream AS. In order that the tree of connectivity from the upstream AS. In order that the tree of paths
paths provided by one PCE to its neighbor can be correlated, the provided by one PCE to its neighbor can be correlated, the identities
identities of the ASBRs for each path need to be referenced, so the of the ASBRs for each path need to be referenced, so the PCE must
PCE must know the identities of the ASBRs in the remote AS reached know the identities of the ASBRs in the remote AS reached by any
by any inter-AS TE link, and, in order that it provides only inter-AS TE link, and, in order that it provides only suitable paths
suitable paths in the tree, the PCE must know the TE properties of in the tree, the PCE must know the TE properties of the inter-AS TE
the inter-AS TE links. See the following figure as an example: links. See the following figure as an example:
PCE1<------>PCE2<-------->PCE3 PCE1<------>PCE2<-------->PCE3
/ : : / : :
/ : : / : :
R1------R3----R5-----R7------R9-----R11 R1------R3----R5-----R7------R9-----R11
| | \ | / | | | \ | / |
| | \ | ---- | | | \ | ---- |
| | \ | / | | | \ | / |
R2------R4----R6 --R8------R10----R12 R2------R4----R6 --R8------R10----R12
: : : :
skipping to change at page 7, line 30 skipping to change at page 7, line 14
The figure shows three ASes (AS1, AS2, and AS3), three PCEs (PCE1, The figure shows three ASes (AS1, AS2, and AS3), three PCEs (PCE1,
PCE2, and PCE3), and twelve LSRs (R1 through R12). R3 and R4 are PCE2, and PCE3), and twelve LSRs (R1 through R12). R3 and R4 are
ASBRs in AS1. R5, R6, R7, and R8 are ASBRs in AS2. R9 and R10 are ASBRs in AS1. R5, R6, R7, and R8 are ASBRs in AS2. R9 and R10 are
ASBRs in AS3. PCE1, PCE2, and PCE3 cooperate to perform inter-AS ASBRs in AS3. PCE1, PCE2, and PCE3 cooperate to perform inter-AS
path computation and are responsible for path segment computation path computation and are responsible for path segment computation
within their own domain(s). within their own domain(s).
If an inter-AS TE LSP is planned to be established from R1 to R12, If an inter-AS TE LSP is planned to be established from R1 to R12,
the traversed domains are assumed to be selected: AS1->AS2->AS3, and the traversed domains are assumed to be selected: AS1->AS2->AS3, and
the PCE chain is: PCE1->PCE2->PCE3. First, the path computation the PCE chain is: PCE1->PCE2->PCE3. First, the path computation
request originated from the PCC (R1) is relayed by PCE1 and PCE2 request originated from the Path Computation Client (R1) is relayed
along the PCE chain to PCE3, then PCE3 begins to compute the path by PCE1 and PCE2 along the PCE chain to PCE3, then PCE3 begins to
segments from the entry boundary nodes that provide connection from compute the path segments from the entry boundary nodes that provide
AS2 to the destination (R12). But, to provide suitable path segments, connection from AS2 to the destination (R12). But, to provide
PCE3 must determine which entry boundary nodes provide connectivity suitable path segments, PCE3 must determine which entry boundary
to its upstream neighbor AS (identified by its AS number), and must nodes provide connectivity to its upstream neighbor AS (identified by
know the TE properties of the inter-AS TE links. In the same way, its AS number), and must know the TE properties of the inter-AS TE
PCE2 also needs to determine the entry boundary nodes according to links. In the same way, PCE2 also needs to determine the entry
its upstream neighbor AS and the inter-AS TE link capabilities. boundary nodes according to its upstream neighbor AS and the inter-AS
TE link capabilities.
Thus, to support Backward Recursive Path Computation the same Thus, to support Backward Recursive Path Computation the same
information listed in Section 2.2 is required. The AS number of the information listed in Section 2.2 is required. The AS number of the
neighboring AS connected to by each inter-AS TE link is particularly neighboring AS to which each inter-AS TE link is connected is
important. particularly important.
3. Extensions to OSPF 3. Extensions to OSPF
Note that this document does not define mechanisms for distribution Note that this document does not define mechanisms for distribution
of TE information from one AS to another, does not distribute any of TE information from one AS to another, does not distribute any
form of TE reachability information for destinations outside the AS, form of TE reachability information for destinations outside the AS,
does not change the PCE architecture or usage, does not suggest or does not change the PCE architecture or usage, does not suggest or
recommend any form of TE aggregation, and does not feed private recommend any form of TE aggregation, and does not feed private
information between ASes. See section 2.1. information between ASes. See Section 2.1.
The extensions defined in this document allow an inter-AS TE link The extensions defined in this document allow an inter-AS TE link
advertisement to be easily identified as such by the use of two new advertisement to be easily identified as such by the use of two new
types of LSA, which are referred to as Inter-AS-TE-v2 LSA and Inter- types of LSA, which are referred to as Inter-AS-TE-v2 LSA and
AS-TE-v3 LSA. Three new sub-TLVs are added to the Link TLV to carry Inter-AS-TE-v3 LSA. Three new sub-TLVs are added to the Link TLV to
the information about the neighboring AS and the remote ASBR. carry the information about the neighboring AS and the remote ASBR.
While some of the TE information of an inter-AS TE link may be While some of the TE information of an inter-AS TE link may be
available within the AS from other protocols, in order to avoid any available within the AS from other protocols, in order to avoid any
dependency on where such protocols are processed, this mechanism dependency on where such protocols are processed, this mechanism
carries all the information needed for the required TE operations. carries all the information needed for the required TE operations.
3.1. LSA Definitions 3.1. LSA Definitions
3.1.1. Inter-AS-TE-v2 LSA 3.1.1. Inter-AS-TE-v2 LSA
For the advertisement of OSPFv2 inter-AS TE links, a new Opaque LSA, For the advertisement of OSPFv2 inter-AS TE links, a new Opaque LSA,
the Inter-AS-TE-v2 LSA, is defined in this document. The Inter-AS- the Inter-AS-TE-v2 LSA, is defined in this document. The
TE-v2 LSA has the same format as "Traffic Engineering LSA" which is Inter-AS-TE-v2 LSA has the same format as "Traffic Engineering LSA",
defined in [OSPF-TE]. which is defined in [OSPF-TE].
The inter-AS TE link advertisement SHOULD be carried in a Type 10 The inter-AS TE link advertisement SHOULD be carried in a Type 10
Opaque LSA if the flooding scope is to be limited to within the Opaque LSA [RFC5250] if the flooding scope is to be limited to within
single IGP area to which the ASBR belongs, or MAY be carried in a the single IGP area to which the ASBR belongs, or MAY be carried in a
Type 11 Opaque LSA if the information is intended to reach all Type 11 Opaque LSA [RFC5250] if the information is intended to reach
routers (including area border routers, ASBRs, and PCEs) in the AS. all routers (including area border routers, ASBRs, and PCEs) in the
The choice between the use of a Type 10 or Type 11 Opaque LSA is a AS. The choice between the use of a Type 10 (area-scoped) or Type 11
AS-wide policy choice, and configuration control of it SHOULD be (AS-scoped) Opaque LSA is an AS-wide policy choice, and configuration
provided in ASBR implementations that support the advertisement of control of it SHOULD be provided in ASBR implementations that support
inter-AS TE links. the advertisement of inter-AS TE links.
The Link State ID of an Opaque LSA as defined in [RFC5250] is The Link State ID of an Opaque LSA as defined in [RFC5250] is divided
divided into two parts. One of them is the Opaque type (8-bit), the into two parts. One of them is the Opaque type (8-bit), the other is
other is the Opaque ID (24-bit). The suggested value for the Opaque the Opaque ID (24-bit). The value for the Opaque type of
type of Inter-AS-TE-v2 LSA is TBD and will be assigned by IANA (see Inter-AS-TE-v2 LSA is 6 and has been assigned by IANA (see Section
Section 6.1). We suggest the value 6. The Opaque ID (in this 6.1). The Opaque ID of the Inter-AS-TE-v2 LSA is an arbitrary value
document called the Instance) of the Inter-AS-TE-v2 LSA is an used to uniquely identify Traffic Engineering LSAs. The Link State
arbitrary value used to uniquely identify Traffic Engineering LSAs. ID has no topological significance.
The Link State ID has no topological significance.
The TLVs within the body of an Inter-AS-TE-v2 LSA have the same The TLVs within the body of an Inter-AS-TE-v2 LSA have the same
format as used in OSPF-TE. The payload of the TLVs consists of one format as used in OSPF-TE. The payload of the TLVs consists of one
or more nested Type/Length/Value triplets. New sub-TLVs specifically or more nested Type/Length/Value triplets. New sub-TLVs specifically
for inter-AS TE Link advertisement are described in Section 3.2. for inter-AS TE Link advertisement are described in Section 3.2.
3.1.2. Inter-AS-TE-v3 LSA 3.1.2. Inter-AS-TE-v3 LSA
In this document, a new LS type is defined for OSPFv3 inter-AS TE In this document, a new LS type is defined for OSPFv3 inter-AS TE
link advertisement. The new LS type function code is 11 (which needs link advertisement. The new LS type function code is 13 (see Section
to be confirmed by IANA see Section 6.1). 6.1).
The format of an Inter-AS-TE-v3 LSA follows the standard definition The format of an Inter-AS-TE-v3 LSA follows the standard definition
of an OSPFv3 LSA as defined in [OSPFV3]. of an OSPFv3 LSA as defined in [OSPFV3].
The high-order three bits of the LS type field of the OSPFv3 LSA The high-order three bits of the LS type field of the OSPFv3 LSA
header encode generic properties of the LSA and are termed the U-bit, header encode generic properties of the LSA and are termed the U-bit,
S2-bit, and S1-bit [OSPFV3]. The remainder of the LS type carries S2-bit, and S1-bit [OSPFV3]. The remainder of the LS type carries
the LSA function code. the LSA function code.
For the Inter-AS-TE-v3-LSA the bits are set as follows: For the Inter-AS-TE-v3-LSA, the bits are set as follows:
The U-bit is always set to 1 to indicate that an OSPFv3 router MUST The U-bit is always set to 1 to indicate that an OSPFv3 router MUST
flood the LSA at its defined flooding scope even if it does not flood the LSA at its defined flooding scope even if it does not
recognize the LS type. recognize the LS type.
The S2 and S1 bits indicate the flooding scope of an LSA. For the The S2 and S1 bits indicate the flooding scope of an LSA. For the
Inter-AS-TE-v3-LSA the S2 and S1 bits SHOULD be set to 01 to Inter-AS-TE-v3-LSA, the S2 and S1 bits SHOULD be set to 01 to
indicate that the flooding scope is to be limited to within the indicate that the flooding scope is to be limited to within the
single IGP area to which the ASBR belongs, but MAY be set to 10 if single IGP area to which the ASBR belongs, but MAY be set to 10 if
the information should reach all routers (including area border the information should reach all routers (including area border
routers, ASBRs, and PCEs) in the AS. The choice between the use of routers, ASBRs, and PCEs) in the AS. The choice between the use of
01 or 10 is a network-wide policy choice, and configuration control 01 or 10 is a network-wide policy choice, and configuration control
SHOULD be provided in ASBR implementations that support the SHOULD be provided in ASBR implementations that support the
advertisement of inter-AS TE links. advertisement of inter-AS TE links.
The Link State ID of the Inter-AS-TE-v3 LSA is an arbitrary value The Link State ID of the Inter-AS-TE-v3 LSA is an arbitrary value
used to uniquely identify Traffic Engineering LSAs. The LSA ID has used to uniquely identify Traffic Engineering LSAs. The LSA ID has
no topological significance. no topological significance.
The TLVs with the body of an Inter-AS-TE-v3 LSA have the same format The TLVs within the body of an Inter-AS-TE-v3 LSA have the same
and semantic as defined above in [OSPF-V3-TE]. New sub-TLVs format and semantics as those defined in [OSPF-V3-TE]. New sub-TLVs
specifically for inter-AS TE Link advertisement are described in specifically for inter-AS TE Link advertisement are described in
Section 3.2. Section 3.2.
3.2. LSA Payload 3.2. LSA Payload
Both the Inter-AS-TE-v2 LSA and Inter-AS-TE-v3 LSA contain one top Both the Inter-AS-TE-v2 LSA and Inter-AS-TE-v3 LSA contain one top
level TLV: level TLV:
2 - Link TLV 2 - Link TLV
For the Inter-AS-TE-v2 LSA this TLV is defined in [OSPF-TE] and for For the Inter-AS-TE-v2 LSA, this TLV is defined in [OSPF-TE], and for
the Inter-AS-TE-v3 LSA this TLV is defined in [OSPF-V3-TE]. The sub- the Inter-AS-TE-v3 LSA, this TLV is defined in [OSPF-V3-TE]. The
TLVs carried in this TLV are described in the following sections. sub-TLVs carried in this TLV are described in the following sections.
3.2.1. Link TLV 3.2.1. Link TLV
The Link TLV describes a single link and consists a set of sub-TLVs. The Link TLV describes a single link and consists a set of sub-TLVs.
The sub-TLVs for inclusion in the Link TLV of the Inter-AS-TE-v2 LSA The sub-TLVs for inclusion in the Link TLV of the Inter-AS-TE-v2 LSA
and Inter-AS-TE-v3 LSA are defined respectively in [OSPF-TE] and and Inter-AS-TE-v3 LSA are defined, respectively, in [OSPF-TE] and
[OSPF-V3-TE] and the list of sub-TLVs may be extended by other [OSPF-V3-TE], and the list of sub-TLVs may be extended by other
documents. However, this document defines one exception as follows. documents. However, this document defines the following exceptions.
The Link ID sub-TLV [OSPF-TE] MUST NOT be used in the Link TLV of an The Link ID sub-TLV [OSPF-TE] MUST NOT be used in the Link TLV of an
Inter-AS-TE-v2 LSA, and the Neighbor ID sub-TLV [OSPF-V3-TE] MUST Inter-AS-TE-v2 LSA, and the Neighbor ID sub-TLV [OSPF-V3-TE] MUST NOT
NOT be used in the Link TLV of an Inter-AS-TE-v3 LSA. Given that be used in the Link TLV of an Inter-AS-TE-v3 LSA. Given that OSPF is
OSPF is an IGP and should only be utilized between routers in the an IGP and should only be utilized between routers in the same
same routing domain, the OSPF specific Link ID and Neighbor ID sub- routing domain, the OSPF specific Link ID and Neighbor ID sub-TLVs
TLVs are not applicable to inter-AS links. are not applicable to inter-AS links.
Instead, the remote ASBR is identified by the inclusion of the Instead, the remote ASBR is identified by the inclusion of the
following new sub-TLVs defined in this document and described in the following new sub-TLVs defined in this document and described in the
subsequent sections. subsequent sections.
21 - Remote AS Number sub-TLV 21 - Remote AS Number sub-TLV
22 - IPv4 Remote ASBR ID sub-TLV 22 - IPv4 Remote ASBR ID sub-TLV
23 - IPv6 Remote ASBR ID sub-TLV 23 - IPv6 Remote ASBR ID sub-TLV
The Remote-AS-Number sub-TLV MUST be included in the Link TLV of The Remote-AS-Number sub-TLV MUST be included in the Link TLV of both
both the Inter-AS-TE-v2 LSA and Inter-AS-TE-v3 LSA. At least one of the Inter-AS-TE-v2 LSA and Inter-AS-TE-v3 LSA. At least one of the
the IPv4-Remote-ASBR-ID sub-TLV and the IPv6-Remote-ASBR-ID sub-TLV IPv4-Remote-ASBR-ID sub-TLV and the IPv6-Remote-ASBR-ID sub-TLV
SHOULD be included in the Link TLV of the Inter-AS-TE-v2 LSA and SHOULD be included in the Link TLV of the Inter-AS-TE-v2 LSA and
Inter-AS-TE-v3 LSA. Note that it is possible to include the IPv6- Inter-AS-TE-v3 LSA. Note that it is possible to include the
Remote-ASBR-ID sub-TLV in the Link TLV of the Inter-AS-TE-v2 LSA, IPv6-Remote-ASBR-ID sub-TLV in the Link TLV of the Inter-AS-TE-v2
and to include the IPv4-Remote-ASBR-ID sub-TLV in the Link TLV of LSA, and to include the IPv4-Remote-ASBR-ID sub-TLV in the Link TLV
the Inter-AS-TE-v3 LSA because the sub-TLVs refer to ASBRs that are of the Inter-AS-TE-v3 LSA because the sub-TLVs refer to ASBRs that
in a different addressing scope (that is, a different AS) from that are in a different addressing scope (that is, a different AS) from
where the OSPF LSA is used. that where the OSPF LSA is used.
3.3. Sub-TLV Detail 3.3. Sub-TLV Details
3.3.1. Remote AS Number Sub-TLV 3.3.1. Remote AS Number Sub-TLV
A new sub-TLV, the Remote AS Number sub-TLV is defined for inclusion A new sub-TLV, the Remote AS Number sub-TLV is defined for inclusion
in the Link TLV when advertising inter-AS links. The Remote AS in the Link TLV when advertising inter-AS links. The Remote AS
Number sub-TLV specifies the AS number of the neighboring AS to Number sub-TLV specifies the AS number of the neighboring AS to which
which the advertised link connects. The Remote AS number sub-TLV is the advertised link connects. The Remote AS Number sub-TLV is
REQUIRED in a Link TLV that advertises an inter-AS TE link. REQUIRED in a Link TLV that advertises an inter-AS TE link.
The Remote AS number sub-TLV is TLV type 21 (which needs to be The Remote AS Number sub-TLV is TLV type 21 (see Section 6.2), and is
confirmed by IANA see Section 6.2), and is four octets in length. four octets in length. The format is as follows:
The format is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote AS Number | | Remote AS Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Remote AS Number field has 4 octets. When only two octets are
The Remote AS number field has 4 octets. When only two octets are
used for the AS number, as in current deployments, the left (high- used for the AS number, as in current deployments, the left (high-
order) two octets MUST be set to zero. order) two octets MUST be set to zero.
3.3.2. IPv4 Remote ASBR ID Sub-TLV 3.3.2. IPv4 Remote ASBR ID Sub-TLV
A new sub-TLV, which is referred to as the IPv4 Remote ASBR ID sub- A new sub-TLV, which is referred to as the IPv4 Remote ASBR ID sub-
TLV, can be included in the Link TLV when advertising inter-AS links. TLV, can be included in the Link TLV when advertising inter-AS links.
The IPv4 Remote ASBR ID sub-TLV specifies the IPv4 identifier of the The IPv4 Remote ASBR ID sub-TLV specifies the IPv4 identifier of the
remote ASBR to which the advertised inter-AS link connects. This remote ASBR to which the advertised inter-AS link connects. This
could be any stable and routable IPv4 address of the remote ASBR. could be any stable and routable IPv4 address of the remote ASBR.
Use of the TE Router Address TE Router ID as specified in the Use of the TE Router Address TE Router ID as specified in the Router
Router Address TLV [OSPF-TE] is RECOMMENDED. Address TLV [OSPF-TE] is RECOMMENDED.
The IPv4 Remote ASBR ID sub-TLV is TLV type 22 (which needs to be The IPv4 Remote ASBR ID sub-TLV is TLV type 22 (see Section 6.2), and
confirmed by IANA see Section 6.2), and is four octets in length. is four octets in length. Its format is as follows:
Its format is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote ASBR ID | | Remote ASBR ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In OSPFv2 advertisements, the IPv4 Remote ASBR ID sub-TLV MUST be In OSPFv2 advertisements, the IPv4 Remote ASBR ID sub-TLV MUST be
skipping to change at page 12, line 26 skipping to change at page 11, line 42
Router ID), the IPv6 Remote ASBR ID sub-TLV MUST be included instead. Router ID), the IPv6 Remote ASBR ID sub-TLV MUST be included instead.
An IPv4 Remote ASBR ID sub-TLV and IPv6 Remote ASBR ID sub-TLV MAY An IPv4 Remote ASBR ID sub-TLV and IPv6 Remote ASBR ID sub-TLV MAY
both be present in a Link TLV in OSPFv2 or OSPFv3. both be present in a Link TLV in OSPFv2 or OSPFv3.
3.3.3. IPv6 Remote ASBR ID Sub-TLV 3.3.3. IPv6 Remote ASBR ID Sub-TLV
A new sub-TLV, which is referred to as the IPv6 Remote ASBR ID sub- A new sub-TLV, which is referred to as the IPv6 Remote ASBR ID sub-
TLV, can be included in the Link TLV when advertising inter-AS links. TLV, can be included in the Link TLV when advertising inter-AS links.
The IPv6 Remote ASBR ID sub-TLV specifies the identifier of the The IPv6 Remote ASBR ID sub-TLV specifies the identifier of the
remote ASBR to which the advertised inter-AS link connects. This remote ASBR to which the advertised inter-AS link connects. This
could be any stable, routable and global IPv6 address of the remote could be any stable, routable, and global IPv6 address of the remote
ASBR. Use of the TE Router IPv6 Address IPv6 TE Router ID as ASBR. Use of the TE Router IPv6 Address IPv6 TE Router ID as
specified in the IPv6 Router Address as specified in the IPv6 Router specified in the IPv6 Router Address, which is specified in the IPv6
Address TLV [OSPF-V3-TE] is RECOMMENDED. Router Address TLV [OSPF-V3-TE], is RECOMMENDED.
The IPv6 Remote ASBR ID sub-TLV is TLV type 23 (which needs to be The IPv6 Remote ASBR ID sub-TLV is TLV type 24 (see Section 6.2), and
confirmed by IANA see Section 6.2), and is sixteen octets in length. is sixteen octets in length. Its format is as follows:
Its format is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote ASBR ID | | Remote ASBR ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote ASBR ID (continued) | | Remote ASBR ID (continued) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 13, line 33 skipping to change at page 12, line 33
and IPv6 Remote ASBR ID sub-TLV MAY both be present in a Link TLV in and IPv6 Remote ASBR ID sub-TLV MAY both be present in a Link TLV in
OSPFv2 or OSPFv3. OSPFv2 or OSPFv3.
4. Procedure for Inter-AS TE Links 4. Procedure for Inter-AS TE Links
When TE is enabled on an inter-AS link and the link is up, the ASBR When TE is enabled on an inter-AS link and the link is up, the ASBR
SHOULD advertise this link using the normal procedures for OSPF-TE SHOULD advertise this link using the normal procedures for OSPF-TE
[OSPF-TE]. When either the link is down or TE is disabled on the [OSPF-TE]. When either the link is down or TE is disabled on the
link, the ASBR SHOULD withdraw the advertisement. When there are link, the ASBR SHOULD withdraw the advertisement. When there are
changes to the TE parameters for the link (for example, when the changes to the TE parameters for the link (for example, when the
available bandwidth changes) the ASBR SHOULD re-advertise the link, available bandwidth changes), the ASBR SHOULD re-advertise the link,
but the ASBR MUST take precautions against excessive re- but the ASBR MUST take precautions against excessive re-
advertisements as described in [OSPF-TE]. advertisements as described in [OSPF-TE].
Hellos MUST NOT be exchanged over the inter-AS link, and Hellos MUST NOT be exchanged over the inter-AS link, and
consequently, an OSPF adjacency MUST NOT be formed. consequently, an OSPF adjacency MUST NOT be formed.
The information advertised comes from the ASBR's knowledge of the TE The information advertised comes from the ASBR's knowledge of the TE
capabilities of the link, the ASBR's knowledge of the current status capabilities of the link, the ASBR's knowledge of the current status
and usage of the link, and configuration at the ASBR of the remote and usage of the link, and configuration at the ASBR of the remote AS
AS number and remote ASBR TE Router ID. number and remote ASBR TE Router ID.
Legacy routers receiving an advertisement for an inter-AS TE link Legacy routers receiving an advertisement for an inter-AS TE link are
are able to ignore it because the Link Type carries an unknown value. able to ignore it because the Link Type carries an unknown value.
They will continue to flood the LSA, but will not attempt to use the They will continue to flood the LSA, but will not attempt to use the
information received as if the link were an intra-AS TE link. information received as if the link were an intra-AS TE link.
In the current operation of TE OSPF, the LSRs at each end of a TE In the current operation of TE OSPF, the LSRs at each end of a TE
link emit LSAs describing the link. The databases in the LSRs then link emit LSAs describing the link. The databases in the LSRs then
have two entries (one locally generated, the other from the peer) have two entries (one locally generated, the other from the peer)
that describe the different 'directions' of the link. This enables that describe the different 'directions' of the link. This enables
CSPF to do a two-way check on the link when performing path Constrained Shortest Path First (CSPF) to do a two-way check on the
computation and eliminate it from consideration unless both link when performing path computation and eliminate it from
directions of the link satisfy the required constraints. consideration unless both directions of the link satisfy the required
constraints.
In the case we are considering here (i.e., of a TE link to another In the case we are considering here (i.e., of a TE link to another
AS) there is, by definition, no IGP peering and hence no bi- AS), there is, by definition, no IGP peering and hence no
directional TE link information. In order for the CSPF route bidirectional TE link information. In order for the CSPF route
computation entity to include the link as a candidate path, we have computation entity to include the link as a candidate path, we have
to find a way to get LSAs describing its (bidirectional) TE to find a way to get LSAs describing its (bidirectional) TE
properties into the TE database. properties into the TE database.
This is achieved by the ASBR advertising, internally to its AS, This is achieved by the ASBR advertising, internally to its AS,
information about both directions of the TE link to the next AS. The information about both directions of the TE link to the next AS. The
ASBR will normally generate an LSA describing its own side of a link; ASBR will normally generate an LSA describing its own side of a link;
here we have it 'proxy' for the ASBR at the edge of the other AS and here we have it 'proxy' for the ASBR at the edge of the other AS and
generate an additional LSA that describes that device's 'view' of generate an additional LSA that describes that device's 'view' of the
the link. link.
Only some essential TE information for the link needs to be Only some essential TE information for the link needs to be
advertised; i.e., the Link Type, the Remote AS number and the Remote advertised; i.e., the Link Type, the Remote AS number, and the Remote
ASBR ID. Routers or PCEs that are capable of processing ASBR ID. Routers or PCEs that are capable of processing
advertisements of inter-AS TE links SHOULD NOT use such links to advertisements of inter-AS TE links SHOULD NOT use such links to
compute paths that exit an AS to a remote ASBR and then immediately compute paths that exit an AS to a remote ASBR and then immediately
re-enter the AS through another TE link. Such paths would constitute re-enter the AS through another TE link. Such paths would constitute
extremely rare occurrences and SHOULD NOT be allowed except as the extremely rare occurrences and SHOULD NOT be allowed except as the
result of specific policy configurations at the router or PCE result of specific policy configurations at the router or PCE
computing the path. computing the path.
4.1. Origin of Proxied TE Information 4.1. Origin of Proxied TE Information
Section 4 describes how to an ASBR advertises TE link information as Section 4 describes how an ASBR advertises TE link information as a
a proxy for its neighbor ASBR, but does not describe where this proxy for its neighbor ASBR, but does not describe where this
information comes from. information comes from.
Although the source of this information is outside the scope of this Although the source of this information is outside the scope of this
document, it is possible that it will be a configuration requirement document, it is possible that it will be a configuration requirement
at the ASBR, as are other, local, properties of the TE link. Further, at the ASBR, as are other, local, properties of the TE link.
where BGP is used to exchange IP routing information between the Further, where BGP is used to exchange IP routing information between
ASBRs, a certain amount of additional local configuration about the the ASBRs, a certain amount of additional local configuration about
link and the remote ASBR is likely to be available. the link and the remote ASBR is likely to be available.
We note further that it is possible, and may be operationally We note further that it is possible, and may be operationally
advantageous, to obtain some of the required configuration advantageous, to obtain some of the required configuration
information from BGP. Whether and how to utilize these possibilities information from BGP. Whether and how to utilize these possibilities
is an implementation matter. is an implementation matter.
5. Security Considerations 5. Security Considerations
The protocol extensions defined in this document are relatively The protocol extensions defined in this document are relatively minor
minor and can be secured within the AS in which they are used by the and can be secured within the AS in which they are used by the
existing OSPF security mechanisms. existing OSPF security mechanisms.
There is no exchange of information between ASes, and no change to There is no exchange of information between ASes, and no change to
the OSPF security relationship between the ASes. In particular, the OSPF security relationship between the ASes. In particular,
since no OSPF adjacency is formed on the inter-AS links, there is no since no OSPF adjacency is formed on the inter-AS links, there is no
requirement for OSPF security between the ASes. requirement for OSPF security between the ASes.
Some of the information included in these new advertisements (e.g., Some of the information included in these new advertisements (e.g.,
the remote AS number and the remote ASBR ID) is obtained manually the remote AS number and the remote ASBR ID) is obtained manually
from a neighboring administration as part of commercial relationship. from a neighboring administration as part of commercial relationship.
The source and content of this information should be carefully The source and content of this information should be carefully
checked before it is entered as configuration information at the checked before it is entered as configuration information at the ASBR
ASBR responsible for advertising the inter-AS TE links. responsible for advertising the inter-AS TE links.
It is worth noting that in the scenario we are considering a Border It is worth noting that, in the scenario we are considering, a Border
Gateway Protocol (BGP) peering may exist between the two ASBRs and Gateway Protocol (BGP) peering may exist between the two ASBRs, and
this could be used to detect inconsistencies in configuration (e.g., this could be used to detect inconsistencies in configuration (e.g.,
the administration that originally supplied the information may be the administration that originally supplied the information may be
lying, or some manual mis-configurations or mistakes are made by the lying, or some manual misconfigurations or mistakes are made by the
operators). For example, if a different remote AS number is received operators). For example, if a different remote AS number is received
in a BGP OPEN [BGP] from that locally configured into OSPF-TE, as we in a BGP OPEN [BGP] from that locally configured into OSPF-TE, as we
describe here, then local policy SHOULD be applied to determine describe here, then local policy SHOULD be applied to determine
whether to alert the operator to a potential mis-configuration or to whether to alert the operator to a potential misconfiguration or to
suppress the OSPF advertisement of the inter-AS TE link. Note, suppress the OSPF advertisement of the inter-AS TE link. Note,
further, that if BGP is used to exchange TE information as described further, that if BGP is used to exchange TE information as described
in Section 4.1, the inter-AS BGP session SHOULD be secured using in Section 4.1, the inter-AS BGP session SHOULD be secured using
mechanisms as described in [BGP] to provide authentication and mechanisms as described in [BGP] to provide authentication and
integrity checks. integrity checks.
6. IANA Considerations 6. IANA Considerations
IANA is requested to make the following allocations from registries IANA has made the following allocations from registries under its
under its control. control.
6.1. Inter-AS TE OSPF LSA 6.1. Inter-AS TE OSPF LSA
6.1.1. Inter-AS-TE-v2 LSA 6.1.1. Inter-AS-TE-v2 LSA
IANA is requested to assign a new Opaque LSA type (TBD) to Inter-AS- IANA has assigned a new Opaque LSA type (6) to Inter-AS-TE-v2 LSA.
TE-v2 LSA. We suggest that the value 6 be assigned for the new
Opaque LSA type.
6.1.2. Inter-AS-TE-v3 LSA 6.1.2. Inter-AS-TE-v3 LSA
IANA is requested to assign a new OSPFv3 LSA type function code (TBD) IANA has assigned a new OSPFv3 LSA type function code (13) to Inter-
to Inter-AS-TE-v3 LSA. We suggest that the value 11 be assigned for AS-TE-v3 LSA.
the new OSPV3 LSA type function code.
6.2. OSPF LSA Sub-TLVs type 6.2. OSPF LSA Sub-TLVs Type
IANA maintains the "Open Shortest Path First (OSPF) Traffic IANA maintains the "Open Shortest Path First (OSPF) Traffic
Engineering TLVs" registry with sub-registry "Types for sub-TLVs in Engineering TLVs" registry with sub-registry "Types for sub-TLVs in a
a TE Link TLV". IANA is requested to assign three new sub-TLVs as TE Link TLV". IANA has assigned three new sub-TLVs as follows (see
follows. The following numbers are suggested (see section 3.3): Section 3.3 for details):
Value Meaning Value Meaning
21 Remote AS Number sub-TLV 21 Remote AS Number sub-TLV
22 IPv4 Remote ASBR ID sub-TLV 22 IPv4 Remote ASBR ID sub-TLV
23 IPv6 Remote ASBR ID sub-TLV 24 IPv6 Remote ASBR ID sub-TLV
7. Acknowledgments 7. Acknowledgments
The authors would like to thank Adrian Farrel, Acee Lindem, JP The authors would like to thank Adrian Farrel, Acee Lindem, JP
Vasseur, Dean Cheng, and Jean-Louis Le Roux for their review and Vasseur, Dean Cheng, and Jean-Louis Le Roux for their review and
comments to this document. comments to this document.
8. References 8. References
8.1. Normative References 8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [GMPLS-TE] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF
Requirement Levels", BCP 14, RFC 2119, March 1997. Extensions in Support of Generalized Multi-Protocol
Label Switching (GMPLS)", RFC 4203, October 2005.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., [OSPF] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP 1998.
Tunnels", RFC 3209, December 2001.
[RFC5250] Berger, L., Bryskin, I., Zinin, A., and Coltun, R.,"The [OSPF-TE] Katz, D., Kompella, K., and D. Yeung, "Traffic
OSPF Opaque LSA Option", RFC5250, July 2008. Engineering (TE) Extensions to OSPF Version 2", RFC
3630, September 2003.
[OSPF] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998. [OSPF-V3-TE] Ishiguro, K., Manral, V., Davey, A., and A. Lindem,
Ed., "Traffic Engineering Extensions to OSPF
Version 3", RFC 5329, September 2008.
[OSPF-TE] Katz, D., Kompella, K., and Yeung, D., "Traffic [OSPFV3] Coltun, R., Ferguson, D., Moy, J., and A. Lindem,
Engineering (TE) Extensions to OSPF Version 2", RFC 3630, "OSPF for IPv6", RFC 5340, July 2008.
September 2003.
[OSPF-V3-TE] Ishiguro K., Manral V., Davey A., and Lindem A., [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
"Traffic Engineering Extensions to OSPF version 3", draft- Requirement Levels", BCP 14, RFC 2119, March 1997.
ietf-ospf-ospfv3-traffic, {work in progress}.
[GMPLS-TE] Rekhter, Y., and Kompella, K., "OSPF Extensions in [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T.,
Support of Generalized Multi-Protocol Label Switching Srinivasan, V., and G. Swallow, "RSVP-TE:
(GMPLS)", RFC 4203, October 2005. Extensions to RSVP for LSP Tunnels", RFC 3209,
December 2001.
[OSPFV3] Coltun, R., Ferguson, D., Moy, J., and Lindem, A., "OSPF [RFC5250] Berger, L., Bryskin, I., Zinin, A., and R. Coltun,
for IPv6", RFC 5340, July 2008. "The OSPF Opaque LSA Option", RFC 5250, July 2008.
8.2. Informative References 8.2. Informative References
[INTER-AS-TE-REQ] Zhang and Vasseur, "MPLS Inter-AS Traffic [BGP] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed.,
Engineering Requirements", RFC4216, November 2005. "A Border Gateway Protocol 4 (BGP-4)", RFC 4271,
January 2006.
[PD-PATH] Ayyangar, A., Vasseur, JP., and Zhang, R., "A Per-domain [BRPC] Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le
path computation method for establishing Inter-domain", Roux, "A Backward Recursive PCE-Based Computation
RFC 5152, February 2008. (BRPC) Procedure to Compute Shortest Inter-Domain
Traffic Engineering Label Switched Paths", Work in
Progress, April 2008.
[BRPC] JP. Vasseur, Ed., R. Zhang, N. Bitar, JL. Le Roux, "A [INTER-AS-TE-REQ] Zhang, R., Ed., and J.-P. Vasseur, Ed., "MPLS
Backward Recursive PCE-based Computation (BRPC) procedure Inter-Autonomous System (AS) Traffic Engineering
to compute shortest inter-domain Traffic Engineering Label (TE) Requirements", RFC 4216, November 2005.
Switched Paths", draft-ietf-pce-brpc, (work in progress)
[PCE] Farrel, A., Vasseur, JP., and Ash, J., "A Path Computation [L1VPN-OSPF-AD] Bryskin, I. and L. Berger, "OSPF-Based Layer 1 VPN
Element (PCE)-Based Architecture", RFC4655, August 2006. Auto-Discovery", RFC 5252, July 2008.
[L1VPN-OSPF-AD] Bryskin, I., and Berger, L., "OSPF Based L1VPN Auto- [PCE] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
Discovery", RFC 5252, July 2008. Computation Element (PCE)-Based Architecture", RFC
4655, August 2006.
[BGP] Rekhter, Li, Hares, "A Border Gateway Protocol 4 (BGP-4)", [PD-PATH] Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang,
RFC4271, January 2006 "A Per-Domain Path Computation Method for
Establishing Inter-Domain Traffic Engineering (TE)
Label Switched Paths (LSPs)", RFC 5152, February
2008.
Authors' Addresses Authors' Addresses
Mach(Guoyi) Chen Mach(Guoyi) Chen
Huawei Technologies Co.,Ltd Huawei Technologies Co., Ltd.
KuiKe Building, No.9 Xinxi Rd., KuiKe Building, No.9 Xinxi Rd.
Hai-Dian District Hai-Dian District
Beijing, 100085 Beijing, 100085
P.R. China P.R. China
Email: mach@huawei.com EMail: mach@huawei.com
Renhai Zhang Renhai Zhang
Huawei Technologies Co.,Ltd Huawei Technologies Co., Ltd.
KuiKe Building, No.9 Xinxi Rd., KuiKe Building, No.9 Xinxi Rd.
Hai-Dian District Hai-Dian District
Beijing, 100085 Beijing, 100085
P.R. China P.R. China
Email: zhangrenhai@huawei.com EMail: zhangrenhai@huawei.com
Xiaodong Duan Xiaodong Duan
China Mobile China Mobile
53A,Xibianmennei Ave,Xunwu District 53A,Xibianmennei Ave,Xunwu District
Beijing, China Beijing, China
Email: duanxiaodong@chinamobile.com EMail: duanxiaodong@chinamobile.com
Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed
to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such
rights might or might not be available; nor does it represent that
it has made any independent effort to identify any such rights.
Information on the procedures with respect to rights in RFC
documents can be found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use
of such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository
at http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Disclaimer of Validity
This document and the information contained herein are provided on
an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.
Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
 End of changes. 96 change blocks. 
277 lines changed or deleted 270 lines changed or added

This html diff was produced by rfcdiff 1.35. The latest version is available from http://tools.ietf.org/tools/rfcdiff/